Procedure for Packing Weather Files for DOE-2.1e

Kee Han Kim Juan-Carlos Baltazar-Cervantes, Ph.D.

September 2010

ENERGY SYSTEMS LABORATORY

Texas Engineering Experiment Station Texas A&M University System

Disclaimer

This report is provided by the Texas Engineering Experiment Station (TEES). The information provided in this report is intended to be the best available information at the time of publication. TEES makes no claim or warranty, express or implied that the report or data herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy Systems Laboratory or any of its employees. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Texas Engineering Experiment Station or the Energy Systems Laboratory.

TABLE OF CONTENTS

CHAPTER 1
1. OVERVIEW
CHAPTER 2
1. OVERVIEW
2. PROCESS OF PACKING WEATHER DATA FOR DOE-2.1e SIMULATION
2.1. ORIGINAL DATA
2.2. GAPS
2.3. MASKS
2.4. FILLING IN THE MISSING DATA
2.5. HOURLY AND DAILY DATA FILE
2.6. PDF PLOTS
2.7. PRETRY FILE
2.8. TRY_TPE FILE
2.9. TRY_INP FILE
2.10. TRY_OUT & TRY_BIN FILE
REFERENCES

LIST OF TABLES

Table 1. Overall procedure for packing weather data for DOE-2.1e simulation	5
Table 2. List of 17 Texas weather stations and their WBAN	6
Table 3. Abilene 2008 weather data from NCDC in Excel	16
Table 4. An example of gaps file	20

LIST OF FIGURES

Figure 1. Location of 17 Texas weather stations	6
Figure 2. Brief procedure of packing weather data for DOE-2.1e simulation	7
Figure 3. Process of downloading weather data from NCDC and TCEQ website	14
Figure 4. 2008 weather data for Abilene 2008 from NCDC	15
Figure 5. 17 Texas weather stations data in "1_Original data" folder in M drive	15
Figure 6. Eight tabs in template Excel file	17
Figure 7. Excel file which extracted the necessary weather elements	17
Figure 8. Unit conversion tab	
Figure 9. An example of NDSR processing file	19
Figure 10. The result of "gap.xls" program in case of calculating gaps for Tdb	20
Figure 11. An example of Masks file	21
Figure 12. Hourly data which copied and pasted in new Excel	21
Figure 13. An example of masks file with IF command in Excel	22
Figure 14. General flowchart for filling in weather data	24
Figure 15. Alternative weather stations	25
Figure 16. Alternative solar radiation stations for 2008	26
Figure 17. An example of the Excel for calculating solar radiation from sky cover data	26
Figure 18. An example file for calculating missing data (gaps<=6 hrs, Equation (1))	27
Figure 19. An example file for calculating missing data (6 <gaps<48 (2))<="" equation="" hrs,="" td=""><td>27</td></gaps<48>	27
Figure 20. An example of hourly CSV file	28
Figure 21. An example of "data" tab of hourly time series file	29
Figure 22. An example of "time series" tab	
Figure 23. An example of "Par" program (left: "Data" tab, right: "Main" tab)	31
Figure 24. An example of daily CSV file	

Figure 25. An example of "data" tab of daily time series file	32
Figure 26. An example of time series tab	
Figure 27. An example of hourly PDF file	34
Figure 28. An example of daily PDF file	34
Figure 29. An example of PreTRY file	35
Figure 30. An example of TRY_TPE file	
Figure 31. Explanation of contents for INP file (Buhl, 1999)	
Figure 32. An example of TRY_INP file (Buhl, 1999)	
Figure 33. Process of packing weather file using DOE-2.1e simulation	

CHAPTER 1

1. OVERVIEW

Energy Systems laboratory (ESL) prepares 17 of Texas stations' weather files for DOE-2.1e simulation every year. This report describes the procedure how to get and pack the weather data for DOE-2.1e simulation. Overall procedure is shown in Table 1.

Proce	edure	Content	Methods			
1		Original files	 Copy data from "cloud cover" tab in "main hourly data" Excel files Files Names: "XXX2008" 			
		Filling-in gaps				
	2.1	Gaps & Mask	1) Calculation: Use "Gap calculation" program 2) Mask: Make from horly data 3) Files Names: GAPS_XXX_2XXxIs & MASK_XXX_2XXX_1s			
2		2.2.1	Temperature: (1) Tdb, Twb, Tdp: 1) gaps<6: Linear interpolation 2) gaps>6: Psychrometric relationship (in case of one data missing) or Nearby weather station (2) Wind speed, wind direction, percipitation, station pressure: 1) Station pressure: last value previous to the gap 2) No fill-in for wind speed, wind direction, precipitation		2.2.2	Solar radiation: (1) gaps<=6: Linear interpolation (2) 6-gaps<=48: taking the trend between the adjacent days of the gap (3) gaps>=48: Nearby station
3	3.1	Excel files with plots (hourly)	1) 9 items 1-1) 8760 data (delete Feb.29 for leap year) 1-2) Check files name (Station no.). Make notes if station no. are different with existing files 2) Check plots 2-1) No (-99) values on plots 2-2) Check that Tdb > Twb> Tdp (use "if command") 3) Files Names: HourlyTS_XXX_XXXX_2XXXxIs	3.2	Excel files with plots (daily)	1) Convertion: Use "Par" program 2) 9 items 2-1) 365 data 2-2) Check files name (Station no.). Make notes if station no. are different with existing files 3) Check plots 3-1) No default values on plots 3-2) Check that Tdb > Twb> Tdp (use "if command") 4) Files Names: DailyTS_XXX_XXXX_2XXX
4	4.1	CSV files (hourly)	1) XLS files convert to CSV files (for DOS)	4.2	CSV files (daily)	1) XLS files convert to CSV files (for DOS)
5	5.1	PDF files (hourly)	 Plots files convert to PDF files (make sure the title(Name, year). View→header) 	5.2	PDF files (daily)	 Plots files convert to PDF files (make sure the title(Name, year). View→header)
6		TRY file Preparation -Excel files	1) Files Names: PrepTRY_XXX_2XXX_			
7		TRY file Preparation -Text files	1) The last column copies to Notepad 2) Save it as "TRY_XXX_2XXXTPE" (693 KB)			
8		INP DOE Weather files - packing	 INP files for packing→ check manual Files Names: TRY_XXX_2XXX_INP 			
9		OUT DOE Weather files - packing	1) OUT files for packing 2) Files Names: TRY_XXX_2XXX.OUT			
10		DOE Weather files	1) Files Names: TRY_XXX_2XXX			

Table 1. Overall procedure for packing weather data for DOE-2.1e simulation

In addition, Figure 1 and Table 2 show the 17 of Texas weather stations which represent the each area of the Texas.

2008			
City	Station		WBAN
Abilene	Abilene Rgnl. AP.	ABI	13962
Amarillo	Amarillo Intl. AP.	AMA	23047
Austin	Austin Bergstrom AP.	AUS	13904
Brownsville	Brownsville S. Padre Island Intl.	BRO	12919
Corpus Christi	Corpus Christi Intl. AP.	CRP	12924
Dallas Fort Worth	Dallas Fort Worth Intl. AP.	DFW	03927
El Paso	El Paso Intl. AP.	ELP	23044
Houston	Houston Intercontinental AP.	IAH	12960
Lubbock	Lubbock Intl. AP.	LBB	23042
Lufkin	Angelina County AP.	LFK	93987
Midland	Midland Itnl. AP.	MAF	23023
Port Arthur	Port Arthur/Jeffers	BPT	12917
San Angelo	San Angelo / Maths Field	SJT	23034
San Antonio	San Antonio Intl. AP.	SAT	12921
Victoria	Victoria Rgnl. AP.	VCT	12912
Waco	Waco Rgnl. AP.	ACT	13959
Wichita Falls	Wichita Falls Municipal AP.	SPS	13966

Table 2. List of 17 Texas weather stations and their WBAN

Figure 1. Location of 17 Texas weather stations

CHAPTER 2

1. OVERVIEW

Chapter 2 describes procedure of packing weather file for the 17 Texas weather stations step by step. Brief procedure is shown in Figure 2.

Get the weather data of each weather station from NCDC (Tdb, Tdp, wind speed, wind direction, precipitation, station pressure) & TCEQ (Solar radiation)
Make "Gpas & Masks" files of each weather station
Fill in all of missing data for each weather station
Make "Hourly weather data & plots" files of each weather station
Convert hourly data to daily data of each weather station
Make "Daily weather data & plots" files of each weather station
Make "preparation files" of each weather station
Pack the weather files of each weather station using DOE-2e simulation

Figure 2. Brief procedure of packing weather data for DOE-2.1e simulation

2. PROCESS OF PACKING WEATHER DATA FOR DOE-2.1e SIMULATION

2.1. ORIGINAL DATA

Required weather data can be downloaded from National Climatic Data Center website (NCDC), and solar radiation data (Global solar radiation) can be downloaded from Texas Commission on Environmental Quality (TCEQ).

Figure 3 shows each step of procedure to get weather data from the NCDC and TECQ website.

CAMS 17 Solar Radiation S	uning the law water				
Basin a hav Bill, Officen Paurieus, in Select a date: 2019 M General Report	Change Reset Cotons				
Report Yann 2009	Keller CT7 / IPA Site: 40_439_2003 Solar Radiation (POC 1) measured in landacy are minute	Central Standard	Maniation		
Date	Morping Affantos	These Dates (1)	ter NR Min Ave NTD Can		
Mid 1/00 2/00 3/00	4.00 2.00 4.00 7.00 2.00 9.00 10.00 11.00 Noon 1.00 2.00 3.00 4.00 2.00 1	Les T.00 8.00 9.00 19.09 11.09	100.0		
Ann 81 (0.000 (0.000 (0.000 (0.000			TEL O TED O DOD O 175 0 1 100.0		
ter 83 0.000 0.000 0.000 0.000			100.0 100 0 100 0 100 0 T		
3m 84 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.007 0.132 0.348 0.404 0.445 0.741 0.412 0.450 0.393 0.157 0.019 0	000 0 000 0 000 0 000 0 000 0 000 0 000 0	141 D 645 0 000 0 164 0 2 100.0		
Jan 26 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.001 0.016 0.072 0.110 0.059 0.068 0.102 0.164 0.069 0.040 0.012 0		164 0 110 0 000 0 011 0 0 100.0	(Done)	
Jan 86 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.002 0.049 0.135 0.399 0.726 0.796 0.556 0.556 0.440 0.393 0.027 0.	000 0.000 0.000 0.000 0.000 0.000 Jan 44 0.	786 0.726 0.000 0.160 0.3 100.0		
Jan 97 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.013 0.139 0.388 0.418 0.743 0.796 0.681 0.481 0.226 0.304 0.016 0	000 0.000 0.000 0.000 0.000 0.000 3.00 7 0.	796 0 743 0.000 0.167 0.3 100.0		
Jan 88 0.000 0.000 0.000 0.000	0.000 0.000 0.001 0.140 0.392 0.426 0.732 0.461 0.461 0.491 0.439 0.185 0.020 0		789 0.732 0.000 0.179 0.3 100.0		
Jan 19 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.005 0.071 0.198 0.304 0.528 0.762 0.456 0.491 0.432 0.177 0.021 0	000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	762 0.656 0.000 0.152 0.2 100.0		
Jan 10 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.006 0.118 0.320 0.474 0.387 0.583 0.581 0.489 0.356 0.182 0.023 0.	000 0.000 0.000 0.000 0.000 0.000 Jan 10 0.	100.0 0.182 0.2 100.0		
Jan 11 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.012 0.148 0.404 0.446 0.760 0.806 0.698 0.518 0.473 0.208 0.024 0.	000 0.000 0.000 0.000 0.000 0.000 J= 13 0.	100.0 0.760 0.000 0.187 0.3 100.0		
Jan 12 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.012 0.150 0.406 0.452 0.765 0.797 0.703 0.528 0.469 0.211 0.025 0	000 0.000 0.000 0.000 0.000 0.000 Jan 13 0.	797 0.765 0.000 0.188 0.3 100.0		
Jan 13 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.012 0.154 0.408 0.458 0.770 0.788 0.708 0.525 0.479 0.215 0.026 0	000 0.000 0.000 0.000 0.000 0.000 Jan 13 0.	788 0.770 0.000 0.189 0.3 100.0		
Jan 14 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.012 0.150 0.399 0.445 0.765 0.799 0.690 0.525 0.477 0.213 0.028 0	000 0.000 0.000 0.000 0.000 Jam 14 0.	790 0.765 0.000 0.187 0.3 100.0		
Jan 18 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.012 0.147 0.390 0.430 0.750 0.278 0.637 0.518 0.442 0.210 0.030 0	000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	778 0.750 0.000 0.182 0.3 100.0		
Jan 16 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.003 0.037 0.143 0.148 0.228 0.319 0.442 0.445 0.445 0.207 0.030 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	446 0,445 0,000 0.102 0.2 100.0		
Jan 17 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.005 0.055 0.172 0.333 0.571 0.773 0.642 0.536 0.478 0.216 0.032 0	000 0.000 0.000 0.000 0.000 0.000 Jan 17 0.	773 0.642 0.000 0.159 0.2 100.0		
Jan 18 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.013 0.160 0.419 0.465 0.799 0.815 0.442 0.532 0.511 0.242 0.034 B	000 0.000 0.000 0.000 0.000 0.000 Jan 18 D.	15 0.799 0.000 0.194 0.3 100.0		

Figure 3. Process of downloading weather data from NCDC and TCEQ website

• NCDC website:

In order to obtain all 17 Texas stations' weather data, step1 through step10 (NCDC part) for each of Texas weather station needs to be repeated. When the weather data are arrived to the e-mail account, each of Texas station weather data (Figure 4) needs to be copied and pasted to text file (Notepad), and saved them named as "Station name Year" (e.g. Abilene 2008) in "1_Original data" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008\1_Original_data).

• TCEQ website:

In order to obtain all 17 Texas station's solar radiation data, step1 through step3 (TCEQ part) for each of Texas weather station needs to be repeated. Each of solar radiation data needs to be copied and pasted to Excel file, and save them in "1_Original data" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008\1_Original_data).

Figure 4 shows an example of text file which downloaded from NCDC website, and Figure 5 shows 17 original files for all of Texas stations in "1_Original data" folder in M drive.

USAF	WBAN	YRMODAHRMN	DIR	SPD	GUS	CLG	SKC	L	MI	H VSB	ww	WW	WW	W	TEMP	DEWP	SLP	ALT	STP	MAX	MIN	PCP01	PCP06	PCP24	PCPXX	SD
722660	13962	200801010000	360	11	***	722	CLR	0	0 0	0 10.0	**	**	**	¥	47	10	1026.1	*****	961.3	53	36	*****	*****	*****	*****	**
722660	13962	200801010052	010	10	***	722	CLR	*	* 1	4 10.0	**	**	**	*	43	10	1027.8	30.35	*****	***	***	****	****	*****	****	**
722660	13962	200801010152	360	7	***	722	CLR	*	* 1	4 10.0	**	**	**	*	39	10	1029.5	30.39	*****	***	***	****	****	*****	****	**
722660	13962	200801010252	010	7	***	722	CLR	*	* 1	* 10.0	**	**	**	*	36	9	1030.9	30.43	*****	***	***	****	****	****	****	**
722660	13962	200801010352	020	8	***	722	CLR	*	* 1	* 10.0	**	**	**	*	34	9	1032.2	30.47	*****	***	***	*****	****	****	*****	**
722660	13962	200801010452	010	6	***	722	CLR	¥	* 1	4 10.0	**	**	**	¥	32	9	1033.2	30.50	*****	***	***	****	****	*****	*****	**
722660	13962	200801010552	360	7	***	722	CLR	¥	¥ 1	* 10.0	**	WW	**	¥	30	9	1034.2	30.53	*****	47	30	****	****	****	*****	**
722660	13962	200801010600	360	7	***	722	CLR	0	0 0	0 10.0	**	**	**	*	30	8	1034.2	****	968.6	50	30	****	****	*****	****	**
722660	13962	200801010652	010	8	***	722	CLR	*	* 1	* 10.0	**	**	**	*	30	9	1034.5	30.54	*****	***	***	****	****	****	*****	**
722660	13962	200801010752	360	5	***	722	CLR	*	* 1	* 10.0	**	**	**	*	28	9	1035.3	30.57	*****	***	***	****	****	*****	*****	**
722660	13962	200801010852	330	5	***	722	CLR	*	* 1	* 10.0	**	**	**	*	28	10	1036.1	30.59	*****	***	***	****	****	*****	*****	**
722660	13962	200801010952	***	0	***	722	CLR	*	* 1	* 10.0	**	**	**	*	27	10	1037.1	30.62	*****	***	***	*****	*****	****	****	**
722660	13962	200801011052	200	3	***	722	CLR	¥	¥ 1	* 10.0	**	**	**	¥	21	10	1038.2	30.64	*****	***	***	****	****	****	****	**
722660	13962	200801011152	260	6	***	722	CLR	*	* 1	* 10.0	**	**	**	*	21	10	1039.3	30.66	*****	31	19	****	****	****	*****	**
722660	13962	200801011200	260	6	***	722	CLR	0	0 (0 10.0	**	**	**	*	21	10	1039.3	*****	972.8	53	19	*****	****	****	*****	**
722660	13962	200801011252	270	6	***	722	CLR	*	* 1	* 10.0	**	**	**	*	21	10	1040.8	30.71	*****	***	***	*****	*****	****	*****	**
722660	13962	200801011352	***	0	***	722	CLR	*	* 1	* 10.0	**	**	**	*	19	10	1041.9	30.73	*****	***	***	****	****	****	*****	**
722660	13962	200801011452	250	3	***	722	CLR	*	* 1	* 10.0	**	**	**	*	27	14	1042.9	30.76	*****	***	***	*****	*****	****	*****	**
722660	13962	200801011552	340	5	***	722	CLR	¥	¥ Y	* 10.0	**	**	**	¥	34	14	1043.3	30.78	*****	***	***	****	****	****	*****	**
722660	13962	200801011652	340	5	***	722	CLR	¥	* 1	* 10.0	**	**	**	¥	39	14	1044.0	30.81	*****	***	***	****	****	*****	*****	**
722660	13962	200801011752	350	6	***	722	CLR	¥	* 1	* 10.0	WW	WW	WW	H	45	10	1043.4	30.79	******	***	20	0.001	0.001	*****	*****	**
722660	13962	200801011800	350	6	HWW	722	CLR	0	0 (10.0	WW	**	WW	¥	44	11	1043.4	*****	977.0	44	20	*****	0.00	*****	*****	**

Figure 4. 2008 weather data for Abilene 2008 from NCDC

Name +	Cine	Turne	Data Madified
Name -	Size	Туре	Date Mouffied
🗐 Abilene 2008.txt	1,542 KB	Text Document	5/27/2010 3:40 PM
🗐 Amarillo 2008.txt	1,753 KB	Text Document	5/27/2010 4:07 PM
🗐 Austin 2008.txt	1,547 KB	Text Document	5/27/2010 4:06 PM
🗐 Brownsville 2008.txt	1,647 KB	Text Document	5/27/2010 4:04 PM
🗐 Corpus Christi 2008.txt	1,569 KB	Text Document	5/27/2010 4:02 PM
🗐 Dallas Fortworth 2008.txt	1,757 KB	Text Document	5/27/2010 4:01 PM
🗐 El Paso 2008.txt	1,571 KB	Text Document	5/27/2010 3:59 PM
🗐 Houston 2008.txt	1,568 KB	Text Document	5/27/2010 3:38 PM
🗐 Lubbock 2008.txt	1,507 KB	Text Document	5/27/2010 3:57 PM
🗐 Lufkin 2008.txt	1,565 KB	Text Document	5/27/2010 3:56 PM
🗐 Midland 2008.txt	1,463 KB	Text Document	5/27/2010 3:55 PM
🗐 Port Arthur 2008.txt	1,696 KB	Text Document	5/27/2010 3:53 PM
🗐 San Angelo 2008.txt	1,505 KB	Text Document	5/27/2010 3:52 PM
🗐 San Antonio 2008.txt	1,742 KB	Text Document	5/27/2010 3:50 PM
🗐 Victoria 2008.txt	1,765 KB	Text Document	5/27/2010 3:48 PM
🗐 Waco 2008.txt	1,600 KB	Text Document	5/27/2010 3:44 PM
🗐 Wichita Falls 2008.txt	1,546 KB	Text Document	5/27/2010 3:42 PM

Figure 5. 17 Texas weather stations data in "1_Original data" folder in M drive

2.2. GAPS

There are a number of missing weather data in NCDC such as 2nd and 9th rows of "column T (ALT)" in Table 3, and solar radiation data in TCEQ. The missing data for 17 Texas weather stations need to be identified in this step.

"Gaps" is file to figure out how many missing weather data exit, as well as how many gap of length exist. Table 4 shows an example of "gaps" for "Abilene 2008 weather data". The shortest gap of length in this example is "1", and the longest gap of length in this example is "10". The "gaps" file should be presented all of the existing gaps of length. Required weather elements in this file are:

- Tdb Dry bulb temperature
- Twb Wet bulb temperature
- Tdp Dew point temperature
- Wind speed
- Wind dir. Wind direction
- GSR Global solar radiation
- NDSR Normal direct solar radiation
- Precipitation
- Stat. Pres. Station pressure

In order to make "gaps" file, each of the downloaded weather text file needs to be opened with the Excel. To open the weather text file with the Excel, choose "From Other Sources" on "Data" menu in the Excel, select "XML data import", and choose the Texas station's weather text file. Then, select "Delimited" data type, and check in "Space". The Table 3 shows the example of the Excel file. The marked elements in red are the weather data which need for the packing DOE-2.1e weather simulation.

			Temperature Stat. Pres.																												
			Day	Wind Dir.	Wir	nd Sp	beed	b										Dev	w po	oin	t tem	р.			Pr	ecipitat	ion				
	A	В	C	D		E	F	G	н	1	JI	K L	1	N	Ν	0	Р	Q	F	2	S	Т	U	V	W	X		Y	Z	AA	AB
1	USAF	WBAI	YRMODAHRN	/ DIR		SPD	GUS	CLG	SKC	L	ΜH	I VSE	3 W	W	ww	ww	w	EM	P DE	WF	SLP	ALT	STP	MA	MIN	PCP01	PC	P06	PCP24	PCPXX	SD
2	722660	1396	200801010000	0	360	11	••••	722	CLR	0	0	0	10 **	•	••	••	•	47	7	10	1026.1	•••••	961.3	53	3	; •••••	••	•••	•••••	•••••	••
3	722660	1396	200801010052	2	10	10	•••	722	CLR	•	• •		10 **	•	••	••	•	43	3	10	1027.8	30.35	•••••	••••	•••	•••••	••	•••	•••••	•••••	••
4	722660	1396	200801010152	2	360	7	•••	722	CLR	•	• •		10 **	•	••	••	•	39	9	10	1029.5	30.39	•••••	•••	•••	•••••		•••	•••••	•••••	••
5	722660	1396	200801010252	2	10	7	••••	722	CLR	•	• •		10 **	•	••	••	•	36	6	4	1030.9	30.43	•••••	••••	•••	•••••	•••	•••	•••••	•••••	••
6	722660	1396	200801010352	2	20	8	•••	722	CLR	•	• •		10 **	•	••	••	•	34	4	9	1032.2	30.47	•••••	•••	•••	•••••	••	•••	•••••	•••••	••
7	722660	1396	200801010452	2	10	6	•••	722	CLR	•	• •		10 **	•	••	••	•	32	2	9	1033.2	30.5	•••••	•••	•••	•••••		•••	•••••	•••••	••
8	722660	1396	200801010552	2	360	7	•••	722	CLR	•	• •		10 **	•	••	••	•	30	0	9	1034.2	30.53	•••••	47	3		••	•••	•••••	•••••	••
9	722660	1396	200801010600)	360	7	•••	722	CLR	0	0	0	10 **	•	••	••	•	30	0	8	1034.2	•••••	968.6	50	3) •••••		•••	•••••	•••••	••
10	722660	1396:	200801010652	2	10	8	•••	722	CLR	•	• •		10 **	•	••	••	•	30	0	4	1034.5	30.54	•••••	••••	•••	•••••	••	•••	•••••	•••••	••
11	722660	1396	200801010752	2	360	5	•••	722	CLR	•	• •		10 **	•	••	••	•	28	в	9	1035.3	30.57	•••••	•••	•••	•••••	••	•••	•••••	•••••	••
12	722660	1396	200801010852	2	330	5	•••	722	CLR	•	• •		10 **	•	••	••	•	28	8	10	1036.1	30.59	•••••	•••	•••	•••••		•••	•••••	•••••	••
13	722660	1396	200801010952	2		0	•••	722	CLR	•	• •		10 **	•	••	••	٠	27	7	10	1037.1	30.62	•••••	•••	•••	•••••	••	•••	•••••	•••••	••
14	722660	1396	200801011052	2	200	3	•••	722	CLR	•	• •		10 **	•	••	••	•	21	1	10	1038.2	30.64	•••••	••••	•••	•••••	••	•••	•••••	•••••	••

Table 3. Abilene 2008 weather data from NCDC in Excel

xvi

Then, extracting necessary data from the Excel file (i.e. Wind direction, Wind speed, Temperature, Dew point temperature, Station pressure, Precipitation) needs to be done. Template format Excel file for this step is stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\Process\Weather). In this file, there are eight tabs: final, could cover, initial process, look up, default values, unit conversion, and count gaps (Figure 6). In these tabs, the extracted weather data need to be pasted in "cloud cover" tab, and majority of minutes need to be put in "look up" tab. This part will be described more detail in below. Then, necessary data process will be done by itself in this Excel file. The result is in "unit conversion" tab (Figure 8).

Figure 6. Eight tabs in template Excel file

Figure 7 shows the "cloud cover" tab after put the all extracted weather data to the template Excel file, and Figure 8 shows the result of the process, which is hourly weather data.

	А	В	С	D	E	F	G
1	YRMODAHRMN	DIR	SPD	TEMP	DEWP	ALT	PCP01
2	200801010000	90	6	45	16	*****	*****
3	200801010052	90	7	41	18	30.24	*****
4	200801010152	100	8	37	18	30.23	*****
5							
11691	200812312343	350	16	34	28	30.36	*****
11692	200812312349	350	15	34	28	30.37	*****
11693	200812312352	330	15	34	28	30.37	*****

Figure 7. Excel file which extracted the necessary weather elements

	Α	В	C	D	E	F	G	Н		J	K
1	Labeled	Time	Dry Bulb	Vet Bulb	Dew Point	Wind speed	Vind DIR	Solar (Global)	Solar (Normal Direct)	Station Pressure	STATION
2			(F)	(F)	(F)	(knots)	(Deg)	(Btu/sqft-hr)	(Btu/sqft-hr)	(inches Hg)	Number
3	1/1/2008	0:00	47.00	39.06	10.00	9.56	360.00	0.0	0.0	30.35	13962
4	1/1/2008	1:00	43.00	36.20	10.00	8.69	10.00	0.0	0.0	30.35	13962
5	1/1/2008	2:00	39.00	33.27	10.00	6.08	360.00	0.0	0.0	30.39	13962
6	1/1/2008	3:00	36.00	30.94	9.00	6.08	10.00	0.0	0.0	30.43	13962
7	1/1/2008	4:00	34.00	29.46	9.00	6.95	20.00	0.0	0.0	30.47	13962
8	1/1/2008	5:00	32.00	27.95	9.00	5.21	10.00	0.0	0.0	30.50	13962
9	1/1/2008	6:00	30.00	26.42	9.00	6.08	360.00	0.0	0.0	30.53	13962
10	1/1/2008	7:00	30.00	26.42	9.00	6.95	10.00	0.0	0.0	30.54	13962
11	1/1/2008	8:00	28.00	24.86	9.00	4.34	360.00	33.9	92.9	30.57	13962
12	1/1/2008	9:00	28.00	24.97	10.00	4.34	330.00	89.1	184.6	30.59	13962
13	1/1/2008	10:00	27.00	24.19	10.00	0.00	-99.00	132.3	208.8	30.62	13962

Figure 8. Unit conversion tab

Here is brief explanation of the process performed in this template Excel file. As shown in Figure 7, the extracted data have more than 8760 rows (in this case, 11693 rows) for each element because the weather data from NCDC were recorded by less than an hour. Therefore, finding out and extracting majority of minute (i.e. 52 minutes in this case) of the data are required to make 8760 data (hourly data) using "Look up" function in the Excel (see the "Look up" tab of the file).

Then, it is required to add "Wet-bulb temperature", "Global solar radiation", and "Direct normal solar radiation" data on the columns of "unit conversion" tab in this file.

Since there are no data for wet-bulb temperature in the NCDC website, these data need to be calculated from dry-bulb temperature, dew point temperature, and station pressure using psychrometric equations. At the same time, missing data for the wet-bulb temperature also need to be identified. To do these processes at the same time, "IF" command can be used. "=IF(C3=-99,-99,IF(J3=-99,J3,Twetbulb(J3,C3,E3)))" is an example of "IF" command I used. However, prior to use this command, "psychr2004e.xla" program need to be added to the Excel file first. The program calculates the wet-bulb temperature by psychrometric equations. This program is also in M drive (M:\Weather files _ SB5\Weather files packing\Programs). To add the program to the Excel, in case of using Excel 2007, open the "Excel Option" window first, and go to the "Add-Ins" tab then, check the "Psychr JCB".

In addition, there are two more things to do; one is adding "Global solar radiation" data on "unit conversion" tab, and another is calculating "Normal Direct Solar Radiation (NDSR)" from the "Global solar radiation" data. In order to calculate NDSR, template Excel file in M drive is used (M:\Weather files _ SB5\Weather files packing\2008\Process\Solar Radiation\NDSR). In the template Excel file, adequate latitude and longitude of Texas station need to be put first. The information is included in files downloaded from the NCDC website. In addition, it is required to check whether year, month, and date in

the file are correct or not. After that, the "Global solar radiation" data need to be pasted in "column Q" of the file, then, NDSR data are calculated in "column AA". Figure 9 shows an example of the NDSR template file, and marked part in red (right) is the calculated NDSR data.

Ye	ear,	ar, Month, and Day Latitude & Longitude																			NDSR								
	, A	ι.	8 C	: D	E		F	G	н			K	L	М	N	0	P	Q	R	S	T	U	V	W	X Y	Z	AA	AB	AC AD AE AF AG
	1				0	sc•	1367 M	Wm2		Browney	Laikde		26.901	0.4621															
	2										Longi kate	×	87,487						Rofzonia	Ounace Calcu	Jakd								
- 11									Be allow		COST	сат	Solar	HOLE A	ngleos	Extraterrws Ital	Radiation (k)	Mea cured	Cleamess	Etbs	Diffuse	Beam	Direct		Ant Tour	Measured	Direct		
- H	-	-	-	-	-	÷			Decine			-	Time				Ciran (Alim ²	0818 ())	ndex (K)	correlation	00	(8)	incrime.	008	vacinine	data (I)	Norma		
	4 m	A.	00	DY	Degree	S Ra	stians	E	Degrees	Radians			Decimal	Degrees	Radians	VWm ²)	Witm2	(Mic)	16/1	04/0 * 1	(1-0d/0*1	With2	Radians		870	BTU		
	2	006	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	0.00	0	-0.55						-	-							_		
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 100	- 1	0.45	-180.72	-3.15	-1+10.23		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-1.00	1/1/2006 0:00	0.0	0.0		
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 2:00	2	1.45	-165.72	-2.89	-137 + 20		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-0.97	1/1/2006 1:00	0.0	0.0		
	2	906	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 3.00	3	2.45	-150.72	-2.63	-1260.97		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-0.85	1/1/2006 2:00	0.0	0.0		
- 11	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 400	•	3.45	-135.72	-2.37	-1078.23		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-0.76	1/1/2006 3:00	0.0	0.0		
- 12	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	5.00	5	4.45	-120.72	-2.11	-836.45		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-0.59	1/1/2006 +:00	0.0	0.0		
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	6.00	6	5.45	-105.72	-1.85	-557.90		0.0	WVALUE!	#VALUE!	0.000	0.000	0.00	-0.40	1/1/2006 5:00	0.0	0.0		
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 100	7	6.45	-90.72	-1.58	-255.85		0.0	#VALUE!	#VALUE!	0.000	0.000	0.00	-0.18	1/1/2006 6:00	0.0	0.0		1200.0
- 14	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	6 8:00	8	7.45	-75.72	-1.32	47.20	47.20	10.7	0.23	0.979	10.493	0.226	2.65	0.09	1/1/2006 7:00	3.4	0.8		1200.0
- 14	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 9 00	9	8.45	-60.72	-1.06	330.63	330.63	50.8	0.15	0.996	50.054	0.70	2.99	0.23	1/1/2006 8:00	16.1	0.9		10000
- 14	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	10:00	10	9.45	-45.72	-0.90	575.10	575.10	86.7	0.15	0.995	85.518	3 1.176	2,88	0.41	1/1/2006 9:00	27.5	0.9		1000.0
- 14	2	008	1	1	1 0.0	800	0.0000	-2.9044	-23.0116	-0.4016	11:00	- 11	10.45	-30.72	-0.54	763.95	763.95	153.8	0.20	0.962	151.05+	2.780	5.15	0.54	1/1/2006 10:00	48.8	1.6		
- 14	3	006	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	12:00	12	11.45	-15.72	-0.27	884.30	884.30	203.0	0.23	0.978	198.655	4.366	6.973	0.63	1/1/2006 11:00	64.4	2.2		800.0
- 14	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	13:00	13	12.45	-0.72	-0.01	927.96	927.95	194.5	0.2	0.961	190.840	3,665	5.58	0.66	1/1/2006 12:00	61.7	1.8		
- 14	2	906	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	1+100	14	13.45	14.28	0.25	891.94	891.94	184.4	0.2	0.981	180.989	3.430	5.43	0.63	1/1/2006 13:00	58.5	1.7		600.0
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	i 15 <i>0</i> 0	15	14.45	29.28	0.51	778.70	778.70	260.7	0.33	0.920	239.817	20,899	37.89	0.55	1/1/2006 14:00	82.7	12.0		
	2	306	1	1	1 0.0	000	0.0000	-2.9044	-23.0116	-0.4016	16:00	16	15.45	++.20	0.77	595.97	595.97	262.0	0.+-	0.776	203,296	58.7 11	139.120	0.42	1/1/2006 15:00	83.1	44.1		400.0
	2	306	1	1	1 0.0	800	0.0000	-2.9044	-23.0116	-0.+016	17:00	17	16.45	59.28	1.03	356.19	396.19	193.6	0.5	0.966	109.461	8+.103	333.42	0.25	1/1/2006 16:00	61.4	105.8		
	2	306	1	1	1 0.0	000	0.0000	-2.90++	-23.0116	-0.4016	18:00	18	17.45	7+28	1.30	75.70	75.70	22.4	0.30	0.952	21,297	1.085	12.770	0.09	1/1/2006 17:00	7.1	4.1		200.0
110				_		1												• •	·	•				• • •				•	

Figure 9. An example of NDSR processing file

After these processes, the "gap.xls" file in M drive (M:\Weather files _ SB5\Weather files packing\Programs) is used to calculate the "total number of cells with default values" and "gaps of length". First, copy the values of certain element, for example, dry-bulb temperature in this case, and paste them on "column C" on the program, and make it runs. Then, "total number of cells with default values" and "gaps of length" can be calculated as shown in Figure 10. It is required to repeat this process every elements (9 elements) and every 17 Texas stations.

Figure 10. The result of "gap.xls" program in case of calculating gaps for Tdb

Then, the result data (i.e. "total number of cells with default values" and "gaps of length") from the program can be copied and pasted on gaps file stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\2_Gaps), and named it as "GAPS_XXX_2XXX.xls" (i.e. "GAPS_ABI_2008.xls" in this case). Table 4 shows an example of the gaps file.

	Tdb	Twb	Tdp	Wind speed	Wind dir.	GSR	NDSR	Precipitation	Stat. Pres
Total number of cells with default values	204	204	204	207	743	207	207	160	189
gaps of length 1	37	37	37	40	258	47	47	29	37
gaps of length 2	10	10	10	9	76	8	8	6	7
gaps of length 3	4	4	4	3	26	5	5	2	3
gaps of length 4	2	2	2	5	14	2	2		2
gaps of length 5	2	2	2	2	9	2	2	2	2
gaps of length 6	4	4	4	3	5	3	3	3	3
gaps of length 7				1	4			1	
gaps of length 8	2	2	2	1	1	2	2	1	2
gaps of length 9	1	1	1	1	1	1	1	1	1
gaps of length 10					1				
EL 11 44	l	Γ	Г	Т	I		1	1	1

Table 4. An example of gaps file

2.3. MASKS

"Masks" is file to figure out what particular time periods the missing weather data exist. Figure 11 shows an example of "Masks" file for "Abilene 2008 weather data". In this figure, number "1" indicates that there is a missing data in that time period. For example, there are missing data of wind direction at 4:00 and 8:00 on Jan. 1 2008 as shown in Figure 11.

	А	В	С	D	E	F	G	Н	1	J
1		Tdb	Twb	Tdp	Wind Speed	Wind Direction	GSR	NDSR	Precipita tion	station pressure
2	1/1/2008 0:00	-	-	-	-	-	-	-	-	-
3	1/1/2008 1:00	-	-	-	-	-	-	-	-	-
4	1/1/2008 2:00	-	-	-	-	-	-	-	-	-
5	1/1/2008 3:00	-	-	-	-	-	-	-	-	-
6	1/1/2008 4:00	-	-	-	-	1	-	-	-	-
7	1/1/2008 5:00	-	-	-	-	-	-	-	-	-
8	1/1/2008 6:00	-	-	-	-	-	-	-	-	-
9	1/1/2008 7:00	-	-	-	-	-	-	-	-	-
10	1/1/2008 8:00	-	-	-	-	1	-	-	-	-
11	1/1/2008 9:00	-	-	-	-	-	-	-	-	-
12	1/1/2008 10:00	-	-	-	-	-	-	-	-	-

Figure 11. An example of Masks file

In order to make this file, it is needed to copy and paste the hourly weather data (Figure 8) to new Excel file, and use "IF" command such as "=IF(B1=-99,1,0)" to figure out what particular time periods have the missing data. Figure 12 shows the hourly data which copied and pasted in new Excel, and Figure 13 shows the result of "Masks" file. Then, the file needs to be saved as "MASK_XXX_2XXX.xls" (i.e. "MASK_ABI_2008.xls" in this case) in "3_Mask" folder in M drive (M:\Weather files _SB5\Weather files packing\2008\3_Mask).

4	A	В	С	D	E	F	G	Н		J
1		Tdb (F)	Twb (F)	Tdp (F)	Wind speed (knot)	Wind direction	GSR (Btu/day-sqft)	NDSR (Btu/day-sqft)	Hourly precipitation (in)	Station Pressure (in Hg)
2	01/01/2008 00:00	30.0	26.4	9.0	6.1	360.0	0.0	0.0	0.0	30.5
3	01/01/2008 01:00	30.0	26.4	9.0	7.0	10.0	0.0	0.0	0.0	30.5
4	01/01/2008 02:00	28.0	24.9	9.0	4.3	360.0	0.0	0.0	0.0	30.6
5	01/01/2008 03:00	28.0	25.0	10.0	4.3	330.0	0.0	0.0	0.0	30.6
6	01/01/2008 04:00	27.0	24.2	10.0	0.0	-99.0	0.0	0.0	0.0	30.6
7	01/01/2008 05:00	21.0	19.3	10.0	2.6	200.0	0.0	0.0	0.0	30.6
8	01/01/2008 06:00	21.0	19.3	10.0	5.2	260.0	0.0	0.0	0.0	30.7
9	01/01/2008 07:00	21.0	19.4	10.0	5.2	270.0	0.0	0.0	0.0	30.7
10	01/01/2008 08:00	19.0	17.7	10.0	0.0	-99.0	33.9	92.9	0.0	30.7
11	01/01/2008 09:00	27.0	24.7	14.0	2.6	250.0	89.1	184.6	0.0	30.8
12	01/01/2008 10:00	34.0	30.1	14.0	4.3	340.0	132.3	208.8	0.0	30.8

Figure 12. Hourly data which copied and pasted in new Excel

	А	В	С	D	E	F	G	Н		J
1		Tdb (F)	Twb (F)	Tdp (F)	Wind speed (knot)	Wind direction	GSR (Btu/day-sqft)	NDSR (Btu/day-sqft)	Hourly precipitation (in)	Station Pressure (in Hg)
2	=IF(DATA!B2	-99,1,0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	01/01 IF(logical_tes	t, [value_it	true], [val	ue_if_false	e]) 0.0	0.0	0.0	0.0	0.0	0.0
4	01/01/2008 02:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	01/01/2008 03:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	01/01/2008 04:00	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
7	01/01/2008 05:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	01/01/2008 06:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	01/01/2008 07:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	01/01/2008 08:00	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
11	01/01/2008 09:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	01/01/2008 10:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	01/01/2008 11:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	01/01/2008 12:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	01/01/2008 13:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	01/01/2008 14:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	01/01/2008 15:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	01/01/2008 16:00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19										

Figure 13. An example of masks file with IF command in Excel

2.4. FILLING IN THE MISSING DATA

As described as earlier, there are many missing weather data from the NCDC and TCEQ. Prior to pack the weather data for DOE-2.1e simulation, filling in the missing data should be done.

The weather elements which need to be filled in are:

- Station pressure
- Temperature: dry-bulb temperature, wet-bulb temperature, and dew-point temperature
- Solar radiation: global solar radiation, and normal direct solar radiation

There is method to fill in the missing data of each element. For more information, there are two papers in M drive (M:\Weather files _ SB5\Weather files packing\Manual\DOE2): 1) Baltazar, J-C., Haberl, J., Culp, C., Yazdani, B., Gilman, D., Procedures For the Integration of Complete Year Texas Weather Data Files For eCalc-Emissions Reduction Calculator (Baltazar et al. 2007), and 2) Long, N., Real-Time Weather Data Access Guide (Long 2006).

Figure 14 shows general flow for filling in the missing weather data.

Figure 14. General flowchart for filling in weather data

(1) Station pressure

The missing station pressures need to be filled with last value previous to the gap.

(2) Temperature: dry-bulb temperature, wet-bulb temperature, and dew-point temperature

(2-1) The length of gaps <= 6 hours: The missing data need to be filled by linear interpolation (Equation (1)).

$$f(t_n) = f(t_1) + \left(\frac{f(t_2) - f(t_1)}{t_2 - t_1}\right) \cdot n \tag{1}$$

Where: $f(t_n)$ is the time step to fill $f(t_1)$ and $f(t_2)$ are the values around the missing time step

(2-2) 6 hours < The length of gaps < 48 hours: The missing data need to be filled by taking the trend of the first previous day that is valid as seen in Equation (2).

$$f(t_n) = f(t_{n-d}) + (f(t_1) - f(t_{1-d}) + \left(\frac{(f(t_2) - f(t_{2-d})) - (f(t_1) - f(t_{1-d}))}{t_2 - t_1 + 1}\right) \cdot n$$
(2)

Where: $f(t_n)$ is the time step to fill $f(t_1)$ and $f(t_2)$ are the values around the missing time step d is the offset back to the previous valid day

. ...

(2-3) The length of gaps \geq 48 hours: The missing data need to be filled by data from nearby weather stations (see Figure 15 for the alternative weather stations).

(3) Solar radiation: Global solar radiation, and normal direct solar radiation

(3-1, 2) Same as "(2) temperature" method

(3-3) The length of gaps >= 48 hours: The missing data need to be filled by data from nearby solar radiation station (see Figure 16 for the alternative solar radiation stations for 2008).

(3-4) No solar radiation data: Some counties such as Abilene, Amarillo, Austin, Lubbock, Midland, and San Angelo do not have solar radiation data for 2008. In this case, "Sky cover" data is used to calculate solar radiation. The "Sky cover" data can be downloaded from the NCDC website. To calculate the solar radiation from the "Sky cover", Excel file in M drive (M:\Weather files _ SB5\Weather files packing\Programs\SR_Calculation_from_SkyCover.xlsx) is used. Latitude, longitude, year, and "Sky cover" need to be put in this file so that solar radiation can be calculated automatically by itself. Figure 17 is an example of the Excel file.

(4) Other weather data: Wind speed, wind direction, precipitation

The missing data are not be filled in, just leave the missing data as "-99".

Figure 18 and 19 show an example of Excel file in M drive (M:\Weather files _ SB5\Weather files packing\Programs\Hourly_Missing_Filled_Calc.xlsx) for calculating the missing data.

Wea	ther Stations Names	Alterna	ative Stations for Gap Filling (1st Option)	Alternativ	e Stations for Gap Filling (2nd Option)
ABI	Abilene Regional Airport	SJT	San Angelo Mathis Field		
AMA	Amarillo International Airport	LBB	Lubbock International Airport		
BRO	Brownsville S. Padre Island International	PIL	Port Isabel Cameron County Airport	HRL	Harlingen Rio Grande Valley
LBB	Lubbock International Airport		No Missing Hours of >=6		
MAF	Midland International Airport	ODO	Odessa Schlemeyer Field		
SJT	San Angelo Mathis Field	ABI	Abilene Regional Airport		
ACT	Waco Regional Airport	CLL	College Station Easterwood Airport		
SPS	Wichita Falls Municipal Airport	DTO	Denton Municipal Airport	ABI	Abilene Regional Airport
ATT	Austin Camp Mabry	AUS	Austin-Bergstrom International Airport		
BPT	Port Arthur Se Tx Rgnl Airport	GLS	Scholes International At Galveston Airport		
CRP	Corpus Christi International Airport	ALI	Alice International Airport		
DFW	Dallas - Fort Worth International Airport				
ELP	El Paso International Airport	GDP	Guadalupe Pass Auto Met Observing System		
GGG	Longview E Tx Rgnl Airport	AWOS	Nacogdoches		
IAH	Houston Bush Intercontinental				
SAT	San Antonio International Airport	TYR	Tyler Pounds Regional Airport		
VCT	Victoria Regional Airport	RKP	Aransas County Airport		

Figure 15. Alternative weather stations

City	Code	Location	Recommended County	Recommended Stations (First Option)
Abilene	ABI	Abilene Regional Airport		
Amarillo	AMA	Amarillo International Airport		
Austin	AUS	Austin Camp Mabry	Travis	
Brownsville	BRO	Brownsville S. Padre Island International	Cameron	C 80 (78 hrs gaps)
Corpus Christi	CRP	Corpus Christi International Airport	Nueces	C 4 (103 hrs gap)
Fort Worth	DFW	Dallas - Fort Worth International Airport	Denton	C 56 (101 hrs gaps)
El Paso	ELP	El Paso International Airport	El Paso	C 12 (5 hrs gap)
Houston	IAH	Houston Bush Intercontinental	Harris	C403 (522 hrs gaps)
Lubbock	LBB	Lubbock International Airport		
Lufkin	LFK	Longview E Tx Rgnl Airport	Smith	C 82 (39 hrs gaps)
Midland	MAF	Midland International Airport		
Port Arthur	BPT	Port Arthur Se Tx Rgnl Airport	Jefferson	C2 (317 hrs gaps)
San Angelo	SJT	San Angelo Mathis Field		
San Antonio	SAT	San Antonio International Airport	Bexar	C 58 (Zero gaps)
Victoria	VCT	Victoria Regional Airport	Victoria	C 87 (189 hrs gaps)
Waco	ACT	Waco Regional Airport	Johnson	C77 (1 hr gaps)
Wichita Falls	SPS	Wichita Falls Municipal Airport	Denton	C 56 (101 hrs gaps)

Second Option/s
C42 (1652 hrs gaps) & C43 (76 hrs gaps)
C44 (2 hrs gap)
C71 (ZERO gaps)
C37 (225 hrs gaps) & C41 (49 hrs gap)
C15 (86 hrs gaps), C35 (282 hrs gaps), C45 (308 hrs gaps), C53 (458 hrs gaps), C1015 (2384 hrs gaps), C78 (110 hrs gaps)
C85 (138 hrs gaps)
C28 (250 hrs gaps), C64 (398 hrs gaps), C643 (262 hrs gaps), C9 (295 hrs gaps)
C73 (1 hr gaps)

Figure 16. Alternative solar radiation stations for 2008

						Latitude		Longituded							y =	1037.6	x	-42.41	R2 = 0.9	297
							35.1		101.4											
					SKY					std	Solar	Hour								
	Yr	Month	Day	HrMn	Cv							angle			1 - 0.75(Cv/8) ^{3.4}	I _G (W/m2)	IG(BTU/hr-ft2)			
01/01/08 00:53	2008	1	1	53	7	1	0.0000	-2.9044	-0.4016	0	-0.81			0	0	-	0	5.60		
01/01/08 01:53	2008	1	1	153	7	1	0.0000	-2.9044	-0.4016	1	0.19	-3.22	-0.98	0	0	-	0	5.60		
01/01/08 02:53	2008	1	1	253	7	1	0.0000	-2.9044	-0.4016	2	1.19	-2.96	-0.97	0	0	-	0	5.60		
01/01/08 03:53	2008	1	1	353	8	1	0.0000	-2.9044	-0.4016	3	2.19	-2.70	-0.91	0	0	-	0	6.40		
01/01/08 04:53	2008	1	1	453	7	1	0.0000	-2.9044	-0.4016	4	3.19	-2.44	-0.80	0	0	-	0	5.60		
01/01/08 05:53	2008	1	1	553	7	1	0.0000	-2.9044	-0.4016	5	4.19	-2.18	-0.65	0	0	-	0	5.60		
01/01/08 06:53	2008	1	1	653	7	1	0.0000	-2.9044	-0.4016	6	5.19	-1.91	-0.48	0	0	-	0	5.60		
01/01/08 07:53	2008	1	1	753	8	1	0.0000	-2.9044	-0.4016	7	6.19	-1.65	-0.29	0	0	-	0	6.40		
01/01/08 08:53	2008	1	1	853	7	1	0.0000	-2.9044	-0.4016	8	7.19	-1.39	-0.09	0	0	-	0	5.60		
01/01/08 09:53	2008	1	1	953	2	1	0.0000	-2.9044	-0.4016	9	8.19	-1.13	0.10	59	0.993269346	58	18	1.60		
01/01/08 10:53	2008	1	1	1053	0	1	0.0000	-2.9044	-0.4016	10	9.19	-0.87	0.26	230	1	230	73			
01/01/08 11:53	2008	1	1	1153	0	1	0.0000	-2.9044	-0.4016	11	10.19	-0.60	0.39	367	1	367	116			
01/01/08 12:53	2008	1	1	1253	0	1	0.0000	-2.9044	-0.4016	12	11.19	-0.34	0.48	460	1	460	146			
01/01/08 13:53	2008	1	1	1353	2	1	0.0000	-2.9044	-0.4016	13	12.19	-0.08	0.53	503	0.993269346	499	158	1.60		
01/01/08 14:53	2008	1	1	1453	0	1	0.0000	-2.9044	-0.4016	14	13.19	0.18	0.52	493	1	493	156			
01/01/08 15:53	2008	1	1	1553	0	1	0.0000	-2.9044	-0.4016	15	14.19	0.44	0.46	430	1	430	136			
01/01/08 16:53	2008	1	1	1653	0	1	0.0000	-2.9044	-0.4016	16	15.19	0.70	0.35	319	1	319	101			
01/01/08 17:53	2008	1	1	1753	0	1	0.0000	-2.9044	-0.4016	17	16.19	0.97	0.20	168	1	168	53			
01/01/08 18:53	2008	1	1	1853	0	1	0.0000	-2.9044	-0.4016	18	17.19	1.23	0.03	0	0	-	0			
01/01/08 19:53	2008	1	1	1953	0	1	0.0000	-2.9044	-0.4016	19	18.19	1.49	-0.16	0	0	-	0			
01/01/08 20:53	2008	1	1	2053	0	1	0.0000	-2.9044	-0.4016	20	19.19	1.75	-0.36	0	0	-	0			
01/01/08 21:53	2008	1	1	2153	0	1	0.0000	-2.9044	-0.4016	21	20.19	2.01	-0.55	0	0	-	0			
01/01/08 22:53	2008	1	1	2253	0	1	0.0000	-2.9044	-0.4016	22	21.19	2.27	-0.71	0	0	-	0			
01/01/08 23:53	2008	1	1	2353	0	1	0.0000	-2.9044	-0.4016	23	22.19	2.54	-0.84	0	0	-	0			
01/02/08 00:53	2008	1	2	53	0	2	0.0172	-3.3517	-0.4002	0	-0.82	-0.34	0.48	0	0	-	0			
01/02/08 01:53	2008	1	2	153	0	2	0.0172	-3.3517	-0.4002	1	0.18	-3.22	-0.97	0	0	-	0			
01/02/08 02:53	2008	1	2	253	0	2	0.0172	-3.3517	-0.4002	2	1.18	-2.96	-0.97	0	0	-	0	-		
01/02/08 03:53	2008	1	2	353	0	2	0.0172	-3.3517	-0.4002	3	2.18	-2.70	-0.91	0	0	-	0	-		
01/02/08 04:53	2008	1	2	453	0	2	0.0172	-3.3517	-0.4002	4	3.18	-2.44	-0.80	0	0	-	0			
01/02/08 05:53	2008	1	2	553	0	2	0.0172	-3.3517	-0.4002	5	4.18	-2.18	-0.65	0	0	-	0			

Figure 17. An example of the Excel for calculating solar radiation from sky cover data

		Tdb	Tdp		Calc.	. Tdł	lb Tdp	
583	1/25/08 4:00	37.0	25.0	583				
584	1/25/08 5:00	37.0	25.0	584				
585	1/25/08 6:00	37.4	26.6	585				
586	1/25/08 7:00	-99.0	-99.0	586	1	38	8 =E585+(E591-E585)/(L591-L585)*M586	5
587	1/25/08 8:00	-99.0	-99.0	587	2	39	9 29.6	
588	1/25/08 9:00	-99.0	-99.0	588	3	40	0 31.1	
589	1/25/08 10:00	-99.0	-99.0	589	4	41	1 32.6	
590	1/25/08 11:00	-99.0	-99.0	590	5	42	2 34.1	
591	1/25/08 12:00	42.8	35.6	591				
592	1/25/08 13:00	44.1	36.0	592				
593	1/25/08 14:00	46.0	37.0	593				
594	1/25/08 15:00	46.9	37.0	594				
594	1/25/08 15:00	46.9	37.0	594				

Figure 18. An example file for calculating missing data (gaps<=6 hrs, Equation (1))

Figure 19. An example file for calculating missing data (6<gaps<48 hrs, Equation (2))

2.5. HOURLY AND DAILY DATA FILE

2.5.1. Hourly CSV file

After filling in the missing weather data for 17 Texas stations, the next step is to make hourly weather files in CSV format (Comma Separated Values). In order to do this, just copy the data from the file which

is already filled in the missing data, then, paste them to another Excel file (M:\Weather files _ SB5\Weather files packing\2008\4-1_Hourly_CSV). Figure 20 shows an example of hourly CSV file for "Abilene 2008".

In hourly CSV file, the weather data of each element should have 8760 data (24 hrs x 365 days). Note that, for leap year, the data for 29^{th} of February need to be deleted. In addition, it is required to check whether temperature values are adequate or not, it means, dry-bulb temperature should have the biggest values, wet-bulb temperature, and dew-point temperature should follow (i.e. Tdb > Twb > Tdp).

The hourly CSV file should be named as "Hourly_XXX_XXXX_2XXX.xls" (i.e.

"Hourly_ABI_1362_2008" in this case) in "4-1 Hourly CSV" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008).

	Α	В	С	D	E	F	G	Н			К	
1	Date Time	Dry-Bulb 1	- Wet-Bulb	Dew-Poin	- Wind Spe	Wind Dire	Global Sol	Direct No	Precipitat	Station Pro	essure (in	Hg)
2	1/1/2008 0:00	30	26.4	9	6.1	360	0	0	0	30.5		
3	1/1/2008 1:00	30	26.4	9	7	10	0	0	0	30.5		
4	1/1/2008 2:00	28	24.9	9	4.3	360	0	0	0	30.6		
5	1/1/2008 3:00	28	25	10	4.3	330	0	0	0	30.6		
6	1/1/2008 4:00	27	24.2	10	0	-99	0	0	0	30.6		
7	1/1/2008 5:00	21	19.3	10	2.6	200	0	0	0	30.6		
8	1/1/2008 6:00	21	19.3	10	5.2	260	0	0	0	30.7		
9	1/1/2008 7:00	21	19.4	10	5.2	270	0	0	0	30.7		
10	1/1/2008 8:00	19	17.7	10	0	-99	33.9	92.9	0	30.7		
11	1/1/2008 9:00	27	24.7	14	2.6	250	89.1	184.6	0	30.8		
12	1/1/2008 10:00	34	30.1	14	4.3	340	132.3	208.8	0	30.8		

Figure 20. An example of hourly CSV file

2.5.2. HourlyTS Excel file

In this step, hourly time series file, including 9 weather element plots needs to be made. Using hourly data file (i.e. Hourly CSV file), copy the hourly data to "data" tab in another Excel file in M drive (M:\Weather files _ SB5\Weather files packing\2008\4-2_HourlyTS_Excel). In this file, there are two tabs: "data" tab, and "time series" tab. When you put the hourly data on "data" tab, time series plots will be generated on "time series" tab. The completed hourly time series file needs to be stored in "4-2_HourlyTS_Excel" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008).

(1) "Data" tab

Figure 21 shows an example of "data" tab which copied and pasted the data from Hourly CSV file.

	A	В	С	D	E	F	G	Н		J	K
1		Tdb (F)	Twb (F)	Tdp (F)	nd speed (kn	Vind directio	R (Btu/day-so	SR (Btu/day-s	y precipitatic	Pressure	(in Hg)
2	01/01/2008 00:00	30.0	26.4	9.0	6.1	360.0	0.0	0.0	0.0	30.5	
3	01/01/2008 01:00	30.0	26.4	9.0	7.0	10.0	0.0	0.0	0.0	30.5	
4	01/01/2008 02:00	28.0	24.9	9.0	4.3	360.0	0.0	0.0	0.0	30.6	
5	01/01/2008 03:00	28.0	25.0	10.0	4.3	330.0	0.0	0.0	0.0	30.6	
6	01/01/2008 04:00	27.0	24.2	10.0	0.0	-99.0	0.0	0.0	0.0	30.6	
7	01/01/2008 05:00	21.0	19.3	10.0	2.6	200.0	0.0	0.0	0.0	30.6	
8	01/01/2008 06:00	21.0	19.3	10.0	5.2	260.0	0.0	0.0	0.0	30.7	
9	01/01/2008 07:00	21.0	19.4	10.0	5.2	270.0	0.0	0.0	0.0	30.7	
10	01/01/2008 08:00	19.0	17.7	10.0	0.0	-99.0	33.9	92.9	0.0	30.7	
11	01/01/2008 09:00	27.0	24.7	14.0	2.6	250.0	89.1	184.6	0.0	30.8	
12	01/01/2008 10:00	34.0	30.1	14.0	4.3	340.0	132.3	208.8	0.0	30.8	

Figure 21. An example of "data" tab of hourly time series file

(2) "Time Series XXX" tab (i.e. "Time Series ABI" tab in this case)

This tab shows hourly plots of 9 weather elements, and Figure 22 shows an example of the plots.

In this step, there are two things need to be verified:

- Texas station name on tab, and
- Texas station name and year on plot:

To change the Texas station name and year on plot, go to "View" menu \rightarrow "Page Layout", and change the header name as "Abilene (ABI) Abilene Regional Airport Yr: 2008" in case of this example (Figure 221).

Abilene (ABI) Abilene Regional Airport Yr:2008

Figure 22. An example of "time series" tab

2.5.3. Daily CSV file

Next step is converting the hourly data to daily data using "Par" program in M drive (M:\Weather files _ SB5\Weather files packing\Programs\par.xls).

Daily CSV file should have 365 data for each Texas station weather file. Note that, for leap year, the data for 29^{th} of February need to be deleted. In addition, it is required to check whether temperature values are adequate or not, it means, dry-bulb temperature should have the biggest values, wet-bulb temperature, and dew-point temperature should follow (i.e. Tdb > Twb > Tdp).

The daily CSV file should be named as "Daily_XXX_XXXX_2XXX.xls" (i.e. "Daily_ABI_1362_2008" in this case) in "4-3 Daily CSV" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008).

In order to convert the hourly data to daily data, the program "Par" is used. First, copy the each weather element, in this case, the dry-bulb temperature, and paste them to "data" tab in "par" file as Figure 23.

After that, click the "daily" button on "main" tab of this file, then the calculation will start, and the hourly

data are converted to daily data. Then, you can copy the converted daily data to another file in M drive (M:\Weather files _ SB5\Weather files packing\2008\4-3_Daily_CSV). Figure 24 shows an example of daily CSV file for Abilene 2008.

						1.⊦	lourly da
	A	в	С	D	E	F	G
1	1	1	2008	0	0	39448	30.32
2	1	1	2008	0	0	39448.04167	30.35
3	1	1	2008	0	0	39448.08333	30.39
4	1	1	2008	0	0	39448.125	30.42
5	1	1	2008	0	0	39448.16667	30.46
6	1	1	2008	0	0	39448.20833	30.5
7	1	1	2008	0	D	39448.25	30.53
8	1	1	2008	0	D	39448.29167	30.57
9	1	1	2008	0	0	39448.33333	30.62
10	1	1	2008	0	0	39448.375	30.66
11	1	1	2008	0	0	39448.41667	30.68
12	1	1	2008	0	0	39448.45833	30.69
13	1	1	2008	0	0	39448.5	30.68
14	1	1	2008	0	0	39448.54167	30.65
15	1	1	2008	0	0	39448.58333	30.63
16	1	1	2008	0	0	39448.625	30.62
17	1	1	2008	0	0	39448.66667	30.62
18	1	1	2008	0	0	39448.70833	30.63
19	1	1	2008	0	0	39448.75	30.66
20	1	1	2008	Û	Û	39448 79167	30.69

Figure 23. An example of "Par" program (left: "Data" tab, right: "Main" tab)

	Α	В	С	D	E	F	G	Н	- I	J	K	L	
1	Date	Average D	erage D Average V A		Average V	Average V Total Glob		Total Norr Total Prec		Average Station Pressure (in Hg)			
2	1/1/2008 0:00	33.1	28.7	9.3	5	217.6	1065.8	1698.6	0	30.7			
3	1/2/2008 0:00	29.9	26.2	9.3	4.6	142.9	1069.5	1705.9	0	30.8			
4	1/3/2008 0:00	39.5	39.5 33.8		14.5	162.5	685.2	871	0	30.5			
5	1/4/2008 0:00	49.3	44.8	34.3	15.5	182.5	1075.6	1705.3	0	30.2			
6	1/5/2008 0:00	61.5	53.9	40.9	14.6	204.2	1079.7	1710.7	0	30			
7	1/6/2008 0:00	62.6	56.3	46.6	12.9	182.5	1083.5	1709.9	0	29.9			
8	1/7/2008 0:00	62.9	58.8	53.5	11.1	177.5	946.6	1294	0	29.8			
9	1/8/2008 0:00	49.7	44.1	29.8	8.8	257	1094	1717.5	0	30.1			
10	1/9/2008 0:00	47.6	41.2	25.8	10.9	180.4	1099.9	1720.4	0	30			
11	1/10/2008 0:00	49	42.3	24.2	9.9	277	1105.5	1724.7	0	30			
12	1/11/2008 0:00	49.1	41.6	21.4	9.8	200	1111.4	1727.5	0	29.9			

Figure 24. An example of daily CSV file

2.5.4. DailyTS Excel file

In this step, daily time series file, including 9 weather element plots also needs to be made. Using daily data file (i.e. daily CSV file), copy the daily data to "data" tab in another Excel file in M drive (M:\Weather files _ SB5\Weather files packing\2008\4-4_DailyTS_Excel). In this file, there are also two

tabs: "data" tab, and "time series" tab. When you put the daily data on "data" tab, time series plots will be generated on "time series" tab. The completed daily time series file needs to be stored in "4-4 DailyTS Excel" folder in M drive (M:\Weather files _ SB5\Weather files packing\2008).

(1) "Data" tab

Figure 25 shows an example of "data" tab which copied and pasted the data from daily CSV file.

	A	A B		C D		F	G	Н		J
1		Tdb (F) Twb (F)		Tdp (F)	Wind speed	Wind directi	GSR (Btu/da	NDSR (Btu/d	Daily precipitation (in)	
2	01/01/2008 00:00	33.1	28.7	9.3	5.0	217.6	1065.8	1698.6	0.0	30.7
3	01/02/2008 00:00	29.9	26.2	9.3	4.6	142.9	1069.5	1705.9	0.0	30.8
4	01/03/2008 00:00	39.5	33.8	10.6	14.5	162.5	685.2	871.0	0.0	30.5
5	01/04/2008 00:00	49.3	44.8	34.3	15.5	182.5	1075.6	1705.3	0.0	30.2
6	01/05/2008 00:00	61.5	53.9	40.9	14.6	204.2	1079.7	1710.7	0.0	30.0
7	01/06/2008 00:00	62.6	56.3	46.6	12.9	182.5	1083.5	1709.9	0.0	29.9
8	01/07/2008 00:00	62.9	58.8	53.5	11.1	177.5	946.6	1294.0	0.0	29.8
9	01/08/2008 00:00	49.7	44.1	29.8	8.8	257.0	1094.0	1717.5	0.0	30.1
10	01/09/2008 00:00	47.6	41.2	25.8	10.9	180.4	1099.9	1720.4	0.0	30.0
11	01/10/2008 00:00	49.0	42.3	24.2	9.9	277.0	1105.5	1724.7	0.0	30.0
12	01/11/2008 00:00	49.1	41.6	21.4	9.8	200.0	1111.4	1727.5	0.0	29.9

Figure 25. An example of "data" tab of daily time series file

(2) "Time Series XXX" tab (i.e. "Time Series ABI" tab in this case)

This tab shows daily plots of 9 weather elements, and Figure 26 shows an example of the plots.

In this step, there are also two things need to be verified.

- Texas station name on tab, and
- Texas station name and year on plot:

To change the Texas station name and year on plot, go to "View" menu \rightarrow "Page Layout", and change the header name as "Abilene (ABI) Abilene Regional Airport Yr: 2008" in case of this example (Figure 26).

 $\mathsf{restricts} (\mathsf{restricts} \mathsf{restricts} \mathsf{$

Abilene (ABI) Abilene Regional Airport Yr:2008

Figure 26. An example of time series tab

2.6. PDF PLOTS

2.6.1. Hourly PDF

Next step is to make PDF file for each of hourly plot which made at previous step. In this step, particular program which can produce PDF file needs to be used such as "Adobe Acrobat Professional". On the "time series" tab of "HourlyTS_Excel" file, the plots need to be converted to PDF file using the conversion program, and the generated PDF file need to be saved as

"HourlyTS_XXX_XXXXX_2XXX.pdf" (i.e. "HourlyTS_ABI_13962_2008" in this case) in M drive (M:\Weather files _ SB5\Weather files packing\2008\5-1_Hourly_PDF). Figure 27 shows an example of hourly PDF file.

Figure 27. An example of hourly PDF file

2.6.2. Daily PDF

As hourly PDF file, the plots in "DailyTS_Excel" file need to be converted to PDF file, and the generated PDF file needs to be saved as "DailyTS_XXX_XXXX_2XXX.pdf" (i.e. "DailyTS_ABI_13962_2008" in this case) in M drive (M:\Weather files _ SB5\Weather files packing\2008\5-2_Daily_PDF). Figure 28 shows an example of daily PDF file.

Abilene (ABI) Abilene Regional Airport Yr:2008

2.7. PRETRY FILE

This is the last step for preparing DOE-2.1e weather input file. The file needs to be filled with 9 elements of weather data and other information. Figure 29 shows an example of the PreTRY file for "Abilene 2008". As seen in Figure 29, when the data for "column A" through "column K" are filled, required formatted data for DOE-2.1e weather input file are generated in "column X". The data for "column A" through "column K" can be obtained from hourly data file previously made, and the template file for PreTRY is stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\6_PrepTRY). The completed PreTRY file should be named as "PrepTRY_XXX_2XXX" (i.e. "PrepTRY_ABI_2008" in this case).

	A	в	U	U	E	н	Li	н	1	J	K	L	M	N	U	Р	ų	в	S	U	V I V	W X
1	Labeled T	ïme	Dry I Bulk	Wat Bali B P) aint	Wind speed W	find DIR	Suler (Glubel)	Salar (Harmal Direct)	Station Process	STATION	Dry Bulb	Wat I Bulk P	Dau 'sist	Wis 4 DIR	Wika ****	Stat Praz zera	Salar (Glabal)	Sular (Hurmal Direct) Tear	н.	о 7 н	
2			(f)	ത	(F)	(knatz)	(Deq)	(Btu/zaft-	(Btuleqft-ke)	(incher Hg)	Humber	(F)	(F)	(7)	(Deq)	(knetr)	(incher Ha)	(Btudząft-	(Btulzaft- br)			12345678901234567890123456789012345678901234567890123456789012345678901234567890
3	1/1/08	0:00	30	26	9	6	360	0	0	30.5	13962	30	26.4	9	360	6.08	30.5	0	0 2008	1	1	0 13962030026009360006305309999999999999999999999999
4	1/1/08	1:00	30	26	9	7	10	0	0	30.5	13962	30	26.4	9	10	6.95	30.5	0	0 2008	1	1	1 139620300260090100073054099999999999999999999999999999990000000
5	1/1/08	2:00	28	25	9	4	360	0	0	30.6	13962	28	24.9	9	360	4.34	30.6	0	0 2008	1	1	2 139620280250093600043057099999999999999999999999999999999000000
6	1/1/08	3:00	28	25	10	4	330	0	0	30.6	13962	28	25	10	330	4.34	30.6	0	0 2008	1	1	3 13962028025010330004305909999999999999999999999999999
7	1/1/08	4:00	27	24	10	0	-99	0	0	30.6	13962	27	24.2	10	999	0	30.6	0	0 2008	1	1	4 13962027024010999000306209999999999999999999999999999
8	1/1/08	5:00	21	19	10	3	200	0	0	30.6	13962	21	19.3	10	200	2.61	30.6	0	0 2008	1	1	5 1396202101901020000330640999999999999999999999999999999
9	1/1/08	6:00	21	19	10	5	260	0	0	30.7	13962	21	19.3	10	260	5.21	30.7	0	0 2008	1	1	6 1396202101901026000530660999999999999999999999999999999
10	1/1/08	7:00	21	19	10	5	270	0	0	30.7	13962	21	19.4	10	270	5.21	30.7	0	0 2008	1	1	7 139620210190102700053071099999999999999999999999999999999000000
- 11	1/1/08	8:00	19	18	10	0	-99	34	93	30.7	13962	19	17.7	10	999	0	30.7	33.9	92.9 2008	1	1	8 139620190180109990003073099999999999999999999999999
12	1/1/08	9:00	27	25	14	3	250	89	185	30.8	13962	27	24.7	14	250	2.61	30.8	89.1	184.6 2008	1	1	9 13962027025014250003307609999999999999999999999999999999
13	1/1/08	10:00	34	30	14	4	340	132	209	30.8	13962	34	30.1	14	340	4.34	30.8	132.3	208.8 2008	1	1 1	10 13962034030014340004307809999999999999999999999999999999901320209 2008010110
14	1/1/08	11:00	39	34	14	4	340	161	218	30.8	13962	39	33.8	14	340	4.34	30.8	160.8	218 2008	1	1	11 13962039034014340004308109999999999999999999999999999999901610218 2008010111
15	1/1/08	12:00	45	38	10	5	350	173	221	30.8	13962	45	37.7	10	350	5.21	30.8	172.9	221.1 2008	1	1 1	12 13962045038010350005307909999999999999999999999999999
16	1/1/08	13:00	46	38	5	8	350	168	221	30.8	13962	46	38	5	350	7.82	30.8	167.8	220.6 2008	1	1 1	13 13962046038005350008307509999999999999999999999999999999901680221 2008010113
17	1/1/08	14:00	46	38	- 7	11	10	145	213	30.7	13962	46	38.1	7	10	11.3	30.7	145.3	213.4 2008	1	1 1	14 139620460380070100113073099999999999999999999999999
18	1/1/08	15:00	48	40	- 7	10	360	107	195	30.7	13962	48	39.6	7	360	9.56	30.7	107.2	195.3 2008	1	1 1	15 139620480400073600103073099999999999999999999999999999901070195 2008010115
19	1/1/08	16:00	46	38	5	10	350	57	144	30.7	13962	46	38	5	350	9.56	30.7	56.5	143.9 2008	1	1 1	16 13962046038005350010307309999999999999999999999999999999
20	1/1/08	17:00	45	37	- 7	8	10	0	0	30.7	13962	45	37.4	7	10	7.82	30.7	0	0 2008	1	1 1	17 13962045037007010008307309999999999999999999999999999999
21	1/1/08	18:00	39	33	9	7	20	0	0	30.7	13962	39	33.2	9	20	6.95	30.7	0	0 2008	1	1 1	18 139620390330090200073074099999999999999999999999999999900000000
22	1/1/08	19:00	36	31	9	5	30	0	0	30.8	13962	36	31	9	30	5.21	30.8	0	0 2008	1	1 1	19 13962036031009030005307609999999999999999999999999999900000000
23	1/1/08	20:00	34	29	9	- 4	50	0	0	30.8	13962	34	29.5	9	50	4.34	30.8	0	0 2008	1	12	20 1396203402900905000430770999999999999999999999999999999000000
24	1/1/08	21:00	30	26	9	- 4	100	0	0	30.8	13962	30	26.4	9	100	4.34	30.8	0	0 2008	1	1 2	21 139620300260091000043078099999999999999999999999999999999000000
25	1/1/08	22:00	27	24	9	3	220	0	0	30.8	13962	27	24.1	9	220	2.61	30.8	0	0 2008	1	12	2 139620270240092200033080099999999999999999999999999
26	1/1/08	23:00	28	25	9	0	-99	0	0	30.8	13962	28	24.9	9	999	0	30.8	0	0 2008	1	12	3 139620280250099990003081099999999999999999999999999
27	1/2/08	0:00	23	21	10	3	280	0	0	30.8	13962	23	21	10	280	2.61	30.8	0	0 2008	1	2	0 1396202302101028000330810999999999999999999999999999999
28	1/2/08	1:00	21	19	10	4	230	0	0	30.8	13962	21	19.4	10	230	4.34	30.8	0	0 2008	1	2	1 1396202101901023000430810999999999999999999999999999999999000000

Figure 29. An example of PreTRY file

2.8. TRY_TPE FILE

"TRY_TPE" file is one of files to be used when you pack DOE-2.1e weather file by DOE-2.1e simulation.

From the PreTRY file, copy the data in "column X" and paste them to TPE format file which is stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\7_TRY_TPE). The file name should be "TRY_XXX_2XXX.TPE" (i.e. "TRY_ABI_2008.TPE" in this case). Figure 30 shows an example of TRY_TPE file.

13962030026009360006305309999999999999999999999999	2008010100
139620300260090100073054099999999999999999999999999999990000000	2008010101
139620280250093600043057099999999999999999999999999999999000000	2008010102
13962028025010330004305909999999999999999999999999999	2008010103
13962027024010999000306209999999999999999999999999999	2008010104
1396202101901020000330640999999999999999999999999999999	2008010105
1396202101901026000530660999999999999999999999999999999	2008010106
1396202101901027000530710999999999999999999999999999999999000000	2008010107
139620190180109990003073099999999999999999999999999	2008010108
13962027025014250003307609999999999999999999999999999999	2008010109
1396203403001434000430780999999999999999999999999999999991320209	2008010110
13962039034014340004308109999999999999999999999999999999901610218	2008010111
13962045038010350005307909999999999999999999999999999	2008010112
1396204603800535000830750999999999999999999999999999999901680221	2008010113
139670460380070100113073099999999999999999999999999	2008010114

Figure 30. An example of TRY_TPE file

2.9. TRY_INP FILE

"TRY_INP" file is one of files to be used along with "TRY_TPE" file when you pack DOE-2.1e weather file by DOE-2.1e simulation.

This file includes general information about weather station. Figure 31 can explain more detail about the contents of the file. This file is also stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\8_TRY_INP). The file name should be "TRY_XXX_2XXX.INP" (i.e. "TRY_ABI_2008.INP" in this case). Figure 32 shows an example of TRY_INP file.

- PACK line 1:
 - 1: The word PACK in columns 1-4.
- line 2: The station name in columns 1-20. This name will be written on the output file as identification. The entry here is for the user only and is arbitrary.
- line 3: The data is entered as shown below. When the format is shown as L, it signifies that the datum must be left justified in the columns indicated. The format R signifies that the datum must be right justified in the columns indicated, and the format D means that the value should be entered with a decimal point (neither right or left justification is required). For those with FORTRAN background: L corresponds to A6, R to I6, and D to F6.1.

Example of how the data is entered (line 3)

Columns	Format	Description									
1-6	L	A code-word spe TRYSLM ^a , TD9	cifying the unpacked file type. Options are TM 685, and OTHER ^b .	IY2, WYEC2, CD144, CD144S*, TRY,							
7-12	R	Weather station	number. This is required.								
	Note: for TMY2 files, the following inputs on line 3 may be left blank										
13-18	R	The year of the weather data (e.g., 1999). This is required for CD144 and TD9685 files (which can contain several years of weather data). For other files, -999 should be input.									
19-24	R	Time zone (as in	the SITE-PARAMETERS command)								
25-30	D	Latitude (degrees	s). Positive north of the equator, negative sout	h of the equator.							
31-36	D	Longitude (degre	es). Positive west of Greenwich, negative eas	t of Greenwich.							
37-42	L	A code-word specifying the number of bits per word to be used in packing the output file. The options are 60-BIT or 30-BIT (for 32-bit machines)									
43-48	L	A code-word specifying the type of output file. The options are NORMAL and SOLAR. NORMAL produces a DOE-2 weather file with no solar data. SOLAR produces a file containing solar information.									
49-54	49-54 R Interpolation interval. The program fills in missing data by linear interpolation between the last and the next value present, if the number of hours of missing data is less than or equal to the interpolation interval. If more hours of data are missing than the interpolation interval, it still does interpolation up to 24 hours and a warning message is issued. If more than 24 hours are missing, the previous value is used. The interpolation interval must be less than 24°.										
55-60	D	This sets the man cause a warning	ximum dry-bulb temperature change allowed i message to be printed.	n one hour. Changes larger than this will							
61-66	D	Soil thermal diff can be used for d	usivity (ft²/hr). Used for calculating monthly g hry soil, 0.025 for average soil, and 0.050 for v	round temperatures. A value of 0.010 vet soil.							
67-72	D	Station altitude (feet), used in CD144 and TD9685.								
73-78	R	Location needed for CD144 and 7	only for CD144S and TRYSLM to choose a TRY formats. Select the location that best repr	cloud cover model. See ILOC. Used only esents the data being packaged.							
*CD144S te a file in CD data using th SOLMET c and the Erbs model. TRY TRY format	Ils the weather 144 format an the ASHRAE loud cover reg s-Klein-Duffi SLM does th s.	^c The weather processor makes no evaluation of the data to see that it is internally consistent, except that during interpolation it never allows the wet-bulb temperature to exceed the dry-bulb temperature, or the dew point temperature to exceed the wet-bulb temperature.									
	ILOC and Station Name										
01 ALBUQUE	01 ALBUQUERQUE, NM 08 CHARLESTON, SC 15 GREAT FALLS, MT 21 NEW YORK, NY										

Eloc and station (dance									
	01 ALBUQUERQUE, NM	08 CHARLESTON, SC	15 GREAT FALLS, MT	21 NEW YORK, NY					
	02 APALACHICOLA, FL	09 COLUMBIA, MO	16LAKE CHARLES, LA	22 NORTH OMAHA, NE					
	03 BISMARCK, ND	10 DODGE CITY, KS	17 MADISON, WI	23 PHOENIX, AZ					
	04 BOSTON, MA	11 EL PASO, TX	18 MEDFORD, OR	24 SANTA MARIA, CA					
	05 BROWNSVILLE, TX	12 ELY, NV	19 MIAMI, FL	25 SEATTLE-TACOMA,					
	06 CAPE HATTERAS, NC	13 FORT WORTH, TX	20 NASHVILLE, TN	26 WASHINGTON, DC					
	07 CARIBOU, ME	14 FRESNO, CA							

line 4: Contains the 12 clearness numbers (one per month) in D format in column intervals 1-6, 7-12, 13-18, etc. (skip for TMY2; unused for WYEC2, so can be just 1.0). See 1993 ASHRAE Fundamentals, p. 27.12.

Figure 31. Explanation of contents for INP file (Buhl, 1999)

line 5: Contains the 12 ground temperatures (one per month in F) in D format in column intervals 1-6, 7-12, 13-18, etc. (skip for TMY2). A value of -999 will flag the program to calculate the ground temperature using the method of Kusuda and Achenbach (ASHRAE Trans. 41 (1965) p. 61).

xxxviii

```
PACK
T_ABI 2008
TRY 13962 -999 6 32.4 99.7 30-BITSOLAR 4 20. 0.025 13
0.55 0.52 0.54 0.51 0.47 0.45 0.42 0.42 0.42 0.48 0.56 0.56
-999.
LIST
PACKED -999 -999 1 12
END
```

Figure 32. An example of TRY_INP file (Buhl, 1999)

2.10. TRY_OUT & TRY_BIN FILE

"TRY_out" files for 17 Texas stations are stored in M drive (M:\Weather files _ SB5\Weather files packing\2008\9_TRY_OUT). The file should be named as "TRY_XXX_2XXX.out" (i.e. "TRY_ABI_2008.out" in this case).

In order to obtain "TRY_out" file, DOE-2.1e simulation needs to be run. Figure 33 shows the process of packing weather file using DOE-2.1e simulation.

Figure 33. Process of packing weather file using DOE-2.1e simulation

After run the simulation, "TRY_XXX_2XXX.out" file (i.e. "TRY_ABI_2008.out" in this case) and "TRY_XXX_2XXX.bin" file (i.e. "TRY_ABI_2008.bin" in this case) are generated in "input" folder and "packed_dvf" folder, respectively.

REFERENCES

Baltazar, J-C., Haberl, J., Culp, C., Yazdani, B., Gilman, D. 2007. Procedures for the Integration of Complete Year Texas Weather Data Files for eCalc-Emissions Reduction Calculator. ESL-IC-07-11-44, Energy Systems Laboratory, Texas A&M University.

Buhl, F. 1999. DOE-2 Weather Processor. LBNL Simulation Research Group. < <u>http://simulationresearch.lbl.gov/dirun/2001weath.pdf</u>>

Long, N. 2006. Real-Time Weather Data Access Guide. National Renewable Energy Laboratory. <<u>http://apps1.eere.energy.gov/buildings/energyplus/pdfs/weatherdata_guide_34303.pdf</u>>

National Climatic Data Center (U.S.). <<u>http://www7.ncdc.noaa.gov/CDO/cdo</u>>

Texas Commission on Environmental Quality (U.S.) <<u>http://www.tceq.state.tx.us/cgi-bin/compliance/monops/site_photo.pl</u>>