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ABSTRACT 

Conflicting claims about engineering students’ abilities to innovate solutions to 

design tasks warranted evaluation of measures and clarification of roles of design task 

and student characteristics in developing innovative solutions. Three manuscripts 

clarified quality of measures and roles of design tasks and student characteristics using 

survey data from 361 students. The first manuscript evaluated measures of task 

difficulty, current achievement motivation and cognitive style using CFA, EFA and 

reliability analyses. Measures were found to have low validity and reliability. Future 

studies should be conducted with large sample sizes and improved item quality. 

The second manuscript clarified roles of Grade Point Average (GPA), 

classification, major, task familiarity, current achievement motivation, and cognitive 

style in developing innovative solutions using decision tree analysis. GPA, major, 

current achievement motivation, and cognitive style were significant predictors of 

novelty. Eight combinations of students’ characteristics that predict novelty of students’ 

solutions to a design task were identified. Of the eight, four combinations predict 

conventional solutions. The remaining four combinations predict novel solutions. 

Stability of combinations and their thresholds should be verified with different design 

tasks and large sample sizes. 

The third manuscript examined relationships of design task structuredness and 

complexity to novelty of solutions after controlling for GPA, major, challenge, anxiety, 

interest and novelty-seeking orientation. Structural equation modeling found significant 
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positive association between structuredness and novelty, significant negative association 

between complexity and novelty, and significant positive correlation between 

structuredness and complexity. Only major 2 (BAEN, BMEN, CHEN, ETID, ISEN, 

NUEN, OCEN or PETE) was found significant relative to undeclared majors. 

Structuredness, complexity, major 2 explained 21% of the total variance in novelty. 

Findings support development of models to explain relationships between design tasks 

and abilities to innovate as moderated or mediated by student characteristics, controlling 

confounding effects of design tasks and students’ characteristics in ideation studies, and 

discovery of strategies to develop students’ abilities to innovate solutions. 
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1. INTRODUCTION

Preparing engineering students with abilities to provide innovative solutions to 

increasingly challenging design problems is essential to their success as engineers. 

Though earlier studies (Atman, Chimka, Bursic, & Nachtmann, 1999; Cross, 

Christiaans, & Dorst, 1994) reported increases in students’ abilities to innovate, recent 

studies (Lai, Roan, Greenberg, & Yang, 2008; Genco, Holta-Otto, & Conner Seepersad, 

2012) suggested that students’ abilities to provide innovative solutions diminish as they 

advance through the engineering curriculum. For example, in an earlier study Atman, et 

al. (1999), who measured creativity in terms of quantity of ideas generated, noted that 

final year students generated a higher quantity of ideas than second year students. Cross, 

et al. (1994) measured creativity in terms of quality of ideas generated and found senior 

students generated a higher quality of ideas than freshmen. In recent studies, Lai, et al. 

(2008) and Genco, et al. (2012) suggested that while both seniors and freshmen 

produced ideas of similar quality, seniors were less proficient than freshmen at creating 

original solutions to ill-defined problems using creative thinking. Conflicting claims 

about development of students’ abilities to innovate through the curricula warranted 

research that clarifies roles of engineering curricula in developing their abilities to 

provide innovative solutions to challenging design problems. 

While several aspects of engineering curricula may impact development of 

undergraduate students’ abilities to innovate, this research focused on roles of instructor-

assigned design tasks in advancing students’ abilities to provide innovative solutions to 
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challenging problems in the workplace. This is because instructor-assigned design tasks, 

which are presented typically in text format to students, form the crux of student 

experience in cornerstone and capstone courses in engineering (personal experience). 

Researchers have expressed needs to determine design task characteristics that make the 

tasks suitable for student learning (Jonassen & Hung, 2008); the needs remain 

unaddressed. Therefore, the relationships between assigned design task characteristics 

and undergraduate engineering students’ abilities to innovate solutions to design tasks 

were examined in this dissertation after controlling for students’ characteristics. 

Students’ characteristics such as domain-relevant skills, cognitive style, and task 

motivation are posited as significant moderating and/or mediating variables of the 

creative process (Amabile, 2013).  

No studies were found that examined relationships between characteristics of design 

tasks and engineering students’ abilities to innovate with the control variables such as 

students’ domain-relevant skills, cognitive style and task motivation as defined in this 

research. Previous research (Reiter-Palmon, et al., 2009 and Jo, et al., 2012) were limited 

to non-engineering design tasks with students and employees outside of the domain of 

engineering. In addition, the authors’ mapping of the characteristics of the task was 

limited to problem difficulty measured only in terms of task complexity. 

Understandably, and given the purpose of their studies, Reiter-Palmon, et al. (2009) and 

Jo, et al.’s (2012) studies did not use a creativity index specific to the domain of 

engineering; metrics used to measure creativity can affect conclusions associated with a 

study. Martinsen and Kaufmann (2000) did not measure the creative performance of 
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individuals in their study on effects of task motivation and A-E cognitive style on 

problem-solving performance. Therefore, this research examined relationships between 

design task characteristics and abilities to innovate with a design task, a more 

encompassing definition of design task characteristics, a creativity measure specific to 

the domain of engineering (Sarkar & Chakrabarti, 2011) and control variables and 

population unexamined in previous research.  

Examining proposed relationships, however, required definition, development and/or 

evaluation of measures of design task characteristics, students’ characteristics, and 

innovative solutions for present research. While many definitions and methods of 

measurement of task characteristics (Campbell, 1988; Kim & Soergel, 2005), student 

characteristics (Amabile, 2013; Lee, 2004) and students’ abilities to innovate solutions 

(Sarkar, et al., 2011) exist in the literature, present research defined and measured task 

characteristics, students’ characteristics, and innovative solutions in the following ways. 

Task difficulty, which according to Jonassen et al. (2008) can be viewed as a 

combination of task structuredness and task complexity and appears to encompass 

majority of the features of a task, was chosen to represent the characteristics of a design 

task. Task difficulty was measured using a 14 items Likert-scale that measures students’ 

perceptions of task structuredness and task complexity. See Appendix A.  

Domain-relevant skills, task motivation, and creativity-relevant processes, which 

impact students’ abilities to innovate solutions to design tasks (Amabile, 2013), were 

chosen to represent students’ characteristics. Domain-relevant skills were estimated from 

students’ Grade Point Average (GPA), classification, familiarity with design task, and 
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discipline. GPA is defined as the number of grade points earned divided by number of 

credit hours attempted (Registrar’s office, 2014). Classification is defined as the number 

of attempted credit hours (Student Rule 13, 2014), and discipline is defined as major 

affiliation. Students self-reported their GPA, classification and discipline.  

Task motivation was estimated from current achievement motivation, which is 

defined as achievement on a task as mitigated by task characteristics. This is because 

Freund, Kuhn, and Holling (2011), who examined measurement issues of the task 

motivation instrument used in this study, argue that interest - an indicator of current 

achievement motivation - is a significant predictor of creativity. Task motivation was 

measured using a short Questionnaire of Current Achievement Motivation. Only this 

questionnaire was found to measure students’ motivation with respect to a given task. 

See Appendix B.  

Creativity-relevant processes were estimated from students’ cognitive style. 

Cognitive style, which is defined as individual differences in orientation towards 

different problem-solving strategies used to solve a task (Martinsen & Kaufmann, 2011), 

correlates with personality traits and is expected to explain variance beyond that of 

personality traits (Martinsen & Kaufmann, 2011). Cognitive style was measured using 

the Assimilator-Explorer (A-E) inventory. Given prior evidence of its validity and 

reliability and easy/free access, the A-E inventory is used in this research. See Appendix 

C.  

Novelty - defined as something new/original (Sarkar et al., 2011) – of solutions to 

design tasks was chosen to represent students’ abilities to provide innovative solutions. 
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While several definitions and methods to measure innovative abilities exist in the 

literature (Cropley, 2011; O’Quin & Besermer, 2011; Sarkar et al., 2011), abilities to 

innovate are commonly defined in terms of novelty and usefulness of solutions in 

engineering. Of the two, only novelty is chosen to represent students’ abilities to 

innovate because recent literature (Lai, et al., 2008 & Genco, et al., 2012) suggested that 

originality of student-generated solutions diminishes as undergraduate students advance 

through the engineering curriculum. Novelty was estimated from newness of students’ 

solutions to a design task based on rarity of solutions found in the sample (Verhaegen, 

Vandevenne, & Duflou, 2012) 

The researcher did not find any need to evaluate selected measures of domain-

relevant skills and innovative abilities, however, measures of task difficulty, task 

motivation and cognitive style were evaluated in present research. Section 2/manuscript 

#1 of this dissertation presents an evaluation of the psychometric properties of the three 

measures using confirmatory and exploratory factor analyses and reliability analyses. 

The purpose of this evaluation was to determine usability of the three measures for 

research on engineering students’ abilities to innovate solutions to engineering design 

problems. 

Section 2 contributes to the literature in three ways. First, it develops and evaluates 

new, domain-general measures of task difficulty for an engineering task. Doing so is 

critical for measuring task difficulty in research studies, doing cross-study comparisons 

using different design problems, and decreasing time invested in conducting future 

research with focus on examining students’ perceptions of difficulty of curricula. 



 

6 

 

Second, it re-evaluates measures of current achievement motivation for an engineering 

task and measures of current achievement motivation and cognitive style with a sample 

of undergraduate engineering students from a large, research extensive, public university 

in the southern United States. Re-evaluation of measures with a sample from different 

populations and domains is critical for confirming generalizability of measures and 

subsequent use in research with new populations and domains (Hong, Purzer, & 

Cardella, 2011). Third, it evaluates all three measures using “new” statistical methods. 

Unlike previous research and consistent with current trends (S. Yoon Yoon, personal 

communication, early 2017) data obtained from Likert-scales was assumed to be of 

ordinal (and not continuous) scale. This assumption resulted in use of techniques and 

findings that may be different from previous research.   

Further, examining proposed relationships required understanding how engineering 

students’ characteristics combine to predict their abilities to innovate solutions to design 

tasks. Characteristics such as an individual’s domain expertise, creativity-relevant skills, 

and motivation individually have been linked to creative performance in previous 

research (Amabile, 2013; Jo & Lee, 2012; Martinsen & Diseth, 2011). Section 

3/manuscript #2 describes how GPA, classification, major, familiarity with a design task, 

current achievement motivation and cognitive style predict novelty solutions to a design 

task. This study is unique in its use of a model that accounts for combined roles of 

domain expertise, creativity-relevant processes and task motivation using decision tree 

analysis for predicting students’ abilities to generate innovative solutions to challenging 

design tasks. A purpose of this examination was to determine and prioritize the most 
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important/significant characteristics for use as covariates - when studying the 

relationships between task difficulty and novelty – given the large number of measures, 

small sample size, and limited resources to collect additional data. In addition, 

moderating or mediating influences of students’ characteristics were found from this 

analysis.  

Section 3 informs the literature in three ways. One, it verifies relationships 

outlined among domain expertise, motivation and creativity relevant processes in 

Amabile’s componential theory of creativity (2013), thereby giving strength to evidence 

for future use of Amabile’s theory to frame research studies on creativity in engineering 

education. Two, it clarifies importance design education studies can assign to students’ 

characteristics when comparing advantages and disadvantages of different ideation 

techniques in design research studies. Three, it provides hypotheses for future research 

on conditions which support/do not support novelty in student-generated solutions to 

design problems. Testing hypotheses is essential for developing instructional strategies 

engineering programs can use to enhance students’ abilities to generate innovative 

solutions to challenging design problems.  

Relationships between design task difficulty and novelty were explored after 

adequacy of measures and significant covariates were established for this research. 

Specifically, the direct effects of engineering students’ perceived structuredness and 

complexity of an engineering design task on novelty of solutions were determined using 

structural equation modeling. Controlled covariates included GPA, major, perceived task 

challenge, task-related anxiety, interest in task and novelty-seeking orientation. Section 
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4/manuscript #3 describes findings from a preliminary model of associations between 

structuredness, complexity, significant covariates, and novelty of solutions for an 

engineering design task. 

Section 4 has a three-fold contribution to engineering education. One, it provides a 

preliminary model and empirical evidence to build theories that eventually explain the 

relationship between problem characteristics and creativity as moderated and/or 

mediated by student characteristics. Two, it clarifies potential variance in observed 

novelty of solutions that design researchers can assign to both design problems and 

student characteristics when comparing advantages and disadvantages of different 

ideation techniques in design research studies. Three, it provides findings about 

conditions (e.g., characteristics of design task, students) which support novelty in 

student-generated solutions. Such findings can inform engineering programs and book 

publishers about strategies to develop students’ abilities to innovate solutions to 

challenging design problems. 
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2. PSYCHOMETRIC EVALUATION OF MEASURES OF ENGINEERING 

DESIGN TASK DIFFICULTY, CURRENT ACHIEVEMENT MOTIVATION 

AND COGNITIVE STYLE 

 

2.1 Introduction 

The abilities to design innovative systems, components, or processes in response 

to increasingly challenging engineering problems and within realistic constraints are 

recognized as necessary competencies of students graduating from engineering programs 

(ABET, 2017). Previous research (Atman, Chimka, Bursic & Nachtmann, 1999; Cross, 

Christiaans & Dorst, 1994) reported increased abilities to innovate solutions to design 

problems. Recent research (Lai, Roan, Greenberg & Yang, 2008; Genco, Holtta-Otto & 

Seepersad, 2012), however, suggested that undergraduate students’ abilities to innovate 

diminish as they advance through engineering curricula. Conflicting claims about 

development of students’ abilities to innovate through the curricula warrant research that 

clarifies roles of engineering curricula in developing their abilities to provide innovative 

solutions to challenging design problems. Clarifying the roles of curricula, however, 

requires development and evaluation of measures that explore how students interact with 

the engineering curricula. 

While research is needed to develop and evaluate many measures of students’ 

interactions with the engineering curricula, this research furthers the development and 

evaluation of the following three measures: (a) students’ perceptions of the difficulty of 

the curricula (i.e., task difficulty), (b) students’ motivation to engage with the curricula 
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(i.e., current achievement motivation), and (c) students’ approach to problem solving 

(i.e., cognitive style) when faced with the curricula. Task difficulty, current achievement 

motivation and cognitive style have been linked to students’ performance in technical 

and non-technical contexts (e.g., Freund, Kuhn & Holling, 2011). Therefore, 

development and evaluation of the psychometric properties of these three measures of 

students’ interactions with the engineering curricula is essential to advancing research 

and practice in engineering education, especially as it relates to developing students’ 

abilities to innovate in engineering.   

2.1.1 Task difficulty  

2.1.1.1 Definition      

While there is no consensus in the literature on a definition of task difficulty 

(Campbell, 1988; Kim & Soergel, 2005), recent studies (Jonassen & Hung, 2008) have 

proposed that researchers examining the effects of task characteristics on learning 

outcomes consider task difficulty a combination of structuredness and complexity. The 

structuredness of a task can fall on a continuum of well-structured and ill-structured task 

(Lee, 2004). A well-structured task has a “clear statement of problem’s components, one 

single correct solution, algorithmic paths to reach the goal, and application of a finite 

number of concepts, rules, and principles to constrain the situation.” An ill-structured 

task “lacks one or more of problem components, is difficult to define, [and] possesses 

multiple solutions and paths to reach the goal.” (p. 26-28). The complexity of a task can 

fall on a continuum that ranges from a simple task to a complex task. A simple task 

requires application of linear, straightforward reasoning using a small number of 



 

11 

 

concrete concepts that take a short amount of time to solve. A complex task requires the 

use of relationally complex thinking involving abstract concepts, a large amount of 

conceptual and applied knowledge to solve the task, and more time than a simple task to 

find a solution. (Lee, 2004) In present research, task difficulty, therefore, has been 

conceptualized as students’ perceptions of structuredness and complexity of an 

engineering task. 

2.1.1.2 Factor structure  

Task difficulty has been hypothesized as a two-factor model with task 

structuredness and task complexity as factors. See Jonnasen and Hung (2008) for a 

description of potential sub-factors of structuredness and complexity not considered in 

this research. Based on previous research (Lee, 2004), structuredness and complexity are 

expected to correlate with each other.   

2.1.1.3 Measures 

A measurement scale of task difficulty (14 items) was developed in this research 

using a combination of two 7 item, 5-point Likert-scales that measure task structuredness 

and task complexity, respectively, with labels of “disagree” at 1 and “agree” at 5. The 

new scale was developed for this research because the two existing measures (Jacobs, 

Dolmans, Wolfhagen & Scherpbier, 2003; Pierrakos, Zilberberg & Anderson, 2010) that 

were identified to have basis in the two-factor conceptualization of task difficulty were 

unsuitable for gauging students’ perceptions of task difficulty for present research. The 

first of two measures (12-items scale), which was tested with a sample of 244 first year 

medical school students in Netherlands (Jacobs et al., 2003), was reported to have a good 
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model fit. Contrary to the expected two-factor structure, a three-factor model with 

average to poor factor reliabilities was identified in previous research during model 

fitting. The second mixed-item measurement scale (Pierrakos et al., 2010) contains items 

that are context specific to undergraduate research. This scale is therefore non-applicable 

in studies where researchers desire to gauge students’ perceptions of task difficulty prior 

to engaging with concept generation for assigned design tasks outside the undergraduate 

research experience context. The combined 14 item, 5-point Likert-scale, which consists 

of two sub-scales, is generic, face valid and content valid. In addition, previous research 

(Lee, 2004) indicated that reliability of participants’ responses to the two chosen scales 

was fair. The Cronbach’s alpha reliabilities of two sub-scales have been reported as 0.78 

and 0.72, respectively (Lee, 2004). 

2.1.2 Current achievement motivation 

2.1.2.1 Definition  

Current Achievement Motivation (CAM) is defined as student’s achievement on 

a task as mitigated by task characteristics (Freund et al., 2011). CAM was 

conceptualized to explain the need for achievement that affects human behaviors when 

encountered with a specific task. CAM has its basis in the expanded cognitive model of 

motivation. This model of motivation predicts a learner’s “tendency to perform an action 

that produces a desired consequence via an intended outcome” (Vollmeyer & Rheinberg, 

2006, p. 8). 

 

 



 

13 

 

2.1.2.2 Factor structure 

CAM has been formulated as a four-factor model with anxiety, challenge, 

interest and probability of success as factors. In this model, anxiety reflects “fear of 

failure in an achievement situation.” (p. 629). Challenge is “the degree to which a person 

accepts a task as relevant.” The degree of relevance of a task for a person is “influenced 

by perceived task easiness” (p. 629). Interest “is related to a person’s positive affect 

toward and positive evaluation of a task” and determination of probability of success is 

based on individual comparisons of “perceived ability with perceived difficulty of the 

task” (p. 629). While almost zero (r = 0.03) correlation exists between anxiety and 

challenge, a moderate correlation (r = -0.53, p < 0.01) has been reported between 

challenge and interest. (Fruend, et al., 2011) 

2.1.2.3 Measures 

CAM is measured using a short Questionnaire on Current Motivation (QCM). 

The short QCM is composed of a 12 item 7-point Likert-scale that ranges from disagree 

at 1 to agree at 7. This measure of CAM was reduced from an 18-items scale that 

explains task performance on cognitive tasks to increase usability for research. A 

satisfactory model fit with anxiety, challenge, interest and probability of success as 

factors (Satorra-Bentler Chi-square statistic = 112.88, df = 54, p < 0.01, comparative fit 

index (CFI) = 0.95, Tucker-Lewis index (TLI) = 0.93, root mean square error of 

approximation (RMSEA) = 0.6 [90% CI: 0.05-0.08]) has been reported when tested with 

350 secondary school and undergraduate university students rating a Latin Squares Task 

on the short QCM. The four factors have been measured with three items each. The 
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Cronbach’s alpha reliabilities have been reported as 0.85 for anxiety, 0.86 for interest, 

0.70 for challenge and 0.85 for probability of success. (Fruend et al., 2011)  

2.1.3 Cognitive style 

2.1.3.1 Definition  

While several theories of cognitive style exist in the literature (Martinsen & 

Kaufmann, 2011), the Assimilator-Explorer (A-E) theory has been chosen to represent 

students’ approach to problem-solving in engineering. The A-E theory defines cognitive 

style within a problem-solving framework as differences in student’s orientation towards 

different problem-solving strategies used to solve a task. Further, the theory is purported 

to integrate well with theories of personality and achievement motivation (Martinsen, et 

al., 2011) and has measures that are readily available for non-commercial research use.    

2.1.3.2 Factor structure 

The A-E theory positions students on a style continuum that ranges from rule-

conforming (left-end, assimilators) to novelty-seeking (right-end, explorers) behaviors of 

problem solving. According to Kaufmann (Martinsen, et al., 2011, p. 217), assimilators 

interpret “new events in terms of existing knowledge”. Explorers “search for new types 

of solutions … without any external pressure to do so” (p. 217). Accommodators, with 

scores that lie at the center of the style continuum, combine the problem-solving 

behaviors of both assimilators and explorers (Martinsen & Kaufmann, 2000). Previous 

research has identified a three-factor model with rule orientation, planning and novelty 

seeking as facets of the A-E construct. The three factors explain students’ preferences 
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for rules, planning and novelty seeking behaviors during problem-solving and have been 

reported to correlate with each other (Martinsen & Diseth, 2011).   

2.1.3.3 Measures  

Cognitive style is measured using the revised 30 item A-E inventory that has its 

basis in the A-E cognitive style theory. The A-E inventory consists of two 5-point, 

Likert-scales that measure assimilator and explorer orientation, respectively, with labels 

of “strongly disagree” at 1 and “strongly agree” at 5 for each problem-solving behavioral 

statement. A satisfactory fit (Chi Square = 1616.17, df = 772, p = 0.0, NFI = 0.84, NNFI 

= 0.90, CFI = 0.91, GFI = 0.89, RMSEA = 0.051) with rules, planning and novelty 

seeking as factors has been reported when tested with a group of students and employees 

consisting of technical staff and inventors in Norway. The overall Cronbach’s alpha 

reliability has been reported as 0.92. Individual factor alpha reliabilities have been 

reported as 0.91 for rule orientation, 0.83 for novelty seeking and 0.68 for planning. 

(Martinsen, et al., 2011) 

2.1.4 Engineering curricula 

While undergraduate engineering students’ interactions with several aspects of 

engineering curricula may influence their development of abilities to innovate, this 

research specifically focuses on students’ interactions with instructor-assigned design 

tasks. The assigned design tasks, which are presented typically in text format to students, 

form the crux of student experience in cornerstone and capstone courses in engineering 

(personal experience). The researcher assigned a “mixed wasted [sic] collection” design 

task to students in present research. The task, which required students to develop 
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concepts to separate paper and plastic from a mixed waste collection, was presented as 

such: 

One of the different systems used for curbside recycling is “mixed wasted 

collection,” in which all recyclates are collected mixed and the desired material is 

then sorted out at a sorting facility. One difficult sorting task is separating paper 

and plastic, which is usually done by hand. Develop concepts that will enable 

removing paper or plastic from the mixed collection. (Cheong, Chiu, & Shu, 

2010) 

The researcher chose to use the mixed waste collection task because of its 

successful use in idea generation research. In addition, this task was expected to invoke 

large amounts of variations in students’ responses to perceptions of task difficulty, 

current achievement motivation and cognitive style. The large amounts of variations are 

important for distinguishing between clusters of correlated items that model different 

facets of the same construct. Given these characteristics, the design task was used to 

examine psychometric properties of the three measures of students’ interactions with the 

curricula.   

2.2 Research Purpose and Questions 

This research examined the psychometric properties of generic measures of 

engineering design task difficulty, current achievement motivation and cognitive style 

with a sample of engineering students rating an engineering design task. The purpose of 

this examination was to determine the usability of the three measures for research on 
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students’ abilities to innovate solutions to engineering design problems. The research 

questions that were posed are:  

1. What is the construct validity of measures of engineering design task difficulty, 

current achievement motivation and cognitive style?  

2. What is the reliability of engineering students’ responses to measures of 

engineering design task difficulty, current achievement motivation and cognitive 

style?   

This examination is unique for three reasons. First, it develops and evaluates new, 

domain-general measures of task difficulty for an engineering task. Doing so is critical 

for measuring task difficulty in research studies, doing cross-study comparisons using 

different design problems, and decreasing time invested in conducting future research 

with focus on examining students’ perceptions of difficulty of curricula. Second, it re-

evaluates previously evaluated measures of current achievement motivation for an 

engineering task and measures of current achievement motivation and cognitive style 

with a sample of undergraduate engineering students from a large, research extensive, 

public university in the southern United States. Re-evaluation of measures with a sample 

from different populations and domains is critical for confirming the generalizability of 

the measures before subsequent use in research with new populations and domains 

(Hong, Purzer, & Cardella, 2011). Third, it evaluates all three measures using “new” 

statistical methods. Unlike previous research and consistent with current trends (S. Yoon 

Yoon, personal communication, early 2017), data obtained from Likert-scales was 
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assumed to be of ordinal (and not continuous) scale. This resulted in use of techniques 

and findings that may be different from previous research. 

2.3 Methods 

A combination of approaches was used to determine the construct validity of 

measures of task difficulty, current achievement motivation and cognitive style using 

data from a sample of engineering undergraduates from the target population. The 

approaches to research included item analysis, exploratory factor analysis and 

confirmatory factor analysis. Using this combination of approaches is necessary when 

theoretical frameworks are hypothetical and/or empirical research is sparse. Reliabilities 

of engineering undergraduates’ responses to measures of task difficulty, current 

achievement motivation and cognitive style were estimated from ordinal alpha 

computations for each of the underlying factors in the factor structure.  

2.3.1 Target population 

The target population for this research study consisted of all undergraduate 

engineering students enrolled at a large, research extensive, public university in the 

southern United States during the 2015-2016 academic year. The average target 

population size was approximately 11263 students. Approximately 21% were females 

and 78% were males. The population consisted of freshmen (18% - 27%), sophomores 

(21%), juniors (19% - 22%) and seniors (32% - 38%) over the two semesters. The ranges 

in classification estimates reflect variability in enrollment over the two academic 

semesters. The approximate number of students affiliated with each department is 

presented in Table 2.1. (Texas A&M University – College Station, 2017) The mean 
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Grade Point Average (GPA) of students in the population is not accessible without 

institutional. permissions and therefore unknown for this research; however, it is 

presumed to fall between 0.0 and 4.0 because the university computes students’ grade 

point average on a four-point scale. 

 

Table 2.1. Departmental affiliation and approximate percentage of students in the target 

population during the 2015-2016 academic year 

Department affiliation Students (%) 

Aerospace engineering 4 

Biological and agricultural. engineering Unknown 

Biomedical engineering 2 

Chemical engineering 5 

Civil engineering 6 

College of engineering 28 - 31 

Computer science and engineering 8 

Electrical and computer engineering 7 

Engineering technology and industrial distribution 12 - 13 

Industrial and systems engineering 7 

Mechanical engineering 9 

Nuclear engineering 2 

Ocean engineering 1 

Petroleum engineering 5 

 

The target population for this study was selected out of interest from both the US 

government and industry and researcher’s interest and convenience. Both the US 

government (US Department of Commerce, 2012) and industry have expressed interest 

in preparing engineering undergraduates with abilities to provide innovative solutions to 

challenging design problems encountered in the workplaces. Findings derived from 

research on this population addressed the needs expressed by both the government and 

industry. Further, present researcher identified needs in the literature to study this 

population. In addition, the target population was easily accessible via e-mails through 
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the existing network of colleagues, in-person recruitment and experiment visits required 

of participants. 

2.3.2. Recruitment and selection 

Multiple tactics were used to recruit participants for this research study. First, 

engineering students of freshmen, sophomore, junior or senior classification were invited 

to participate in the study via the university bulk-e-mail system. Second, the research 

study was advertised to students via e-mails through their professors and presentations 

during class. Third, the researcher made visits to engineering classrooms, primarily 

capstone design in mechanical engineering, to recruit participants for the research study. 

The capstone design classrooms were chosen strategical.ly for their high enrollment of 

students with senior classification. 

Students self-selected to participate in the research study using an online study 

invite form. Use of different recruitment tactics resulted in a participation interest rate of 

approximately 5 % (~ 600 students). Of the 5% who expressed interest in participating in 

this research, approximately 60 % visited the research site to participate in the study. 

Students who consented to participate at the research site constituted the study sample.    

2.3.3. Participants 

The study sample consisted of 361 undergraduate engineering students. This 

sample was randomly split in approximately half (sample 1, sample 2) for the purposes 

of this study. Characteristics of each sample are presented in Table 2.2. As seen from 

Table 2.2, both sample 1 and sample 2 consist of more mal.es than femal.es. This trend 

is consistent with the gender distribution observed in the target population. Freshmen 
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and sophomores comprise most participants in both samples. Notably, the two lower-

level university classification groups were more amenable to participation in research 

 

Table 2.2. Participants’ characteristics in the two randomly split-samples. Number of 

participants is 361. 

 

 

Category 

   Sample 1   Sample 2 

   N = 180     N = 181 

n  %  n  % 

Gender      

   Female 60 33.5  83 45.9 

   Male 119 66.1  98 54.1 

   Unknown 1 0.6  - - 

Classification      

   Freshman 58 32.2  56 30.9 

   Sophomore 49 27.2  55 30.4 

   Junior 26 14.4  19 10.5 

   Senior 47 26.1  51 27.6 

Department      

   Aerospace engineering 7 3.9  8 4.4 

   Biological and agricultural engineering - -  1 0.6 

   Biomedical engineering - -  - - 

   Chemical engineering 8 4.4  10 5.5 

   Civil engineering 6 3.3  5 2.8 

   College of engineering 34 18.9  39 21.5 

   Computer science and engineering 15 8.3  13 7.2 

   Electrical and computer engineering 16 8.9  13 7.2 

   Engineering technology & industrial distribution 5 2.8  10 5.5 

   Industrial and systems engineering 4 2.2  6 3.3 

   Mechanical engineering 74 41.1  69 38.1 

   Nuclear engineering 7 7.0  4 2.2 

   Ocean engineering - -  - - 

   Petroleum engineering 4 2.2  3 1.7 

Grade Point Average (GPA)    

   Reported (on 4.0 scale) 149 82.8  154 85 

   Not reported 31 17.2  27 14.9 

   Mean (standard deviation) 3.2 (0.5)  3.2 (0.5) 

   Median 3.3  3.3 

   Mode 4.0  3.5 

   Range 0.8 – 4.0  1.1 – 4.0 
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than juniors and seniors in the population. The majority of participants in sample 1 and 

sample 2 are also affiliated with either the college of engineering or mechanical 

engineering. Those who were affiliated with the college of engineering are freshmen 

who had not yet chosen a major. A high number of mechanical engineering participants 

resulted from the focused recruitment. A mean GPA of 3.2 is reported for both samples. 

A mode GPA of 4.0 in sample 1 and 3.5 in sample 2 suggests that most students who 

participated in this research are high-achieving students. 

2.3.4. Data collection 

Data was collected from participants using a prospective, survey research design 

approach after obtaining permissions from the university’s Institutional. Review Board. 

Participants completed an online survey after consenting to participate in this research. 

The survey consisted of three forced-choice categorical items, one forced-choice open-

ended item and three forced-choice Likert-scales. Categorical and open-ended items 

captured demographics variables such as a student’s gender (categorical), university 

classification (categorical), department affiliation (categorical), and GPA (open-ended). 

The three Likert-scales were measures of task difficulty, QCM, and A-E inventory, 

respectively. Participants rated their perceptions of task difficulty, motivation to engage 

with, and general approach to problem-solving in engineering for the assigned design 

task on the three Likert-scales. Participants received monetary compensation for 

completing the online survey. 

 



 

23 

 

2.3.5. Data analysis 

Data analysis was conducted in three stages to determine the construct validity 

and reliability of measures of task difficulty, current achievement motivation and 

cognitive style. To run the three stage analyses, the sample (N = 361) was randomly split 

in approximately half of the total sample size. The resulting split-sample sizes are 

considered appropriate for the three stage analyses using the five observations to one 

item (5:1) rule of thumb (Zygmont & Smith, 2014). Stages 1-3 consisted of running a 

confirmatory factor analysis (sample 2), an item analysis (sample 1) and an exploratory 

factor analysis (sample 1), respectively. The multiple stage analyses are necessary to 

validate the underlying factor structures of the three measures. All analyses were 

completed using R (R Core Team, 2017). 

A confirmatory factor analysis (CFA) (Rosseel, 2012) was conducted first using 

observed measures of task difficulty, task motivation, and cognitive style, respectively, 

from sample 2, to verify the factor structures found for each of the measures in the 

literature. The measures of task difficulty, task motivation and cognitive style are 

presented in Table 2.3 (Lee, 2004), Table 2.4 (Fruend, et al., 2011), and Table 2.5 

(Martinesen, et al., 2011). Four fit indices were used to evaluate model fit to actual data. 

The fit indices are: Chi-Square test of fit and p-value, comparative fit index (CFI), Root 

Mean Squarer Error of Approximation (RMSEA), and Standardized Root Mean Square 

Residual (SRMR). A model was considered acceptable under the following conditions 

(Awang, 2012): 
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a. Chi-Square divided by degree of freedom (df) was lower than 3 and P-value was 

different from zero (greater than 0.05) 

b. Comparative Fit Index (CFI) values were above 0.95 (ideal.) or 0.90 (traditional.) 

or 0.80 (sometimes permissible) 

c. Root Mean Square Error of Approximation (RMSEA) values were less than 0.05 

(good) or 0.05 – 0.10 (moderate) 

d. Standardized Root Mean Square Residual. (SRMR) values were less than 0.09  

 

Table 2.3. Fourteen observed measures of task difficulty. Sub-scales: structuredness and 

complexity. Scale created with items from (Lee, 2004) 

Measure     Description of observed measures  

Structuredness   

TD1  Clearly stated goals or outcomes  

TD2 Clearly defined criteria for successful problem solving  

TD3 Clearly stated constraints that prevent successful problem  solving  

TD4 A single correct answer  

TD5 A prescribed solution path  

TD6 Requires solver to make assumptions and define the problem  

TD7 Falls within a predictable domain of knowledge  

Complexity   

TD8 Exhibits the relationship between concepts and rules vaguely  

TD9 Complex solutions to the problem  

TD10 Confusion from inclusion of too many elements in the problem  

TD11 Unclear coherence from presence of too many aspects  

TD12 Inclusion of many concepts, rules and principles in the problem 

statement  

TD13 Random combination of various aspects of the problem  

TD14 Elements represented in too many ways  

 

 

  

If the model was found acceptable, convergent and discriminant validity of 

factors were computed to further establish the validity of measures of task difficulty, 

task motivation and cognitive style. Convergent validity (Awang, 2012) was established 
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if values for the Average Variance Extracted (AVE) were greater than 0.5 and composite 

reliability (CR) values of factors were greater than 0.7. Divergent validity (Awang, 

2012) was established if the following conditions were met:  

a. Maximum Shared Variance (MSV) was less than Average Variance Extracted 

(AVE) 

b. Average Shared Variance (ASV) was less than AVE 

c. Square root of AVE was greater than inter-construct correlations  

An exploratory factor analysis (EFA) was followed to provide corroborative 

evidence for the CFA. 

 

Table 2.4. Twelve observed measures of task motivation. Sub-scales: probability of 

success, anxiety, interest, challenge. * = item reversed. Items from (Fruend, et al., 2011) 

listed here for instructive purposes only. 

 

Measure Description of observed measures

Probability of success

TM1 I think I am up to the difficulty of this task.

TM2* I probably won’t manage to do this task.

TM10 I think everyone could do well on this task.

Anxiety

TM3 I feel under pressure to do this task well.

TM6 I am afraid I will make a fool out of myself.

TM9 It would be embarrassing to fail at this task.

Interest

TM4 After having read the instruction, the task seems to be very interesting to me.

TM8 For tasks like this I do not need a reward, they are lots of fun anyhow.

TM12 I would work on this task even in my free time.

Challenge

TM5 I am eager to see how I will perform in this task.

TM7 I am really going to try as hard as I can on this task.

TM11 If I can do this task, I will feel proud of myself.
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Table 2.5. Thirty observed measures of cognitive style. Sub-scales: Rule orientation, 

Novelty seeking, and Planning. * = item reversed during analysis. Items from 

(Martinsen, et al., 2011) used for research and listed here for instructive purposes only. 

Measure Description of observed measures 

Rule Orientation 

CS1* I prefer detailed work which requires neatness and precision 

CS2* I prefer situation in which you have to stick to options that are tried and 

true 

CS3* I prefer to stick to what I know well 

CS4* I prefer to avoid major changes 

CS5* I work best in situation which are clear and straightforward 

CS6* I prefer situations in which you have to work according to specific rules 

CS7* I am best suited for work which requires precision and a systematic 

approach 

CS8* I prefer work with set routines 

CS9* I prefer to have clear guidelines to stick to in work 

CS10* I prefer to have systematic instruction when learning something new 

CS11* I am exceptionally precise and task-oriented in my work 

CS12* I mostly stick to accepted ideas 

CS13* I prefer to stick to a set plan when working or solving problems 

CS14* I most often try to use well-tried methods for solving problems 

CS15* When trying to solve a problem, I most often try to find new means of 

doing so 

CS23* I like situations in which you have to seek new knowledge actively 

CS24* I work best in complex situations 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS26* I most like to investigate unchartered territory 

CS30* I prefer to plan and structure what I am to do 

Novelty seeking 

CS12* I mostly stick to accepted ideas 

CS15* When trying to solve a problem, I most often try to find new means of 

doing so 

CS16 I quite like situations in which it is necessary to break with conventional. 

wisdom 

CS17 I prefer to figure things out on my own when I am learning something 

new 

CS18 I most often adopt a playful and curious approach to my work 

CS19 I prefer to improvise in what I do 
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Table 2.5. Continued  

Measure Description of observed measures 

CS20 I bubble with ideas when I am solving problems 

CS21 I most like situations in which you have to violate established norms 

CS22 I most like to work with things I don’t know too well from before 

CS23* I like situations in which you have to seek new knowledge actively 

CS24* I work best in complex situations 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS26* I most like to investigate unchartered territory 

CS27 I like best to work with without a prearranged plan 

CS29 I prefer working without any clear guidelines 

Planning 

CS1* I prefer detailed work which requires neatness and precision 

CS7* I am best suited for work which requires precision and a systematic 

approach 

CS11* I am exceptionally precise and task-oriented in my work 

CS13* I prefer to stick to a set plan when working or solving problems. 

CS19 I prefer to improvise in what I do 

CS23* I like situations in which you have to seek new knowledge actively 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS27 I like best to work with without a prearranged plan 

CS28 I often try things out without planning systematical.ly 

CS29 I prefer working without any clear guidelines 

CS30* I prefer to plan and structure what I am to do 

 

 

If the model was found unacceptable, an EFA (Matsunaga, 2010; Zygmont et al., 

2014) was conducted following an item analysis (Revelle, 2016) with sample 1. The 

item analysis was run to determine the adequacy of the sample for the EFA. Data was 

scanned for missing values and multivariate outliers. Missing values were identified 

using a frequency analysis. Multivariate outliers were identified using Mahlabonis 

distance (p < 0.001); however, none were deleted because the researcher had no practical 

reason for eliminating outliers from the data. Item statistics, included item mean, 
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standard deviation, median, range, skew, kurtosis, and standard errors of skew and 

kurtosis, were computed. Inter-item polychoric correlation matrices (Fox, 2016), item-

total correlation coefficients, standardized ordinal alpha values of scales, and ordinal 

alpha-if-item-deleted values (Gadermann, Guhn, & Zumbo, 2012) were also estimated to 

determine item quality. Mardia’s Test for multivariate normality (Korkmaz, Goksuluk, 

& Zararsiz, 2014) was performed for each measure to determine the preferred method of 

factor extraction.   

The EFA was conducted to explore the underlying factor structures of measures 

of task difficulty, task motivation and cognitive style, respectively. Factor solutions were 

extracted from observed measures using the principal axis factoring method. A promax 

rotation (Bernaards & Jennrich, 2005) was applied to improve solution interpretability. 

Decisions about retaining the number of factors for a solution were based on 

convergence of estimates from four procedures and resulting model plausibility and 

parsimony. The four procedures that were run to determine the retention of factors were 

(Matsunaga, 2010; Zygmont et al., 2014): 

a. Kaiser’s Eigenvalue Criteria. Factors were retained if eigenvalues resulting from 

the principal axis factoring technique and a promax rotation were greater than 1 

b. Cattell’s Scree Plot. Factors were retained if they were within the “sharp bend” 

on the Scree plot and the communalities were greater than 0.30 

c. Parallel Analysis. Factors were retained if eigenvalues resulting from the 

observed correlations matrix were greater than the eigenvalues resulting from a 

randomly generated correlation matrix of the same size 
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d. Velicer’s Minimum Average Partial. (MAP) Test. Factors were retained based on 

the step that resulted in lowest average squared partial correlations 

These procedures resulted in generation of eigenvalue tables and scree plots. 

Pattern matrices, including factor loadings, communalities, and uniqueness, were 

computed. Factor correlations and explained variances were estimated. Ordinal alpha 

values and ordinal alpha-if-item-deleted values were al.so computed to determine if any 

of the sub-scal.es could be refined. Factors were labeled based on the type of items that 

loaded on each factor.  

2.4. Results 

This section describes results from the CFA, EFA and item analysis for measures 

of task difficulty, task motivation, and cognitive style, respectively. 

2.4.1. Task difficulty  

Fit indices obtained from the CFA indicate that participants’ responses did not 

support the presence of prescribed two-factor measurement model of task difficulty. For 

example, the Chi-Square fit index of 4.87, which resulted from a Chi-Square value of 

370.23 (df = 76) and p-value of zero, is higher than the suggested threshold of 3. The 

CFI, RMSEA, and SRMR values of 0.87, 0.15, and 0.13, respectively, are also outside 

the acceptable thresholds.  

Further, indices obtained from the CFA suggested that computation of values of 

AVE, MSV, ASV and CR was not warranted due to an ill-fitting model. This outcome 

furthered the necessity of running an EFA along with an item analysis to determine the 

factor structure and reliability of measures of task difficulty.  
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The item analysis, which consisted of frequency analysis, multivariate outlier 

analysis and descriptive analysis of measures of task difficulty, found no missing data 

and several outliers. A complete data set was a result of the forced-choice online survey. 

Item means, standard deviations, medians, ranges, skew and kurtosis, standard errors of 

skew and kurtosis, ordinal. alpha-if-item deleted, item-total. correlations, and inter-item 

polychoric correlations obtained from the descriptive analysis are presented in Table 2.6 

and Table 2.7, respectively. A low overall standardized ordinal. alpha value of 0.63 was 

recorded.  

 

 

Table 2.6. Item statistics (mean, standard deviation (SD), median, range, skew, kurtosis, 

standard error (SE), ordinal alpha-if-item deleted, and corrected item-total correlation) 

for the proposed task difficulty scale 

 

 

Descriptive analysis results suggested removal. of items TD1, TD2, TD6, TD7, 

TD8, and TD9 from further analysis as their presence may become problematic during 

factor and reliability analyses. However, such an action was problematic. As seen from 

Item Mean SD Median Range Skew Kurtosis SE

Ordinal Alpha, 

Item Deleted

Item-Total 

Correlation

TD1 4.26 0.70 4.00 4.00 -1.26 3.33 0.05 0.68 -0.09

TD2 3.42 1.06 4.00 4.00 -0.40 -0.95 0.08 0.64 0.18

TD3 2.51 1.06 2.00 4.00 0.80 -0.23 0.08 0.59 0.51

TD4 1.58 0.95 1.00 4.00 1.95 3.59 0.07 0.58 0.61

TD5 2.26 1.11 2.00 4.00 0.72 -0.39 0.08 0.56 0.72

TD6 3.76 0.92 4.00 4.00 -0.83 0.37 0.07 0.65 0.10

TD7 3.49 0.86 4.00 4.00 -0.42 -0.43 0.06 0.64 0.16

TD8 3.27 0.81 3.00 4.00 -0.26 -0.38 0.06 0.66 0.00

TD9 3.12 0.98 3.00 4.00 0.08 -0.72 0.07 0.64 0.12

TD10 2.03 0.86 2.00 4.00 1.28 2.31 0.06 0.56 0.73

TD11 2.13 0.87 2.00 4.00 0.99 0.90 0.07 0.55 0.75

TD12 2.81 1.00 3.00 4.00 0.15 -0.92 0.07 0.61 0.32

TD13 2.03 0.78 2.00 3.00 0.58 0.17 0.06 0.59 0.50

TD14 2.60 0.94 2.00 4.00 0.27 -0.73 0.07 0.59 0.50
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the corrected item-total correlation values in Table 2.6, items TD1, TD2, and TD6-TD9 

correlate poorly with the rest of items on the scale. Poorly correlated items may not load 

on any of the factors. In addition, standardized ordinal alpha-if-item-deleted values for 

TD1, TD2, and TD6-TD9 see an increase if any one of the items is removed from the 

scale. Therefore, reliability of participants’ responses can be improved if problematic 

items are removed from the scale. Premature deletion of items, however, may result in 

elimination of facets/factors of task difficulty deemed important in the literature. 

Therefore, no items were removed prior to the EFA.   

 

Table 2.7. Polychoric correlations for items on scale of task difficulty 

  
 

 

An observation of the inter-item polychoric correlation matrix (see Table 2.7) 

suggested use of EFA is appropriate to determine the factor structure of task difficulty. 

Modest to moderate correlations between items indicated the presence of underlying 

TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 TD9 TD10 TD11 TD12 TD13 TD14

TD1 1.00

TD2 0.47 1.00

TD3 0.06 0.21 1.00

TD4 -0.31 0.16 0.38 1.00

TD5 -0.11 0.18 0.43 0.68 1.00

TD6 -0.01 -0.18 0.04 -0.25 0.02 1.00

TD7 0.15 0.23 -0.12 0.22 0.24 0.02 1.00

TD8 0.12 -0.03 0.02 -0.14 -0.08 0.09 -0.01 1.00

TD9 -0.14 0.02 -0.07 0.02 -0.04 0.07 0.05 0.02 1.00

TD10 -0.33 -0.12 0.16 0.51 0.40 -0.02 -0.05 0.05 0.26 1.00

TD11 -0.33 -0.14 0.31 0.47 0.51 0.14 -0.05 -0.08 0.10 0.78 1.00

TD12 0.11 0.04 0.16 0.11 0.06 0.15 0.09 -0.13 0.08 0.27 0.25 1.00

TD13 -0.31 -0.09 0.36 0.34 0.37 -0.03 -0.28 0.05 -0.05 0.57 0.59 0.08 1.00

TD14 -0.31 -0.21 0.22 0.18 0.40 0.21 -0.02 -0.03 0.10 0.49 0.54 0.13 0.43 1.00
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factors. For example, items TD3-TD5 modestly correlated with each other. Items TD10, 

TD11, TD13, and TD14 were al.so moderately correlated with each other. Further, item 

analysis indicated use of principal axis factoring using weighted least squares estimation 

as the method of factor extraction for the EFA. Non-zero skew and kurtosis values, 

especial.ly for items TD1, TD4, TD10, suggested violation of normality. Mardia’s test 

confirmed the violation of multivariate normality, informing the use of principal axis 

factoring as method of factor extraction during the EFA.  

Procedures for estimating the number of factors indicated extraction of multiple 

competing solutions (see Table 2.8). While Velicer’s MAP minimized at the first step, 

suggesting retention of a single factor during the EFA, the eigenvalue greater than 1 

criteria specified extraction of two factors. The number of factors before the “bend” in 

the scree plot (Figure 2.1), however, also supported extraction of two factors. Parallel 

analysis suggested retention of six factors for the EFA. Pattern matrices resulting from 

the extraction of one, two and six factors during EFA are presented in Table 2.9. 

 

 

Table 2.8. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

task difficulty scale 

 

Velicer MAP Eigenvalues

Original 

Data

Simulated 

Data

1 3.38 0.62 0.04 3.52

2 1.12 0.41 0.04 1.42

3 0.48 0.32 0.05 0.74

4 0.45 0.24 0.05 0.68

5 0.26 0.17 0.07 0.46

6 0.12 0.10 0.09 0.29

Parallel Analysis
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Figure 2.1. Scree plot suggesting extraction of 2 factors from observed measures of task 

difficulty 

 

 

 

Analysis of the pattern matrices of a one, two and six-factor model suggested 

computation of a revised factor structure model of task difficulty based on a revised 

scale of its observed measures. As seen from Table 2.9, the pattern matrix of a single 

factor model revealed that items TD2, TD6-TD9, and TD12 do not load on the single 

factor when only one factor is extracted from the data. Non-loading items indicate poor 

item quality or need for extraction of additional factors. While the assertion of poor item 

quality may be supported by the presence of low inter-item correlations and item-total 

correlations, removal of items may result in loss of information regarding additional 

factors asserted both in the literature and evidenced by convergence of solutions from 

the Kaiser and Cattell criterion. Inspection of the pattern matrix of a two-factor model  
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Table 2.9.Pattern matrices resulting from extraction of one factor, two factors and six 

factors, respectively from 14 observed measures of task difficulty using principal axis 

factoring and promax rotation. Principal axis loadings = PA1, PA2…; h2 = 

communality; u2 = uniqueness. Blanks represent loadings < 0.3 

 

 

 

revealed that items TD2 and TD7 that did not load on a single factor model do indeed 

load in a two-factor model. Loading of previously non-loading items further supported 

non-plausibility of a single factor model of task difficulty. However, the two-factor 

model was also found to be problematic. Items TD6, TD8, TD9, and TD12 still did not 

load on the two-factor model. In addition, a two-factor model could not achieve a simple 

structure, courtesy multiple cross-loadings, making factor interpretation difficult. An 

examination of the pattern matrix of a six-factor model revealed similar problems to a 

two-factor model (e.g., missing item TD12, difficult interpretation of single item and 

cross-loading factors). Therefore, a new factor structure of task difficulty was computed 

based on removal. of items TD8 (zero item to total. correlation) and TD12 (non-

loading).  A re-run of procedures for estimating the number of factors after item 

PA1 h2 u2 PA1 PA2 h2 u2 PA1 PA2 PA3 PA4 PA5 PA6 h2 u2

TD1 -0.38 0.15 0.85 0.55 0.35 0.65 0.72 0.58 0.42

TD2 0.01 0.99 0.66 0.44 0.56 0.59 0.46 0.54

TD3 0.40 0.16 0.84 0.51 0.25 0.75 0.55 0.46 0.54

TD4 0.64 0.41 0.59 0.81 0.63 0.37 0.72 -0.43 0.80 0.20

TD5 0.64 0.41 0.59 0.82 0.64 0.36 0.80 0.38 0.72 0.28

TD6 0.00 1.00 0.04 0.96 0.62 0.32 0.68

TD7 0.00 1.00 0.35 0.13 0.87 0.63 0.40 0.60

TD8 0.00 1.00 0.01 0.99 0.48 0.20 0.80

TD9 0.01 0.99 0.02 0.98 0.43 0.18 0.82

TD10 0.81 0.66 0.34 0.62 -0.42 0.67 0.33 0.71 0.73 0.85 0.15

TD11 0.86 0.75 0.25 0.68 -0.42 0.75 0.25 0.74 0.35 0.77 0.23

TD12 0.04 0.96 0.05 0.95 0.28 0.72

TD13 0.67 0.44 0.56 0.50 -0.36 0.46 0.54 0.66 -0.34 0.61 0.39

TD14 0.59 0.34 0.66 0.39 -0.41 0.39 0.61 0.51 0.37 0.49 0.51

Two Factor Model Six Factor ModelOne Factor Model
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elimination also indicated extraction of multiple competing solutions (see Table 2.10). 

While Parallel Analysis suggested extraction of 5 factors, the eigenvalue greater than or 

equal to 1 criteria suggested extraction of 3 factors. Velicer’s MAP suggested extraction 

of a single factor. The bend in Scree plot (Figure 2.2) indicated that two factors should 

be extracted from the data. Therefore, solutions were examined for one, two, three, and 

five-factor solutions. 

 

 

Table 2.10. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

task difficulty scale after deletion of items which did not load on both the one factor and 

the two factor models. 

 

 

After the examination of the one, two, three and five-factor solutions, a two-

factor model appeared to best represent the factor structure of task difficulty. While both 

single and three factor solutions were found unacceptable for similar reasons to previous 

analysis, the five-factor model was found implausible based on presence of a Heywood 

case. The two-factor model, however, also suffered from non-loading items and multiple 

cross-loadings, making the solution less interpretable. Therefore, items TD6 and TD9 

were removed from further analysis. Because the two-factor correlation was low (r = -

Velicer MAP Eigenvalues

Original 

Data

Simulated 

Data

1 3.32 0.53 0.06 3.66

2 1.05 0.30 0.06 1.71

3 0.36 0.21 0.08 1.04

4 0.15 0.14 0.10 0.68

5 0.09 0.06 0.14 0.56

Parallel Analysis
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0.15), a varimax rotation was applied to help achieve a simple structure. A simpler two 

factor model resulting from the varimax rotation is presented in Table 2.11. 

 

Figure 2.2. Scree plot suggesting extraction of 2 factors from observed measures of task 

difficulty 

 

While an almost simple structure was achieved through a two-factor model for 

observed measures of task difficulty, it is difficult to propose meaningful factor labels 

consistent with definitions in the literature. Factor 1, which loads items TD1, TD3-TD5, 

TD10-TD11, and TD13-14, appears to represent some facets of structuredness and 

accounted for 35% of the explained variance with ordinal reliability of 0.84.  Factor 2 

appears to represent complexity and accounted for 15% of the explained variance. 

Ordinal reliability of factor 2 was found to be 0.54. The two-factor structure accounted 

for 49% of the total variance. As seen from Table 12, reliability of items which load on 
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Factor 1 may be improved to 0.85 if item TD3 is removed from the “structuredness” 

scale. Reliability can also be improved for Factor 2 through deletion of item TD7 on the 

“complexity” scale.     

 

Table 2.11. Pattern matrix resulting from extraction of two factors from 14 observed 

measures of task difficulty using principal axis factoring and varimax rotation. Blanks 

represent loadings below 0.3.  

  Factor 1 Factor 2 Communality Uniqueness 

TD1 -0.33 0.54 0.41 0.59 

TD2   0.75 0.57 0.43 

TD3 0.47   0.27 0.73 

TD4 0.72   0.58 0.42 

TD5 0.76 0.32 0.68 0.32 

TD6 - - - - 

TD7   0.39 0.16 0.84 

TD8 - - - - 

TD9 - - - - 

TD10 0.75   0.64 0.36 

TD11 0.82   0.72 0.28 

TD12 - - - - 

TD13 0.65   0.50 0.50 

TD14 0.55   0.38 0.62 

 

 

2.4.2. Task motivation  

Fit indices obtained from the CFA suggested that participants’ responses did not 

support the presence of a four-factor measurement model of task motivation. The Chi-

Square fit index of 3.9, which resulted from a Chi-Square value of 187.28 (df = 48) and 

p-value of zero, is higher than the threshold value of 3. While the CFI value of 0.96 is 

higher than ideal., the RMSEA value of 0.13 was beyond the acceptable range. In 
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addition, the SRMR value of 0.10 was only near acceptable the range for a well-fitting 

model. Given only one index met the well-fitting model criteria, the four-factor 

measurement model was deemed unacceptable. Values of AVE, MSV, ASV and CR 

were not computed.  

 

Table 2.12. Standardized ordinal alpha-if-item deleted and item-to-total scale 

correlations for factors representative of task difficulty  

 

 

An EFA was run along with an item analysis to determine the actual. factor 

structure of and reliability of responses to measures of task motivation. The item 

analysis, which consisted of frequency analysis, multivariate outlier analysis and 

descriptive analysis of measures of task motivation, found no missing data and several. 

outliers. A complete data set was a result of the forced-choice online survey. Item 

means, standard deviations, medians, ranges, skew and kurtosis, standard errors of skew 

Ordinal 

Alpha

Item-Total 

Correlations

Factor 1

   TD1 - -

   TD3 0.85 0.46

   TD4 0.82 0.67

   TD5 0.81 0.72

   TD10 0.81 0.77

   TD11 0.8 0.83

   TD13 0.82 0.66

   TD14 0.84 0.56

Factor 2

   TD1 0.38 0.57

   TD2 0.26 0.64

   TD5 - -

   TD7 0.64 0.29
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and kurtosis, ordinal alpha-if-item deleted, item-total correlations, and inter-item 

polychoric correlations obtained from the descriptive analysis are presented in Table 

2.13 and Table 2.14, respectively. A modest overall standardized ordinal alpha value of 

0.70 was recorded.  

 

Table 2.13. Item statistics (mean, standard deviation (SD), median, range, skew, 

kurtosis, standard error (SE), ordinal alpha-if-item deleted, and corrected item-total 

correlation) for the scale of task motivation 

 

 

Descriptive analysis results suggested running an EFA with principal axis 

factoring and weighted least squares as method of factor extraction for 12 measures of 

task motivation. As seen from Table 2.14, multiple items on the task motivation scale 

share a modest to moderate inter-item polychoric correlations with each other. For 

example, items TM1, TM2, TM4 and TM5 are modestly correlated with each other. 

Items TM4, TM5, TM7, TM8, TM11, and TM12 are also correlated with each other. 

Item Mean SD Median Range Skew Kurtosis SE

Item-Total 

Correlation

Ordinal Alpha, 

Item Deleted

TM1 5.59 0.99 6.00 4.00 -0.83 0.74 0.07 0.38 0.69

TM2 5.06 1.32 5.00 6.00 -0.56 -0.39 0.10 0.18 0.71

TM3 3.96 1.74 4.00 6.00 -0.11 -1.32 0.13 0.19 0.71

TM4 4.90 1.43 5.00 6.00 -0.82 -0.03 0.11 0.72 0.63

TM5 5.26 1.32 5.00 6.00 -0.85 0.49 0.10 0.69 0.64

TM6 3.11 1.78 3.00 6.00 0.55 -0.91 0.13 0.34 0.70

TM7 5.47 1.24 6.00 6.00 -0.91 0.50 0.09 0.56 0.66

TM8 4.32 1.46 4.00 6.00 -0.16 -0.69 0.11 0.47 0.67

TM9 3.59 1.85 3.00 6.00 0.19 -1.25 0.14 0.20 0.71

TM10 3.91 1.63 4.00 6.00 -0.03 -1.00 0.12 0.19 0.70

TM11 5.48 1.19 6.00 6.00 -0.87 0.92 0.09 0.54 0.66

TM12 3.83 1.71 4.00 6.00 0.07 -1.09 0.13 0.68 0.64
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Presence of modest inter-item correlations indicates presence of an underlying factor 

structure that could be determined through an EFA. Skew and kurtosis values observed 

from Table 2.13 indicated that normality may be violated. Mardia’s Test of multivariate 

normality confirmed violation of normality and use of principal axis factoring as the 

method of factor extraction. Ordinal alpha values and item-to-total correlations indicated 

that reliability of responses to measures of task motivation may be improved if items 

TM2, TM3, TM9 and TM10 are removed from the task motivation scale. However, none 

of these items were removed prior to the EFA to eliminate premature deletion of facets 

identified as important in the literature on task motivation. 

 

Table 2.14. Polychoric correlations for items on the task motivation scale 

 

 

Procedures for estimating the number of factors (Table 2.15) led to extraction of 

two competing solutions. The Parallel Analysis suggested extraction of a five-factor 

TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8 TM9 TM10 TM11 TM12

TM1 1.00

TM2 0.51 1.00

TM3 -0.22 -0.23 1.00

TM4 0.32 0.10 -0.02 1.00

TM5 0.38 0.12 0.07 0.69 1.00

TM6 -0.28 -0.33 0.45 0.09 0.02 1.00

TM7 0.08 0.07 0.19 0.45 0.51 0.15 1.00

TM8 0.18 0.04 -0.02 0.48 0.44 0.00 0.28 1.00

TM9 -0.08 -0.04 0.37 -0.12 -0.17 0.63 -0.05 -0.20 1.00

TM10 0.21 0.10 -0.14 0.18 0.00 0.11 0.02 0.18 0.08 1.00

TM11 0.08 0.10 0.20 0.34 0.36 0.17 0.46 0.20 0.10 -0.03 1.00

TM12 0.28 0.11 0.03 0.57 0.52 0.12 0.34 0.50 -0.01 0.09 0.46 1.00
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solution. Velicer’s MAP, the eigenvalues greater than or equal. to one criteria, and the 

scree plot (Figure 2.3) converged at a two-factor solution. 

 

Table 2.15. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

task motivation scale 

 

 

 

Figure 2.3.Scree plot suggesting extraction of 2 factors from observed measures of task 

motivation 

 

Velicer MAP Eigenvalues

Original 

Data

Simulated 

Data

1 2.93 0.63 0.04 2.95

2 1.39 0.36 0.04 1.81

3 0.41 0.27 0.05 0.74

4 0.30 0.17 0.06 0.44

5 0.14 0.11 0.08 0.16

Parallel Analysis

2 4 6 8 10 12

0
.0

1
.0

2
.0

3
.0

Scree plot

factor or component number

E
ig

e
n

 v
a

lu
e

s
 o

f 
fa

c
to

rs
 a

n
d

 c
o

m
p

o
n

e
n

ts

PC 

FA



 

42 

 

The pattern matrix of the two-factor model of current achievement motivation is 

presented in Table 2.16 after disqualifying the five-factor model which rendered two of 

the five factors uninterpretable. The pattern matrix of this model presented an almost 

simple structure. Majority of the 12 items loaded on the first factor. Only one item cross-

loaded on both factors. Expectedly, item TM10 did not load on the two-factor model 

after suppression of loadings under 0.30; the inter-item polychoric correlation matrix 

showed poor correlations between item TM10 and other items. 

 

Table 2.16. Pattern matrix resulting from extraction of two factors from 12 observed 

measures of task motivation using principal axis factoring and promax rotation. Blanks 

represent loadings below 0.3.  

 

 

Combined, the two factors accounted for 40% of the variability in participants’ 

responses. Items loading on the first factor appeared to represent participants’ positive 

reaction to the problem. Based on item representation, factor 1 was labeled “approach 

motivation.” Approach motivation accounted for 25% of the variability in participants’ 

responses and had responses with fairly high reliability (ordinal. value = 0.82). Items 

Factor 1 Factor 2 Communality Uniqueness

TM1 0.39 -0.42 0.36 0.64

TM2 -0.40 0.21 0.79

TM3 0.58 0.34 0.66

TM4 0.79 0.63 0.37

TM5 0.79 0.63 0.37

TM6 0.81 0.65 0.35

TM7 0.59 0.37 0.63

TM8 0.56 0.33 0.67

TM9 0.62 0.40 0.60

TM10 - - 0.02 0.98

TM11 0.53 0.32 0.68

TM12 0.72 0.51 0.49



 

43 

 

loading on the second factor appeared to represent participants’ negative reaction to the 

problem. Therefore, factor 2 was labeled “avoidance motivation”. The avoidance 

motivation factor accounted for 15% of the combined variance. Participants’ responses 

to items loading on Factor 2 had low reliability as suggested by ordinal alpha value of 

0.30. However, as seen from Table 17, scale reliability for the “avoidance motivation” 

factor may be improved if items TD1 and TD2 are removed from the scale. Factor 

correlations indicated a near zero, negative correlation (r = -0.08) between approach 

motivation and avoidance motivation. 

 

Table 2.17. Standardized ordinal alpha-if-item deleted and item-to-total scale 

correlations for factors representative of task motivation  

 

 

 

 

 

 

Ordinal 

Alpha

Item-Total 

Correlations

Factor 1

   TM1

   TM4 0.77 0.78

   TM5 0.77 0.77

   TM7 0.81 0.60

   TM8 0.82 0.56

   TM11 0.82 0.54

   TD12 0.78 0.72

Factor 2

   TM1 0.40 0.11

   TM2 0.40 0.13

   TM3 0.23 0.33

   TM6 0.18 0.54

   TM9 -0.08 0.72



 

44 

 

2.4.3. Cognitive style  

Fit indices obtained from the CFA suggest that participants’ responses supported 

the presence of a three-factor measurement model for cognitive style. The Chi-Square fit 

index of 1.97, which resulted from a Chi-Square value of 760.86 (df = 386), is lower 

than the threshold value of 3 despite a p-value of zero. The CFI value of 0.94 was within 

the traditional.ly accepted values of CFI and the RMSEA value of 0.07 was also within 

the acceptable bounds of model fit. While the SRMR value of 0.09 was borderline 

acceptable, overall, the three-factor model was found acceptable on basis of multiple 

well-fitting model criteria.  

Mixed results were obtained about the construct validity of and reliability of 

responses to measures of cognitive style. Judging the values of AVE, MSV, ASV, and 

CR (see Table 2.18) against the criterion for convergent and divergent validity and 

reliability indicated: 

a. None of the factors are well-explained by their observed items (all AVE values < 

0.5); i.e., all factors lack convergent validity 

b. Observed items within a factor correlate more strongly with items outside the 

factor for both “Rules” and “Planning” (MSV > AVE, ASV > AVE and SQRT 

(ASV) < inter-construct correlations); i.e., both factors have weak divergent 

validity. Only “Novelty” has somewhat strong divergent validity 

c. CR values indicated that participants’ responses were fairly reliable (CR > 0.70). 
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Table 2.18. Values of AVE, MSV, ASV and CR and correlations between factors of 

cognitive style 

 

 

An EFA was run along with an item analysis to determine the actual. factor 

structure of and reliability of responses to measures of cognitive style once factors were 

found to have weak convergent and divergent validity. The item analysis, which 

consisted of frequency analysis, multivariate outlier analysis and descriptive analysis of 

measures of cognitive style, found no missing data and several outliers. A complete data 

set was a result of the forced-choice online survey. Item means, standard deviations, 

medians, ranges, skew and kurtosis, standard errors of skew and kurtosis, ordinal alpha-

if-item deleted, item-total correlations, and inter-item polychoric correlations obtained 

from the descriptive analysis are presented in Table 2.19 and Table 2.20, respectively. A 

modest overall standardized ordinal alpha value of 0.78 was recorded. 

Descriptive analysis results suggested running an EFA with principal axis 

factoring as method of extraction on 30 measures of cognitive style. As seen from Table 

2.20, multiple items on the cognitive style scale share a modest to moderate inter-item 

polychoric correlations with each other. For example, items CS2-CS8 and CS10 are 

correlated moderately with each other. Items CS18-CS22 are also correlated with each 

other. Presence of modest inter-item correlations indicates existence of an underlying 

structure that could be determined through an EFA. Non-zero values of skew and 

Factor 

AVE MSV ASV CR Rules Novelty Planning

Rules 0.19 0.54 0.43 0.78 1

Novelty 0.25 0.31 0.20 0.81 -0.56 1

Planning 0.31 0.54 0.31 0.80 0.73 -0.30 1

Measures Correlations
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kurtosis observed from Table 2.19 indicated a possible normality violation. Mardia’s 

Test of multivariate normality confirmed violation of normality and suggested use of 

principal axis factoring as the method of factor extraction. Ordinal alpha values and 

item-to-total correlations indicated that reliability of responses may be improved if items 

CS15, CS23, CS24-CS27 are removed from the cognitive style scale. However, none of 

these items were removed prior to the EFA to eliminate premature deletion of facets 

identified as important in the cognitive style literature. 

 

Table 2.19. Item statistics (mean, standard deviation (SD), median, range, skew, 

kurtosis, standard error (SE), ordinal alpha-if-item deleted, and corrected item-total 

correlation) for the cognitive style scale 

Item Mean SD Median Range Skew Kurtosis SE

Item - Total 

Correlation

Ordinal Alpha, 

Item Deleted

CS1 2.04 0.81 2.00 4.00 0.75 0.72 0.06 0.30 0.78

CS2 2.64 0.91 3.00 4.00 0.29 -0.50 0.07 0.58 0.76

CS3 2.27 0.87 2.00 4.00 0.53 -0.09 0.06 0.58 0.76

CS4 2.88 1.00 3.00 4.00 0.01 -0.95 0.07 0.40 0.77

CS5 1.96 0.81 2.00 3.00 0.50 -0.35 0.06 0.63 0.76

CS6 2.77 1.04 3.00 4.00 0.17 -0.93 0.08 0.64 0.76

CS7 2.32 0.96 2.00 4.00 0.74 0.29 0.07 0.60 0.76

CS8 2.54 1.03 2.00 4.00 0.39 -0.61 0.08 0.69 0.76

CS9 2.36 0.93 2.00 4.00 0.74 0.24 0.07 0.63 0.76

CS10 1.94 0.92 2.00 4.00 1.14 1.23 0.07 0.60 0.76

CS11 2.41 0.97 2.00 4.00 0.38 -0.60 0.07 0.45 0.77

CS12 2.78 0.93 3.00 4.00 0.27 -0.61 0.07 0.55 0.76

CS13 2.34 0.87 2.00 4.00 0.86 0.55 0.06 0.60 0.76

CS14 2.18 0.81 2.00 4.00 0.78 0.66 0.06 0.62 0.76

CS15 2.78 0.99 3.00 4.00 0.06 -0.84 0.07 -0.21 0.80

CS16 3.51 1.01 4.00 4.00 -0.41 -0.56 0.07 0.43 0.77

CS17 3.57 1.08 4.00 4.00 -0.43 -0.59 0.08 0.28 0.78

CS18 3.61 1.04 4.00 4.00 -0.34 -0.73 0.08 0.34 0.77

CS19 3.32 1.07 3.50 4.00 -0.22 -0.91 0.08 0.53 0.77

CS20 3.48 0.96 4.00 4.00 -0.31 -0.68 0.07 0.30 0.78

CS21 2.93 1.07 3.00 4.00 0.08 -0.71 0.08 0.50 0.77

CS22 2.87 0.99 3.00 4.00 0.22 -0.61 0.07 0.50 0.77

CS23 2.12 0.77 2.00 3.00 0.65 0.37 0.06 -0.07 0.79

CS24 2.52 0.90 2.00 4.00 0.21 -0.61 0.07 -0.32 0.80

CS25 2.20 0.92 2.00 4.00 0.70 -0.10 0.07 -0.20 0.80

CS26 2.42 0.95 2.00 3.00 0.20 -0.89 0.07 -0.34 0.80

CS27 3.52 0.95 4.00 4.00 -0.48 -0.24 0.07 -0.55 0.81

CS28 3.13 1.11 3.00 4.00 -0.02 -1.09 0.08 0.43 0.77

CS29 2.49 1.00 2.00 4.00 0.57 -0.26 0.07 0.57 0.76

CS30 2.28 0.85 2.00 3.00 0.68 -0.11 0.06 0.42 0.77
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Table 2.20. Polychoric correlations for items on the cognitive style scale 

 

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 CS19 CS20 CS21 CS22 CS23 CS24 CS25 CS26 CS27 CS28 CS29 CS30

CS1 1.00

CS2 0.24 1.00

CS3 0.12 0.47 1.00

CS4 0.01 0.31 0.45 1.00

CS5 0.12 0.42 0.55 0.31 1.00

CS6 0.19 0.46 0.34 0.28 0.49 1.00

CS7 0.30 0.34 0.13 0.17 0.34 0.48 1.00

CS8 0.15 0.39 0.39 0.31 0.44 0.57 0.50 1.00

CS9 0.08 0.29 0.38 0.27 0.32 0.47 0.28 0.51 1.00

CS10 -0.01 0.35 0.34 0.23 0.43 0.34 0.37 0.47 0.51 1.00

CS11 0.43 0.14 0.07 0.10 0.11 0.21 0.36 0.27 0.25 0.22 1.00

CS12 0.15 0.40 0.49 0.26 0.42 0.39 0.24 0.41 0.45 0.33 0.18 1.00

CS13 0.27 0.47 0.39 0.28 0.40 0.22 0.37 0.38 0.34 0.38 0.26 0.34 1.00

CS14 0.03 0.31 0.43 0.25 0.43 0.37 0.36 0.52 0.45 0.44 0.34 0.49 0.42 1.00

CS15 0.15 0.01 -0.28 -0.34 -0.14 -0.18 -0.04 -0.14 -0.16 -0.07 0.14 -0.25 0.00 -0.28 1.00

CS16 0.01 0.21 0.35 0.36 0.10 0.28 0.12 0.21 0.32 0.05 -0.07 0.33 0.20 0.16 -0.53 1.00

CS17 -0.12 0.11 0.12 0.15 0.32 0.26 0.14 0.18 0.23 0.17 -0.10 0.07 0.09 0.12 -0.18 0.24 1.00

CS18 -0.02 0.24 0.17 0.25 0.24 0.29 0.22 0.30 0.10 0.05 -0.01 0.22 0.28 0.12 -0.39 0.45 0.26 1.00

CS19 0.04 0.21 0.20 0.37 0.18 0.34 0.19 0.38 0.37 0.19 0.16 0.26 0.25 0.21 -0.48 0.59 0.31 0.49 1.00

CS20 -0.06 0.20 0.21 0.18 0.18 0.16 0.14 0.18 0.13 0.07 0.03 0.25 0.02 0.16 -0.32 0.40 0.20 0.32 0.43 1.00

CS21 -0.03 0.14 0.31 0.24 0.23 0.28 0.19 0.25 0.24 0.16 0.11 0.27 0.17 0.26 -0.35 0.59 0.29 0.38 0.48 0.38 1.00

CS22 -0.06 0.11 0.45 0.35 0.37 0.29 0.19 0.40 0.36 0.22 0.12 0.24 0.23 0.25 -0.36 0.47 0.38 0.36 0.49 0.24 0.51 1.00

CS23 0.26 -0.03 -0.13 -0.24 -0.01 -0.10 0.02 -0.10 -0.08 0.22 0.24 0.02 0.02 -0.02 0.50 -0.44 -0.31 -0.36 -0.41 -0.41 -0.38 -0.51 1.00

CS24 -0.02 -0.18 -0.31 -0.23 -0.39 -0.31 0.02 -0.28 -0.33 -0.10 0.02 -0.20 -0.08 -0.15 0.26 -0.30 -0.37 -0.29 -0.38 -0.28 -0.24 -0.41 0.35 1.00

CS25 0.14 -0.05 -0.14 -0.21 -0.05 -0.08 -0.03 -0.17 -0.13 0.00 -0.05 -0.19 -0.18 -0.02 0.28 -0.27 -0.17 -0.35 -0.33 -0.14 -0.19 -0.33 0.27 0.23 1.00

CS26 0.00 -0.22 -0.34 -0.38 -0.16 -0.31 -0.07 -0.22 -0.22 0.00 0.07 -0.33 -0.16 -0.13 0.47 -0.57 -0.28 -0.43 -0.51 -0.30 -0.53 -0.50 0.52 0.36 0.29 1.00

CS27 -0.18 -0.38 -0.25 -0.18 -0.49 -0.47 -0.36 -0.44 -0.32 -0.32 -0.22 -0.39 -0.36 -0.41 0.06 -0.19 -0.06 -0.28 -0.17 -0.05 -0.22 -0.33 0.03 0.25 0.09 0.29 1.00

CS28 0.16 0.18 0.17 0.17 0.17 0.28 0.30 0.19 0.14 0.08 0.20 0.05 0.22 0.16 -0.19 0.38 0.16 0.20 0.39 0.19 0.46 0.35 -0.29 -0.20 -0.35 -0.30 -0.27 1.00

CS29 0.03 0.14 0.24 0.10 0.40 0.31 0.22 0.30 0.48 0.34 0.05 0.18 0.30 0.33 -0.16 0.33 0.22 0.25 0.49 0.21 0.49 0.46 -0.26 -0.16 -0.20 -0.25 -0.29 0.44 1.00

CS30 0.28 0.22 0.09 0.01 0.22 0.25 0.24 0.28 0.23 0.21 0.43 0.05 0.29 0.20 0.15 0.03 0.06 0.04 0.16 -0.02 0.12 0.22 0.12 -0.10 -0.16 0.00 -0.53 0.47 0.27 1.00
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Procedures for estimating the number of factors (Table 2.21) led to extraction of 

two competing solutions. The Parallel Analysis suggested extraction of a five-factor 

solution. Velicer’s MAP, the eigenvalues greater than or equal. to one criteria, and the 

scree plot (Figure 2.4) converged at a three-factor solution. 

 

 

Table 2.21. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

cognitive style scale 

 

 

 

 

Figure 2.4. Scree plot suggesting extraction of 3 factors from observed measures of 

cognitive style 

 

Velicer MAP Eigenvalues

Original 

Data

Simulated 

Data

1.00 7.78 0.95 0.03 8.01

2.00 2.97 0.75 0.02 3.27

3.00 1.10 0.65 0.02 1.44

4.00 0.66 0.57 0.02 0.94

5.00 0.51 0.51 0.02 0.78
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The three-factor model of cognitive style is presented in Table 2.22 after 

disqualifying a five-factor model that rendered two of the five factors uninterpretable. 

An almost simple pattern matrix emerged from the data. Items that are recommend for 

removal through an analysis of ordinal alpha-if-item-deleted and item-total correlations 

load modestly on the first factor. The negative loadings on items, however, suggest 

reverse coding to obtain consistency in measurement of factor 1. Item 27 could al.so be 

reverse-coded as it varies inversely with most of the items on Factor 2. Reversing item 

27 could also “fix” Factor 3 so that all items load in the same direction on Factor 3. 

Pattern matrix also suggests removal of item 28 as it cross-loads on all factors and varies 

inversely with all items on Factor 2.  

The three-factor model accounted for 42% of the total explained variance. Factor 

1 and 2 contributed 17% each to the explained variance. Keeping with the literature 

(Martinsen, et al., 2011), Factor 1 and 2 were labeled “novelty” and “rules,” 

respectively. Factor 3, which accounted for 7% of the explained variance, was labeled 

planning. Factor correlations are reported in Table 2.23. As seen from Table 2.23, all 

factors correlated positively with each other. While planning and novelty were correlated 

poorly, both planning and rules and rules and novelty showed modest correlations with 

each other. Reliabilities of responses to items on factor 1 were found poor (ordinal. alpha 

= 0.095). Factor 3 showed modest reliability with an ordinal alpha value of 0.66 and 

Factor 2 had the highest reliability with an ordinal alpha value of 0.82. As seen from 

Table 2.24, low reliability of responses to items on Factor 1 may be a result of 
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incorrectly coded items evident from negative alpha if-item-deleted values. Reliability of 

responses to items on Factor 2 may be improved to 0.88 by deleting item CS27. 

 

 

Table 2.22. Pattern matrix resulting from extraction of three factors from 30 observed 

measures of cognitive style using principal axis factoring and promax rotation. Blanks 

represent loadings below 0.3.  

 

 

 

 

Factor 1 Factor 2 Factor 3 Communality Uniqueness

CS1 0.41 0.22 0.78

CS2 0.62 0.36 0.64

CS3 0.73 0.49 0.51

CS4 0.40 0.29 0.71

CS5 0.74 0.49 0.51

CS6 0.53 0.45 0.55

CS7 0.36 0.35 0.36 0.64

CS8 0.63 0.52 0.48

CS9 0.58 0.41 0.59

CS10 0.71 0.42 0.58

CS11 0.53 0.37 0.63

CS12 0.74 0.45 0.55

CS13 0.49 0.36 0.64

CS14 0.70 0.45 0.55

CS15 -0.63 0.47 0.53

CS16 0.73 0.55 0.45

CS17 0.38 0.18 0.82

CS18 0.54 0.34 0.66

CS19 0.71 0.57 0.43

CS20 0.47 0.25 0.75

CS21 0.65 0.48 0.52

CS22 0.62 0.52 0.48

CS23 -0.84 0.60 0.40

CS24 -0.41 0.27 0.73

CS25 -0.47 0.20 0.80

CS26 -0.70 0.52 0.48

CS27 -0.41 -0.32 0.42 0.58

CS28 0.52 -0.30 0.64 0.54 0.46

CS29 0.39 0.31 0.36 0.64

CS30 0.78 0.56 0.44
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Table 2.23. Factor correlation matrix (cognitive style) 

 
 

 

Table 2.24. Standardized ordinal alpha-if-item deleted and item-to-total scale 

correlations for factors representative of cognitive style  

 

 

 

Factor 1 Factor 2 Factor 3

Factor 1 1 0.44 0.14

Factor 2 0.44 1 0.5

Factor 3 0.14 0.5 1

Ordinal Alpha

Item-Total 

Correlations

Factor 1

   CS15 0.26 -0.33

   CS16 -0.06 0.59

   CS17 0.01 0.32

   CS18 -0.01 0.40

   CS19 -0.11 0.68

   CS20 -0.02 0.41

   CS21 -0.16 0.75

   CS22 -0.03 0.51

   CS23 0.28 -0.38

   CS24 0.26 -0.37

   CS25 0.22 -0.27

   CS26 0.31 -0.47

   CS29 -0.17 0.71

Factor 2

   CS2 0.80 0.62

   CS3 0.80 0.67

   CS4 0.82 0.46

   CS5 0.80 0.66

   CS6 0.80 0.65

   CS7 0.81 0.53

   CS8 0.80 0.72

   CS9 0.80 0.64

   CS10 0.80 0.62

   CS12 0.80 0.62

   CS13 0.81 0.58

   CS14 0.80 0.66

   CS27 0.88 -0.58

Factor 3

   CS1 0.63 0.48

   CS11 0.57 0.60

   CS28 0.65 0.47

   CS30 0.51 0.69
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2.5. Discussion 

This section discusses the construct validity and reliability of responses to 

measures of engineering design task difficulty, task motivation and cognitive style 

within the context of previous work.   

2.5.1. Task difficulty  

Factor analysis presented mixed evidence about the reliability and validity of the 

task difficulty scale. Previous research hypothesized a two-factor model underlying the 

14-items scale. The two factors are task structuredness and task complexity (Jonassen, et 

al., 2008). Extraction of a two-factor model was supported by the EFA. Item reliability 

analysis suggested poor reliabilities were observed for responses to items loading on the 

task structuredness factor. Poor reliabilities are expected with a small number of items 

with high measurement error (uniqueness) loading on the same factor. High reliabilities 

were observed for responses to items loading on the complexity factor. High reliabilities 

are expected due to consistency in the description of many items loading on the same 

factor. Increases in the number of and high quality of items will likely increase the 

reliability of responses to items loading on the two-factor model. Given the mixed 

results on item reliabilities, validity of the two-factor model was not expected.  

Results suggested that validity of a two-factor model of task difficulty is 

debatable when a small sample of participants rates an engineering design task. The two-

factor model accounted for only 49% of the total explained variance. Contrary to 

expectations based in literature (Jonassen, et al., 2008), the seven items that represented 

“structuredness” did not load on the same factor. Two of the seven items cross-loaded on 
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both factors and one item did not load on either factor. Three of the seven items expected 

to load on the “complexity” factor did not load on either factor. A modest amount of 

explained variance, loadings contrary to expected in the literature and non-loading items 

suggest presence of additional factors. In addition, the two-factor model suggests that 

structuredness and complexity are unrelated since two factors are uncorrelated with each 

other. Uncorrelated factors make the presence of a higher order factor such as task 

difficulty implausible. Hence, the existence of a two-factor measurement model is 

questionable.  

2.5.2. Task motivation  

Factor analysis presented mixed evidence about the reliability and validity of the 

12-items QCM scale. Overall, the measurement model demonstrated weak reliability for 

a two-factor model of task motivation suggested by the EFA. The two factors were 

labeled “approach” and “avoidance” as per the approach-avoidance theory of motivation. 

While participants’ responses to items that loaded on the “approach” factor had high 

internal consistency, responses to items that loaded on the “avoidance” factor showed 

low internal consistency. The low reliability of responses to “avoidance” may be 

attributed to items (e.g., TM1 and TM2) loading on the “wrong” factor and/or presence 

of additional factors as suggested in the literature but not achievable with the current 

sample size (Wolf, Harrington, Clark, & Miller, 2013) or poor item quality. In the latter 

case, cross-loading of item TM1 suggests that participants’ responses to item TM1 may 

not necessarily measure only a positive or a negative response to the item. Therefore, 

item TM1 may not be an appropriate measure to estimate reliability of responses for 
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factor 2. Cross-loading of item TM1 also resulted in sharing of item variance across 

factors, thereby decreasing the factor loading and lowering reliability estimates when 

clustered with other items on factor 2. In addition, the negative loading of item TM2 on 

factor 2 suggests (contrary to literature) the item should be reverse-coded to achieve a 

higher internal consistency. Given these shortcomings, validity of model was not 

expected in this study.    

Both the CFA and EFA results, however, provided some evidence validity for a 

two-factor model over a four-factor model of task motivation when few participants 

(compared to original study) were asked to rate an engineering design task. The CFA 

results indicated that the observed data does not support the presence of a four-factor 

model of task motivation underlying the QCM (Fruend, et al., 2011). The EFA results 

indicated that a two-factor model of task motivation ought to be extracted in spite of the 

presence of additional factors suggested by a modest explained variance and high 

uniqueness values. Both results indicated that the original four-factor model does not 

hold under the conditions (smaller sample size, design task) of this study. Nonetheless, 

the validity of the two-factor model of task motivation was supported by an alternate 

theory of motivation. One theory (Elliot & Thrash, 2002) has situated motivation in the 

context of persons’ positive or negative reactions to a task. An observation of the type of 

items (i.e., a positive or a negative response) that loaded on both factors indicated that 

similar items, which represent a positive approach or an avoidance approach to a task, 

collectively load on separate factors. Agreement with “approach/avoidance” theory gives 

the two-factor measurement model some validity.    
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 2.5.3. Cognitive style  

Factor analysis presented mixed results about reliability and validity of the 30 

items A-E scale. Previous research (Martinsen, et al., 2011) proposed a three-factor 

model of cognitive style. The factors were rule-orientation, planning, and novelty-

seeking. Consistent with previous work, EFA supported presence of a three-factor 

model. Reliability of participants’ responses to observed measures, however, varied from 

poor to fair. Poor internal consistency may be due to incorrectly coded items (e.g., factor 

1, novelty-seeking) and small number of poorly correlated items (e.g., factor 3, 

planning). Incorrect (reverse-) coding for factor 1 is evident from presence of both 

positive and negative loading items on the same factor. Poor correlations between items 

on factor 3 are supported by presence of low correlations in the inter-item polychoric 

correlations matrix. Overall, internal consistency may be improved by reversing reverse-

coded items, using similar measures, and increased number of items. Given the weak 

reliability of responses to items on two of the three factors, weak construct validity was 

expected for the three-factor model.   

The three-factor measurement model of cognitive style demonstrated weak 

construct validity despite a fair model fit in CFA modeling. The three factors were 

labeled novelty-seeking (factor 1), rules-orientation (factor 2), and planning (factor 3). A 

weak construct validity can be a result of a non-simple (cross-loading items) factor 

structure. Cross-loadings result in factor structures that may be uninterpretable because 

of indistinguishable factors. Considering numerous items in the original model 

(Martinsen, et al., 2011) load on multiple factors, weak validity of the three-factor model 
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may be attributable to cross-loading items on the cognitive style scale. Results from the 

EFA supported the presence of a more valid three-factor structure which is different 

from and simpler (i.e., fewer cross-loadings) than the original factor structure. Low 

factor correlations (compared to the original model) also suggest a simple structure may 

increase construct validity.  

2.6. Conclusion 

Clarifying claims about the conflicting roles of engineering curricula in 

developing students’ abilities to innovate solutions to design problems necessitated 

development and evaluation of measures of students’ interactions with the curricula. The 

purpose was to examine construct validity and reliability of measures of task difficulty, 

current achievement motivation and cognitive style for use in research on students’ 

abilities to innovate solutions to engineering design problems. A prospective, survey 

research design was used to collect data from a sample of engineering students from 

Texas A&M University. Confirmatory factors analysis (CFA), exploratory factor 

analysis (EFA), and item analysis were used to determine the construct validity of three 

measures. Reliabilities of measures were estimated from composite reliability and 

ordinal alpha values. Fit indices obtained from the CFA did not support a well-fitting 

two-factor and four-factor model for task difficulty and current achievement motivation, 

respectively; however, an acceptable three-factor model was achieved for cognitive 

style. Further analysis, however, indicated that the cognitive style model did not achieve 

convergent and divergent validity. EFA supported presence of a two-factor model of task 

difficulty, a two-factor model of current achievement motivation, and a three-factor 
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model of cognitive style. However, the resulting factor structures had issues such as non-

loading items, cross-loading items, and poor internal consistency estimates. Measures of 

task difficulty, current achievement motivation and cognitive style have weak construct 

validity and response reliability. Additional studies, with a large sample size and 

improved item quality, should be conducted to verify the conclusions formed through 

this research and obtain construct valid and reliable measures of task difficulty, current 

achievement motivation, and cognitive style. 
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3. PREDICTING THE ROLES OF DOMAIN EXPERTISE, CURRENT 

ACHIEVEMENT MOTIVATION AND COGNITIVE STYLE IN 

GENERATING NOVEL SOLUTIONS TO ENGINEERING DESIGN TASKS 

 

3.1 Introduction 

Preparing engineering students with abilities to provide innovative solutions to 

increasingly challenging design problems is essential to their success. Recent research 

suggests that engineering students are ill-prepared to solve challenges that require them 

to generate innovate solutions. For example, a study (Lai, Roan, Greenberg & Yang, 

2008 and Genco, Holta-Otto & Conner Seepersad, 2012) reported that while both seniors 

and freshmen produced ideas of similar quality, seniors were less proficient at creating 

original solutions to ill-defined problems using creative thinking than freshmen. The 

findings warrant discovery of ways engineering programs can support development of 

students’ abilities to generate innovative solutions to design problems as they advance 

through the curriculum. Such support would help students become more innovative 

engineers. 

While engineering  programs may support development of students’ abilities to 

innovate in multiple ways, this research focuses on how programs can help students 

develop their abilities to provide innovative  solutions to a design task via the 

development of their creativity-related characteristics using engineering design tasks. 

Characteristics such as an individual’s domain expertise, creativity-relevant skills, and 

motivation influence creative performance (Amabile, 2013; Jo & Lee, 2012; Martinsen 
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& Diseth, 2011). This study is unique in its use of a model that accounts for combined 

roles of domain expertise, creativity-relevant processes and task motivation for 

predicting novelty of solutions using decision tree analysis.  

3.2. Research Purpose and Question 

This research determined combinations of engineering students’ characteristics 

that predict novelty of students’ solutions to an engineering design task. Students’ 

characteristics considered in this research are Grade Point Average (GPA), university 

classification, major, familiarity with assigned design task, current achievement 

motivation and cognitive style. This research was conducted using a combination of the 

multiple components approaches and the psychometric approaches to creativity, to 

advance research and practice in engineering education. The research question that was 

posed in this research is: 

How do engineering students’ GPA, classification, major, familiarity with a 

design task, current achievement motivation and cognitive style combine to 

predict novelty in their solutions to an engineering design task? 

This research furthers engineering education research and practice in three ways. 

One, it tests Amabile’s hypotheses about creativity and verifies relationships outlined 

among domain expertise, motivation and creativity relevant processes in Amabile’s 

componential theory of creativity (2013), thereby giving strength to evidence for future 

use of Amabile’s theory to frame research studies on creativity in engineering education. 

Two, it clarifies the importance education researchers can assign to students’ 

characteristics when comparing advantages and disadvantages of different ideation 
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techniques, to determine usability of different idea generation techniques by students. 

Three, it provides findings about combinations of students’ characteristics which 

support/do not support novelty in students’ solutions to design problems. These findings 

are essential for developing instructional strategies engineering faculty can use to 

enhance students’ abilities to generate innovative solutions to challenging design 

problems. 

3.3. Background 

Several approaches can be used to study creativity. The approaches include case 

studies, psychoanalytic theories, psychometric approaches, sociological and 

historiometric approaches, multiple components approaches, pragmatic approaches, 

artificial intelligence approaches, and creative cognition approach (Finke, Ronald, Ward, 

Smith, 1996). See Finke, et al. (1996) for a descriptive review of approaches to 

creativity. Of these approaches, a combination of the multiple components and the 

psychometric approaches is used to study creativity in present research. While the 

multiple components approach offers the most comprehensive way to examine 

creativity, the psychometric approaches are popular ways to measure students’ 

characteristics and creativity in educational psychology. Therefore, these approaches are 

used in present research.   

3.3.1. Multiple components approach  

Amabile’s componential theory of creativity was selected to frame this study. 

This theory (Amabile, 1996) is well known, comprehensive, and useful for selection of 

task, student, and outcome characteristics important for studying creativity. The theory 
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describes the relationship between a task and a creative outcome via a description of the 

creative process and four components and their interactions with the task, the creative 

process and the creative outcome. A description of the various aspects of the theory is 

presented in this section. 

3.3.1.1. Task 

Amabile’s theory of creativity poses that the task presented to a person ought to 

be open-ended, i.e., present the person with an opportunity to find many or no solutions, 

to activate solution finding. The task can either be self-found or posed to the person by 

another individual or organization. (Amabile, 2013) 

3.3.1.2 Creative process 

The creative process in Amabile’s theory consists of four sequential steps: 

problem identification; preparation; response generation; and response validation and 

communication. Problem identification refers to presentation of a problem or task to a 

person. Preparation refers to accessing stored domain knowledge relevant or gathering 

the knowledge needed to solve the problem or task. Response generation refers to 

exploring both memory and environment to generate possible solutions to the problem or 

task. Response validation and communication refers to testing feasibility of responses 

using relevant criterion and domain knowledge. The four steps in the creative process 

lead to a successful, unsuccessful or semi-successful outcome. The semi-successful or 

the unsuccessful outcomes can lead the person back to any one of the previous steps to 

produce a successful product. (Amabile, 2013) 
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3.3.1.3. Creative outcome 

In Amabile’s theory, creativity of an outcome lies on a continuum that ranges 

from low to high. In addition, varied levels of creativity can be displayed even within the 

same domain because of interaction between the four components of creativity. The 

outcome is measured in terms of novelty and appropriateness (i.e., usefulness). While 

novelty of solutions is determined during the response generation step, appropriateness 

is determined during the response validation and communication step in the creative 

process. (Amabile, 2013)   

3.3.1.4. Components influencing creative process and outcomes 

The four components that influence the creative process and hence the creative 

outcomes are domain-relevant skills, creativity-relevant processes, task motivation, and 

environment. According to Amabile (2013, p. 1), “domain relevant skills include 

knowledge, expertise, technical. skills, intelligence, and talent in the particular 

domain…” and “creativity-relevant processes include cognitive style and personality 

characteristics that are conducive to independence, risk-tasking, and taking new 

perspectives on problems” and “disciplined work style and skills in generating ideas” (p. 

2). Task motivation is “the motivation to undertake a task or solve a problem because it 

is interesting, involving, personally challenging, or satisfying” (p. 2). Environment refers 

to social and other factors (e.g., extrinsic motivators such as rewards or punishment) 

outside the individual. Of the four components, domain-relevant skills, creativity-

relevant skills and task motivation are persons’ characteristics.  
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3.3.1.5. Relationships among multiple components influencing creative process and 

outcomes 

Amabile (2013) illustrates direct and primary influences of the four components 

of creativity on each other and the creative process in a simplified model. According to 

this illustration, a person’s social environment influences his or her task motivation. 

Task motivation in turn influences problem or task identification, response generation, 

learning of domain-specific skills, and/or setting or breaking of creativity-relevant 

processes. The domain-relevant skills influence both the preparation and the response 

validation and communication steps of the creative process, and the creativity-relevant 

processes influence a person’s response generation. The process outcome (success, 

progress, or failure) can increase or decrease a person’s task motivation.   

3.3.2. Psychometric approach  

The relationships among the multiple components of Amabile’s theory were 

examined using the psychometric approach to creativity. The psychometric approach 

offered a way to measure multiple components of creativity directly and with ease using 

a survey. Measures of the components and the survey are described in detail in the 

methods section. This research study tested its hypotheses with observations obtained 

from the survey.  

3.3.3. Hypothesis 

Amabile’s (1996) componential theory of creativity offers eight hypotheses about 

how domain-relevant skills, creativity-relevant processes, and task motivation combine 

to form a creative outcome. According to the theory (2013, p. 1), “creativity [of an 
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outcome] should be highest when an intrinsical.ly motivated person with high domain 

expertise and high skill in creative thinking works [on a task] in an environment high in 

support for creativity”. Moreover, and without exception, high to moderate creativity 

outcomes should be obtainable when at least two of the three personal characteristics 

combine at high levels. Some novelty, however, should al.so be obtainable in low 

creativity solutions when an individual. is highly motivated to solve the task. (Amabile, 

1996) The present study tested these hypotheses using a decision tree analysis with a 

sample of undergraduate engineering students.  

3.3.4. Previous research 

Previous research supported roles of domain-relevant skills, creativity-relevant 

processes, and task motivation in creative outcomes (Amabile, 1996); however, 

empirical research that examines their combined roles on creativity is sparse. Example 

studies include Martinsen and Kaufmann (2000) and Jo and Lee (2012). Martinsen, et al. 

(2000), who studied effects of task motivation and A-E cognitive style on problem-

solving performance, found that highly motivated individuals with explorer cognitive 

styles underperformed individuals of the same motivation but with assimilator cognitive 

styles when working on insight problems. Jo, et al. (2012) modeled links among task 

complexity, intrinsic motivation, organizational trust, and creativity of individuals 

working in Korean ICT companies and found that both motivation and organizational. 

trust had positive influences on creativity. In their study, intrinsic motivation had the 

most influence of all independent variables on individual creativity. The researcher did 

not find previous research that tested the combined roles of domain-relevant skills, 
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creativity-relevant skills, and motivation with a sample of undergraduate engineering 

students using a decision tree analysis. Use of the decision tree analysis helps test 

hypotheses of creativity offered in Amabile (1996) for this population without the 

limitations of regression analysis. In addition, it helps identify ranges of values of 

characteristics for which the hypotheses hold/do not hold. Further, the decision tree 

analysis helps recognize significant ways engineering students’ characteristics combine 

to predict creativity of solutions to an engineering design task. The significant 

combinations offer preliminary hypotheses, which researchers can test against a control 

group, to develop instructional strategies to support novelty in engineering students’ 

solutions to a similar design task.     

3.4 Methods 

Decision tree analysis was used to determine how engineering students’ GPA, 

classification, major, familiarity with the design task, current achievement motivation 

and cognitive style combine to predict novelty of students’ solutions to an assigned 

design task. Use of decision tree analysis is appropriate when researchers desire to 

predict group membership to a categorical variable (i.e., dependent variable) based on 

predictor variables (i.e., independent variables) which are categorical and/or continuous 

and data violates assumptions of other commonly used group membership methods (e.g., 

logistic regression) (Maindonald & Braun, 2013).  The dependent variable in this 

research was novelty of solutions (binary, categorical). The independent variables were 

GPA (continuous), classification (categorical), major (categorical), familiarity with the 

design task (categorical), current achievement motivation (continuous) and cognitive 
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style (continuous). The hypotheses proposed in the introduction were tested using 

measurements of dependent and independent variables with a sample from the target 

population. Ideally, the results from a decision tree analysis are cross-validated with a 

different sample from the same population. However, the cross-validation was limited in 

this research due to lack of access to a large sample size.  

3.4.1. Target population 

The target population for this research study consisted of all undergraduate 

engineering students enrolled at a large, research extensive, public university in the 

southern United States during the 2015-2016 academic year. The average population 

size was approximately 11263 students. Approximately 21% were females and 78% 

were males. The population consisted of freshmen (18% - 27%), sophomores (21%), 

juniors (19% - 22%) and seniors (32% - 38%) over the two semesters. The ranges in 

classification estimates reflect variability in enrollment over the two academic semesters.  

The approximate number of students affiliated with each department is presented in 

Table 3.1. (Texas A&M University – College Station, 2017) The mean Grade Point 

Average (GPA) of students in the population is not accessible without institutional. 

permissions and therefore unknown for this research; however, it is presumed to fall 

between 0.0 and 4.0 because the university computes students’ grade point average on a 

four-point scale.  

The target population for this study was selected out of interest from both the US 

government and industry and researcher’s interest and convenience. Both the US 

government (US Department of Commerce, 2012) and industry have expressed interest 
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in preparing engineering undergraduates with abilities to provide innovative solutions to 

challenging design problems encountered in the workplaces. Findings derived from 

research on this population addressed the needs expressed by both the government and 

industry. Further, present researcher identified needs in the literature to study this 

population. In addition, the target population was easily accessible via e-mails through 

the existing network of colleagues, in-person recruitment and experiment visits required 

of participants.  

 

 

Table 3.1. Departmental affiliation and approximate percentage of students in the target 

population during the 2015-2016 academic year 

 

 

 

 

 

 

Department affiliation Students (%) 

Aerospace engineering 4 

Biological and agricultural engineering Unknown 

Biomedical engineering 2 

Chemical engineering 5 

Civil engineering 6 

College of engineering 28 - 31 

Computer science and engineering 8 

Electrical and computer engineering 7 

Engineering technology and industrial distribution 12 - 13 

Industrial and systems engineering 7 

Mechanical engineering 9 

Nuclear engineering 2 

Ocean engineering 1 

Petroleum engineering 5 
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3.4.2. Recruitment and selection 

Multiple tactics were used to recruit participants for this research study. First, 

engineering students of freshmen, sophomore, junior or senior classification were invited 

to participate in the study via the university bulk-e-mail system. Second, the research 

study was advertised to students via e-mails through their professors and presentation 

during class. Third, the researcher made visits to engineering classrooms, primarily 

capstone design in mechanical engineering, to recruit participants for the research study. 

The capstone design classrooms were chosen strategical.ly for their high enrollment of 

students with senior classification. 

Students self-selected to participate in the research study using an online study 

invite form. Use of different recruitment tactics resulted in a participation interest rate of 

approximately 5 % (~ 600 students). Of the 5% who expressed interest in participating in 

this research, approximately 60 % visited the research site to participate in the study. 

Students who consented to participate at the research site constituted the study sample.   

3.4.3. Participants 

The study sample consisted of 361 undergraduate engineering students. 

Characteristics of the sample are presented in Table 3.2. As seen from Table 3.2, the 

sample consists of more males than females. This trend is consistent with the trend about 

gender observed in the target population. Freshmen and sophomores comprise the 

majority of participants in the sample. Notably, the two lower-level university 

classification groups were more amenable to participation in research than juniors and 

seniors in the population. The majority of participants in the sample are al.so affiliated 
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with either the college of engineering or mechanical engineering. Those who were 

affiliated with the college of engineering are freshmen who had not yet chosen a major. 

A high number of mechanical engineering participants resulted from the focused 

recruitment. A mean GPA of 3.2 is reported for the sample. A mode GPA of 4.0 in the 

sample suggests that most students who participated in this research are high-achieving 

students. 

 

Table 3.2. Sample characteristics. Total number of participants is 361.   

Category  

   N = 361  

n  % 

Gender   

   Female  143  39.6  

   Male  217  60.1  

   Unknown  1  0.3  

Classification      

   Freshman  114  31.6  

   Sophomore  104  28.8  

   Junior  45  12.5  

   Senior  98  27.1  

Department      

   Aerospace engineering  15  4.2  

   Biological and agricultural engineering  1  0.3  

   Biomedical engineering  -  -  

   Chemical engineering  18  5.0  

   Civil engineering  11  3.0  

   College of engineering  73  20.2  

   Computer science and engineering  28  7.8  

   Electrical and computer engineering  29  8.0  

   Engineering technology and industrial distribution  15  4.2  

   Industrial and systems engineering  10  2.8  
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Table 3.2. Continued 

Category  

   N = 361  

n  % 

   Mechanical engineering  143  39.6  

   Nuclear engineering  11  3.0  

   Ocean engineering  -  -  

   Petroleum engineering  7  1.9  

Familiarity with design task 

  Not at all 197 54.6 

  Very little 131 36.3 

  Fairly well 21 5.8 

  Quite well 6 1.7 

  Perfectly 2 0.6 

  Not reported 4 1.1 

Grade Point Average (GPA)    

   Reported (on 4.0 scale)  303  83.9  

   Not reported  58  16.1  

   Mean (standard deviation)     3.2 (0.5)  

   Median    3.3  

   Mode   4.0  

   Range     0.8 – 4.0  

 

 

 

3.4.4. Design task 

Aligned with assumptions presented in Amabile’s framework, a design task was 

posed to the participants to trigger their creative processes. Specifically, the researcher 

assigned a “mixed wasted [sic] collection” design task to participants. This task required 

participants to develop concepts to separate paper and plastic from a mixed waste 

collection and was presented as such: 

One of the different systems used for curbside recycling is “mixed wasted 

collection” in which all recyclates are collected mixed and the desired material. is 
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then sorted out at a sorting facility. One difficult sorting task is separating paper 

and plastic, which is usually done by hand. Develop concepts that will enable 

removing paper or plastic from the mixed collection. (Cheong, Chiu, & Shu, 

2010) 

This task was presented in text format because this format is typical of the format 

presented to engineering students in cornerstone and capstone courses (personal 

experience). In addition, the design task is open-ended and therefore gives students an 

opportunity to find no or many solutions.  

While other types of tasks may be posed, this research focused on a design task 

because instructor-assigned design tasks form the crux of student experience in in 

engineering. The researcher chose to use the mixed waste collection task because of its 

successful use in previous research on design ideation. In addition, this task was 

expected to invoke large amounts of variations in participants’ responses. The large 

amounts of variations are important for distinguishing the extent to which students’ 

characteristics predict novelty of their solutions. Given these characteristics, the 

researcher used the design task to examine how students’ characteristics combined to 

predict novelty of solutions to the task in an academic environment with a survey. 

3.4.5. Students’ characteristics 

Amabile’s theory highlighted domain-relevant skills, creativity-relevant 

processes and task motivation as the types of student characteristics that influence the 

creative process and the outcome. Influences of a subset of the three characteristics were 

considered in this research due to research purpose and constraints. Of the domain-
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relevant skills, only domain expertise was measured in this research. Other sub-

components were not measured due to time constraints and concerns about participant 

fatigue and loss of interest in a lengthy study. The latter concerns can influence 

reliability of measurements and therefore affect the overall conclusions derived from this 

research. Domain expertise was estimated from an individual’s Grade Point Average 

(GPA), university classification, discipline, and familiarity with a design task. GPA is 

defined as the number of grade points earned divided by number of credit hours 

attempted (Registrar’s office, 2014). University classification is defined as the number of 

attempted credit hours (Student Rule 13, 2014), and discipline is defined as major 

affiliation. While GPA has been reported not to influence creativity in previous research 

in engineering (Nazzal, 2015), the finding was re-tested in this research. Class, major 

and familiarity with task have been reported to influence creativity (Genco, et al., 2012; 

Nazzal, 2015; Amabile, 1996). Students self-reported their GPA, classification, 

discipline and familiarity with the assigned design task on the survey. 

Of the creativity-relevant processes, only cognitive style was measured in current 

research. Cognitive style, which is defined as individual differences in orientation 

towards different problem-solving strategies used to solve a problem (Martinsen & 

Kaufmann, 2011) in this research, correlates with personality traits and explains the 

variance in outcomes beyond the variance explained by personality traits (Martinsen & 

Kaufmann, 2011). Cognitive style was measured using a revised 30 item Assimilator-

Explorer (A-E) inventory that and has its basis in the A-E cognitive style theory. The A-

E theory positions students on a style continuum that ranges from rule-conforming (left-
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end, assimilators) to novelty-seeking (right-end, explorers) behaviors of problem 

solving. A three-factor model was identified to describe cognitive style, where the 

factors explain students’ preferences for rules, planning and novelty seeking behaviors 

during problem-solving. (Martinsen et al., 2011) The A-E inventory was established as 

valid and reliable in related research (Rathore, unpublished work). Therefore, the items 

on the A-E inventory were used to measure students’ cognitive style on the survey. 

Task motivation was measured as Current Achievement Motivation (CAM). 

CAM is defined as student’s achievement on a task as mitigated by task characteristics 

(Fruend, Kuhn, & Holling, 2011). CAM has four facets. The facets are anxiety, 

challenge, interest and probability of success. The four facets represent intrinsic 

motivations. Fruend, et al. (2011) argued that interest (an indicator of current 

achievement motivation) is a significant predictor of creativity. CAM was measured 

using a short Questionnaire on Current Motivation (QCM). The QCM is composed of a 

12 item that was reported as valid and reliable in related research. (Fruend, et al., 2011) 

Therefore, items from the QCM were used to measure students’ motivation on the 

survey.  

3.4.6. Environment 

While present research considered a subset of components of domain expertise, 

creative thinking, and motivation, it did not consider the environment directly. Physical 

environment either was outside of the researcher’s control or presumed fixed when 

students worked in the same physical space. In addition, previous research demonstrated 

that the physical environment has a relatively smaller impact on creativity when 
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compared to the social environment (Dul, Ceylon & Jaspers, 2011). Therefore, this 

research neglected the measurement of the effects of physical environment on creativity. 

In addition, this research did not consider the social environment directly due to research 

purpose and time constraints; however, since social environment of a person influences 

his or her task motivation (Amabile, 2013) the effects of social environment were 

presumed reflected in the task motivation measurement. Monetary reward, regardless of 

success or failure, was held constant in this research. 

3.4.7. Creative outcome 

Though Amabile’s theory of creativity describes the creative outcome in terms of 

novelty and usefulness, only novelty - defined as something new/original (Sarkar et al., 

2011) - is chosen to represent students’ abilities to provide innovative solutions. This is 

because recent literature (Lai, et al., 2008; Genco, et al., 2012) suggested that originality 

of student-generated solutions diminishes as undergraduate students advance through the 

engineering curriculum. Novelty was estimated as low or high based on the rarity of 

solutions in the sample. The rarer the idea, the more novel it is. This assumption is 

consistent with the assumption of creativity lying on a continuum that ranges from low 

to high in Amabile’s theory of creativity (Amabile, 2013).  

3.4.8. Data collection 

Data was collected from participants using a prospective, survey research design 

approach after obtaining permissions from the university’s Institutional. Review Board. 

Participants completed an online survey after consenting to participate in this research. 

The survey consisted of four forced-choice categorical items, one forced-choice open-
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ended item, two forced-choice Likert-scales, and one forced-choice brainstorming essay 

item. Categorical and open-ended items captured demographics variables such as a 

student’s gender (categorical), university classification (categorical), department 

affiliation (categorical), familiarity with the design task (categorical) and GPA (open-

ended). The two Likert-scales were measures of current achievement motivation and 

cognitive style, respectively. The scales and their validities and reliabilities are described 

in detail in (Rathore, unpublished work). Participants rated their perceptions of 

motivation to engage with and general approach to problem-solving in engineering for 

the assigned design task on the two Likert-scales. The brainstorming essay item 

instructed participants to generate as many solutions to the design task as possible in 10-

minutes. Participants sketched their ideas on paper and provided textual descriptions of 

their ideas in the essay item. Participants received monetary compensation for 

completing the online survey.  

3.4.9. Data analysis 

Data was analyzed in R (R Core Team, 2017) using decision tree analysis to 

predict novelty of solutions to a design task based on students’ GPA, classification, and 

major, familiarity with the task, current achievement motivation, and cognitive style. 

Prior to running the decision tree analysis, the raw data was screened for missing values. 

Missing values, where possible, were replaced with a typical variable response. For 

example, null GPA values were replaced with the median GPA. Where a statistical 

decision could not be made about missing values (e.g., familiarity with task or novelty), 

cases were eliminated from further analysis.  
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Further, categorical independent variables were re-coded by collapsing categories 

to achieve an adequate sample size (by decreasing number of predictors) and a non-zero 

and near thirty-cell frequency count. For example, the four categories of classification 

were recoded to two categories. Participants who were classified as freshmen or 

sophomores were re-classified to the “lower division” category. Participants who were 

classified as juniors or seniors were re-classified to the “upper division” category. 

Participants who may have similar disciplinary knowledge were re-assigned to the same 

major category. Participants’ familiarity with the design task was recoded to familiar or 

not familiar. The coding key is presented in Table 3.3.  

Data recoding was followed by computations of participants’ scores on the 

questionnaire of current achievement motivation (QCM) and the cognitive style 

inventory. Exploratory factor analyses (EFA) was first run in R (version) for both scales 

to determine their respective factor structures. The EFA procedures are described in 

detail in (Rathore, unpublished work). Factor scores for each scale were then estimated 

using the tenBerge method (Revelle, 2017). Descriptive statistics were obtained for 

continuous predictors. 

Novelty level of participants' solutions to the design task was assigned based on 

an analysis of qualitative responses to the brainstorming essay item on the survey. 

Qualitative responses were first coded into bins with similar ideas. For example, an idea 

that hinged on separating paper and plastic via optical detection of material properties  
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Table 3.3. Coding key used to re-classify categorical independent variables for decision 

tree analysis  

New Code Description Old Code Description 

Classification  

   Lower division    Freshman  

   Sophomore  

   Upper division    Junior  

   Senior  

Department  

   Major 1 

 

   Aerospace engineering (AERO) 

   Civil engineering (CVEN) 

   Mechanical engineering (MEEN) 

   Major 2 

 

 

 

   Biological and agricultural engineering (BAEN) 

   Biomedical engineering (BMEN) 

   Chemical engineering (CHEN) 

   Nuclear engineering (NUEN) 

   Ocean engineering (OCEN) 

   Petroleum engineering (PETE) 

   Major 3    Computer science and engineering (CSEN) 

   Electrical and computer engineering (ECEN) 

   Major 4    Engineering technology and industrial distribution (ETID) 

   Industrial and systems engineering (ISEN) 

   Major 5 (Undeclared)    College of engineering (CLEN) 

Familiarity with design task 

   Not familiar   Not at all 

   Familiar   

 

 

  Very little 

  Fairly well 

  Quite well 

  Perfectly 

 

 

 

was put in one bin. An idea that suggested separating paper and plastic using the 

buoyancy principle was put in another bin. Once all (516) ideas were coded into their 

respective bins (total. bins: 107), the number of ideas per bin was computed for each bin. 



 

 

78 

 

The bins were then assigned a "novelty" grade (1-20) based on the number of ideas in 

the bin. The bin with the highest number of ideas (e.g., 44 ideas) was assigned the lowest 

grade (e.g., grade = 1). Higher the number of ideas, lower the grade assigned. All bins 

with the same number of ideas and all ideas inside the same bin were assigned the same 

grade. After assignment of grades to bins/ideas, an average novelty score of ideas was 

computed for each participant. Participants' scores were categorized next into either low 

novelty or high novelty depending on their location on the novelty grade. Scores lower 

than or equal to 10 were coded as low novelty, and scores higher than 10 were coded as 

high novelty. 

The decision tree analysis was first run in R using the recursive partitioning 

(rpart) package at its default values (Therneau, Atkinson & Ripley, 2017). The rpart 

algorithm combines tree building with cross-validation to generate the “best” tree. The 

full tree was built recursively with predictors that best split the data into two groups until 

no improvement was made or a minimum sample size was achieved by the split (i.e., 

low prediction error). The resultant tree was then pruned back using a complexity value 

with the least amount of 10-fold cross-validation error. The pruned tree is a 

parsimonious model that avoids overfitting and improves the model’s predictive ability. 

Predictor importance was computed. The randomForest package – a random 

bootstrapping algorithm – was al.so run to determine if bootstrapping improves the 

predictive abilities of the model (Liaw & Wiener, 2002). Decisions trees, complexity and 

cross-validation error tables, importance terms and confusion matrices computed from 

the rpart and randomForest packages are presented in the results section.     
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3.5. Results 

A summary of the results from the decision tree analysis is presented in tandem 

with supporting evidence from the descriptive analysis in this section.  

The full tree obtained from the rpart package indicates that GPA, major, current 

achievement motivation and cognitive style are the only characteristics that combine to 

predict students’ abilities to generate novel solutions. Participants’ university 

classification and familiarity with the design task did not enter the model. The full tree is 

presented in Figure 3.1. As seen in Figure 3.1, the significant predictors in order from 

most to least significant are: challenge, anxiety, GPA, novelty seeking orientation, 

interest, major (c ≠ major 2; e ≠ major 4), probability of success, and rules orientation.  

 

 
Figure 3.1. Full decision tree obtained from rpart package. Predictors: challenge, 

anxiety, GPA, novelty-seeking orientation, interest, major (c = major 2, e = major 4), 

probability of success, and rules. Outcome: 1 = low novelty, 2 = high novelty 
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The decision tree contains eight combinations that predict high novelty solutions 

and eight combinations that predict conventional solutions. Individual combinations are 

achieved using the splitting variable rules (e.g., challenge <-2.50).  When a splitting 

variable rule is met, the outcome to the left is observed.  For example, high novelty 

solutions are observed when challenge and anxiety combine in the following way 

(challenge > -2.50) AND (anxiety > 1.94). A conventional solution is observed when 

participants’ score on challenge is less than 2.50. The full decision tree al.so suggests 

interaction variables in the model. Anxiety interacts with GPA, novelty-seeking 

orientation, interest and major. In addition, novelty-seeking orientation interacts with 

itself, major, interest, anxiety and probability of success. 

However, because the full decision tree was complex, this tree was pruned using 

the complexity parameter with the lowest cross validation error and good predictive 

accuracy. Values of complexity parameters and cross-validation errors are presented in 

Table 3.4. As seen from Table 3.4, the full tree achieves lowest cross-validation error of 

32 % at the seventh split. Cross-validation error is root node error times relative error.  

 

Table 3.4. Complexity parameters (CP), number of splits (nsplit), relative error (rel 

error), cross-validation error (xerror), and standard error (xstd) suggesting pruning of full 

tree at CP = 0.04 

 
 

 

CP nsplit rel error xerror xstd

1 0.0660 0 1 1 0.0695

2 0.0472 1 0.9340 1.1132 0.0692

3 0.0425 5 0.7453 1.0377 0.0695

4 0.0400 7 0.6604 1.0377 0.0695

Root node error: 106/217 = 0.48848
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The pruned decision tree obtained from the rpart package is presented in Figure 

3. 2. As seen in Figure 3.2, significant predictors of novel solutions are challenge, 

anxiety, GPA, novelty seeking, interest, and major. The decreasing order of relative 

importance of predictors is interest, challenge, anxiety, GPA, novelty-seeking 

orientation, major, and probability of success. 

 
Figure 3.2. Pruned decision tree. Predictors: challenge, anxiety, GPA, novelty-seeking 

orientation, interest, major (c = major 2, e = major 4). Outcome: 1 = low novelty, 2 = 

high novelty 

 

 

The pruned decision tree is reliable in predicting novelty of solutions based on 

significant characteristics of students. The confusion matrix for the pruned decision tree 

is presented in Table 3.5. As seen from Table 3.5, the misclassification error for a low 
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novelty solution as a high novelty solution is 25%. The error for misclassifying a high 

novelty solution as a low novelty solution is 36%. Overall, the pruned tree predicts a 

high novelty solution more accurately than a low novelty solution. Further improvement 

to prediction was not possible without overfitting the original model. As seen from Table 

3.6, prediction capabilities of the decision tree deteriorate when randomForest – a 

random bootstrapping algorithm - is applied to the model. Therefore, the pruned tree 

obtained from the rpart package is sufficient for interpretation. 

 

Table 3.5. Actual (row) vs. predicted (column) values with predictor errors for the 

pruned tree  

 

 

Table 3.6. Confusion matrix from the randomForest algorithm 

 

 

Figure 3.3 and Table 3.7 present results from the descriptive analysis of 

significant predictors from the pruned tree. As seen from Figure 3.3, the majority 

(77.88%) of the participants were from aerospace engineering, civil engineering or 

mechanical engineering. Approximately, 34% of the participants were undeclared 

majors. About 26% of the participants were from computer science and engineering and 

electrical and computer engineering. Seventeen percent were from biological and 

1 2 class.error

1 54 18 0.25

2 52 93 0.359

1 2 class.error

1 46 60 0.566038

2 52 59 0.468469

OOB estimate of error rate: 51.61%
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agricultural engineering, biomedical engineering, chemical engineering, nuclear 

engineering, ocean engineering or petroleum engineering. The least number of 

participants (11.52%) were from engineering technology and industrial distribution and 

industrial. and systems engineering.  

Participants’ GPA ranged from 0.80 to 4.00. As seen in Figure 3.3 and Table 3.7, 

the distribution of GPA was left-skewed and had a high splitting variable value of 3.93. 

The frequency analysis indicated that the majority of the participants were high-

achieving students; however, they fell below the splitting threshold value of GPA. 

 

 

 
Figure 3.3. Number of students versus rating on predictor variables. Predictors (top left 

– bottom right): major, GPA, novelty-seeking orientation, rules orientation, interest, 

anxiety, probability of success, and challenge 
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An almost normal distribution was observed for novelty-seeking orientation and anxiety. 

Scores for the novelty-seeking orientation ranged from -2.29 to 2.49 with a splitting 

threshold value of -1.15. As seen in Figure 3.3, the majority of scores fell above this 

splitting threshold. The relatively low threshold value on the range suggested that 

majority of participants seek novel ways to solve design tasks. Few participants 

experienced high anxiety relative to the threshold value of anxiety. 

 

 

Table 3.7. Descriptive statistics for continuous predictors in the pruned decision tree 

Predictor Minimum Maximum Thresholds 

Challenge -4.30 2.20 -2.45 

Anxiety -2.09 2.49 1.94 

GPA 0.80 4.00 3.93 

Interest -3.49 1.95 0.93, 1.16 

Novelty-seeking -2.29 2.49 -1.15 

 

 

A left-skewed distribution was observed for both challenge and interest. As seen 

from Figure 3.3 and Table 3.7, the majority of participants scored above the threshold 

value of challenge. In other words, very few participants found the task not challenging 

enough to generate novel solutions. The majority of participants also fell outside the 

small splitting threshold range (0.93, 1.16) of interest.  

The pruned decision tree offers eight combinations of students’ characteristics 

that predict novelty of students’ solutions to a design task. Of the eight, four 

combinations predict conventional solutions. The remaining four combinations predict 

novel solutions. All eight combinations are described. The description of predictors as 
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“low”, “medium” and “high” is relative to their respective threshold values. Threshold 

values of predictors are rounded up to two decimal places.  

Conventional solutions were observed under the following rules:   

a. (Challenge < -2.50). Conventional solutions were observed when participants 

perceived the assigned design task to be less challenging than the threshold value 

of -2.50. 

b. (Challenge > -2.50) and (Anxiety < 1.94) and (GPA < 3.93) and (Novelty-

seeking orientation < -1.15). Conventional solutions were observed when low 

achieving participants of low novelty-seeking orientation worked on the design 

task they felt low anxiety for and found to be highly challenging.  

c. (Challenge > -2.50) and (Anxiety < 1.94) and (GPA < 3.93) and (Novelty-

seeking orientation < -1.15) and (Interest ≥ 1.16). Conventional solutions were 

observed when low-achieving participants of low novelty-seeking orientation 

worked with high interest and low anxiety on what they perceived to be a highly 

challenging design task. 

d. (Challenge > -2.50) and (Anxiety < 1.94) and (GPA < 3.93) and (Novelty-

seeking orientation < -1.15) and (1.16 ≤ Interest < 0.93) and (major = c or e). 

Conventional solutions were observed when low-achieving participants of low 

novelty-seeking orientation worked with low or high interest and low anxiety on 

what they perceived to be a highly challenging design task. Participants who 

ideated conventional solutions were from biological and agricultural engineering, 

biomedical engineering, chemical engineering, engineering technology and 
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industrial and industrial distribution, industrial and systems engineering, nuclear 

engineering, ocean engineering or petroleum engineering.    

Novel solutions were observed under the following rules:  

a. (Challenge > -2.50) and (Anxiety > 1.94). Novel solutions were observed when 

participants worked on a highly challenging design task while feeling high 

anxiety towards the task.  

b. (Challenge >-2.50) and (Anxiety < 1.94) and (GPA > 3.93). Novel solutions were 

observed when high-achieving participants worked on a highly challenging 

design task with low anxiety.  

c. (Challenge > -2.50) and (Anxiety < 1.94) and (GPA < 3.93) and (Novelty-

seeking orientation > -1.15) and (0.93 < Interest ≤ 1.16). Novel solutions were 

observed when low-achieving participants of high novelty-seeking orientation 

worked on a highly challenging design task with medium interest and low 

anxiety.  

d. (Challenge > -2.50) and (Anxiety < 1.94) and (GPA < 3.93) and (Novelty-

seeking orientation > -1.15) and (0.93 < Interest ≤ 1.16) and (major ≠ c or e). 

Novel solutions were observed when low achieving participants of high novelty-

seeking orientation worked on a medium interest, highly challenging design task 

with low anxiety. Participants who ideated novel solutions were from aerospace 

engineering, civil engineering, computer science and engineering, electrical and 

computer engineering, mechanical engineering or undeclared majors. 
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3.6. Discussion 

This study examined how engineering students’ GPA, classification, major, 

familiarity with a design task, current achievement motivation and cognitive style 

combine to predict novelty of their solutions to an engineering design task using the 

decision tree analysis. The pruned tree offered eight combinations (see results section) to 

predict novelty of solutions. Consistent with Amabile’s componential theory of 

creativity (2013), facets of domain-relevant skills, creativity-relevant processes and 

motivation combine to influence creative outcomes in this research. Challenge (facet of 

motivation), anxiety (facet of motivation), GPA (estimate of domain skills), novelty-

seeking orientation (facet of creativity-relevant process), interest (facet of motivation), 

and major (estimate of domain skills) were identified as significant predictors of novelty. 

With the exception of GPA (e.g., Nazzal, 2015), significance of anxiety (Rosenblum, 

Treffinger, Feldhusen, 1970), novelty-seeking orientation (Martinsen, et al., 2011), and 

interest (Fruend, et al., 2011) for predicting novelty is consistent with previous research. 

However, contrary to expectations (Genco, et al., 2011; Amabile, 1996) but consistent 

with other research (Nazzal, 2015; Rathore, unpublished), university classification and 

familiarity with design task were not significant predictors of novelty. It is possible 

classification and familiarity with task did not contain sufficient information about 

students’ domain-relevant skills relative to GPA to separate participants into different 

groups. Therefore, the two predictors did not appear in the model. Additional studies, 

with different design tasks and a large sample size, should be run to test the stability of 

splitting variables and their thresholds.  
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While the researcher could not verify the hypotheses offered by Amabile (2013) 

due to methodological limitations, predictions about combinations for novel solutions 

found in this research were consistent with Amabile’s projections. For example, as per 

Amabile’s theory, novelty is obtainable when an individual is highly motivated to solve 

a task. Combination “a” under “novel solutions” demonstrated that novel solutions were 

observed when participants felt high anxiety towards the design task they found to be 

highly challenging; challenge and anxiety are two facets of participants’ achievement 

motivation. Novelty is also obtainable when at least two of the three components of 

creativity combine at high levels (Amabile, 2013). Combinations “b” and “c,” under 

“novel solutions” demonstrated that novel solutions were observed when participants of 

either high GPA or high novelty-seeking orientation worked on what they perceived to 

be a highly challenging design task. GPA and novelty-seeking orientation are facets of 

domain-relevant skills and creativity-relevant processes, respectively. As seen from 

combinations “a-d” under “conventional solutions,” novel solutions were not obtainable 

when none or only one of the components of creativity were favorable to ideating novel 

solutions. Moreover, according to Amabile’s theory (2013), novelty is also obtainable 

when all three components of creativity combine at high levels. This hypothesis was 

supported by combination “d” under “novel solutions” where novel solutions were 

observed for participants of high novelty-seeking orientation working on highly 

challenging and medium interest design task using disciplinary expertise. Consistency of 

these findings with Amabile’s theory provides evidence for use of her theory in 

engineering education research. 
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Further, findings from the decision tree provide insights about control variables 

for design education research. The decision tree analysis indicated that students’ 

characteristics such as challenge, anxiety, GPA, novelty-seeking orientation, interest and 

major are significant primary splitters/predictors of novelty. However, these findings do 

not suggest that variables that were not selected as primary splitters in the decision tree 

are insignificant predictors of novelty. It is possible that unimportant variables are 

secondary splitters (containing same information). It is also possible that a small sample 

size of various groups rendered significant variables unimportant in present analysis. 

Therefore, research studies must continue to treat students’ characteristics from this 

study as controls in design education studies. Uncontrolled presence of students’ 

characteristics in design studies may influence findings about advantages of idea 

generation methods.  

Last, findings offer hypotheses that may be tested to develop instructional 

strategies to support novelty of solutions to a similar design task. For example, present 

research found conventional solutions were observed when few of the participants found 

the design task less challenging than the threshold value of challenge. Future research 

can test if novel solutions are observed when the same participants are assigned a more 

challenging design task (e.g., separate paper, plastic, and glass) than the assigned design 

task. Conventional solutions were also observed for the few low achievement 

participants who felt low anxiety towards a challenging task; however, they fell below 

the threshold value of novelty-seeking orientation. Future research can test if novel 

solutions are observed when the same participants are given a repertoire of strategies that 
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develop their novelty-seeking orientation. Further, present research found that novel 

solutions were observed when participants’ interest was held at an optimum level and/or 

they had the necessary disciplinary knowledge to solve the design task. Future research 

can explore instructional strategies to engage student interest and/or increase disciplinary 

knowledge to determine if novel solutions are observed for the conventional participants 

under instructional interventions. 

3.7. Conclusion 

Fostering students’ abilities to develop innovative solutions to challenging 

engineering design tasks warranted clarification of roles of students’ characteristics on 

their abilities to generate innovative solutions. The present study determined 

combinations of engineering students’ characteristics such as Grade Point Average 

(GPA), classification, major, task familiarity, current achievement motivation, and 

cognitive style that predict novelty of their solutions to an engineering design task. A 

prospective, survey research design was used to collect data with a sample of 

engineering students. Decision tree analysis was used to determine combinations of 

students’ characteristics that should be explored to promote novelty in students’ 

solutions. GPA, major, current achievement motivation (facets: challenge, anxiety, 

interest, probability of success), and cognitive style (facets: novelty-seeking orientation, 

rules orientation) are significant predictors of novelty. Decision tree suggested four 

combinations that predict high novelty: (challenge > -2.498) and (anxiety > 1.943); 

(challenge >-2.498) and (anxiety < 1.943) and (GPA > 3.93); (challenge > -2.498) and 

(anxiety < 1.943) and (GPA < 3.93) and (novelty-seeking orientation > -1.146) and 
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(0.9332 < interest ≤ 1.162); (challenge > -2.498) and (anxiety < 1.943) and (GPA < 3.93) 

and (novelty-seeking orientation > -1.146) and (interest < 0.9332) and (major ≠ c or e). 

Findings are consistent with Amabile’s theory of creativity, provide insights into control 

variables for design ideation studies, and offer hypotheses to develop instructional 

strategies to promote novelty in students’ solutions to design tasks. Stability of primary 

splitting (i.e., predictor) variables and their threshold values should, however, be verified 

in future studies using different design tasks and a large sample size to confirm findings 

from present study.  
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4. ESTIMATING RELATIONSHIPS OF ENGINEERING DESIGN TASK 

STRUCTUREDNESS AND COMPLEXITY TO NOVELTY OF SOLUTIONS 

USING STRUCTURAL EQUATION MODELING 

 

4.1. Introduction 

Helping undergraduate engineering students to develop their abilities to provide 

innovative solutions to increasingly challenging design problems is a priority in the 

United States (ABET, 2017; US Department of Commerce, 2012). Though previous 

studies (Atman, Chimka, Bursic & Nachtmann, 1999; Cross, Christiaans & Dorst, 1994) 

reported increases in students’ abilities to innovate after going through their 

undergraduate studies, recent studies (Lai, Roan, Greenberg & Yang, 2008; Genco, 

Holta-Otto & Conner Seepersad, 2012) suggested that students’ abilities to provide 

innovative solutions diminish as they advance through the engineering curriculum. For 

example, in a 1999 study Atman, et al., who measured creativity in terms of quantity of 

ideas generated, noted that final year students generated a higher quantity of ideas than 

second year students. Cross, et al. (1994) measured creativity in terms of quality of ideas 

generated and found senior students generated a higher quality of ideas than freshmen. 

In recent studies, Lai, et al. (2008) and Genco, et al. (2012) suggested that while both 

seniors and freshmen produced ideas of similar quality, seniors were less proficient at 

creating original solutions to ill-defined problems using creative thinking than freshmen. 

The conflicting claims warrant further consideration of roles of engineering curricula in 
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developing undergraduate students’ abilities to provide innovative solutions to 

challenging design problems. 

While multiple aspects of engineering curricula may impact the development of 

undergraduate students’ abilities to innovate, this research focuses on the roles 

instructor-assigned design tasks play in fostering students’ abilities to provide innovative 

solutions to challenging problems in the workplace. The instructor-assigned design 

tasks, which are presented typically in text format to students, form the crux of student 

experience in cornerstone and capstone courses in engineering (personal experience). 

Researchers have expressed the need to determine design task characteristics that make 

design tasks suitable for student learning (Jonassen & Hung, 2008); the need remains 

unaddressed. This research explored this need by examining the relationships between 

assigned design task characteristics and undergraduate engineering students’ abilities to 

innovate solutions to design tasks after controlling for students’ characteristics that have 

been identified in previous research as significant predictors of their abilities to innovate 

solutions. 

4.1.1. Definitions and measurement 

The literature of learning sciences, psychology, organizational change, and 

engineering design offer many definitions and methods of measurement of task 

characteristics (Campbell, 1988; Kim & Soergel, 2005), student characteristics 

(Amabile, 2013; Lee, 2004) and students’ abilities to innovate solutions (Sarkar & 

Chakrabarti, 2011). This research uses the following definitions and methods of 

measurement. 
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4.1.1.1. Task characteristics  

Task characteristics are defined by difficulty of a task. Task difficulty, which 

according to Jonassen, et al. (2008) can be viewed as a combination of task 

structuredness and task complexity and appears to encompass the majority of the 

features of a task, was chosen to represent the characteristics of a design task. Task 

difficulty was measured using a 14-item scale that measures students’ perceptions of 

task structuredness and task complexity (see Lee, 2004 or Appendix A). 

4.1.1.2. Student characteristics  

Domain-relevant skills, creativity-relevant processes, and task motivation impact 

students’ abilities to innovate solutions to design tasks (Amabile, 2013). Domain-

relevant skills were estimated from students’ Grade Point Average (GPA), university 

classification, familiarity with assigned design task, and discipline. GPA is defined as 

the number of grade points earned divided by number of credit hours attempted 

(Registrar’s office, 2014). University classification is defined as the number of attempted 

credit hours (Student Rule 13, 2014), and discipline is defined as student’s major 

affiliation. Students self-reported their GPA, classification and discipline. Creativity-

relevant processes were estimated with cognitive style. Cognitive style, which is defined 

as individual differences in orientation towards different problem-solving strategies used 

to solve a task (Martinsen & Kaufmann, 2011), correlates with personality traits and 

explains the variance in outcomes beyond the variance explained by personality traits 

(Martinsen & Kaufmann, 2011). Cognitive style was measured using the Assimilator-

Explorer (A-E) inventory. See Appendix C. Task motivation was estimated from current 
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achievement motivation, which is defined as achievement on a  task as mitigated by task 

characteristics. This is because Freund, Kuhn and Holling (2011), who examined 

measurement issues of the task motivation instrument used in this study, argue that 

interest (an indicator of current achievement motivation) is a significant predictor of 

creativity. Task motivation was measured using a short Questionnaire of Current 

Achievement Motivation (QCM). See Appendix B.  

4.1.1.3. Abilities to innovate  

While several definitions and methods to measure innovative abilities exist in the 

literature (Cropley, 2011; O’Quin & Besermer, 2011; Sarkar & Chakrabarti, 2011), 

abilities to innovate are commonly defined in terms of novelty and usefulness of 

solutions in engineering. Of the two, novelty - defined as something new/original. 

(Sarkar, et al., 2011) - was chosen to represent students’ abilities to provide innovative 

solutions. This is because recent literature (Lai, et al., 2008 & Genco, et al., 2012) 

suggested that originality of student-generated solutions diminishes as undergraduate 

students advance through the engineering curriculum. Novelty was estimated from 

students’ solutions to a design task based on the rarity of solutions found in the sample..  

4.2. Literature 

Very few studies were found that explored relationships between characteristics 

of assigned design tasks and undergraduate students’ abilities to innovate after 

controlling for characteristics such as students’ domain-relevant skills, creativity-

relevant processes and task motivation. Studies that were found (Reiter-Palmon, Illies, 

Cross, Buboltz & Nimps, 2009; Jo & Lee, 2012; Martinsen & Kaufmann, 2000) 
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suggested that originality of solutions (at least to everyday tasks) is directly proportional 

to complexity of said tasks. Quality (another measure of creativity) of solutions, 

however, appears to be inversely proportional to the complexity of tasks. For example, 

Reiter-Palmon, et al. (2009), who examined creative performance (i.e. ability to 

innovate) of psychology students in terms of several indexes of creativity (e.g. solution 

originality and quality) for three everyday tasks, found that the most complex task 

invoked the lowest involvement and self-efficacy and had the most original solutions. 

Average quality of solutions was the lowest for the most complex task among three 

tasks. Moderate complexity of tasks had most involvement and led to mid-level average 

originality and quality. The least complex tasks invoked mid-level involvement and had 

participants produce the least original ideas but high-quality ideas. In Reiter-Palmon, et 

al.’s study, optimum novelty and quality of solutions was achieved when student 

motivation to solve a problem is at its highest. They also found that their conclusions 

varied based on indices used to measure creativity.  

Jo and Lee (2012) modeled links among task complexity, intrinsic motivation, 

organizational. trust (independent variables), and creativity of individuals (dependent 

variable) working in Korean ICT companies and found that both task complexity and 

motivation had positive influences on creativity. In their study, intrinsic motivation had 

the most influence of all independent variables on individual creativity. Martinsen and 

Kaufmann (2000), who studied effects of task motivation and A-E cognitive style on 

problem-solving performance, found that highly motivated individuals with explorer 

cognitive styles underperformed individuals of the same motivation but with assimilator 
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cognitive styles when working on tasks of high difficulty (insight problems). This 

research sought to determine whether similar findings are true of creativity of 

engineering students engaged in solving difficult design tasks.  

No studies were found that examined relationships between characteristics of 

design tasks and engineering students’ abilities to innovate with the control variables 

such as students’ domain-relevant skills, cognitive style and task motivation as defined 

in this research. Reiter-Palmon, et al. (2009) and Jo, et al. (2012)’s studies were limited 

to non-engineering design tasks with students and employees outside of the domain of 

engineering. In addition, the authors’ mapping of the characteristics of the task was 

limited to problem difficulty measured only in terms of task complexity. 

Understandably, given the purpose of their studies, Reiter-Palmon, et al. (2009) and Jo, 

et al. (2012)’s did not use a creativity index specific to the domain of engineering; the 

metrics used to measure creativity can affect conclusions associated with a study. 

Martinsen and Kaufmann (2000) did not measure the creative performance of 

individuals in their study. This research differed in four ways. One, it examined the 

relationships between task difficulty and novelty with a design task. Two, it used a more 

encompassing definition of design task characteristics – task difficulty as a function of 

structuredness and complexity – than previously cited research. Three, a creativity 

measure specific to the domain of engineering (Sarkar and Chakrabarti, 2011) was used 

to measure novelty. Four, previously unexamined control variables and population were 

examined in this research.  
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4.3. Research Purpose and Question 

The purpose of this research was to examine the relationships of structuredness 

and complexity of an engineering design task to novelty of solutions using a sample of 

engineering students after controlling for five of their characteristics. The purpose of 

estimating these relationships after controlling for students’ characteristics was to 

advance research that promotes understanding of learning activities and has implications 

for education practices that foster abilities to innovate in engineering students. The 

student characteristics considered in this research are GPA, university classification, 

familiarity with assigned design task, major, current achievement motivation, and 

cognitive style. Of these characteristics, only GPA, major, and some facets of current 

achievement motivation and cognitive style were included in present research. The 

reason for including only a subset of the characteristics was that only these 

characteristics were found to be significant predictors of novelty in previous research 

(Rathore, unpublished). Included facets of current achievement motivation were 

challenge, anxiety, and interest. Only novelty-seeking orientation facet of cognitive style 

was included as a control. The research question that was investigated in this research is:  

What are the direct effects of structuredness and complexity of an engineering 

design task on novelty of solutions developed by engineering students after 

controlling for their GPA, major, perceived task challenge, task-related anxiety, 

interest in task and novelty-seeking orientation? 

Current research has a three-fold contribution to engineering education. One, it 

provides a preliminary model and empirical evidence to build theories that eventual.ly 
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explain the relationship between problem characteristics and creativity as moderated 

and/or mediated by student characteristics. Two, it clarifies potential variance in 

observed novelty of solutions that design education studies can assign to both design 

problems and student characteristics when comparing advantages and disadvantages of 

different ideation techniques. Three, it provides findings about conditions (e.g., 

characteristics of design task, students) which support novelty in students’ solutions. 

Such findings can inform engineering programs and book publishers about strategies to 

develop students’ abilities to innovate solutions to challenging design problems. 

4.4. Methods 

A structural equation modeling approach was used to estimate the direct effects 

of perceived design task structuredness and complexity on novelty of solutions with a 

sample of engineering students from the target population after controlling for students’ 

GPA, major, challenge, anxiety, interest, and novelty-seeking orientation. This approach 

is appropriate when independent variables in the model are latent constructs (Rosseel, 

2012). The eight independent variables in the structural model were structuredness 

(STR), complexity (COM), GPA, major, challenge (CH), anxiety (AN), interest (IN) and 

novelty-seeking orientation (Seeker). The dependent variable was novelty of solutions. It 

was hypothesized that perceived structuredness, complexity, GPA, major, challenge, 

anxiety, interest and novelty-seeking orientation directly affect the novelty of student 

generated solutions. A schematic of the structural equation model is presented in Figure 

4.1. 
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Figure 4.1. Hypothesized casual model to determine the effect of design task structuredness (STR) and complexity (COM) on 

novelty of solutions with challenge (CH), anxiety (AN), interest (IN), novelty-seeking orientation (NS), Grade Point Average 

(GPA), and major as covariates. Items measure manifest variables. e or E = measurement error.
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4.4.1. Target population 

The target population for this research study consisted of all undergraduate 

engineering students enrolled at a large, research extensive, public university in the 

southern United States during the 2015-2016 academic year. The average population 

size was approximately 11263 students. Approximately 21% were females and 78% 

were males. The population consisted of freshmen (18% - 27%), sophomores (21%), 

juniors (19% - 22%) and seniors (32% - 38%) over the two semesters. The ranges in 

classification estimates reflect variability in enrollment over the two academic semesters. 

The approximate number of students affiliated with each department is presented in 

Table 4.1. (Texas A&M University – College Station, 2017) The mean Grade Point 

Average (GPA) of students in the population is not accessible without institutional. 

permissions and therefore unknown for this research; however, it is presumed to fall 

between 0.0 and 4.0 because the university computes students’ grade point average on a 

four-point scale. 

The target population for this study was selected out of interest from both the US 

government and industry and researcher’s interest and convenience. Both the US 

government (US Department of Commerce, 2012) and industry have expressed interest 

in preparing engineering undergraduates with abilities to provide innovative solutions to 

challenging design problems encountered in the workplaces. Findings derived from 

research on this population addressed the needs expressed by both the government and 

industry. Further, present researcher identified needs in the literature to study this 

population. In addition, the target population was easily accessible via e-mails through 
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the existing network of colleagues, in-person recruitment and experiment visits required 

of participants. 

 

Table 4.1. Departmental affiliation and approximate percentage of students in the target 

population during the 2015-2016 academic year 

 

4.4.2. Recruitment and selection 

Multiple tactics were used to recruit participants for this research study. First, 

engineering students with freshmen, sophomore, junior or senior classification were 

invited to participate in the study via the university bulk-e-mail system. Second, the 

research study was advertised to students via e-mails through their professors and 

presentation during class. Third, the researcher made visits to engineering classrooms, 

primarily capstone design in mechanical engineering, to recruit participants for the 

Department affiliation Students (%) 

Aerospace engineering 4 

Biological and agricultural engineering Unknown 

Biomedical engineering 2 

Chemical engineering 5 

Civil engineering 6 

College of engineering 28 - 31 

Computer science and engineering 8 

Electrical and computer engineering 7 

Engineering technology and industrial distribution 12 - 13 

Industrial and systems engineering 7 

Mechanical engineering 9 

Nuclear engineering 2 

Ocean engineering 1 

Petroleum engineering 5 
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research study. The capstone design classrooms were chosen strategical.ly for their high 

enrollment of students with senior classification. 

Students self-selected to participate in the research study using an online study 

invite form. Use of different recruitment tactics resulted in a participation interest rate of 

approximately 5 % (~ 600 students). Of the 5% who expressed interest in participating in 

this research, approximately 60 % visited the research site to participate in the study. 

Students who consented to participate at the research site constituted the study sample.  

4.4.3. Participants 

The study sample consisted of 361 undergraduate engineering students. 

Characteristics of the sample are presented in Table 4.2. As seen from Table 4.2, the 

sample consists of more mal.es than femal.es. This trend is consistent with the trend 

about gender observed in the target population. Freshmen and sophomores comprise the 

majority of participants in the sample. Notably, the two lower-level university 

classification groups were more amenable to participation in research than juniors and 

seniors in the population. The majority of participants in the sample are al.so affiliated 

with either the college of engineering or mechanical engineering. Those who were 

affiliated with the college of engineering are freshmen who had not yet chosen a major. 

A high number of mechanical engineering participants resulted from the focused 

recruitment. A mean GPA of 3.2 is reported for the sample. A mode GPA of 4.0 in the 

sample suggests that most students who participated in this research are high-achieving 

students.  
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Table 4.2. Sample characteristics. Total number of participants is 361.  

Category  

   N = 361  

n  %                

Gender   

   Female  143  39.6  

   Male  217  60.1  

   Unknown  1  0.3  

Classification      

   Freshman  114  31.6  

   Sophomore  104  28.8  

   Junior  45  12.5  

   Senior  98  27.1  

Department      

   Aerospace engineering  15  4.2  

   Biological and agricultural engineering  1  0.3  

   Biomedical engineering  -  -  

   Chemical engineering  18  5.0  

   Civil engineering  11  3.0  

   College of engineering  73  20.2  

   Computer science and engineering  28  7.8  

   Electrical and computer engineering  29  8.0  

   Engineering technology and industrial. distribution  15  4.2  

   Industrial and systems engineering  10  2.8  

   Mechanical engineering  143  39.6  

   Nuclear engineering  11  3.0  

   Ocean engineering  -  -  

   Petroleum engineering  7  1.9  

Familiarity with design task 

  Not at all 197 54.6 

  Very little 131 36.3 

  Fairly well 21 5.8 

  Quite well 6 1.7 

  Perfectly 2 0.6 

  Not reported 4 1.1 
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Table 4.2. Continued 

Category  

   N = 361  

n  %                

Grade Point Average (GPA)    

   Reported (on 4.0 scale)  303  83.9  

   Not reported  58  16.1  

   Mean (standard deviation)     3.2 (0.5)  

   Median    3.3  

   Mode   4.0  

   Range     0.8 – 4.0  

 

4.4.4. Data collection 

Data was collected from participants using a prospective, survey research design 

approach after obtaining permissions from the university’s Institutional. Review Board. 

Participants completed an online survey after consenting to participate in this research. 

The survey consisted of three forced-choice categorical items, one forced-choice open-

ended item, three forced-choice Likert-scales and one forced-choice brainstorming essay 

item. Categorical and open-ended items captured demographics variables such as a 

student’s gender (categorical), university classification (categorical), department 

affiliation (categorical), and GPA (open-ended). The three Likert-scales were measures 

of task difficulty, QCM, and A-E inventory, respectively. Participants rated their 

perceptions of task difficulty, motivation to engage with, and general approach to 

problem-solving in engineering for the assigned design task on the three Likert-scales. In 

this research, a “mixed wasted [sic] collection” design task was assigned to students. 

This task required students to develop ideas for separating paper and plastic from a 

mixed waste collection. The design task was presented to students as follows: 
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One of the different systems used for curbside recycling is “mixed wasted 

collection,” in which all recyclates are collected mixed and the desired material. 

is then sorted out at a sorting facility. One difficult sorting task is separating 

paper and plastic, which is usually done by hand. Develop concepts that will 

enable removing paper or plastic from the mixed collection. (Cheong, Chiu, & 

Shu, 2010) 

The researcher chose to use the mixed waste collection task in this study because 

of its successful use in idea generation research. In addition, this task was expected to 

invoke large amounts of variations in students’ responses to perceptions of task 

difficulty, current achievement motivation and cognitive style. The large amounts of 

variations are important for establishing group differences, if any, in students’ 

perceptions of task difficulty and novelty of solutions based on controlled students’ 

characteristics. Given the task characteristics, the design task is used to examine the 

direct effects of perceived task difficulty on novelty of solutions after controlling for 

students’ characteristics. The brainstorming essay item instructed participants to 

generate as many solutions to the design task as possible in 10-minutes. Participants 

sketched their ideas on paper and provided textual descriptions of their ideas in the essay 

item. Participants received monetary compensation for completing the online survey 

4.4.5. Data analysis 

A two-step structural equation modeling strategy was used to assess the direct 

effects of design task structuredness and complexity on novelty; challenge, anxiety, 

interest, novelty-seeking orientation, GPA and major were included as covariates in the 
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model. Measurement models of design task structuredness, design task complexity and 

manifest covariates were estimated and evaluated “prior to simultaneous estimation of 

measurement and structural submodels” (Meyers, Gamst, & Guarino, 2012, p. 998) 

presented in the hypothesized structural equation model (see Figure 4.1). Data were 

analyzed in R (R Core Team, 2017). 

4.4.5.1. Measurement models  

Measurement models of structuredness, complexity and manifest covariates were 

estimated from measures of task difficulty, current achievement motivation, and 

cognitive style, respectively, using exploratory factor analysis and confirmatory factor 

with a sample of 361 students. Previous research suggests structuredness and complexity 

are underlying factors for measures of task difficulty (Jonassen et al., 2008). Challenge, 

anxiety, interest and probability of success are underlying factors for measures of current 

achievement motivation (Fruend, et al., 2011). Rules orientation, planning and novelty 

orientation are underlying factors of measures of cognitive style (Martinsen et al., 2011).  

Prior to running an exploratory factor analysis, data on measures of task 

difficulty, current achievement and cognitive style was scanned for missing values and 

multivariate outliers. No missing values were identified using a frequency analysis. 

Multivariate outliers were identified using Mahlabonis distance (p < 0.001); however, 

none were deleted because the researcher had no practical reason for eliminating outliers 

from the data. Item statistics, included item mean, standard deviation, median, range, 

skew, kurtosis, and standard errors of skew and kurtosis, were computed. Inter-item 

polychoric correlation matrices (Fox, 2016), item-total correlation coefficients, 
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standardized ordinal alpha values of scales, and ordinal alpha-if-item-deleted values 

(Gadermann, Guhn, & Zumbo, 2012) were also estimated to determine item quality. 

Mardia’s Test for multivariate normality (Korkmaz, Goksuluk, & Zararsiz, 2014) was 

performed for each measure to determine the preferred method of factor extraction.    

An exploratory factor analysis was run after item analysis using the psych (Revelle, 

2016) package in R to determine measurement models of structuredness, complexity and 

manifest covariates. Factor solutions were extracted from observed measures using the 

principal axis factoring method. A promax rotation using the gpaRotation package 

(Bernaards & Jennrich, 2005) was applied to improve solution interpretability. Decisions 

about retaining the number of factors for a solution were based on convergence of 

estimates from four procedures and resulting model plausibility and parsimony. The four 

procedures that were run to determine the retention of factors were (Matsunaga, 2010; 

Zygmont & Smith, 2014):  

a. Kaiser’s Eigenvalue Criteria. Factors were retained if eigenvalues resulting from 

the principal. axis factoring technique and a promax rotation were greater than 1  

b. Cattell’s Scree Plot. Factors were retained if they were within the “sharp bend” 

on the Scree plot and the communalities were greater than 0.30  

c. Parallel Analysis. Factors were retained if eigenvalues resulting from the 

observed correlations matrix were greater than the eigenvalues resulting from a 

randomly generated correlation matrix of the same size  

d. Velicer’s Minimum Average Partial. (MAP) Test. Factors were retained based on 

the step that resulted in lowest average squared partial. correlations  
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Eigenvalue tables and scree plots were generated. Pattern matrices, including factor 

loadings, communalities, and uniqueness, were computed. Factor correlations and 

explained variances were estimated using the psych and polychor packages (Fox, 2016). 

Ordinal alpha values and ordinal alpha-if-item-deleted values (Gadermann, et al., 2012) 

were also computed to determine if any of the sub-scales could be refined. Factors were 

labeled based on literature and the type of items that loaded on each factor. 

A confirmatory factor analysis (CFA) was conducted next using the lavaan package 

(Rosseel, 2012) to verify the factor structures found from the EFA. Four fit indices were 

used to evaluate model fit to actual data. The fit indices are: Chi-Square test of fit and p-

value, comparative fit index (CFI), Root Mean Squarer Error of Approximation 

(RMSEA), and Standardized Root Mean Square Residual (SRMR). A model was 

considered acceptable under the following conditions (Awang, 2012):  

a. Chi-Square divided by degree of freedom (df) was lower than 3 and P-value was 

different from zero (greater than 0.05)  

b. Comparative Fit Index (CFI) values were above 0.95 (ideal.) or 0.90 (traditional.) 

or 0.80 (sometimes permissible)  

c. Root Mean Square Error of Approximation (RMSEA) values were less than 0.05 

(good) or 0.05 – 0.10 (moderate)  

d. Standardized Root Mean Square Residual. (SRMR) values were less than 0.09  

If the model was found acceptable, convergent and discriminant validity and 

reliability of factors were computed to further establish the validity and reliability of 

measures of task difficulty, task motivation and cognitive style. Convergent validity was 
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established if values for the Average Variance Extracted (AVE) were greater than 0.5 

and composite reliability (CR) values were found to be greater than 0.7. Divergent 

validity was established if the following conditions were met:   

a. Maximum Shared Variance (MSV) was less than Average Variance Extracted 

(AVE)  

b. Average Shared Variance (ASV) was less than AVE  

c. Square root of AVE was greater than inter-construct correlations    

In cases (e.g., task difficulty) where models obtained from the EFA were not 

supported by the CFA, a CFA was run in EFA mode to obtain an acceptable model. Item 

analyses were run to support decisions regarding item removals. Once acceptable fits 

were achieved, items that described structuredness, complexity and manifest covariates 

were extracted from the measures of task difficulty, current achievement motivation and 

cognitive style for use in the structural equation model.         

4.4.5.2. Observed measures  

Observed measures of GPA, major and novelty in the structural equation model 

were screened for missing data. Null GPA values were replaced with the median GPA. 

While none of the major values were missing, participants who may have similar 

disciplinary knowledge were re-assigned to the same major category. Majors were re-

coded by collapsing categories to achieve an adequate sample size (by decreasing 

number of predictors) and a non-zero and near thirty cell frequency count to run the 

structural equation model. The coding sheet for reclassifying majors is presented in 

Table 4.3. Cases with missing novelty values were removed from further analysis,  
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Table 4.3. Coding key used to re-classify participants’ majors 

New Code Description Old Code Description 

Classification  

   Lower division    Freshman  

   Sophomore  

   Upper division    Junior  

   Senior  

Department  

   Major 1 

 

   Aerospace engineering (AERO) 

   Civil engineering (CVEN) 

   Mechanical engineering (MEEN) 

   Major 2 

 

 

 

   Biological and agricultural engineering (BAEN) 

   Biomedical engineering (BMEN) 

   Chemical engineering (CHEN) 

   Nuclear engineering (NUEN) 

   Ocean engineering (OCEN) 

   Petroleum engineering (PETE) 

   Major 3    Computer science and engineering (CSEN) 

   Electrical and computer engineering (ECEN) 

   Major 4    Engineering technology and industrial distribution (ETID) 

   Industrial and systems engineering (ISEN) 

   Major 5 (Undeclared)    College of engineering (CLEN) 

Familiarity with design task 

   Not familiar   Not at all 

   Familiar   

 

 

  Very little 

  Fairly well 

  Quite well 

  Perfectly 

 

resulting in sample size of 217 participants for the structural equation modeling. 

Novelty level of participants' solutions to the design task was assigned based on 

an analysis of qualitative responses to the brainstorming essay item on the survey. 

Qualitative responses were first coded into bins with similar ideas. For example, an idea 
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that hinged on separating paper and plastic via optical detection of material properties 

was put in one bin. An idea that suggested separating paper and plastic using the 

buoyancy principle was put in another bin. Once all (516) ideas were coded into their 

respective bins (total. bins: 107), the number of ideas per bin was computed for each bin. 

The bins were then assigned a "novelty" grade (1-20) based on the number of ideas in 

the bin. The bin with the highest number of ideas (e.g., 44 ideas) was assigned the lowest 

grade (e.g., grade = 1). Higher the number of ideas, lower the grade assigned. All bins 

with the same number of ideas and all ideas inside the same bin were assigned the same 

grade. After assignment of grades to bins/ideas, an average novelty score of ideas was 

computed for each participant. 

4.4.5.3. Structural equation model 

The hypothesized model (Figure 4.1) was analyzed in R using the lavaan package 

(Rosseel, 2012); the robust full maximum likelihood procedure was used to estimate the 

model parameters because of violations of normality of distributions. The measurement 

model was evaluated against fit indices used to evaluate CFA models. Correlations 

among factors were also analyzed to determine sufficient discriminant and convergent 

validity among factors. Once an acceptable fit was obtained, all coefficients were 

evaluated for statistical (p < 0.05) and practical (values > 0.30) significance. Findings 

are presented in the results section. 

4.5. Results 

The results section describes findings from the measurement model analysis and 

the structural equation model analysis.  
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4.5.1. Measurement models: structuredness and complexity  

Item, EFA and CFA analyses of 14 observed measures of task difficulty resulted 

in extraction of 4 observed measures of structuredness and 6 observed measures of 

complexity. The item analysis, which consisted of frequency analysis, multivariate 

outlier analysis, and descriptive analysis of measures of task difficulty, found no missing 

data and several outliers. A complete data set was a result of the forced-choice online 

survey. Item means, standard deviations, medians, ranges, skew and kurtosis, standard 

errors of skew and kurtosis, ordinal alpha-if-item deleted, item-total correlations, and 

inter-item polychoric correlations obtained from the descriptive analysis are presented in 

Table 4.4 and Table 4.5, respectively. A low overall standardized ordinal alpha value of 

0.63 was recorded.   

Descriptive analysis results suggested removal of items TD1, TD2, TD6, TD7, TD8, and 

TD9 from further analysis as their presence may become problematic during factor and 

reliability analyses. However, removal of these items was problematic. As seen from the 

corrected item-total correlation values in Table 4, items TD1, TD2, and TD6-TD9 

correlate poorly with the rest of items on the scale. Poorly correlated items may not load 

strongly on extracted factors. In addition, standardized ordinal alpha-if-item-deleted 

values for items TD1 and TD6-TD8 see an increase if any one of the items is removed 

from the scale. Therefore, reliability of participants’ responses can be improved if 

problematic items are removed from the scale. Premature deletion of items, however, 

may result in elimination of facets/factors of task difficulty deemed important in the 

literature. Therefore, no items were removed prior to the EFA.   
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Table 4.4. Item statistics (mean, standard deviation (SD), median, range, skew, kurtosis, 

standard error (SE), ordinal. alpha-if-item deleted, and corrected item-total correlations) 

for the task difficulty scale. Overall ordinal alpha: 0.63.  

 

 

Table 4.5. Polychoric correlations for items on a scale of task difficulty 

 

 

An observation of the inter-item polychoric correlation matrix (see Table 4.5) 

suggested use of EFA is appropriate to determine the factor structure of task difficulty. 

Mean SD Median Range Skew Kurtosis SE

Ordinal Alpha, 

Item Deleted

Item-Total 

Correlation

TD1 4.21 0.73 4.00 4.00 -1.29 3.16 0.04 0.67 -0.09

TD2 3.40 1.07 4.00 4.00 -0.43 -0.81 0.06 0.63 0.23

TD3 2.42 1.07 2.00 4.00 0.79 -0.20 0.06 0.59 0.48

TD4 1.53 0.89 1.00 4.00 2.04 4.18 0.05 0.57 0.63

TD5 2.21 1.08 2.00 4.00 0.72 -0.34 0.06 0.57 0.62

TD6 3.76 0.90 4.00 4.00 -0.77 0.27 0.05 0.66 -0.04

TD7 3.49 0.85 4.00 4.00 -0.55 -0.14 0.04 0.64 0.12

TD8 3.31 0.81 3.00 4.00 -0.25 -0.41 0.04 0.64 0.07

TD9 3.14 0.93 3.00 4.00 0.02 -0.53 0.05 0.63 0.21

TD10 2.06 0.85 2.00 4.00 1.08 1.49 0.04 0.56 0.70

TD11 2.13 0.85 2.00 4.00 0.96 0.89 0.04 0.55 0.75

TD12 2.89 1.03 3.00 4.00 0.00 -0.94 0.05 0.59 0.41

TD13 2.05 0.86 2.00 4.00 0.85 0.72 0.05 0.60 0.45

TD14 2.59 0.95 2.00 4.00 0.42 -0.55 0.05 0.59 0.47

TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 TD9 TD10 TD11 TD12 TD13 TD14

TD1 1

TD2 0.41 1

TD3 0.10 0.37 1

TD4 -0.28 0.23 0.46 1

TD5 -0.08 0.18 0.37 0.63 1

TD6 -0.03 -0.23 -0.08 -0.34 -0.08 1

TD7 0.21 0.22 0.04 0.14 0.20 0.04 1

TD8 0.00 -0.09 -0.08 -0.12 -0.06 0.12 0.05 1

TD9 -0.07 0.04 0.00 0.06 0.06 0.07 -0.02 0.10 1

TD10 -0.27 -0.06 0.19 0.53 0.37 -0.15 -0.10 0.06 0.25 1

TD11 -0.32 -0.09 0.27 0.49 0.38 -0.02 -0.11 0.04 0.13 0.80 1

TD12 0.03 0.09 0.16 0.10 0.11 0.10 0.00 0.06 0.20 0.31 0.34 1

TD13 -0.30 -0.10 0.17 0.39 0.30 -0.09 -0.23 0.04 -0.04 0.47 0.58 0.18 1

TD14 -0.27 -0.20 0.08 0.18 0.28 0.21 -0.06 0.15 0.11 0.40 0.50 0.19 0.41 1
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Modest to moderate correlations between items indicated the presence of an underlying 

factor structure. For example, items TD3-TD5 modestly correlated with each other. 

Items TD10, TD11, TD13, and TD14 were also correlated moderately with each other. 

Further, item analysis indicated use of principal axis factoring with weighted least 

squares estimation as the extraction method for the EFA. Non-zero skew and kurtosis 

values, especial.ly for items TD1, TD2, TD4, TD5, TD10, TD11, and TD13, suggested 

violation of normality. Mardia’s test confirmed the violation of multivariate normality, 

informing the use of principal axis factoring with weighted least squares estimation as 

method of factor extraction during the EFA.   

Procedures for estimating the number of factors indicated extraction of multiple 

competing solutions (see Table 4.6). While the parallel analysis suggested retention of 

five factors during the EFA, the eigenvalue greater than one criteria specified extraction 

of three factors. Both the scree plot (Figure 4.2) and Velicer’s MAP analyses suggested 

extraction of two factors during EFA analysis. Pattern matrices resulting from the 

extraction of five, three and two factors during EFA are presented in Table 4.7.  

 

Table 4.6. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial. 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

task difficulty scale  

 

Velicer MAP Eigenvalues

Original Data Simulated Data

1 3.20 0.45 0.04 3.27

2 1.29 0.28 0.03 1.24

3 0.53 0.22 0.04 1.14

4 0.28 0.16 0.05 0.95

5 0.17 0.12 0.06 0.81

Parallel Analysis
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Figure 4.2.Scree plot suggesting extraction of 2 factors of task difficulty 

 

 

 

Table 4.7. Pattern matrices resulting from extraction of five, three and two-factor 

models from 14 observed measures of task difficulty using principal axis factoring and 

promax rotation. Blanks represent loadings below 0.4. (-) = items removed.  
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 h2 u2 Factor 1 Factor 2 Factor 3 h2 u2 Factor 1 Factor 2 h2 u2

TD1 -0.40 0.51 0.40 0.60 0.68 0.56 0.44 0.48 0.40 0.60

TD2 0.75 0.61 0.39 0.40 0.78 0.68 0.32 0.80 0.65 0.35

TD3 0.55 0.39 0.61 - - - - - 0.62 0.46 0.54

TD4 - - - - - - - 0.42 0.71 0.77 0.23 - - - -

TD5 0.53 0.46 0.54 0.45 0.40 0.60 - - - -

TD6 0.86 0.76 0.24 -0.57 0.32 0.68 - - - -

TD7 0.80 0.66 0.34 - - - - - - - - -

TD8 - - - - - - - - - - - - - - - -

TD9 0.83 0.70 0.30 - - - - - - - - -

TD10 0.80 0.69 0.31 0.76 0.68 0.32 0.81 0.63 0.37

TD11 0.88 0.78 0.22 0.84 0.78 0.22 0.92 0.83 0.17

TD12 0.29 0.71 0.66 0.59 0.41 - - - -

TD13 0.69 0.52 0.48 0.55 0.42 0.58 0.67 0.46 0.54

TD14 0.57 0.44 0.56 - - - - - 0.56 0.36 0.64

Five Factor Model Three Factor Model Two Factor Model
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An observation of the pattern matrices of a five-, three- and two-factor solution 

suggests that a two-factor solution of task difficulty is more plausible compared to a 

five- or a three-factor solution based on both theory and statistics. The five-factor and 

three-factor solutions were not supported by theory (Jonassen, et al., 2008) or statistics. 

The initial pattern matrix for the five-factor solution showed that item TD8 does not load 

strongly and item TD4 cross-loads with another factor. When items TD8 and TD4 were 

removed from analysis to obtain a simple structure, item TD12 did not load strongly on 

any of the five factors. Removal of items “made” the items load on different factors. In 

addition, only one item loaded strongly on the third, fourth and fifth factor. These 

features of the five-factor solution made the final solution with an explained variance of 

57% statistically unstable and uninterpretable.   

Compared to the five-factor solution, the initial three-factor solution was 

somewhat plausible; however, the pattern matrix showed that items TD7, TD8, TD9 and 

TD14 did not load strongly on any of the factors. In addition, item TD3 cross-loaded on 

two factors. Removal of non-loading and cross-loading items resulted in the shown 

pattern matrix. While a similar amount of variance (58%) was explained by the three-

factor solution, a simple structure could not be obtained without making the three-factor 

solution uninterpretable.  

A two-factor model of task difficulty was theoretically and statistically the most 

plausible model generated during the EFA analysis. The two-factor model loaded items 

as expected in theory that purports structuredness (Factor 2) and complexity (Factor 1) 

as two facets of task difficulty. This two factor model is al.so supported by convergence 
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of analysis from the Velicer’s MAP and scree plot and presence of a simple structure 

after removal of non-loading (TD6-TD9, TD12) and cross-loading (TD4, TD5) items. 

Therefore, a two-factor model was considered for further analysis.  

Further analysis, however, put the plausibility of the two-factor model into 

question. The two-factor model explained only 54% of the variability in responses. A 

low observed correlation (see Table 4.8) between the two factors made presence of a 

higher order factor (of task difficulty) debatable. In addition, computed values of 

standardized ordinal alpha-if-item deleted indicated that reliability of responses to items 

which load on Factor 2 is low (see Table 4.9). The modest explained variance and the 

low reliability of responses to items suggested that the two-factor model generated via 

the EFA analysis might not hold during confirmatory factor analysis.  

Table 4.8. Factor correlation matrix for a two factor model of task difficulty 

 

 

Table 4.9. Standardized ordinal. alpha-if-item deleted and item-to-total. scale 

correlations for a two factor model representative of task difficulty 

 

Factor 1 Factor 2

Factor 1 1 -0.18

Factor 2 -0.18 1

Ordinal 

Alpha

Item-Total 

Correlations

Factor 1 0.55

TD1 0.54 0.45

TD2 0.18 0.69

TD3 0.58 0.4

Factor 2 0.82

TD10 0.75 0.8

TD11 0.69 0.9

TD13 0.8 0.63

TD14 0.83 0.55



 

119 

 

Fit indices obtained from the CFA for the two-factor model of task difficulty 

confirmed that the model obtained from the EFA analysis required revisions. For 

example, the Chi-Square fit index of 12.30 (df = 13, p = 0) was above the acceptable 

threshold of 3 for the EFA model. While a CFI value of 0.95 was acceptable, the 

RMSEA and SRMR values of 0.18 and 0.11 respectively were outside the acceptable 

range for a well-fitting model, suggesting model revisions.   

A well-fitting model of task difficulty was obtained when the CFA analysis was 

run in exploratory mode. This model consisted of two factors – structuredness and 

complexity – with a factor correlation of 0.59. The model resulted from deletion of items 

(TD1, TD2, TD6 and TD8) with poor to no item-to-total scale correlations and ordinal 

alpha values higher than the overall standardized ordinal alpha value. The Chi-Square fit 

index of 2.85 (df = 34) was below the suggested threshold of 3. The CFI, RMSEA and 

SRMR values of 0.98, 0.07, and 0.07, respectively, were within the acceptable ranges for 

a well-fitting model.  While the model did not meet criteria for convergent validity 

completely, divergent validity was established for this model (See Table 4.10). The lack 

of convergent validity is attributable to the low reliability of responses to items that load 

on Factor 1. Nevertheless, the two-factor model was considered plausible with strong 

basis in theory and statistical support.   
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Table 4.10. Values of AVE, MSV, ASV and CR and covariance between factors of a 

two factor model of task difficulty  

 

 

4.5.2. Measurement models: challenge, anxiety and interest  

An item, EFA, and CFA analysis of 12 observed measures of current 

achievement motivation resulted in extraction of 2 observed measures of challenge, 3 

observed measures of anxiety, and 3 observed measures of interest. The item analysis, 

which consisted of frequency analysis, multivariate outlier analysis, and descriptive 

analysis of measures of task motivation, found no missing data and several outliers. A 

complete data set was a result of the forced-choice online survey. Item means, standard 

deviations, medians, ranges, skew and kurtosis, standard errors of skew and kurtosis, 

ordinal alpha-if-item deleted, item-total correlations, and inter-item polychoric 

correlations obtained from the descriptive analysis are presented in Table 4.11 and Table 

4.12, respectively. A modest overall standardized ordinal. alpha value of 0.72 was 

recorded.  

 

 

 

 

 

Factor 

AVE MSV ASV CR Factor 1 Factor 2

Factor 1 0.40 0.35 0.35 0.65 1

Factor 2 0.40 0.35 0.35 0.77 0.59 1

Measures Standardized Covariance
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Table 4.11. Item statistics (mean, standard deviation (SD), median, range, skew, 

kurtosis, standard error (SE), ordinal alpha-if-item deleted, and corrected item-total 

correlations) for the scale of current achievement motivation. Overall ordinal alpha: 

0.72.  

 

 

 

Descriptive analysis results suggested running an EFA with principal axis 

factoring with weighted least square as method of estimation on all 12 measures of task 

motivation. As seen from Table 4.12, multiple items on the task motivation scale share a 

modest to moderate inter-item polychoric correlations with each other. For example, 

items TM1, TM2, TM4 and TM5 are modestly correlated with each other. Items TM5, 

TM7, TM8, TM11, and TM12 are al.so correlated with each other. Presence of modest 

inter-item correlations indicates presence of an underlying structure that could be 

determined through an EFA. Skew and kurtosis values observed from Table 4.11 

indicated that normality may be violated. Mardia’s Test of multivariate normality 

confirmed violation of normality and use of principal axis factoring as the method of 

factor extraction. Ordinal alpha values and item-to-total correlations indicated that 

Mean SD Median Range Skew Kurtosis SE

Ordinal Alpha, 

Item Deleted

Item-Total 

Correlation

TM1 5.65 0.96 6.00 5.00 -0.94 1.44 0.05 0.71 0.37

TM2 5.14 1.27 5.00 6.00 -0.57 -0.27 0.07 0.73 0.27

TM3 3.86 1.75 4.00 6.00 -0.09 -1.24 0.09 0.72 0.25

TM4 4.93 1.46 5.00 6.00 -0.83 0.07 0.08 0.67 0.71

TM5 5.30 1.32 5.00 6.00 -0.88 0.68 0.07 0.67 0.67

TM6 3.10 1.76 3.00 6.00 0.53 -0.84 0.09 0.73 0.29

TM7 5.51 1.25 6.00 6.00 -0.97 0.76 0.07 0.68 0.59

TM8 4.37 1.52 4.00 6.00 -0.29 -0.60 0.08 0.69 0.53

TM9 3.40 1.84 3.00 6.00 0.32 -1.14 0.10 0.74 0.19

TM10 3.73 1.65 4.00 6.00 0.08 -0.95 0.09 0.73 0.18

TM11 5.39 1.24 6.00 6.00 -0.81 0.63 0.07 0.68 0.59

TM12 3.83 1.67 4.00 6.00 -0.03 -0.97 0.09 0.66 0.72
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reliability of responses to measures of task motivation may be improved if items TM2, 

TM6, TM9 and TM10 are removed from the task motivation scale. However, none of 

these items were removed prior to the EFA to eliminate premature deletion of facets 

identified as important in the literature on task motivation.  

 

Table 4.12. Polychoric correlations for items on the current achievement motivation 

scale 

 

 

Procedures for estimating the number of factors (Table 4.13) led to extraction of 

three competing solutions that were contrary to the four-factor theoretical solution. The 

Parallel Analysis suggested extraction of a five-factor solution. The eigenvalues greater 

than or equal to one criteria indicated extraction of a three-factor solution. Both the 

Velicer’s MAP and the scree plot (Figure 4.3) converged at a two-factor solution.  

 

TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8 TM9 TM10 TM11 TM12

TM1 1

TM2 0.61 1

TM3 -0.20 -0.19 1

TM4 0.35 0.19 0.07 1

TM5 0.42 0.25 0.04 0.70 1

TM6 -0.37 -0.33 0.50 0.03 -0.07 1

TM7 0.24 0.23 0.12 0.44 0.54 0.06 1

TM8 0.15 0.06 0.06 0.48 0.42 0.01 0.33 1

TM9 -0.16 -0.09 0.37 -0.11 -0.21 0.65 -0.11 -0.15 1

TM10 0.10 0.07 -0.01 0.10 -0.03 0.14 0.01 0.20 0.14 1

TM11 0.12 0.10 0.21 0.41 0.40 0.21 0.50 0.26 0.09 0.01 1

TM12 0.24 0.12 0.13 0.58 0.51 0.13 0.38 0.59 0.05 0.12 0.49 1
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Table 4.13. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

current achievement motivation scale 

 

 

 

Figure 4.3. Scree plot suggesting extraction of 2 or 3 factors from observed measures of 

task motivation 

 

Pattern matrices resulting from the extraction of four- (theoretical), three-, and 

two-factor solutions from the EFA are presented in Table 4.14. An observation of the 

pattern matrices of a five- (not shown), four-, three- and two-factor solutions of current 

Velicer MAP Eigenvalues

Original Data Simulated Data

1 3.14 0.43 0.05 2.74

2 1.52 0.24 0.04 1.55

3 0.35 0.19 0.05 1.20

4 0.33 0.13 0.06 0.53

5 0.10 0.09 0.08 0.33

Parallel Analysis

2 4 6 8 10 12

0
1

2
3

Scree plot

factor or component number

E
ig

e
n

 v
a

lu
e

s
 o

f 
fa

c
to

rs
 a

n
d

 c
o

m
p

o
n

e
n

ts

PC 

FA



 

124 

 

achievement motivation suggests that priority should be given to a four-factor solution 

based on theory and statistics. The five-factor solution was not supported by theory. In 

addition, an analysis of the five factor pattern matrix showed none of the items loaded 

strongly (> 0.4) on the fifth factor. The four-factor solution was found supported by the 

current achievement motivation theory (Fruend, et al., 2011) and statistics. The four-

factor solution explained most variance (55%) in students’ responses after deletion of 

items TM10 and TD8. The factor correlation matrix for the four-factor solution is 

presented in Table 4.15. Item reliability analysis indicated fair reliability of all but the 

fourth factor (See Table 4.16). The three-factor solution was not supported by theory but 

explained 52% of the explained variance. The two-factor solution was supported by an 

alternate theory – the approach-avoidance theory of motivation (Elliot & Thrash, 2002) – 

but explained only 49% of the variance. Since items TM1-TM12 were derived from the 

current achievement motivation theory and a four-factor solution explains most variance 

in participants’ responses, the four-factor solution was confirmed via confirmatory factor 

analysis.  

Fit indices obtained from the CFA supported the presence of a four-factor model 

of current achievement motivation generated through the EFA analysis. While the Chi 

Square index of fit was slightly above the acceptable threshold of 3 (Chi Square = 122, 

df = 3, p = 0), other fit indices were within the acceptable ranges of model fit. For 

example, the CFI value was 0.95. The RMSEA and SRMR values were 0.09 and 0.06, 

respectively. Given at least three indices met criteria for a well-fitting model, the four-

factor model was accepted for further analysis. 
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Table 4.14. Pattern matrices resulting from extraction of four-, three- and two-factor 

models from 12 observed measures of current achievement motivation using principal 

axis factoring and promax rotation. Blanks represent loadings below 0.4. (-) = items 

removed.   

 

 

 

Table 4.15. Factor correlation matrix for a four-factor model of current achievement 

motivation 

 

 

 

 

 

 

 

 

 

 

Factor 1 Factor 2 Factor 3 Factor 4 h2 u2 Factor 1 Factor 2 Factor 3 h2 u2 Factor 1 Factor 2 h2 u2

TM1 0.68 0.60 0.40 0.68 0.59 0.41 - - - -

TM2 0.75 0.52 0.48 0.72 0.51 0.49 - - - -

TM3 0.44 0.33 0.67 0.49 0.32 0.68 0.55 0.32 0.68

TM4 0.85 0.65 0.35 0.76 0.61 0.39 0.78 0.61 0.39

TM5 0.75 0.67 0.33 0.74 0.64 0.36 0.79 0.62 0.38

TM6 0.73 0.70 0.30 0.74 0.70 0.30 0.79 0.62 0.38

TM7 0.50 0.48 0.52 0.58 0.40 0.60 0.63 0.39 0.61

TM8 - - - - - - 0.68 0.42 0.58 0.62 0.38 0.62

TM9 0.87 0.59 0.41 0.81 0.58 0.42 0.74 0.55 0.45

TM10 - - - - - - - - - - - - - - -

TM11 0.41 0.45 0.55 0.55 0.40 0.60 0.57 0.40 0.60

TM12 0.65 0.48 0.52 0.75 0.57 0.43 0.73 0.56 0.44

Four Factor Model Three Factor Model Two Factor Model

Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 1

Factor 2 0.03 1

Factor 3 0.35 -0.43 1

Factor 4 0.59 0.38 0.01 1
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Table 4.16. Standardized ordinal alpha-if-item deleted and item-to-total scale 

correlations for factors representative of a four-factor model of current achievement 

motivation. (*) = items reversed 

 

 

Convergent and divergent validity analyses provided mixed evidence for validity 

of the four-factor model of current achievement motivation. Evidence (see Table 4.17) 

found from the convergent validity analysis suggested item convergence for all but 

factor 4. Composite reliability of factor 4 was lower than the acceptable threshold of 

0.70. The low convergence for factor four may be due to item quality, few measurement 

items, or sample size. Divergent analysis suggested factor 1 and factor 4 cannot be 

distinguished from each other. Possible explanations include poor reliability of responses 

on factor 4, high inter-construct correlation, and small sample size.  

 

 

 

Ordinal 

Alpha

Item-Total 

Correlations

Factor 1 0.82

TM4 0.67 0.82

TM5 0.73 0.77

TM12 0.83 0.64

Factor 2 0.75

TM3 0.78 0.55

TM6 0.54 0.8

TM9 0.66 0.7

Factor 3 0.76

TM1 0.61 0.7

TM2* 0.61 0.7

Factor 4 0.66

TM7 0.5 0.61

TM11 0.5 0.61
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Table 4.17.Values of AVE, MSV, ASV and CR and covariance among factors of a four- 

factor model of current achievement motivation 

 

 

Nonetheless, acknowledging limited evidence of convergent and divergent 

validity, measures that represent interest (factor 1), anxiety (factor 2), and challenge 

(factor 4) were extracted from the questionnaire on current achievement motivation for 

structural equation model (SEM) analysis. Use of items from both factor 1 and factor 4 

in the SEM model was justified (a) based on theory that supports presence of two 

distinguishable factors, (b) availability of previous evidence (Fruend et al., 2008) that 

supported presence of two distinguishable factors using a large sample size, and (c) 

attribution of high inter-construct correlation to presence of a higher-order construct 

(student engagement) instead of absence of two different constructs.   

4.5.3. Measurement model: novelty-seeking orientation 

Item analysis, EFA and CFA of 30 observed measures of cognitive style resulted 

in extraction of 11 observed measures of novelty-seeking orientation. The item analysis, 

which consisted of frequency analysis, multivariate outlier analysis and descriptive 

analysis of measures of cognitive style, found no missing data and several outliers. A 

complete data set was a result of the forced-choice online survey. Item means, standard 

deviations, medians, ranges, skew and kurtosis, standard errors of skew and kurtosis, 

Factor 

AVE MSV ASV CR Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 0.56 0.56 0.23 0.79 1

Factor 2 0.56 0.17 0.07 0.78 0.06 1

Factor 3 0.64 0.17 0.13 0.77 0.34 -0.41 1

Factor 4 0.49 0.56 0.22 0.66 0.75 0.20 0.32 1

Standardized CovarianceMeasures
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ordinal. alpha-if-item deleted, item-total correlations, and inter-item polychoric 

correlations obtained from the descriptive analysis are presented in Table 4.18 and Table 

4.19, respectively. A moderate overall standardized ordinal alpha value of 0.87 was 

recorded. 

Descriptive analysis results suggested running an EFA using principal axis 

factoring as method of extraction and weighted least squares estimation method on 30 

measures of cognitive style. As seen from Table 4.19, multiple items on the cognitive 

style scale share a modest to moderate inter-item polychoric correlations with each other. 

For example, items CS2-CS6 and CS8-CS10 are modestly correlated with each other. 

Items CS18-CS22 are also correlated with each other. Presence of modest inter-item 

correlations indicates existence of an underlying structure that could be determined 

through an EFA. Non-zero values of skew and kurtosis observed from Table 4.18 

indicated a possible normality violation. Mardia’s Test of multivariate normality 

confirmed violation of normality and suggested use of principal axis factoring as the 

method of factor extraction. Ordinal alpha values and item-to-total correlations indicated 

that reliability of responses might  improve if items CS1, CS11, CS27 are removed from 

the cognitive style scale. However, none of these items were removed prior to the EFA 

to avoid premature deletion of facets identified as important in the cognitive style 

literature. 

 

 



 

129 

 

Table 4.18. Item statistics (mean, standard deviation (SD), median, range, skew, 

kurtosis, standard error (SE), ordinal alpha-if-item deleted, and corrected item-total 

correlations) for the cognitive style scale. Overall ordinal alpha: 0.87  

 

Mean SD Median Range Skey Kurtosis SE

Ordinal Alpha, 

Item Deleted

Item-Total 

Correlation

CS1 2.11 0.81 2.00 4.00 0.54 0.14 0.04 0.88 0.19

CS2 2.70 0.90 3.00 4.00 0.30 -0.51 0.05 0.87 0.52

CS3 2.34 0.89 2.00 4.00 0.49 -0.25 0.05 0.87 0.55

CS4 2.94 0.99 3.00 4.00 -0.03 -0.87 0.05 0.87 0.50

CS5 1.96 0.83 2.00 4.00 0.73 0.27 0.04 0.87 0.54

CS6 2.70 1.05 3.00 4.00 0.27 -0.72 0.06 0.87 0.60

CS7 2.34 0.93 2.00 4.00 0.55 -0.03 0.05 0.87 0.46

CS8 2.58 1.04 2.00 4.00 0.35 -0.65 0.05 0.87 0.61

CS9 2.34 0.94 2.00 4.00 0.71 0.12 0.05 0.87 0.56

CS10 1.92 0.85 2.00 4.00 1.12 1.58 0.04 0.87 0.45

CS11 2.38 0.93 2.00 4.00 0.42 -0.44 0.05 0.88 0.22

CS12 2.77 0.91 3.00 4.00 0.40 -0.41 0.05 0.87 0.45

CS13 2.42 0.90 2.00 4.00 0.68 -0.05 0.05 0.87 0.46

CS14 2.18 0.78 2.00 4.00 0.85 1.01 0.04 0.87 0.46

CS15 3.20 0.98 3.00 4.00 -0.01 -0.80 0.05 0.87 0.48

CS16 3.50 0.96 4.00 4.00 -0.39 -0.56 0.05 0.87 0.58

CS17 3.57 1.05 4.00 4.00 -0.41 -0.67 0.06 0.87 0.38

CS18 3.58 1.01 4.00 4.00 -0.32 -0.70 0.05 0.87 0.51

CS19 3.37 1.04 4.00 4.00 -0.17 -0.91 0.05 0.87 0.60

CS20 4.54 0.97 5.00 5.00 -0.54 -0.05 0.05 0.87 0.40

CS21 2.95 1.03 3.00 4.00 0.15 -0.71 0.05 0.87 0.57

CS22 2.93 1.00 3.00 4.00 0.14 -0.70 0.05 0.87 0.59

CS23 3.87 0.80 4.00 4.00 -0.69 0.44 0.04 0.87 0.42

CS24 3.53 0.87 4.00 4.00 -0.13 -0.57 0.05 0.87 0.44

CS25 3.84 0.86 4.00 4.00 -0.78 0.40 0.05 0.87 0.34

CS26 3.56 0.94 4.00 4.00 -0.30 -0.59 0.05 0.87 0.59

CS27 3.52 0.92 4.00 4.00 -0.45 -0.24 0.05 0.89 -0.49

CS28 3.17 1.08 3.00 4.00 -0.04 -1.02 0.06 0.87 0.45

CS29 2.46 1.01 2.00 4.00 0.54 -0.29 0.05 0.87 0.55

CS30 2.27 0.85 2.00 4.00 0.64 0.15 0.04 0.87 0.31
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Table 4.19. Polychoric correlations for items on scale of cognitive style 

 

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 CS19 CS20 CS21 CS22 CS23 CS24 CS25 CS26 CS27 CS28 CS29 CS30

CS1 1

CS2 0.23 1

CS3 0.17 0.43 1

CS4 0.06 0.33 0.47 1

CS5 0.12 0.39 0.45 0.31 1

CS6 0.18 0.48 0.31 0.25 0.45 1

CS7 0.25 0.26 0.22 0.16 0.38 0.44 1

CS8 0.13 0.36 0.36 0.30 0.30 0.48 0.46 1

CS9 0.04 0.32 0.36 0.31 0.37 0.41 0.30 0.45 1

CS10 0.05 0.35 0.36 0.17 0.39 0.30 0.35 0.39 0.41 1

CS11 0.41 0.13 0.07 0.07 0.12 0.17 0.30 0.25 0.14 0.14 1

CS12 0.07 0.36 0.39 0.24 0.31 0.33 0.23 0.27 0.31 0.33 0.06 1

CS13 0.24 0.38 0.36 0.26 0.29 0.19 0.36 0.40 0.35 0.32 0.32 0.30 1

CS14 0.03 0.27 0.36 0.14 0.36 0.37 0.32 0.35 0.32 0.45 0.21 0.44 0.39 1

CS15 -0.06 0.09 0.19 0.25 0.16 0.24 0.08 0.15 0.15 0.09 -0.12 0.27 0.05 0.31 1

CS16 0.00 0.21 0.24 0.29 0.15 0.26 0.10 0.18 0.25 0.13 -0.08 0.30 0.09 0.14 0.49 1

CS17 -0.05 0.23 0.11 0.15 0.18 0.20 0.03 0.21 0.20 0.21 -0.02 0.15 0.10 0.08 0.21 0.22 1

CS18 0.05 0.20 0.16 0.24 0.21 0.26 0.23 0.29 0.14 0.07 0.00 0.14 0.16 0.10 0.46 0.40 0.22 1

CS19 0.07 0.19 0.15 0.35 0.12 0.25 0.17 0.39 0.34 0.18 0.18 0.16 0.21 0.12 0.41 0.47 0.23 0.42 1

CS20 -0.01 0.14 0.23 0.15 0.16 0.19 0.12 0.16 0.15 0.11 -0.10 0.17 0.01 0.16 0.36 0.38 0.16 0.31 0.28 1

CS21 0.01 0.17 0.26 0.21 0.21 0.30 0.21 0.21 0.20 0.16 0.05 0.25 0.15 0.23 0.41 0.55 0.17 0.36 0.39 0.34 1

CS22 -0.04 0.12 0.40 0.31 0.30 0.20 0.14 0.28 0.37 0.18 0.04 0.10 0.09 0.15 0.25 0.38 0.32 0.38 0.35 0.27 0.41 1

CS23 -0.11 0.10 0.17 0.29 0.10 0.13 0.03 0.19 0.14 -0.01 -0.16 -0.01 -0.03 0.01 0.32 0.36 0.31 0.38 0.24 0.35 0.30 0.59 1

CS24 -0.06 0.19 0.24 0.26 0.29 0.23 -0.01 0.28 0.31 0.15 -0.11 0.13 0.07 0.06 0.20 0.26 0.36 0.26 0.27 0.25 0.17 0.41 0.38 1

CS25 -0.05 0.08 0.07 0.22 0.06 0.08 0.01 0.16 0.08 0.01 0.04 0.12 0.14 0.06 0.20 0.29 0.16 0.27 0.28 0.16 0.20 0.26 0.24 0.24 1

CS26 -0.02 0.24 0.27 0.36 0.16 0.34 0.11 0.29 0.22 0.09 -0.05 0.26 0.10 0.14 0.39 0.49 0.29 0.39 0.43 0.26 0.47 0.46 0.47 0.36 0.34 1

CS27 -0.19 -0.27 -0.29 -0.17 -0.41 -0.42 -0.32 -0.39 -0.33 -0.30 -0.20 -0.30 -0.39 -0.37 -0.12 -0.10 -0.11 -0.19 -0.16 -0.06 -0.18 -0.23 -0.05 -0.17 -0.05 -0.20 1

CS28 0.21 0.18 0.08 0.13 0.14 0.21 0.22 0.23 0.16 0.04 0.23 0.02 0.21 0.06 0.20 0.30 0.19 0.19 0.38 0.15 0.31 0.24 0.18 0.22 0.26 0.28 -0.25 1

CS29 0.15 0.16 0.15 0.13 0.38 0.38 0.20 0.22 0.39 0.27 0.10 0.16 0.29 0.27 0.28 0.32 0.21 0.27 0.38 0.22 0.43 0.35 0.20 0.14 0.17 0.30 -0.32 0.39 1

CS30 0.29 0.13 0.07 0.06 0.23 0.18 0.24 0.22 0.20 0.17 0.35 0.05 0.29 0.13 -0.03 0.08 0.08 0.04 0.17 -0.01 0.13 0.14 -0.04 0.09 0.14 0.06 -0.51 0.40 0.29 1
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Procedures for estimating the number of factors suggested extraction of four 

competing solutions (see Table 4.20). While the Parallel Analysis indicated extraction of 

a five-factor model, the eigenvalue greater than one criteria supported extraction of a 

four-factor model. Velicer’s MAP and scree plot (Figure 4.4) suggested extraction of a 

three-factor model and a two-factor model, respectively. With the exception of the five-

factor model, pattern matrices for the competing solutions are presented in Table 4.21.  

 

 

Table 4.20. (Eigenvalues from) Parallel analysis, Velicer’s minimum average partial 

(MAP) correlations, and Eigenvalues (extracted using Principal Axis factoring) for the 

cognitive style scale 

 

 
Figure 4.4. Scree plot suggesting extraction of 2 factors from observed measures of 

cognitive style 

Velicer MAP Eigenvalues

Original Data Simulated Data

1 6.96 0.64 0.02 3.99

2 2.48 0.51 0.01 3.35

3 1.10 0.45 0.01 2.23

4 0.68 0.40 0.01 2.37

5 0.48 0.36 0.01 0.91
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Table 4.21.Pattern matrices resulting from extraction of four, three, and two factor 

models from 30 observed measures of cognitive style using principal axis factoring and 

promax rotation. Blanks represent loadings below 0.4.  (-) = items removed. 

 

 

An analysis and observation of the competing solutions supported the use of a 

two-factor model of cognitive style for further analysis. Of the four solutions, the five-

factor model, which explained most variance (43%), was found unstable and 

Factor 1 Factor 2 Factor 3 Factor 4 h2 u2 Factor 1 Factor 2 Factor 3 h2 u2 Factor 1 Factor 2 h2 u2

CS1 0.56 0.3 0.7 0.53 0.29 0.71 - - - -

CS2 0.55 0.38 0.62 0.56 0.37 0.63 0.58 0.34 0.66

CS3 0.61 0.43 0.57 0.64 0.43 0.57 0.52 0.36 0.64

CS4 - - - - - - - - - - - - - - -

CS5 0.6 0.43 0.57 0.63 0.41 0.59 0.59 0.37 0.63

CS6 0.48 0.39 0.61 0.5 0.39 0.61 0.57 0.41 0.59

CS7 - - - - - - - - - - - 0.61 0.34 0.66

CS8 - - - - - - - - - - - 0.6 0.44 0.56

CS9 0.47 0.4 0.6 0.51 0.37 0.63 0.55 0.37 0.63

CS10 0.66 0.38 0.62 0.66 0.37 0.63 0.65 0.38 0.62

CS11 0.67 0.44 0.56 0.67 0.44 0.56 0.42 0.15 0.85

CS12 0.66 0.42 0.58 0.62 0.35 0.65 0.5 0.29 0.71

CS13 0.42 0.39 0.61 0.4 0.39 0.61 0.64 0.35 0.65

CS14 0.72 0.46 0.54 0.69 0.41 0.59 0.64 0.38 0.62

CS15 0.72 0.51 0.49 0.56 0.38 0.62 0.6 0.35 0.65

CS16 0.7 0.54 0.46 0.69 0.49 0.51 0.7 0.49 0.51

CS17 0.4 0.22 0.78 - - - - - - - - -

CS18 0.53 0.39 0.61 0.64 0.38 0.62 0.59 0.37 0.63

CS19 0.57 0.45 0.55 0.64 0.44 0.56 0.52 0.35 0.65

CS20 0.4 0.27 0.73 0.45 0.26 0.74 0.5 0.25 0.75

CS21 0.62 0.44 0.56 0.59 0.4 0.6 0.56 0.38 0.62

CS22 0.73 0.6 0.4 0.65 0.46 0.54 0.62 0.43 0.57

CS23 0.65 0.54 0.46 0.7 0.46 0.54 0.73 0.44 0.56

CS24 0.59 0.38 0.62 0.42 0.25 0.75 0.46 0.24 0.76

CS25 - - - - - - 0.47 0.19 0.81 0.41 0.16 0.84

CS26 0.48 0.48 0.52 0.7 0.49 0.51 0.7 0.5 0.5

CS27 - - - - - - - - - - - - - - -

CS28 - - - - - - - - - - - - - - -

CS29 - - - - - - - - - - - - - - -

CS30 0.52 0.28 0.72 0.52 0.28 0.72 - - - -

Three Factor ModelFour Factor Model Two Factor Model
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uninterpretable due to strong loading of only one item on the fifth factor and strong 

cross-loading of items on multiple factors. Therefore, the five-factor model was not 

considered for further analysis. Of the other factor models, the EFA results showed that 

the four-factor model explained the most and a similar amount of variance (41%) to the 

five-factor model after deletion of multiple weak loading items (CS4, CS8, CS25, CS27, 

CS29) and incorrectly loading item (CS28). The three-factor model explained a lower 

amount (38%) of the variances in participants’ responses compared to the four-factor 

model after deletion of multiple weak loading items (CS4, CS7, CS8, CS17, CS27-

CS29). The two-factor model explained the least amount (35%) of variation in 

responses, had factor correlation of 0.42 (see Table 4.22), and high reliability of 

responses. Ordinal alpha and item-total correlation values for the two-factor model are 

presented in Table 4.23. Given the small difference (3% and 6%) in explained common 

variance between models, the two-factor model was selected for further analysis on basis 

of theory (Martinsen et al., 2011), plausibility (items belong on respective factors; high 

reliability) and parsimony (lowest number of factors).  

 

Table 4.22. Correlation matrix for a two factor model of cognitive style  

  Factor 1 Factor 2 

Factor 1 1 0.42 

Factor 2 0.42 1 

 

CFA corroborated selection of a two-factor model of cognitive style. Fit indices 

for the four-, three- and two-factor models demonstrated similar, well-fitting models. For 

example, the Chi-Square fit indices for the four-, three- and two-factor model were 2.08, 
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2.30, and 2.45, respectively. The CFI values were 0.97, 0.96, and 0.96, respectively. The 

RMSEA values were 0.06, 0.06, and 0.07, respectively. The SRMR values for all three 

models were 0.07. Since all models were plausible on basis of fit, the two-factor model 

was selected for further analysis based on theory and parsimony.  

 

Table 4.23. Standardized ordinal alpha-if-item deleted and item-to-total scale 

correlations for factors representative of cognitive style.  

 

Ordinal 

Alpha

Item-Total 

Correlations

Factor 1 0.85

CS15 0.84 0.59

CS16 0.83 0.7

CS18 0.84 0.61

CS19 0.84 0.6

CS20 0.85 0.5

CS21 0.84 0.62

CS22 0.84 0.65

CS23 0.84 0.63

CS24 0.85 0.47

CS25 0.85 0.41

CS26 0.83 0.7

Factor 2 0.85

CS2 0.84 0.6

CS3 0.84 0.58

CS5 0.84 0.61

CS6 0.84 0.64

CS7 0.84 0.58

CS8 0.84 0.65

CS9 0.84 0.59

CS10 0.84 0.6

CS11 0.86 0.3

CS12 0.84 0.53

CS13 0.84 0.59

CS14 0.84 0.62
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Convergent and divergent validity analysis further supported the plausibility of a 

two-factor model, allowing for extraction of a measurement model for representing 

novelty-seeking orientation. Convergent validity analysis for the two-factor model 

showed that while the average variance explained by individual was less than 50%, the 

combined average variance explained was 70%. The composite reliability of responses 

to items on each factor was greater than 0.80 (see Table 4.24). Criteria for divergent 

analysis were met, indicating factor 1 and factor 2 were distinguishable from each other. 

Given some evidence for convergence and evidence for divergence of individual factors, 

items that loaded on factor 1 were extracted to represent novelty-seeking orientation in 

the structural equation model.  

 

Table 4.24.Values of AVE, MSV, ASV and CR and covariance between factors of a 

two- factor model of cognitive style 

 

 

4.5.4. Observed measures 

Observed measures of GPA and major are presented in Table 4.2. As seen from 

Table 4.2, GPA of participants ranged from 0.8-4.0. The mean GPA of participants was 

3.2. The number of participants coded into major 1-5 was 169, 37, 57, 25, and 73, 

respectively.  

The mean novelty scores of participants are presented in Figure 4.5. As seen 

from Figure 4.5, while some participants generated low novelty solutions, others could 

Factor 

AVE MSV ASV CR Factor 1 Factor 2

Factor 1 0.36 0.24 0.24 0.86 1

Factor 2 0.34 0.24 0.24 0.85 0.49 1

Measures Standardized Covariance
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generate multiple novel solutions. As evident from the flatness of trend line at various 

points for mean novelty score in Figure 4.5, many participants showed the same novelty 

in their solutions.  

  

 
Figure 4.5. Distribution of mean novelty score of study participants.  

 

4.5.5. Structural equation model 

Results from the structural equation modeling suggested that the measurement 

model fits the data. The Chi Square fit index of 1.4 (df = 530) was within the acceptable 

threshold of 3. While the CFI value 0.86 was lower than the traditional.ly acceptable, but 

higher than the sometimes permissible, values, both the RMSEA and SRMR values were 

within acceptable ranges. The RMSEA and SRMR values were 0.04 and 0.06, 

respectively. Estimates of standardized factor loadings, standard errors, and their 

significance are presented in Table 4.25. As seen from Table 4.25, all items loaded 

significantly on their respective factors at a p value of 0.5. Factor correlations among  
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Table 4.25. Loading estimates, standard errors (Std.Err), loading significance 

(P(>abs(z)) and confidence intervals (ci.lower, ci.upper), and standardized loading 

estimates (Std. all) for manifest variables in the SEM model  

 

Estimate Std.Err z-value P(>|z|) ci.lower ci.upper Std.all

STR

TD3 0.53 0.10 5.33 0.00 0.34 0.73 0.46

TD4 0.71 0.09 7.66 0.00 0.53 0.89 0.75

TD5 0.78 0.10 7.94 0.00 0.59 0.98 0.66

TD7 0.15 0.07 2.09 0.04 0.01 0.30 0.17

COM

TD9 0.18 0.08 2.26 0.02 0.02 0.33 0.18

TD10 0.76 0.07 11.34 0.00 0.63 0.89 0.79

TD11 0.84 0.05 15.51 0.00 0.73 0.94 0.86

TD12 0.34 0.08 4.11 0.00 0.18 0.50 0.30

TD13 0.52 0.07 7.21 0.00 0.38 0.66 0.55

TD14 0.49 0.07 6.77 0.00 0.35 0.63 0.46

NS

CS15 0.50 0.07 6.91 0.00 0.36 0.65 0.50

CS16 0.64 0.06 10.07 0.00 0.51 0.76 0.67

CS18 0.52 0.07 7.56 0.00 0.39 0.66 0.50

CS19 0.56 0.07 7.54 0.00 0.41 0.71 0.53

CS20 0.38 0.06 5.86 0.00 0.25 0.50 0.41

CS21 0.62 0.07 8.37 0.00 0.48 0.77 0.59

CS22 0.73 0.07 10.35 0.00 0.59 0.86 0.66

CS23 0.43 0.06 7.29 0.00 0.32 0.55 0.54

CS24 0.38 0.07 5.79 0.00 0.25 0.51 0.41

CS25 0.32 0.07 4.86 0.00 0.19 0.44 0.35

CS26 0.66 0.06 11.46 0.00 0.55 0.77 0.70

AN

TM3 0.96 0.12 7.93 0.00 0.72 1.19 0.53

TM6 1.61 0.13 12.41 0.00 1.35 1.86 0.87

TM9 1.30 0.14 9.66 0.00 1.04 1.57 0.68

IN

TM4 1.13 0.10 11.57 0.00 0.94 1.32 0.76

TM5 1.02 0.12 8.89 0.00 0.79 1.24 0.78

TM12 1.10 0.13 8.47 0.00 0.84 1.35 0.63

CH

TM7 0.87 0.13 6.49 0.00 0.60 1.13 0.68

TM11 0.92 0.14 6.79 0.00 0.65 1.19 0.71
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latent constructs suggested constructs are distinguishable from each other (i.e., no 

multicollinearity). The factor correlation matrix is presented in Table 4.26.  As seen in 

Table 4.26, all correlations are below the traditional.ly high value of 0.85. Given 

satisfactory performance of the hypothesized measurement model, the hypothesized 

model formed the basis for structural modeling. 

 

Table 4.26. Standardized correlations (* = significant value at p < 0.05) among manifest 

variables in the SEM model 

  STR COM CH AN IN NS 

STR 1 

     COM    0.60* 1 

    CH -0.04 -0.05 1 

   AN    0.25*    0.22* 0.15 1 

  IN 0.02 -0.11   0.79* -0.02 1 

 NS -0.07 -0.12 0.07   -0.32* 0.20* 1 

 

The correlation matrix in Table 4.26 shows relationships among manifest 

variables. A statistical.ly significant and positive correlation was observed between 

design task structuredness and complexity and between design task structuredness and 

task-related anxiety. The correlation between structuredness and complexity, however, 

was more than twice the correlation between structuredness and anxiety. A statistically 

significant and positive correlation was al.so observed between design task complexity 

and anxiety. The magnitude of correlation between complexity and anxiety was like the 

correlation between structuredness and anxiety. The correlation between challenge and 

interest was both statistical.ly significant and the highest in magnitude among all 

observed correlations. The negative correlation between anxiety and novelty-seeking 
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orientation was also statistically significant and similar in magnitude to correlations 

between anxiety and other manifest variables. In other words, high novelty-seeking 

orientation is observed with lower anxiety levels. Interest was correlated positively to 

novelty-seeking orientation. While the remaining correlations among manifest variables 

were not statistically significant, data suggests positive and negative trends among 

constructs. For example, challenge is correlated negatively to both structuredness and 

complexity of a design task. Challenge and anxiety are correlated positively; higher the 

perceived challenge of a task, greater is the anxiety felt towards the task. 

Regression analysis indicated a statistically significant positive correlation of 

0.27 between design task structuredness and novelty (p value = 0.10) and a statistically 

significant negative correlation of 0.31 between complexity and novelty (p value of 

0.05) after controlling for students’ major, GPA, perception of task challenge, task-

related anxiety, interest in task and novelty-seeking orientation. Only the association 

between complexity and novelty was found to have small practical significance. 

Although not practically significant, of the covariates, only one category of major (major 

2 = BAEN, BMEN, CHEN, NUEN, OCEN, PETE) was found to be statistically 

different (r = -0.19) from undeclared students at a p value of 0.01. Estimates of 

coefficients in the regression model are presented in Table 4.27.  
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Table 4.27. Estimates of coefficients in the regression model. STR = structuredness. 

COM = complexity. AN = anxiety. IN = interest. CH = challenge. NS = novelty-seeking 

orientation. 

 

 

4.5.6. Limitations 

The results from this study are limited by the research methodology. First, the 

study design was limited by the choice of definitions and validity and reliability of the 

instruments. The validity and reliability of the instruments were somewhat compromised 

due to item quality, small number of items measuring a construct and/or the size of the 

available sample. Second, data collection was limited by data from a single institution, 

use of a single design task to obtain ratings on instruments, self-selection of participants, 

and time to complete the brainstorming activity. Limitations on data collection restrict 

generalizability of findings. Third, data analysis was limited due to lost information 

when missing observations were substituted by variable medians and categories of 

participant demographics were collapsed to achieve near-thirty observations for each cell 

Estimate Std.Err z-value P(>|z|) ci.lower ci.upper Std.all

Novelty ~

Major1 -0.55 0.79 -0.71 0.48 -2.09 0.99 -0.06

Major2 -2.65 1.04 -2.56 0.01 -4.68 -0.62 -0.19

Major3 -0.68 0.96 -0.71 0.48 -2.55 1.19 -0.06

Major4 -1.07 1.09 -0.98 0.33 -3.21 1.07 -0.06

GPA 0.21 0.53 0.40 0.69 -0.82 1.24 0.02

STR 1.27 0.71 1.79 0.07 -0.12 2.65 0.27

COM -1.45 0.60 -2.41 0.02 -2.62 -0.27 -0.31

AN 0.20 0.45 0.45 0.65 -0.68 1.09 0.04

IN -1.55 1.18 -1.32 0.19 -3.87 0.76 -0.33

CH 1.69 1.24 1.36 0.17 -0.74 4.12 0.36

NS 0.01 0.41 0.01 0.99 -0.79 0.80 0.00
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size. In addition, the validity of the categories of qualitative responses to the essay 

question was limited due to lack of triangulation with another researcher. Moreover, data 

analysis was limited by use of linear regression analysis as the research method. Effects 

may be underestimated for predictors with a non-linear response and a small sample 

size. Nonetheless, the results provide insights in the discussion section about direct 

effects of design task structuredness and complexity on novelty after controlling for 

covariates. 

4.6. Discussion 

This study examined direct relationships between design task structuredness and 

novelty and complexity and novelty after controlling for covariates using the structural 

equation modeling approach. Covariates included students’ GPA, major, perceived task 

challenge, interest in task, task-related anxiety, and novelty-seeking orientation. The 

preliminary model established presence of relationships between task structuredness and 

novelty and between task complexity and novelty. A statistically significant direct 

association was observed between engineering design task structuredness and novelty at 

a p-value of 0.1. As per the regression analysis, structuredness explained 7.30% of the 

variance in observed novelty scores. Like research in other domains (Reiter-Palmon, et 

al., 2009; Jo & Lee, 2012), a statistical.ly significant association was also observed 

between complexity and novelty at a p-value of 0.05. Complexity explained 

approximately 10% of the variance in novelty scores. Combined, the two design problem 

characteristics - structuredness and complexity - explained approximately 18% of the 

variance in observed novelty scores.  
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Further, findings about the direction of relationships between structuredness and 

novelty and between complexity and novelty suggested ways to support students’ 

abilities to generate novel solutions to challenging design tasks. Findings indicated that 

the novelty of a solution increases with increases in structuredness of the design task. 

Novelty of a solution decreases with increases in complexity of the design task. While 

findings to support a positive, linear association between task structuredness and novelty 

were not found in previous research, the inverse relationship between task complexity 

and novelty found in present research is contrary to previous research (Reiter-Palmon, et 

al., 2009; Jo & Lee, 2012). The contradictory findings may be attributed to type of 

problem, participant backgrounds, or index used to measure creativity. Presence of a 

positive association between structuredness and complexity indicated that assigned 

design task may fall in the ill-structured and complex plane, and therefore, have a 

different result than everyday tasks (Reiter-Palmon, et al., 2009) that may fall in the 

well-structured and complex plane. Psychology students and IT company employees 

may behave differently (i.e., generate more novel solutions to complex tasks) than 

engineering students because of their backgrounds (e.g., approach to problem-solving, 

domain expertise, motivation). Different measures of creativity also give different results 

(Reiter-Palmon, et al., 2009). Nonetheless, present findings suggest discovery of 

strategies which engineering students can use to structure ill-structured tasks and break 

down complex tasks to improve novelty of solutions to similar design tasks.  

In addition to offering insights about direct effects of structuredness and 

complexity of an engineering design task on novelty, present research provided 
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information about covariates included in the model. Findings suggested examination of 

roles of disciplinary expertise (e.g., Nazzal, 2015) to support students’ abilities to 

generate novel solutions. Like previous study (Nazzal, 2015), students’ major (category 

2 in present research) was found to be a statistically significant covariate at a p-value of 

0.05. Major 2 (BAEN, BMEN, CHEN, ETID, ISEN, NUEN, OCEN and PETE) 

explained about 3% of the variance in novelty of solutions. Further, findings suggested 

that acquisition of disciplinary knowledge, especial.ly in BAEN, BMEN, CHEN, ETID, 

ISEN, NUEN, OCEN and PETE majors, may be disadvantageous to generating novel 

solutions when assigned with similar design tasks. Findings indicated mean novelty 

scores of undeclared majors were significantly different and higher than the mean 

novelty scorers of BAEN, BMEN, CHEN, ETID, ISEN, NUEN, OCEN and PETE 

majors. The present finding is consistent with previous work (Rathore, unpublished) 

which found the same majors generate conventional solutions compared to undeclared 

majors using a different statistical method. Lower mean novelty of scores with 

disciplinary knowledge in present study may be attributed to differences in exposure to 

design thinking/curriculum or design fixation (Smith & Linsey, 2011). These findings 

support further exploration of impacts of disciplinary knowledge/major on students’ 

abilities to generate novel solutions to challenging design tasks. Such findings can 

inform engineering programs and book publishers about strategies to develop students’ 

abilities to innovate solutions to challenging design problems. 

Though no direct associations were observed between other covariates and 

novelty, previous research (Rathore, unpublished; Jo, et al., 2012, Fruend, et al., 2011, 



 

144 

 

Martinsen, et al., 2000) indicated that covariates such as students’ GPA, perceived task 

challenge, interest in task, task-related anxiety, and novelty-seeking orientation are 

significant predictors of novelty. The discrepancy in findings between the present and 

previous studies points to need for either transformation or representation of non-linear 

variables (e.g., anxiety) in code prior to running a SEM analysis and/or consideration of 

non-significant student characteristics as mediating or moderating variables in the SEM 

analysis. Possibilities of indirect associations are not precluded in future analysis since 

design task structuredness, complexity, and major explained only about 21% of the total 

variance in observed novelty. Findings support needs to develop empirical models that 

explain relationships between design problem characteristics and creativity as moderated 

and/or mediated by student characteristics, to understand the roles of learning activities 

and student characteristics for developing strategies to foster students’ abilities to 

generate creative solutions to challenging design tasks. 

Last, present research suggested consideration of confounding effects of problem 

and student characteristics on observed novelty similar to suggested by (Rodriguez, 

Mendoza, Gonzalez, Hernandez, Okudan, & Schmidt, 2011) to avoid drawing bias into 

conclusions comparing advantages of different ideation techniques. Combined, select 

problem and student characteristics accounted for approximately 21% of the total 

variance in observed novelty in this study. If variance from problem characteristics 

and/or student characteristics is left unaccounted for in design studies, effectiveness of 

ideation methods may be overestimated in comparative analyses and/or meta-analyses. 

Therefore, research studies should either hold problem and student characteristics 
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constant or attribute related variability to problem and student characteristics when 

explaining variance of observed novelty due to ideation methods. 

4.7. Conclusion 

Conflicting claims about roles of engineering curricula in developing students’ 

abilities to innovate solutions to design problems warranted further study about 

influences of learning activities on students’ abilities to innovatively solve challenging 

design problems. The present study examined relationships of design task structuredness 

and complexity to novelty of solutions after controlling for students’ GPA, major, 

perceived task challenge, task-related anxiety, interest in task and novelty-seeking 

orientation. A prospective, survey research design was used to collect data from a 

sample of engineering students at Texas A&M University. Relationships of 

structuredness and complexity to novelty of solutions were estimated from a causal 

model using a structural equation modeling approach. While a significant positive and a 

linear association were observed between design task structuredness and novelty, a 

significant negative association was observed between design task complexity and 

novelty. A statistical.ly significant correlation was found between structuredness and 

complexity. Of all the covariates, only the association between major 2 (BAEN, BMEN, 

CHEN, ETID, ISEN, NUEN, OCEN or PETE) and novelty was statistically significant 

relative to undeclared majors. Combined, structuredness, complexity, enrollment in 

major 2 explained approximately 21% of the total variance in novelty. Findings from 

this study suggest discovery of strategies which engineering students can use to structure 

ill-structured tasks and break down complex tasks to improve novelty of solutions to 
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similar design tasks. In addition, it suggests exploration of impacts of disciplinary 

knowledge/major on students’ abilities to generate novel solutions to challenging design 

tasks. Further, present findings support the need for further research on relationships 

between design problem characteristics and creativity as moderated and/or mediated by 

student characteristics, to understand the roles of learning activities and student 

characteristics and develop strategies for fostering students’ abilities to generate creative 

solutions to challenging design tasks. Last, the study indicates that research on ideation 

should consider effects of problem and student characteristics on observed novelty to 

avoid drawing bias into conclusions when comparing advantages and disadvantages of 

different ideation techniques.  
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5. SUMMARY AND CONCLUSIONS

5.1. Summary 

Preparing engineering students with abilities to provide innovative solutions to 

increasingly challenging design problems is essential to their success as engineers. 

Conflicting claims (Atman, et al., 1999; Cross, et al., 1994; Lai, et al., 2008; Genco, et 

al., 2012) about students’ abilities to innovate solutions as they progress through the 

engineering curricula, however, warranted clarification of roles of instructor-assigned 

design tasks on students’ abilities to generate innovative solutions to design tasks after 

controlling for effects of students’ characteristics such as domain-relevant skills, 

cognitive style and task motivation (Amabile, 2013). Previous research on relationships 

between task characteristics and innovative solutions is limited (Reiter-Palmon, et al., 

2009 and Jo, et al., 2012).  Current research contributed to the literature by examining 

relationships between design task characteristics and abilities to innovate with a design 

task, a more encompassing definition of design task characteristics than previous 

research, a creativity measure specific to the domain of engineering (Sarkar, et al., 2011) 

and control variables and population unexamined in previous research. 

Three manuscripts were developed to accomplish the research objective using 

survey data from a sample of 361 undergraduate engineering students enrolled at Texas 

A&M University. Students self-reported their perceptions of design task difficulty, 

domain-relevant skills, cognitive style, and task motivation. They brainstormed solutions 

to a design task, which required generation of ideas to separate paper and plastic from a 
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mixed waste collection, for 10 minutes. Innovative abilities were represented using 

novelty (Sarkar, et al., 2011). Novelty was estimated from students’ solutions to a design 

task based on rarity of solutions found in the sample. 

5.1.1. First manuscript 

Section 2 clarified the quality of measures of design task and student 

characteristics. Specifically, psychometric properties of measures of task difficulty, 

cognitive style, and current achievement motivation were examined using confirmatory 

factor and exploratory factor analyses and reliability analyses. The evaluation of 

measures was essential to determine their usability for research on engineering students’ 

abilities to innovate solutions to engineering design problems.  

Measures of task difficulty, current achievement motivation, and cognitive style 

were found to have weak validity and reliability. Fit indices obtained from the CFA did 

not support a well-fitting two-factor and four-factor model for task difficulty and current 

achievement motivation, respectively; however, an acceptable three-factor model was 

achieved for cognitive style. Further analysis, however, indicated that the cognitive style 

model did not achieve convergent and divergent validity. EFA supported presence of a 

two-factor model of task difficulty, a two-factor model of current achievement 

motivation, and a three-factor model of cognitive style. However, the resulting factor 

structures had issues such as non-loading items, cross-loading items, and poor internal 

consistency estimates.  

Evaluation of psychometric properties of measures of task difficulty, current 

achievement motivation and cognitive style confirmed that factor structured obtained 
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from the literature did not hold when a sample of undergraduate engineering students 

rated their perceptions of task difficulty, current achievement motivation, and cognitive 

style for an engineering design task.  Further, the factor structures obtained from the 

EFA in this research were not supported by their respective theories. Current research 

attributed failures to support previous research on poor item quality, small number of 

observed measures, errors in coding of items, and/or small sample size. In addition, it 

supported needs to conduct additional research studies to further clarify use of measures 

of task difficulty, current achievement motivation and cognitive style in future research. 

5.1.2. Second manuscript  

Section 3 explored how engineering students’ characteristics combined to predict 

observed novelty of their solutions to a design task. Specifically, the manuscript 

determined roles of GPA, classification, major, familiarity with a design task, current 

achievement motivation and cognitive style in predicting novelty of solutions to a design 

task using decision tree analysis. Characteristics such as an individual’s domain 

expertise (estimated from GPA, classification, major, familiarity with design task), 

creativity-relevant skills (estimated from cognitive style), and motivation (estimated 

from current achievement motivation) have individual.ly been linked to creative 

performance in previous research (Amabile, 2013; Jo & Lee, 2012; Martinsen & Diseth, 

2011). The exploration of roles of students’ characteristics was essential. for determining 

and prioritizing the most important/significant characteristics for use as covariates - 

when studying the relationships between task difficulty and novelty using structural 

equation modeling– given the large number of measures, small sample size, and limited 
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resources to collect additional data. In addition, moderating or mediating influences of 

students’ characteristics were found from this analysis.  

Decision tree analysis found GPA, major, current achievement motivation 

(facets: challenge, anxiety, interest, probability of success), and cognitive style (facets: 

novelty-seeking orientation, rules orientation) as significant predictors of observed 

novelty. Four combinations of students’ characteristics resulted in rare solutions: 

(challenge > -2.498; range: [-4.30, 2.20]) and (anxiety > 1.943; range: [-2.09, 2.49]); 

(challenge >-2.498) and (anxiety < 1.943) and (GPA > 3.93; range: [0, 4.0]); (challenge 

> -2.498) and (anxiety < 1.943) and (GPA < 3.93) and (novelty-seeking orientation > -

1.146; range: [-2.29, 2.49]) and (0.9332 < interest ≤ 1.162; range: [-3.49, 1.95]); 

(challenge > -2.498) and (anxiety < 1.943) and (GPA < 3.93) and (novelty-seeking 

orientation > -1.146) and (interest < 0.9332) and (major ≠ c or e; c = BAEN, BMEN, 

CHEN, NUEN, OCEN or PETE, e = ETID or ISEN). 

Findings from the decision tree analysis were supported within the framework of 

Amabile’s (2013) componential theory of creativity. As per Amabile’s theory, a 

confluence of domain-relevant skills, creativity-relevant processes, motivation 

influences creative outcomes. The pruned tree suggested order of importance of 

confluence variables. The most significant to least significant variables are: challenge 

(facet of motivation), anxiety (facet of motivation), GPA (estimate of domain skills), 

novelty-seeking orientation (facet of creativity-relevant process), interest (facet of 

motivation), and major (estimate of domain skills). Moreover, while the researcher could 

not verify the hypotheses offered by Amabile (2013) due to methodological limitations, 
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predictions about combinations for novel solutions found in this research were consistent 

with Amabile’s projections. Overall, the pruned tree confirmed that a combination of 

domain-relevant skills, creativity-relevant processes, and task motivation influences 

creative outcomes. 

Further, findings provided insights to for design studies regarding study control 

variables. Results indicated that studies must control for challenge, anxiety, GPA, 

novelty-seeking orientation, interest and major in design ideation studies to avoid 

drawing bias into conclusions about effectiveness of design ideation methods. However, 

studies must not dismiss variables that were not selected as significant/primary splitters 

in the decision tree until further analyses. It is possible that unimportant variables are 

secondary splitters (containing same information) that could not be tested in research 

with a complete dataset. It is also possible that a small sample size of various groups 

rendered significant variables unimportant in present analysis.  

 Last, findings in section 3 offer hypotheses that may be tested to develop 

instructional strategies to support novelty of solutions to a similar design task. For 

example, present research found conventional solutions were observed when few of the 

participants found the design task less challenging than the threshold value of challenge. 

Future research can test if novel solutions are observed when the same participants are 

assigned a more challenging design task (e.g., separate paper, plastic, and glass) than the 

assigned design task. Conventional solutions were al.so observed for the few low 

achievement participants who felt low anxiety towards a challenging task; however, they 

fell below the threshold value of novelty-seeking orientation. Future research can test if 
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novel solutions are observed when the same participants are given a repertoire of 

strategies that develop their novelty-seeking orientation. Further, present research found 

that novel solutions were observed when participants’ interest was held at an optimum 

level and/or they had the necessary disciplinary knowledge to solve the design task. 

Future research can explore instructional strategies to engage student interest and/or 

increase disciplinary knowledge to determine if novel solutions are observed for the 

conventional participants under instructional interventions. Additional studies with 

different design tasks and large sample size, however, are needed to test the stability of 

splitting variables and their thresholds for use in splitting students into different groups.  

5.1.3. Third manuscript 

Section 4 examined relationships between design task difficulty and novelty after 

establishing adequacy of measures and significance of covariates for this research. 

Specifically, the direct effects of engineering students’ perceived structuredness and 

complexity of an engineering design task on novelty of solutions were determined using 

structural equation modeling. Controlled covariates included GPA, major, perceived task 

challenge, task-related anxiety, interest in task and novelty-seeking orientation. Findings 

explained relationships between design tasks and abilities to innovate as moderated or 

mediated by student characteristics, confounding effects of design tasks and students’ 

characteristics for ideation studies and suggested discovery of strategies to develop 

students’ abilities to innovate solutions. 

Structural equation modeling indicated a significant positive linear association 

between design task structuredness and novelty, a significant negative association 
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between design task complexity and novelty, and a statistically significant, positive 

correlation between structuredness and complexity. Of the covariates, only major 2 

(BAEN, BMEN, CHEN, ETID, ISEN, NUEN, OCEN or PETE) was found statistically 

significant relative to undeclared majors. Combined, structuredness, complexity, 

enrollment in major 2 explained approximately 21% of the total variance in novelty.   

The preliminary model used in this research established presence of relationships 

between task structuredness and novelty and task complexity and novelty. Though no 

direct associations were observed between covariates (except for major) and novelty, 

previous research (Rathore, unpublished; Jo, et al., 2012, Fruend, et al., 2011, Martinsen, 

et al., 2000) indicated that covariates such as students’ GPA, perceived task challenge, 

interest in task, task-related anxiety, and novelty-seeking orientation are significant 

predictors of novelty. In addition, possibilities of indirect associations are not precluded 

in future analysis since design task structuredness, complexity, and major explained only 

about 21% of the total variance in observed novelty. These findings support needs to 

further develop empirical models that explain relationships between design problem 

characteristics and creativity as moderated and/or mediated by student characteristics, to 

understand the roles of learning activities and student characteristics to develop 

strategies for fostering students’ abilities to generate creative solutions to challenging 

design tasks. 

Moreover, research conducted in section 4 also suggested design researchers 

account for confounding effects of problem characteristics and student characteristics on 

observed novelty to avoid drawing bias into conclusions when comparing advantages 
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and disadvantages of different ideation techniques using design tasks similar to the one 

used in present research. Findings indicated that two design problem characteristics - 

structuredness and complexity - explained approximately 18% of the variance in 

observed novelty scores. Student characteristics such as major 2 explained about 3% of 

the variance in novelty. If variance from problem characteristics and/or student 

characteristics is left unaccounted for in studies, effectiveness of ideation methods may 

be overestimated in comparative analyses and/or meta-analyses. Therefore, problem and 

student characteristics should either be held constant or effects attributed to when 

explaining variance of observed novelty due to ideation methods.  

Further, present research provides information about conditions needed to 

support students’ abilities to generate novel solutions to challenging design tasks. 

Findings indicated more structured the design task is, more novel is the solution. More 

complex the design task is, less novel is the solution. While findings to support the 

positive association between task structuredness and novelty were not found in previous 

research, the inverse relationship between task complexity and novelty found in present 

research is contrary to previous research (Reiter-Palmon, et al., 2009; Jo & Lee, 2012). 

The contradictory findings may be attributed to type of problem, study demographics, or 

index used to measure creativity. Nonetheless, present findings suggest discovery of 

strategies which engineering students can use to structure ill-structured tasks and break 

down complex tasks to improve novelty of solutions to similar design tasks.  

In addition, findings suggest that acquisition of disciplinary knowledge, 

especial.ly in BAEN, BMEN, CHEN, ETID, ISEN, NUEN, OCEN and PETE majors, 
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may be disadvantageous to generating novel solutions when assigned with similar design 

tasks. Findings indicated mean novelty scores of undeclared majors were significantly 

different and higher than the mean novelty scorers of BAEN, BMEN, CHEN, ETID, 

ISEN, NUEN, OCEN and PETE majors. Lower mean novelty of scores with disciplinary 

knowledge in present studies may be attributed to differences in exposure to design 

thinking/curriculum or design fixation. These findings support further exploration of 

impacts of disciplinary knowledge/major on students’ abilities to generate novel 

solutions to challenging design tasks. Such findings can inform engineering faculty and 

book publishers about strategies that can be employed to develop students’ abilities to 

innovate solutions to challenging design problems. 

5.2. Combined contribution 

This section compares and contrasts findings from the three manuscripts in three 

ways to illustrate their combined contributions. First, the validity and reliability of 

responses to scales of task difficulty, current achievement motivation, and cognitive 

style were established in the context of engineering education. Evaluation of task 

difficulty, current achievement motivation and cognitive style scales in manuscript #1 

confirmed that scales were not supported by their respective theories when a sample of 

180 undergraduate engineering students rated their perceptions of task difficulty, current 

achievement motivation, and cognitive style for an engineering design task. Research 

attributed failures to support previous research on poor item quality, small number of 

observed measures, errors in coding of items, and/or small sample size. However, when 

the same scales were re-evaluated after correcting coding mistakes and with a large 
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sample size of 361 undergraduate engineering students in manuscript #2 and #3, the 

psychometric properties of scales improved significantly. The researcher obtained factor 

structures for each scale that were strongly supported by their respective theories. 

Construct validity and reliability of responses to measures also improved; nevertheless, 

similar to manuscript #1, research in manuscript #2 and #3 indicated needs for improved 

item quality and increases in number of items per measure to improve the overall 

psychometric properties of the task difficulty, current achievement motivation, and 

cognitive style scales.  

Second, roles of students’ characteristics such as GPA, classification, major, 

familiarity with a design task, current achievement motivation and cognitive style were 

clarified through manuscript #2 and #3. While manuscript #2 found GPA, major, current 

achievement motivation (facets: challenge, anxiety, interest, probability of success), and 

cognitive style (facets: novelty-seeking orientation, rules orientation) as significant 

predictors of observed novelty using a non-parametric decision tree analysis, research in 

manuscript #3 confirmed only one category of major as a significant predictor of 

observed novelty. Both studies confirmed that BAEN, BMEN, CHEN, NUEN, OCEN or 

PETE majors significantly underperform in novelty compared to undeclared majors.  In 

addition to listed majors, decision tree analysis also found ETID and ISEN majors 

generate conventional solutions to design tasks. No association was found between other 

student characteristics and novelty in SEM analysis. The discrepancy in findings 

between the two studies points to need for either transformation or representation of non-

linear variables (e.g., anxiety) in code prior to running a SEM analysis and/or 
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consideration of non-significant student characteristics as mediating or moderating 

variables in the SEM analysis.  

 In addition, both manuscript #2 and #3 found needs for design researchers to 

control for confounding effects of students’ characteristics and design tasks when 

examining effectiveness of ideation techniques. For example, in manuscript #2, results 

showed that challenge, anxiety, GPA, novelty-seeking orientation, interest and major 

significantly affect novelty of solutions. Results in manuscript #3 indicated that at least 

21% of the variance in observed novelty is explained by two design task characteristics –

structuredness and complexity – and students’ major. If variance from problem 

characteristics and/or student characteristics is left unaccounted for in studies, 

effectiveness of ideation methods may be overestimated in comparative analyses and/or 

meta-analyses. Therefore, problem and student characteristics should either be held 

constant or effects attributed to when explaining variance of observed novelty due to 

ideation methods.    

5.3. Conclusions 

Conflicting claims about engineering students’ abilities to innovate solutions to 

design tasks warranted evaluation of measures and clarification of roles of design task 

and student characteristics in developing innovative solutions. Three manuscripts 

clarified quality of measures and roles of design tasks and student characteristics using 

survey data from 361 students. The first manuscript evaluated measures of task 

difficulty, current achievement motivation and cognitive style using CFA, EFA and 
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reliability analyses. Measures were found to have low validity and reliability. Future 

studies should be conducted with large sample sizes and improved item quality. 

The second manuscript clarified roles of Grade Point Average (GPA), 

classification, major, task familiarity, current achievement motivation, and cognitive 

style in developing innovative solutions using decision tree analysis. GPA, major, 

current achievement motivation, and cognitive style were significant predictors of 

novelty. Four combinations resulted in rare solutions: (challenge > -2.498) and (anxiety 

> 1.943); (challenge >-2.498) and (anxiety < 1.943) and (GPA > 3.93); (challenge > -

2.498) and (anxiety < 1.943) and (GPA < 3.93) and (novelty-seeking orientation > -

1.146) and (0.9332 < interest ≤ 1.162); (challenge > -2.498) and (anxiety < 1.943) and 

(GPA < 3.93) and (novelty-seeking orientation > -1.146) and (interest < 0.9332) and 

(major ≠ c or e). Stability of predictors and cut-off values should be verified with 

different design tasks and large sample sizes.  

The third manuscript examined relationships of design task structuredness and 

complexity to novelty of solutions after controlling for GPA, major, challenge, anxiety, 

interest and novelty-seeking orientation. Structural equation modeling found significant 

positive association between structuredness and novelty, significant negative association 

between complexity and novelty, and significant positive correlation between 

structuredness and complexity. Only major 2 (BAEN, BMEN, CHEN, ETID, ISEN, 

NUEN, OCEN or PETE) was found significant relative to undeclared majors. 

Structuredness, complexity, major 2 explained 21% of the total variance in novelty. 

Findings support development of models to explain relationships between design tasks 
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and abilities to innovate as moderated or mediated by student characteristics, controlling 

confounding effects of design tasks and students’ characteristics in ideation studies, and 

discovery of strategies to develop students’ abilities to innovate solutions. 
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APPENDIX A 

Fourteen observed measures of task difficulty. Sub-scales: structuredness and 

complexity. Scale created with items from (Lee, 2014) 

Measure  Description of observed measures  

Structuredness 

 TD1 Clearly stated goals or outcomes  

 TD2 Clearly defined criteria for successful problem solving  

 TD3 Clearly stated constraints that prevent successful problem solving 

 TD4 A single correct answer  

 TD5 A prescribed solution path  

 TD6 Requires solver to make assumptions and define the problem  

 TD7 Fal.ls within a predictable domain of knowledge  

Complexity 

 TD8  Exhibits the relationship between concepts and rules vaguely  

 TD9  Complex solutions to the problem  

 TD10 Confusion from inclusion of too many elements in the problem  

 TD11 Unclear coherence from presence of too many aspects  

 TD12 Inclusion of many concepts, rules and principles in the problem 

statement  

 TD13 Random combination of various aspects of the problem  

 TD14 Elements represented in too many ways  
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APPENDIX B 

Twelve observed measures of task motivation. Sub-scales: probability of success, 

anxiety, interest, challenge. * = item reversed. Items from (Fruend, et al., 2011) listed 

here for instructive purposes only. 

Measure Description of observed measures

Probability of success

TM1 I think I am up to the difficulty of this task.

TM2* I probably won’t manage to do this task.

TM10 I think everyone could do well on this task.

Anxiety

TM3 I feel under pressure to do this task well.

TM6 I am afraid I will make a fool out of myself.

TM9 It would be embarrassing to fail at this task.

Interest

TM4 After having read the instruction, the task seems to be very interesting to me.

TM8 For tasks like this I do not need a reward, they are lots of fun anyhow.

TM12 I would work on this task even in my free time.

Challenge

TM5 I am eager to see how I will perform in this task.

TM7 I am really going to try as hard as I can on this task.

TM11 If I can do this task, I will feel proud of myself.
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APPENDIX C 

Thirty observed measures of cognitive style. Sub-scales: Rule orientation, Novelty 

seeking, and Planning. * = item reversed during analysis. Items from (Martinsen, et al., 

2011) used for research and presented here for instructive purposes only. 

Measure Description of observed measures 

Rule Orientation 

CS1* I prefer detailed work which requires neatness and precision 

CS2* I prefer situation in which you have to stick to options that are tried and 

true 

CS3* I prefer to stick to what I know well 

CS4* I prefer to avoid major changes 

CS5* I work best in situation which are clear and straightforward 

CS6* I prefer situations in which you have to work according to specific rules 

CS7* I am best suited for work which requires precision and a systematic 

approach 

CS8* I prefer work with set routines 

CS9* I prefer to have clear guidelines to stick to in work 

CS10* I prefer to have systematic instruction when learning something new 

CS11* I am exceptionally precise and task-oriented in my work 

CS12* I mostly stick to accepted ideas 

CS13* I prefer to stick to a set plan when working or solving problems 

CS14* I most often try to use well-tried methods for solving problems 

CS15* When trying to solve a problem, I most often try to find new means of 

doing so 

CS23* I like situations in which you have to seek new knowledge actively 

CS24* I work best in complex situations 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS26* I most like to investigate unchartered territory 

CS30* I prefer to plan and structure what I am to do 

Novelty seeking 

CS12* I mostly stick to accepted ideas 

CS15* When trying to solve a problem, I most often try to find new means of 

doing so 

CS16 I quite like situations in which it is necessary to break with conventional. 

wisdom 

CS17 I prefer to figure things out on my own when I am learning something 

new 

CS18 I most often adopt a playful and curious approach to my work 
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Measure Description of observed measures 

CS19 I prefer to improvise in what I do 

CS20 I bubble with ideas when I am solving problems 

CS21 I most like situations in which you have to violate established norms 

CS22 I most like to work with things I don’t know too well from before 

CS23* I like situations in which you have to seek new knowledge actively 

CS24* I work best in complex situations 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS26* I most like to investigate unchartered territory 

CS27 I like best to work with without a prearranged plan 

CS29 I prefer working without any clear guidelines 

Planning 

CS1* I prefer detailed work which requires neatness and precision 

CS7* I am best suited for work which requires precision and a systematic 

approach 

CS11* I am exceptionally precise and task-oriented in my work 

CS13* I prefer to stick to a set plan when working or solving problems. 

CS19 I prefer to improvise in what I do 

CS23* I like situations in which you have to seek new knowledge actively 

CS25* I can change my opinions/ideas even if the situation does not require it 

CS27 I like best to work with without a prearranged plan 

CS28 I often try things out without planning systematical.ly 

CS29 I prefer working without any clear guidelines 

CS30* I prefer to plan and structure what I am to do 

 




