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1 Introduction

Surely many different factors have contributed to why Donald Trump won the 2016 U.S.

presidential election. While consulting the 2016-2018 archives of renowned American

newspapers provides broad background and in-depth review, the literature on the 2016

U.S. presidential election appears very sparse to date. Yet understanding this election

is not just important because it obviously drives U.S. climate policy and land use. It

also is important because it reflects U.S. climate policy and land use. One of the factors

underlying the election outcome, so this paper argues, is U.S. cities’ shapes. These shapes

shape the effects that policies towards carbon have on the electorate.2

Everything else equal, voters must have been eager to reject taxing carbon in metro

areas shaped like Detroit, where an increase in commuting costs likely dominates any

concomitant rise in real estate value. And they must have been willing to support taxing

carbon in metro areas like New York, where rising real estate values may exceed commuting

cost increases. Taxing carbon would have been a decision that befitted Hillary Clinton

(who appeared concerned about global warming) but was unlikely under Donald Trump

(who declared climate change a hoax and, lest voters overlook this, professed an affinity to

coal). To rephrase, and at some risk of oversimplification, “sprawling” cities should have

voted for Donald Trump, whereas “compact” cities should have voted for Hillary Clinton.

This is an urban landscape based explanation that relies neither on city size nor on density.

Instead it builds on the independent notion of city shape. City shape predicts the extent

to which resident-landlord-voters divide into centrists and decentrists. Centrists own their

average property near the city center. Centrists welcome an increase in carbon taxes

(because that makes central properties more attractive). Decentrists’ properties on average

lie close to the periphery. Decentrists oppose any increase in a carbon tax (since their

properties become less attractive as commutes get more expensive). We provide estimators

of either group’s relative size, and then use sample estimates as novel regressors in a panel

regression of the metro area voter share Clinton took, over and beyond size and density.

The idea that climate change denial may appeal to a fraction of the U.S. electorate for

2And since these shapes are bound to change only little over time, they may shape future elections, too.
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geographical reasons is not new. Florida (2016) has raised the possibility that sprawl

may have contributed to Hillary Clinton’s defeat. And Holian/Kahn (2015) have pointed

to suburban living’s vulnerability to carbon cost increases. According to Holian/Kahn,

suburban living – meaning bigger cars and larger homes – entails a higher cost of com-

plying with higher taxation of carbon or stricter carbon regulation. Our “centrist” and

“decentrist” shares give quantitative meaning to notions of “sprawl” (Florida (2016)) or

“suburban living” (Holian/Kahn (2014)). They are reflections of city shape (Dascher

(2019)), and are politically relevant. And they may even be estimated, by LP techniques.

Centrists and decentrists reveal themselves by where they own, not by where they live,

and public data on landlords’ individual housing portfolios are rarely ever available. By

all means, true numbers of centrists and decentrists are unobservable. As this paper

and its companion paper (Dascher (2019)) argue, this is where we should exploit the

information embodied in the city’s observable spatial structure. A careful look at the

distribution of population across city rings will reveal bounds on the true numbers of

centrists and decentrists. It is true that there are many ways in which landlords’ various

properties throughout the city may combine (i.e. in which landlords are matched with

their tenants). And yet – unobservable – centrists and decentrists must still be consistent

with the – observable – distribution of housing across the city’s rings.

Let us briefly illustrate this simple principle. In a city with a large share of population

or housing near the periphery, say, there cannot be many centrists. There simply are not

many central properties that could induce their owners to behave centrist. Conversely, in

a city with a large share of population or housing near the center, there cannot be many

decentrists. There simply are not many peripheral properties that could motivate their

owners to identify as decentrists. This simple and intuitive idea informs the entire paper.

We are unable to compute true centrist or decentrist numbers. But we are able to bound

them. We will derive lower (and upper) bounds on unobservable centrists and decentrists

from the observable spatial distribution of the city’s population.

These bounds will have five properties. First, they turn out to be formulas (and simple

ones). They are general functions of the spatial distribution of housing. Second, these
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Figure 1: Minimum Centrist Share in U.S. metro areas in 2010.

bounds will never overestimate their corresponding true – centrist or decentrist – number.

They are lower bounds. They provide us with conservative estimates of centrists and

decentrists. Third, these bounds will never underestimate centrists’ or decentrists’ true

numbers by “too much”. They are greatest lower bounds. They provide us with efficient

(not unnecessarily small) estimates only. Fourth, these bounds mirror the city’s physical

shape (Dascher (2019)). Finally, and fifth, these bounds must matter to controversial

urban issues beyond carbon taxation, too (e.g. such as decentralization).

Bounds on centrists and decentrists matter in the following sense: Should the share of

minimum centrists exceed one half of the electorate, then centrists (and their centrist

agenda) can be inferred to prevail. Vice versa, if the share of minimum decentrists exceeds

one half of the electorate, then decentrists’ cause wins. And even if neither share attains

0.5, our concepts need not be mute. A given interest group’s likelihood to prevail should

still be increasing in its, and decreasing in the opposing group’s, minimum share. We

compute minimum centrists and decentrists for all metro areas, and then employ sample

estimates as extra regressors in various specifications of the Democratic vote share.

Fig. (1) displays the minimum share of centrists across metropolitan areas for 2010.3

The figure’s choropleth map (which best is viewed on screen) gives a flavor of why city

3Our empirical analysis makes use of a U.S. Census data set on “population by distance from the city
center” for 2000 and 2010 and all U.S. metro areas, see Wilson (2012).

3



shapes may have contributed to why Donald Trump won. Metropolitan areas on the West

coast as well as the northern part of the East coast exhibit consistently higher minimum

centrist shares than interior areas do; and interior metro areas (sometimes derided as

“flyover country”) often exhibit minimum centrist shares smaller than those in coastal

metros. Fig. (2) also shows the minimum share of decentrists. While there are interior

metros where decentrists are not very strong, decentrists are rarely strong along the two

ocean coasts. Both maps coincide remarkably well with the well-known electoral map of

the 2016 presidential election.

Republican and Democratic party platforms began to strongly differ only as recently as

2016. In 2016 the Republican party stated that “We oppose any carbon tax” (“Republican

Platform 2016”, p. 20); while the Democratic party (“Democratic Party Platform”, p. 27)

believed that “. . . America must be running entirely on clean energy by mid-century. We

will take bold steps to slash carbon pollution.” But in the 2008 presidential election the

two party platforms were almost indistinguishable. According to the New York Times

(August 1st, 2016),

“[t]he divide between the two parties over the issue [of climate change in the

fall of 2016, the author] is the widest it has been in the decades since it emerged

as a public policy matter. That is all the more remarkable given that during

the 2008 election, the Democratic and Republican positions on climate change

were almost identical.”

This suggests how to go beyond the map’s (purely cross-sectional) variation. We may

test our city shape explanation of why Donald Trump won from a “difference in differ-

ences” perspective, too, when comparing the 2008 and 2016 U.S. presidential elections.

When party platforms were almost indistinguishable (back in 2008), minimum centrist

and decentrist shares should have played no role. Yet when party platforms began to

recognizably differ on global warming (in 2016), metro areas with large minimum centrist

(decentrist) shares should have voted different from those with a zero such share. We will

find that these expectations at least in part are borne out in our panel data. Ultimately,

a metro area’s higher lower bound on decentrists – though not a smaller lower bound on
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Figure 2: Minimum Decentrist Share in U.S. metro areas in 2010.

centrists – has reduced Clinton’s local take of the vote. And Trump’s declaring climate

change irrelevant may – wittingly or not – have cost Clinton close to 280,000 votes.

The paper has seven sections. Sections 2 and 3 set out the basic framework for analyz-

ing centrists and decentrists. Section 4 provides a solution to minimizing centrists for a

given spatial city structure. Section 5 complements this with an analysis of minimizing

decentrists. Section 6 applies our centrist/decentrist distinction to the 2008 and 2016 U.S.

presidential elections. Sections 2 through 5 provide a rigorous theoretical foundation for

the empirical analysis. They should not be seen as auxiliary only. They provide results

that can stand on their own. Section 7 concludes.

2 Landlord-Tenant Matching

Monocentric City. A closed and monocentric city (as pioneered by Wheaton (1973),

Pines/Sadka (1986) and Brueckner (1987)) juts r̃ units of distance out from the CBD

(with r̃ determined shortly). Commuting costs for a resident living at distance r from the

CBD are tr. Ricardian rent q follows q(r) = t(r̃ − r). The city’s overall population is s,

and the urban wage is w. Residents consume one unit of housing. Housing is built by

profit maximizing investors. One unit of capital k combined with one unit of land yields

h(k) units of housing, where h′ > 0 and h′′ < 0 (again, Brueckner (1987)).
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Housing. If p is the price of capital, investors choose k so as to satisfy the q(r)hk(k) = p

necessary for maximum profit. The optimal capital depends on rent q and price p, and so

can be written as k(t(r̃ − r), p). Let h(r) be shorthand for the building height obtained

for this optimal capital choice. Then the city boundary r̃ is determined by the condition

that the housing market clear,

∫ r̃

0

a(r)h(r) dr = s, (1)

where a(r) is land available in a ring of unit width r units of distance away from the CBD.

Ratio a(r)h(r)/s, also written f(r), indicates the share of the population commuting

from within that ring to the CBD. Correspondingly, F (r) denotes the share of households

commuting r or less.4 Now divide the city into i = 1, . . . , n concentric rings of equal width

(n even) around the CBD, with n large enough to justify treating rent, building height,

commuting times etc. as identical across ring i’s plots. Housing in ring i is app. f(ri)s.

We set f(ri)s = bi, to conform with the LP notation introduced shortly.5

Ownership. Traditional urban modeling has residents own urban housing jointly or treats

landlords as absentee. Yet we want to avoid both the traditional “common ownership” or

“absentee landlord” setup, lest we assume away the important centrist/decentrist-contest

that is at the heart of this paper. We replace either assumption by dividing urban residents

in two resident classes, resident landlords and tenants. Each landlord owns one unit of

housing (an “apartment”) that he resides in himself as well as another apartment that he

rents out. These two apartments, to be sure, do not need to locate in the same ring.6

Realistically, information on any given landlord’s two individual properties must be treated

as private. And so we cannot say whether this landlord is a centrist or a decentrist.

But (unknown) match matrix X = (xij) collects the frequencies with which the various

possible matches between landlords and tenants occur, with row i (column j) indicating the

landlord’s (tenant’s) location. Centrists (decentrists) are those landlords whose average

property is closer to (further away from) the center than half the distance from the CBD

4We assume a is continuous in r. As h is (differentiable and hence) continuous in r, so is f .
5We will also refer to f(ri) or f(ri)s as the city’s shape, following terminology introduced in

Arnott/Stiglitz (1981).
6Surely there are many other, often more complex, ways to introduce (i) resident landlords with their

(ii) tenants into the city.
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to the city boundary, r̃/2. Hence centrists are those for whom

(ri + rj)/2 < r̃/2 (2)

or, equivalently, i + j − 1 < n.7 An analogous condition applies to decentrists.8

Now, a carbon tax raises the cost of commuting a mile, from t to t′ > t. Consider a

landlord who lives in a property in ring i (and hence has commuting cost tri), and rents

out another to a tenant in ring j (and so receives t(r̃ − rj)). Her (net) income becomes

w + 2t(r̃/2 − (ri + rj)/2). Whether or not she will welcome the increase in t will clearly

depend on whether or not her average property distance from the center (ri + rj)/2 is less

than r̃/2, i.e. on whether or not she is a centrist. And so our centrist/decentrist distinction

just coincides with the distinction between those who vote for Clinton and those who vote

for Trump.

Matching. The previous inequality suggests that centrists (decentrists) are to be associ-

ated with entries of X that are located strictly above (below) its counter diagonal, i.e. the

diagonal that stretches from X’s bottom left corner to its top right one. Moreover, being

a centrist (or decentrist) does not depend on which apartment is the owner-occupied one,

i or j. We may conveniently suggest that landlords always occupy the ring that is closer

to the city center. And so with i ≤ j, X becomes upper triangular. Now, to capture

the overall number of households inhabiting ring i we need to sum over all of X’s entries

in both, row i and column i. The resulting sum must equal ring i’s available stock of

apartments, bi. And so ring i’s housing constraint reads
∑n

j=1(xij + xji) = bi.

Linear Program. Summing over all centrist-related entries in X gives
∑n−1

i=1

∑n−i
j=1 xij ,

the true, yet unknown, number of centrists, lc. Contrast this with the smallest number of

centrists conceivable, lc. That latter number bounds the true number of centrists lc from

below. To identify lc, we minimize the number of centrists given ring housing constraints

and the non-negativity requirements xij > 0. This translates into the following linear

7This follows from assuming that residents in ring i commute distance (i − 0.5)r̃/n.
8Note that even as decentrists have properties closer to the city extremes, “extremists” probably is not

a better term. – Jacobs (1961) and Breheny (2007) also use the term “decentrists”, though with a very
different meaning. For Jacobs, decentrists are those early 20th century urban and regional planners such
as Lewis Mumford, Clarence Stein, Henry Wright and Catherine Bauer, who advocated “thinning out large
cities” by dispersing their “enterprises and populations into smaller, separated cities or, better yet, towns”
(p. 19).
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program

min
xij

n−1∑

i=1

n−i∑

j=1

xij s.t.
n∑

j=1

(xij + xji) = bi (i = 1, . . . , n)

xij > 0 (i, j = 1, . . . , n), (3)

analysis of which is the focus of the next two sections.

3 The Minimum Share of Centrists, in Two Specific Cities

We run two eight-ring city examples on how to solve the linear program (3) next. These

are examples to offer some intuition on how a feasible, and even optimal, solution to linear

program (3) plays out. But in fact they are much more than just examples. They motivate

a trial solution that later will generalize to any given city.

Example City 1. Our first city has “city shape” b = (38, 36, 30, 10, 12, 8, 4, 2). To this

city, matrix X1 in (4), in highlighting eight non-zero entries, suggests one basic feasible

solution.9 We briefly illustrate feasibility. Adding up all entries in row 1 and column 1,

for instance, gives 20 + 18 = 38 or b1, while adding up all entries in row 7 (consisting of

zeros only) and column 7 gives just 0 + 4 or b7. Our feasible solution here displays one

feature that we might expect of an optimal solution, notably that (4) assigns the maximum

possible weight to entries on the counterdiagonal (in red on screen). This forces centrists’

numbers down as best as we can. We get x18 = min{b1, b8} = 2. Similarly, x27 = 4,

x36 = 8 and x45 = 10.

Put differently, whenever possible we allocate a peripheral apartment in some given outer

ring j, 5 6 j 6 8, to a proprietor who owns her other, second apartment in corresponding

inner ring 9 − j. This must be a necessary property of a centrist-minimizing allocation.

(Suppose that X1 violated this property, i.e. suppose x18 = 1 < 2 = min{38, 2}. Since

there are no apartments, anywhere, capable of successfully turning a landlord in ring

1 – someone who would otherwise be a centrist – into a decentrist, an opportunity to

reduce centrists would have been irrevocably wasted.) At the same time, of course, not all

9Here, as well as in all other match matrices below, entries with no explicit number attached equal zero.

8



apartments in a given peripheral ring j may be assignable to a landlord in corresponding

ring n − j + 1. In ring j = 5, for example, only 10 out of 12 apartments are.

There are (b1 −b8) = 36 apartments in ring 1 still waiting to be allocated, as are (b2 −b7) =

32 apartments in ring 2 and (b3 − b6) = 22 apartments in ring 3. We apportion these

remainders to landlords owning both their properties within the same ring. Since any

match on the main diagonal accounts for two apartments, we set x11 = (b1 − b8)/2 = 18,

x22 = (b2 − b7)/2 = 16 and x33 = (b3 − b6)/2 = 11 (all blue on screen). Note that x44 = 0,

given that x45 = 10 already and that row 4 and column 4 must add up to b4 = 10. It

remains to balance housing in ring 5, by setting x55 to 1 (brown on screen). – Now,

invoking the simplex algorithm would reveal that the solution set out in (4) above not

just is feasible but also: optimal.10 Instead of going through these details here, we offer a

systematic treatment below (in the following section).

X1 =




18 0 0 0 0 0 0 2
16 0 0 0 0 4 0

11 0 0 8 0 0
0 10 0 0 0

1 0 0 0
0 0 0 0

0 0
0




(4)

We conclude that the trial number of centrists suggested by (4) also is the minimum

number of centrists given the specific city shape b in hand. Adding up these centrists

is simple enough. We merely need to collect the few non-zero entries found above the

counterdiagonal. These are conveniently located on the upper half of the main diagonal

(blue on screen). This gives
∑

3
i=1(b1 − b9−i)/2 or 45 minimum centrists. Minimum cen-

trists’ share in city population becomes 45/140. Computing minimum centrists provides

valuable information here. It is not possible for the true number of centrists to fall short

of 45. But it is quite possible – if not utterly likely – for the true number of centrists to

surpass 45. Of course, the latter likely occurs should true matches deviate from one of the

optimal solutions.

10It is not, however, a unique optimal solution. For example, letting any landlord trade apartments with
her or his tenant would generate another optimal solution.
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Example City 2. Our second example city exhibits housing stocks described by “city

shape” b = (38, 14, 30, 10, 12, 8, 26, 2). We take an important step towards generalization

by introducing the concept of ring difference δi now, where δi = bi − bn+1−i is the number

of apartments in “leading” ring i minus that in “lagging” or “antagonist” ring n + 1 − i.

It is defined for 1 6 i 6 4. In our second example city, δi is positive for i equal to 1 or 3

(since there we have a “surplus”) and it is negative if i equals 2 or 4 (because then there is

a “deficit”). Contrast this with our first example city, where all first three ring differences

are positive.

True to our strategy of emphasizing the counterdiagonal, feasible solution X2 in (5) assigns

as many apartments as possible in lagging rings to owners in corresponding leading rings.

And because we have a surplus in rings 1 and 3, for these rings this works just fine.

All apartments in rings 8 and 6 can be assigned to landlords living in rings 1 and 3,

respectively. And while this works less well for apartments in lagging rings 5 and 7,

remaining apartments are not always lost on us. Ring 2’s deficit (of −(b2 − b7) = 12),

for instance, we may “save up for”, or “post to”, the next best successive ring boasting a

surplus. In our example, this is ring 3 (where b3 − b6 = 22). The 12 apartments reflecting

ring 2’s deficit can valuably be employed to offset the better part of ring 3’s surplus.

And so we set entry x37 in X2 to b7 − b2, or 12 (green). Intuitively, the 12 ring 7-

apartments not assignable to ring 2-landlords now are assigned to landlords in ring 3, to

at least turn those off centrism. Note that the same is not possible to do with the ring

deficit arising in ring 4. There simply are no later rings. – Everything else parallels our

discussion of the first example. We balance the first three rings’ housing constraints by

setting x11 = (b1 − b8)/2 = 18, x22 = 0 and x33 = (b3 − (b6 + (b7 − b2)))/2 = 5. Again,

moreover, the basic feasible solution, set out in (5), also is the optimal one. Minimum

centrists are found to sum to 23, if only to see their share in the overall total attain a mere

23/140.
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X2 =




18 0 0 0 0 0 0 2
0 0 0 0 0 14 0

5 0 0 8 12 0
0 10 0 0 0

1 0 0 0
0 0 0 0

0 0
0




(5)

Review. What can be learned from these two examples? We have seen that in both cities

minimum centrists may be written as the cumulative sum of the first three ring differences,

∑
3
i=1(b1−b9−i)/2. This is true even as δ2 is positive in the first example city while negative

in the second. But why does it make sense to include δ2 in either example? The answer is

this: On the one hand, including δ2/2 in the cumulative sum when positive acknowledges

the fact that (b2 − b7)/2 landlords in ring 2 cannot be turned away from centrism. On

the other hand, including δ2/2 in the cumulative sum when negative acknowledges the fact

that (b7 − b2)/2 landlords in ring 3 can (be turned off centrism).

We must also wonder about why
∑

3
i=1(b1 − b9−i)/2 excludes δ4/2. In particular, why is

negative δ4/2 not included in the second city’s cumulative sum when negative δ2/2 is?

Following our previous intuition, there is no need to “save” ring 5 apartments for later

because there are no later surpluses to “swipe away”. The only remaining ring that could

possibly feature a centrist landlord is ring 4. Yet here δ4’s negative sign indicates that

the planner can already afford each landlord in ring 4 a ring 5-apartment that successfully

counters that landlord’s initial impulse to “go centrist”. And with no further centrists to

collect in the fourth ring, our cumulative sum should: stop short of it.

Tentative Ideas. Two ideas emerge from this: (i) Minimum centrists can be represented

as a cumulative sum of successive ring differences. (ii) Successive ring differences should

enter that cumulative sum if they are positive. And they should even enter the cumulative

sum if they are negative, as long as they can help “wipe out” subsequent positive ones.

Negative ring differences should be included if and only if they are followed by positive ones

at least equal in size. I.e., the cumulative sum should include successive ring differences as

long as this helps raise the cumulative sum. Equivalently, to minimize centrists we must

maximize the cumulative sum of ring differences. We will return to this equivalence in a
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moment, when generalizing our examples (in the next section).

4 The Minimum Share of Centrists, Anywhere

Primal vs. Dual Program. We allow for any n × 1 vector of ring housing stocks b =

(b1, . . . , bn) now, except for ruling out any bi to equal zero. We then put the corresponding

linear program (3) into standard form. We first stack all n columns of X into one long

(n2 × 1) vector x. This gives x′ = (x11, . . . , x1n, . . . , xn1, . . . , xnn). To address the

objective function in (3) in matrix notation, let ci equal an n × 1 vector consisting of ones

only except for the last i entries, which are zero instead. For example, c3 is a list of n − 3

ones followed by three zeros, i.e. c′

3 = (1, . . . , 1, 0, 0, 0). Define an n2 × 1 list of weights c

by setting c′ = (c′

1, . . . , c′

n). Then our objective function
∑n−1

i=1

∑n−i
j=1 xij can be cast as the

product c′x.

Next, let τi denote an n × 1 vector featuring 2 in its i-th row and 1 in all other rows.

For example, τ ′

2 = (1, 2, 1, . . . , 1). Moreover, let Ji denote what becomes of the n × n

identity matrix once row i has been replaced with τ ′

i . Then the coefficient matrix A is

A = (J1, . . . , Jn); it is of dimensions n × n2. The tableau in Table (1) illustrates A in its

bottom left part. This table also indicates our specific vector of objective function weights

c (in its first row) as well as the vector of ring housing stocks b (last column).11

1 1 1 1 . . . 1 0 . . . 1 0 0 0 . . . 0 0

2 1 1 1 . . . 1 1 . . . 1 0 0 0 . . . 0 0 b1

0 1 0 0 . . . 0 0 . . . 0 1 0 0 . . . 0 0 b2

0 0 1 0 . . . 0 0 . . . 0 0 1 0 . . . 0 0 b3

... . . .
...

...
0 0 0 0 . . . 1 0 . . . 0 0 0 0 . . . 1 0 bn−1

0 0 0 0 . . . 0 1 . . . 1 1 1 1 . . . 1 2 bn

Table 1: Matrix A, objective function weights c and housing stocks b

With this extra notation in hand, linear program (3) may equivalently be stated as minx c′x

subject to Ax = b and x > 0, where the equality constraints may also be read off Table

(1)’s rows. This program’s dual is maxy y′b such that y′A 6 c′, where y is the dual’s (n×1)

11As inspection of A makes clear, ours is not a transportation problem (e.g., as defined in Hadley (1963)).
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vector of unknowns, y′ = (y1, . . . , yn). Table (1) also indicates the dual’s constraints;

these can be read off its columns. For instance, the constraint complementary to x11 being

strictly positive simply is 2y1 6 c11 = 1 (see first column in Table (1)).

Rather than immediately analyze the general case, we focus on a seemingly special case

first. This case allows us to best connect with the principles that emerge from our discus-

sion of the two example cities (section 3). To address this special case, let us introduce the

partial cumulative sum ∆(i) =
∑i

j=1 δj/2. This sum cumulates successive ring differences

δj up to ring i, where of course i 6 n/2. And let index i∗ be the index that maximizes

this cumulative sum, i.e.

i∗ = arg max
i

i∑

j=1

(bj − bn+1−j)
/
2. (6)

Our point of departure on the way to the fully general solution is a city for which (i)

∆(i∗) > 0 and (ii) all ring differences δi are negative except when i = i∗, when δi∗ > 0.

Trial Solution. We set out a basic feasible solution to the primal problem next. Table

(2) shows X in tabular form and may be a useful reference as we go along. Again, entries

of X never addressed are zero. Moreover, also note the formal resemblance between Table

(2) on the one hand and matrices X1 and X2 on the other. Now, we begin by considering

the elements on the counterdiagonal of match matrix X. Here we set (red on screen)

xi,n+1−i = min {bi, bn+1−i} (i = 1, . . . , n/2). (7)

Given our sign assumptions regarding the δi, this entails setting all entries x1,n “up” to

xi∗
−1,n+2−i∗ , and again from xi∗+1,n−i∗ to xn/2,n/2+1, equal to the leading ring’s stock, bi.

Only xi∗,n+1−i∗ becomes the lagging ring’s stock, bn+1−i∗ . Note how this assignment makes

as many owners of property in leading rings (voters who otherwise likely are centrists) as

possible disavow centrism.

Moreover, set (green on screen)

xi∗,n+1−i = (bn+1−i − bi) (i = 1, . . . , i∗ − 1). (8)

Note that the expressions on the r.h.s. represent ring deficits. Deficits originating in rings

prior to i∗ are posted to leading ring i∗, as the earliest next ring offering up an excess.
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Ro./Co. 1 i∗ n/2 + 1 n − i∗ n

1 0 x
1,n

. . . . .
.

0

0 x
i∗

−1,n+2−i∗
0 0

i∗ x
i∗,i∗

x
i∗,n+1−i∗

x
i∗,n+2−i∗

. . . x
i∗,n

0 x
i∗+1,n−i∗

. . . . .
.

n/2 0 x
n/2,n/2+1

n/2 + 1 x
n/2+1,n/2+1

. . .

n − i∗ x
n−i∗,n−i∗

0

0
. . .

n 0

Table 2: Non-Zero Elements in Basic Feasible Solution

“Apartment savings” originating in rings up to i∗ then are matched up with apartments in

ring i∗. This generalizes how we proceeded earlier when setting x37 equal to 12 in example

city 2.

Next, let (blue on screen)

xi∗i∗ =
(
bi∗ −

(
bn+1−i∗ +

i∗
−1∑

k=1

(bn+1−k − bk)
))/

2, (9)

or ∆(i∗). At first sight nothing seems to preclude xi∗i∗ from being strictly negative,

in contradiction to primal variables’ non-negativity constraints. However, recall that i∗

maximizes the cumulative sum of ring differences. And so
∑i∗

j=1 δj/2 > 0, i.e. a non-

negative number. And note that this latter number just coincides with the r.h.s. of

(9). Put yet differently, ring excess δi∗ is more than sufficient to offset the ring deficits

δk associated with, and inherited from, all the rings prior to i∗. And so xi∗i∗ really is

non-negative.

At last we set (brown on screen)

xn+1−i,n+1−i = (bn+1−i − bi)/2 (i = i∗ + 1, . . . , n/2). (10)

Ring deficits originating in rings following i∗ are relegated to main diagonal elements

below the counterdiagonal, to the desirable effect of contributing nothing to the number
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of centrists. Note how equations (7), (8), (9) and (10) set out a feasible solution of the

primal.

Complementary Slackness. We invoke complementary slackness between the primal

and the dual. For i = 1, . . . , n/2, entries on the counterdiagonal xi,n+1−i are strictly

positive (see (7)), as is the main diagonal element xi∗i∗ (see (9)). By complementary

slackness, the corresponding constraints of the dual – read off the corresponding columns

of Table (1) – must be met with equality, and so

yi = − yn+1−i (i = 1, . . . , n/2) and yi∗ = 1/2. (11)

These equations specify the weights on ring housing stocks bi in the dual’s objective.

For i = 1, . . . , i∗ −1, entries xi∗,n+1−i are strictly positive, too (see (8)). Again, by comple-

mentary slackness, corresponding constraint inequalities in the dual become binding. And

so, according to Table (1), yi∗ = −yn+1−i. Combining this with yn+1−i = −yi and the

fact that yi∗ = 1/2 (see (11)) gives the first set of equations in (12). At last we make use

of equations (10). For i = i∗ + 1, . . . , n/2, constraint (in)equalities translate into yi = 0.

Joint with the first set of equations in (11), this in turn implies the second set of equations

in (12):

yi = 1/2 (i = 1, . . . , i∗ − 1) and yi = 0 (i = i∗ + 1, . . . , n − i∗). (12)

Table (3) collects the full solution to equations (11) and (12), denoted ȳ and easily shown

to be feasible, too.

i 1 . . . i∗ i∗ + 1 . . . n − i∗ n − i∗ + 1 . . . n

ȳi 1/2 1/2 1/2 0 0 0 −1/2 −1/2 −1/2

Table 3: The dual’s optimal solution

Basic Feasible Solution is Optimal. Let us now put together feasibility and com-

plementary slackness, using standard reasoning in linear programming (Chvatal (1980),

Hadley (1963), Luenberger/Ye (2016)). First, feasibility of x̄ and ȳ implies b = Ax̄ and

ȳ′A 6 c′, respectively, and hence ȳ′b = ȳ′(Ax̄) = (ȳ′A)x̄ 6 c′x̄. Second, complementary

slackness implies (ȳ′A − c′)x̄ = 0 or (ȳ′A)x̄ = c′x̄. And so we may conclude that ȳ′b = c′x̄.
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This in turn implies that c′x̄ equals minimum centrists, and hence that x̄ solves (3). Of

course, if x̄ is optimal, then so is ȳ, justifying Table (3)’s title.

We compute the objective function values for primal and dual, providing a check on

optimality of x̄ and ȳ as well as, of course, the desired minimum number of centrists

itself. On the one hand, summing over all entries above the counter diagonal the objective

function value in the primal gives xi∗i∗ as on the r.h.s. of equation (9). But then:

lc = ∆(i∗) = max
i

i∑

j=1

(bj − bn+1−j)
/
2. (13)

On the other hand, computing the sum of ring stocks using the optimal weights in (11) and

(12) yields the very same formula, i.e.
∑i∗

j=1(bj − bn+1−j)/2. This formula represents the

optimal value of both primal and dual. And so it also represents the minimum conceivable

number of centrists. We briefly pause to appreciate its generality: the greatest cumulative

ring difference gives a universal closed form solution for minimum centrists. It provides

an observer of an arbitrary given city with a prediction of centrists’ minimum.

Our proof is for a city whose ring differences, with the exception of δi∗ , are all negative (also

see the first two rows in Table (6) in the Appendix). The Appendix shows how the proof

quickly generalizes. Subsections 9.2 through 9.4 show that our results in essence remain

unchanged as some, or even all, ring differences exhibit an arbitrary sign. Formula (13)

remains valid throughout. This is quite straightforward since also accounting for positive

ring differences (Appendix) is simpler than accounting for negative ones (this section):

witness solution X1 as opposed to X2 (in section 3). Now, translating minimum centrist

numbers in formula (13) into minimum centrists’ share in all landlords, by dividing ∆(i∗)

by s/2, gives the following variant of this result:

Proposition 1: (Greatest Cumulative Ring Difference and Centrists)

Centrists’ minimum conceivable share of the landlord population, λc, is given by the great-

est cumulative ring difference, λc = maxi
∑i

j=1

(
bj/s − bn+1−j/s

)
.

Proposition 1 extends Dascher (2019), where λc is introduced a mere lower bound to

centrists’ true number. We here add that λc even is the greatest lower bound (because it
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is the minimum). This makes us more confident to work with λc empirically (section 6).

5 Centrists vs. Decentrists

Minimum Decentrists. We bring in decentrists now. Intuitively, where before we

have used bn+1−i to “swipe away” or “swamp” potential centrists in i (as best as we

could), conversely we now use bi to “swamp” decentrists in n + 1 − i (as best as we

can). Applying a proof similar to that in section 4 (omitted for brevity), we find that

minimum decentrists correspond to: minus the least cumulative ring difference. That is,

if i∗∗ = arg maxi
∑i

j=1(−(bj − bn+1−j))/2, then minimum decentrists ld are equal to

ld = −∆(i∗∗) = − min
i

i∑

j=1

(bj − bn+1−j)
/
2 . (14)

Translating this number into a share gives

Proposition 2: (Least Cumulative Ring Difference and Decentrists)

Decentrists’ minimum conceivable share of the landlord population, λd, is given by minus

the least cumulative ring difference, λd = − mini
∑i

j=1

(
bj/s − bn+1−j/s

)
.

Upper Bounds. We quickly turn lower bounds in Propositions 1 and 2 into corresponding

upper bounds. Subtracting centrists from overall landlord population s/2 gives the sum of

decentrists and indifferent landlords. This in turn is the sum of all elements of X strictly

below or on the counter diagonal. The following linear program looks for the maximum

sum of decentrists/indifferents:

max
xij

(
s/2 −

n−1∑

i=1

n−i∑

j=1

xij

)
s.t.

n∑

j=1

(xij + xji) = bi (i = 1, . . . , n)

xij > 0 (i, j = 1, . . . , n). (15)

Comparing linear programs, clearly the maximizer to (15) coincides with the minimizer

to (3). But this implies that s/2 − lc is the maximum conceivable number of decen-

trists/indifferents. And so s/2 − lc is an upper bound to decentrists only (Proposition,

Part (ii)). A similar argument suggests that s/2 − ld, where ld is the minimum number of

decentrists, is an upper bound to centrists (Proposition 3, Part (i)).
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Proposition 3: (Upper Bounds on Centrists and Decentrists)

(i) λc is bounded from above by 1 − λd. (ii) λd is bounded from above by 1 − λc.

We adopt a random voter turnout perspective, as in Brueckner/Glazer (2008). Let the

(carbon tax) policy’s probability of electoral success π be an increasing (decreasing) func-

tion of the centrist share λc (decentrist share λd). More specifically, π = G(λc, λd) with

partial derivatives G1 > 0 and G2 < 0. This we combine with the additional (plausible

yet by no means forceful) assumption that λc is increasing in λc, and that λd is increasing

in λd. This implies π = G(λc, λd), again with partial derivatives G1 > 0 and G2 < 0. We

then consider the linearized version of

Empirical Model of Voting on a Carbon Tax:

The probability of the carbon tax proposal’s electoral success π is increasing (decreasing)

in centrists’ (decentrists’) minimum share in the electorate λc (λd).

It is true that centrists and decentrists constitute only half of the electorate. Tenants, as

the other half, see their real income dwindle as the urban cost of living tr̃ rises. At the

same time, there are extra benefits to taking t to t′. Taxing urban commutes helps fight

global warming (as the city structure defined in (1) gradually adapts over time) or at the

very least provides a psychological benefit. Taxing urban commutes also generates tax

revenue, part of which might be redistributed to the electorate.

6 US Metropolitan Areas and Presidential Election 2016

During the campaign for the 2016 U.S. presidential election, Donald Trump certainly was

the candidate more prone to side with those who reject a carbon tax. At the same time,

Hillary Clinton was the one more likely to raise the cost of carbon consumption.12 Clinton

appears to have been centrists’ favorite candidate, Trump must have been decentrists’

favorite. We compute Clinton’s share in all votes cast in support of either Clinton or

Trump using Dave Leip’s data set on the 2016 U.S. presidential election.13 Table (10) (in

12Following the New York Times during the campaign suggests as much. For example, see “Climate
Change Divide Bursts to the Forefront in Presidential Campaign”, New York Times August 1st, 2016.

13This dataset provides votes at the county level. We aggregate these data for metropolitan areas.
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the Appendix) illustrates Clinton’s share in the overall vote.14 Consulting the distribution

of the Democratic vote share for the election in 2016 shows that in half of all metro areas

Clinton captured no more than 43% of votes cast for either herself or Trump. Of course,

the metro areas in which Clinton did not do well are also those that are populated less,

and so this observation is consistent with Clinton winning the overall popular vote.

The 2016 Presidential Election. Data on population, as well as population-weighted

densities, by distance (in miles) from the city center are provided by the U.S. Census

Bureau (Wilson (2012)) for all U.S. metropolitan areas and years 2000 and 2010. We first

exploit these data for year 2010, i.e. a year predating the 2016 election by six years. These

data are ideally suited to the purposes of this paper.15 We define the city boundary as

the index of the last ring exhibiting a population weighted density of greater than 500.16

Given this boundary we compute bounds λc and λd for every metro area in 2010 (as

outlined in Propositions 1 and 2). Table (10) sketches our bounds’ distributions. In more

than three fourths of all metro areas does the minimum share of centrists fail to cross the

0.5-threshold. Nor can decentrists claim to be decisive often. Three fourths of metro areas

exhibit a minimum decentrist share of 12% or less.

Figure (3) provides some extra illustration, in mapping the distance of four large metro

areas’ rings from the metro area center into rings’ housing shares b/s. This figure also

shows corresponding lower and upper bounds on centrist shares, i.e. λc and 1 − λd. Not

all of these barcharts conform with intuition. Phoenix may be sprawling, and Boston may

be compact at the center, yet corresponding metro areas exhibit comparable minimum

centrist shares, of 45% and 44%, respectively. As the barcharts show, very different city

shapes can conceal, or give rise to, very similar minimum centrist shares. We also see that

commuting densities for Houston and Detroit are much less amenable to centrism, and for

Detroit we may even state that at best 99% of all landlords could be centrist. We also note

14This Table also has descriptive statistics on all other variables discussed below, for both of the years
(2008 and 2016) of the full data set analyzed later.

15Model and data set properties certainly do not even agree roughly. Metro areas clearly are far from
monocentric (Glaeser/Kahn (2004)). Moreover, neither will tenants constitute exactly one half of the
population, nor will housing ownership be evenly distributed across landlords. (Yet again, considering
everyone a homevoter (as is sometimes done) seems even less appropriate.)

16However, the first ring was included even if that ring’s weighted density fell below 501. Also note that
for some 30 metro areas, one or more variables are missing, and so these observations were dropped.
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Figure 3: Population by Distance from Center and Bounding Centrists

that metropolitan areas whose commuting densities are more skewed to the right tend to

house more centrists.

With the simplest possible specification (the linear probability model) in mind, we next

regress Clinton’s share of votes on both our bounds (computed for 2010) as well as (i) the

share of whites in metro population (in 2016), (ii) average income (2016), (iii) the share

of those who completed a bachelor’s degree in metro population (2016, (iv) metro area

size population (2016) and even (v) metro area average population density (available for

2010).17 We use the share of whites to capture Trump’s resonance among white voters,

average income to address a lack of taste for redistribution, we use bachelor degrees to

proxy for voters’ resilience against populist slogans as well as metro size and urban density

to capture minorities’ greater attraction to larger, and denser, urban areas.

17These five covariates closely follow the early discussion in Florida (2016). Data on average income by
metro area are from 2016 and were retrieved from the Bureau of Economic Analysis. Data on bachelor
degrees in metro areas relate to those who are 25 years or older and are from the American Community
Survey’s “Educational Attainment Package” for 2016. Data on metro size, metro average density and
whites in total population are provided by U.S. Census Bureau.
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(1) (2) (3) (4) (5) (6)

ShareMinimumCentrists 0.174∗∗∗ 0.156∗∗∗ 0.137∗∗ 0.143∗∗∗ 0.142∗∗∗ 0.011
(0.060) (0.058) (0.058) (0.051) (0.051) (0.048)

ShareMinimumDecentrists −0.200∗∗∗
−0.230∗∗∗

−0.228∗∗∗
−0.146∗∗

−0.145∗∗
−0.098∗

(0.073) (0.070) (0.069) (0.061) (0.056) (0.056)
ShareWhite − −0.326∗∗∗

−0.315∗∗∗
−0.378∗∗∗

−0.378∗∗∗
−0.351∗∗∗

(0.057) (0.057) (0.050) (0.053) (0.048)
MeanIncome − − 0.014∗∗∗

−0.011∗∗
−0.011∗∗

−0.018∗∗∗

(0.005) (0.005) (0.005) (0.005)
ShareCollege − − − 1.505∗∗∗ 1.501∗∗∗ 1.299∗∗∗

(0.153) (0.156) (0.143)
SizeMetro − − − − 0.001 −0.032∗∗∗

(0.012) (0.012)
DensityMetro − − − − − 0.006∗∗∗

(0.006)

R̄2 0.09 0.17 0.18 0.37 0.37 0.48
N 338 338 338 338 338 338

Table 4: OLS Regressions (Standard errors in parentheses)

OLS regressions (1) through (6) in Table (5) explore the role of minimum centrists and

decentrists for Clinton’s tally. Column (1) shows that a greater minimum share of centrists

increases Clinton’s share of votes, while a greater minimum share of decentrists decreases

it, and both estimates are significant (certainly at the 10 percent level; standard errors

are found in parentheses). For instance, observing minimum decentrists to go up by ten

percentage points permits us to roughly predict a 2.3 percentage point drop in Clinton’s

vote share. At the same time it is true that our bounds shed light on a tiny fraction of

the overall variation of Clinton’s performance across metropolitan areas only. We explain

more of this variation when adding the share of whites (see column (2)). This also leaves

our coefficient estimates for λc and λd largely unchanged. The same is true after also

including average income as an additional regressor, in column (3).

Column (4) also controls for the share of bachelor degree recipients among those who are

25 years or older, and column (5) adds metro area population. Coefficient estimates for λc

and λd continue to be significant here, too. Finally, also including average metropolitan

population-weighted density in column (6) at last has the estimate for λc turn insignificant,

while that for λd remains significant (at least at the 10% level).18 One possible interpreta-

18Coefficients for our controls are not our focus, but we nonetheless may briefly note that our estimates
of almost all of them (the exception being metro size) conform with what we would expect: A metro area
tends to vote more strongly for Clinton if it is (i) less white, (ii) poorer (less rich), (iii) more educated and
(iv) denser.
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tion of these results is that, incidentally, Donald Trump had nothing to lose from denying

climate change. On the one hand, denying climate change did not cost Trump any votes

in those metro areas where λc was larger (that variable’s coefficient must be zero). On the

other hand, denying climate change did give Trump additional votes in those metro areas

where λd was larger (this variable’s coefficient is negative).

Comparing 2008 and 2016 Elections. Metro areas certainly differ in more respects

from one another than just in those accounted for in Table (4). Such unobservable effects

may correlate with our observed explanatory variables.19 To address at least the possibility

of time-constant unobservables we extend our sample to year 2008.20 Regression (7) (in

Table (5)) reestimates our full specification adding metro area fixed effects. Coefficient

estimates for minimum centrist and decentrist shares have the expected signs, yet only

that for λc is significant. We next add a time fixed effect in regression (8) to account

for election idiosyncracies. This captures then FBI director James Comey’s decision to

reinvestigate Hillary Clinton’s emails, the emergence of the “Access Hollywood Tape” or

the “Christopher Steele file”, etc., all just weeks ahead of the election. This latter effect

is negative, and highly significant. Yet coefficients on our lower bounds turn insignificant.

As argued in the introduction, specification (8) may suffer from lumping two year-specific

slopes together when really they should be allowed to differ. As long as party positions

with respect to global warming were almost the same (which appears true for 2008),

minimum centrist and decentrist shares should have played no role. Yet as soon as party

positions started to differ (as was true in 2016), metro areas with large minimum centrist

(decentrist) shares should have begun to vote different from those with a zero such share.

To account for this issue, we include two interaction terms in column (9), interacting both

our lower bounds with the 2016 year dummy. Consulting Table (5), we find that coefficient

19This is why we refrain from modeling random effects below.
20U.S. Census Bureau data on “population by distance from the city center” are available for just one

more year, 2000. So we can only include one other election year. We need to choose between 2008 and
2012, both of which could reasonably be matched with U.S. Census data from 2000. We include the
data corresponding to the U.S. presidential election 2008, when the Republican and Democratic parties’
platforms on climate change resembled each other more. We add 2008 data on the share of whites, the
share of those with bachelor, mean income and population using exactly the same sources as for 2016. Data
on weighted population density as well as the data underlying minimum centrist and decentrist shares use
the U.S. Census Bureau data on 2000. Data on Democratic and Republican votes in the 2008 election once
more come from Dave Leip’s website.
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(7) (8) (9) (10)

ShareMinimumCentrists 0.084∗∗∗ 0.012 0.022 0.004
(0.019) (0.018) (0.020) (0.018)

ShareMinimumDecentrists −0.043 0.004 0.089∗ 0.073
(0.029) (0.026) (0.054) (0.047)

ShareWhite 0.262∗∗∗ 0.165∗ 0.174∗∗ 0.338∗∗∗

(0.093) (0.084) (0.084) (0.074)
MeanIncome 0.002 0.003 0.002 0.007

(0.005) (0.005) (0.005) (0.004)
ShareCollege −2.014∗∗∗

−0.449∗
−0.485∗

−0.044
(0.236) (0.269) (0.268) (0.237)

SizeMetro −0.144∗∗∗ 0.253∗∗∗ 0.246∗∗∗ 0.153∗∗∗

(0.040) (0.037) (0.037) (0.018)
DensityMetro 0.022 0.015 0.002 0.023∗

(0.015) (0.013) (0.001) (0.016)
Year16 − −0.046∗∗∗

−0.045∗∗∗ 0.129∗∗∗

(0.005) (0.007) (0.018)
ShareMinimumCentrists · Year16 − − 0.023 0.016

(0.024) (0.021)
ShareMinimumDecentrists · Year16 − − −0.075 −0.084∗

(0.054) (0.046)
ShareWhite · Year16 − − − −0.219∗∗∗

(0.021)

Metro Area Fixed Effects? yes yes yes yes

R̄2 0.20 0.26 0.26 0.31
N 673 673 673 673

Table 5: Fixed Effects Regressions (Standard errors in parentheses)

estimates for lower bounds are insignificant – as we should expect. Yet our estimates for

the interaction terms are insignificant also – contradicting our theory.

And then we may still have misspecified the empirical model. Arguably we should allow

regression slopes not just to differ across election years for minimum centrists and de-

centrists. They should be allowed to differ for the share of whites, too. The Republican

anti-immigration platform that had emerged by 2016 radically differed from that in 2008.

Column (10) accounts for Donald Trump’s appeal to white voters with an anti-immigrant

preference, by also interacting the share of whites with the 2016 year dummy. We find

the following. Not only is the corresponding coefficient estimate of the interaction term

strongly negative, and highly significant. Also, the negative coefficient estimate on the

interaction term for minimum decentrist share turns significant now (at the 10% level).

Suppose that one metro area had a minimum decentrist share in 2010 that was 10 per-

centage points higher than that of some other (otherwise identical) metro area. Then the

Democratic vote share would have been smaller, too, by 0.84 percentage points.
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Thought Experiment. We employ the column (10) result to carry out a simple thought

experiment. Multiplying our coefficient estimate of −0.084 by minimum decentrist share

λd
i in metro area i gives the drop in Clinton’s share of the vote in i caused by Trump’s

disavowing global warming. Multiplying by the total vote in that metro area and summing

over all metro areas with positive λd
i yields a predicted drop of 279,529 votes. It is in that

sense that the US urban landscape has interacted with Trump’s agenda to contribute

to Hillary Clinton’s defeat.21 Somewhat more explicitly, where in the earlier presidential

election John McCain and Barack Obama appeared to agree on the necessity of combatting

climate change, Donald Trump’s shifting away from this consensus and embracing the

climate sceptic’s position may have secured him the crucial extra vote that put him into

office.

7 Conclusions

This paper offers a centrist-decentrist perspective on the 2016 U.S. presidential election,

and suggests that denying climate change has helped Donald Trump win in 2016. It

also suggests that climate change may continue to divide American society. Because

housing is durable, today’s city shapes will persist into the future. We must expect the

rift between centrists and decentrists over future policy towards global warming to afflict

future elections, too. One remedy is to compensate sprawling cities – whose homeowners

are bound to lose from fighting global warming – for tolerating a carbon tax. Another is

to encourage planning for more compact cities. More compact cities not necessarily emit

less carbon (see Gaigne/Riou/Thisse (2012), Borck (2016)). But they are more likely to

embrace taxing it.

Going beyond U.S. presidential elections, we provide novel estimators of centrists and

decentrists. These estimators are highly general, and are simple to apply to any arbitrary

city. We suggest that conflicts between centrists and decentrists could help explain other

contested policies beyond carbon taxation, too. Examples include rationing central city

land, decentralizing retail, tightening building height limits, implementing minimum lot

21Florida (2016) appears to suggest as much when arguing that the share of those “who drive alone”, as
an indicator of sprawl, should reduce Clinton’s share of the vote.
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size, or introducing road tolls. To these policy fields this paper’s greatest lower bounds on

centrists and decentrists are readily applicable, too.
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9 Appendix

9.1 Cumulative Ring Difference

We introduce some extra notation first. Consider the cumulative sum ∆(h), for some h
between 1 and n/2. Suppose ∆(h) is preceded by some other cumulative sum ∆(g) that
is greater than it, i.e. ∆(h) < ∆(g) for g < h.22 Borrowing terminology established in the
context of the “Rising Sun Lemma” (Spivak (1994)), then we will say that the cumulative
sum up to, and including, ring difference h is “in the shadow of” the cumulative sum
up to, and including, ring difference g.23 Of course, there will be rings that are never
overshadowed. Among those, ring i∗, defined in equation (6), is the one exhibiting the
greatest cumulative sum, ∆(i∗). For the two numerical cities in section 3, to give an
example, i∗ = 3.

9.2 Not All Ring Differences Negative

In the main text we took the first step towards a fully general analysis. Our point of
departure was the city of the type spelt out in Table (6). The table header has the
ring difference index i, the second row provides ring difference δi’s sign, and the third row
indicates whether or not the corresponding cumulative ring difference ∆(i) is overshadowed
(• is a suggestive shorthand) or not (◦). As mentioned above, in this city all ring differences
both prior to i∗ and beyond i∗ + 1 are negative and overshadowed.

22We define ∆(0) ≡ 0. Even the first ring may be overshadowed, by ∆(0), if δ1 < 0.
23In our first example city, the cumulative ring difference at 4 is overshadowed (by the cumulative ring

difference at 3, say), while in the second example city cumulative ring differences at 2 and 4 are (by
cumulative ring differences 1 and 3, respectively, for example).
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i 1 2 3 . . . i∗ − 1 i∗ i∗ + 1 i∗ + 2 . . . n/2

δi − − − − − + − − − −

∆(i) • • • • • ◦ • • • •

Table 6: A Parametric City

Nothing of substance changes if one (or more) of those shadow differences is (are) positive,
rather than negative. To see this we turn to the city set out in Table (7) below, with the
second ring the one ring to have flipped its sign. We assume that everything else remains
the same, and so ∆(2) < ∆(0) while i∗ keeps maximizing ∆(i).24

i 1 2 3 . . . i∗ − 1 i∗ i∗ + 1 i∗ + 2 . . . n/2

δi − + − − − + − − − −

∆(i) • • • • • ◦ • • • •

Table 7: Negative and Positive Ring Differences

We introduce the following three, i.e. not numerous, changes to the primal’s solution: (i)
Entry x2,n−1 ceases to be b2 and turns into bn−1 instead. (ii) Entry x2n becomes (b2−bn−1),
replacing the zero it was before. (iii) Entry xi∗,n drops from ring difference (bn −b1) to the
“difference of ring differences” (bn − b1) − (b2 − bn−1). These changes maintain feasibility,
as is easily checked by consulting the housing constraints of the four rings affected.

Note that xi∗i∗ is not among the entries changed. This particular entry continues to equal
∆(i∗)/2. Since this entry is the only one to enter the primal objective’s optimal value,
our formula does not change either. Note the role of ring 2 still being overshadowed
here. While δ2 is positive, it is not sufficiently so to offset the negative δ1 that precedes
it. And hence (bn − b1) − (b2 − bn−1) or xi∗,n indeed is strictly positive. Now let us
check the implied changes for the dual. Since x2,n−1 and xi∗,n continue to exceed zero,
complementary constraints of the dual continue to be binding. And since x2n now also
exceeds zero, the corresponding dual constraint becomes binding, so that y2 = −yn. This
we knew before, and so this extra equation is redundant. We conclude that formula
∆(i∗)/2 continues to apply. Of course, the objective’s numerical value changes.

Exploring a sign change for any other ring difference, or for additional ring differences,
proceeds along similar lines. That is, formula ∆(i∗)/2 continues to capture the minimum
number of centrists whatever the signs of the ring differences in rings up to i∗, as long as
these ring differences are overshadowed.

9.3 Not All Ring Differences Overshadowed

What (if anything) changes if one (or more) of the ring differences are not overshadowed?
Let us allow for the possibility that not all ring differences prior to i∗ are overshadowed,
as in Table (8). Let all ring differences from 1 up to i′ − 1 be in the shadow of ring 0, and

24These assumptions are not restrictive. First, if ∆(0) < ∆(2), we would have to consider alternating
spells of ring differences in the shadow and not in the shadow. This case is considered shortly. And second,
if i∗ shifted due to δ2 flipping its sign, nothing would change in the argument below as long as 2 < i∗.
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all ring differences between i′ + 1 and i∗ − 1 be overshadowed by i′, so that i∗ is not in the
shadow. One optimal feasible solution assigns

∑i′

j=1 δj/2 to xi′i′ , and
∑i∗

j=i′+1 δj/2 to xi∗i∗ ,
and zero to any other element above the counterdiagonal. The corresponding minimum
number of centrists becomes the sum of these two (only non-zero) terms. But this is just
our familiar ∆(i∗)/2. Adding extra spells of ring differences in the shadow adds nothing
of substance here.

i 1 . . . i′ − 1 i′ i′ + 1 . . . i∗ − 1 i∗ i∗ + 1 . . . n/2

∆(i) • • • ◦ • • • ◦ • • •

Table 8: Alternating Spells of Shadow and Light

At last we turn to the question of what happens if any ring differences following i∗ + 1
(rather than preceding i∗) exhibit a positive sign. Recall that, by definition of i∗, ring
differences beyond i∗ must be overshadowed. Let one of these ring differences be positive,
rather than negative, i.e. i∗ + 2 say. Being in the shadow of i∗, the excess arising in ring
difference i∗ + 2 is “swamped” by the deficit in the previous ring difference at i∗ + 1. Once
more, there is no change in the number of minimum centrists.

9.4 Sample Statistics

min 25%-qu med 75%-qu max

DemShare08 0.19 0.38 0.47 0.56 0.88
DemShare16 0.19 0.35 0.43 0.53 0.81

MinimumCentristShare08 (λc
08

) 0 0.09 0.23 0.35 1.00
MinimumCentristShare16 (λc

16
) 0 0 0.08 0.21 0.76

MinimumDecentristShare08 (λd
08

) 0 0 0 0.03 0.32

MinimumDecentristShare16 (λd
16

) 0 0 0.03 0.12 0.66

ShareBachelor08 0.08 0.13 0.16 0.18 0.32
ShareBachelor16 0.08 0.13 0.17 0.20 0.32
ShareWhite08 0.48 0.74 0.84 0.90 0.97
ShareWhite16 0.43 0.74 0.82 0.89 0.96
SizeMetro08 (millions) 0.04 0.09 0.15 0.32 3.49
SizeMetro16 (millions) 0.04 0.10 0.16 0.37 4.11
DensityMetro08 (1,000 per sq mile) 0.51 1.26 1.91 2.76 8.30
DensityMetro16 (1,000 per sq mile) 0.52 1.27 1.86 2.71 8.42
MeanIncome08 (10,000 $) 1.91 3.36 3.98 4.66 11.50
MeanIncome16 (10,000 $) 1.82 3.32 3.97 4.74 17.58

Table 9: Descriptive Statistics
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Metro Area MinimumCentrists λc MinimumDecentrists λd

Houston - Sugarland - Baytown 0.095 0.009
Atlanta - Sandy Springs - Marietta 0 0.023
Phoenix - Mesa - Glendale 0.299 0.002
Riverside - San Bernardino - Ontario 0.367 0.017
Minneapolis - St. Paul - Bloomington 0.202 0.013
San Diego - Carlsbad - San Marcos 0.415 0
Tampa - St. Petersburg - Clearwater 0.368 0
St. Louis 0.232 0.009
Baltimore - Towson 0.308 0
Denver - Aurora - Broomfield 0.382 0
Pittsburgh 0.274 0.008
Portland - Vancouver - Hillsboro 0.318 0
Charlotte - Gastonia - Rock Hill 0.031 0.043
Orlando - Kissimmee - Sanford 0.076 0.043
San Antonio - New Braunfels 0.182 0
Sacramento - Arden Arcade - Roseville 0.201 0.025
Cleveland - Elyria - Mentor 0.341 0.006
Las Vegas - Paradise 0.192 0.001
Kansas City 0 0.112
Columbus 0 0.046
San Jose - Sunnyvale - Santa Clara 0.761 0
Indianapolis - Carmel 0.135 0.020
Austin - Round Rock - San Marcos 0.101 0.021
Nashville - Davidson - Nurfreesboro - Franklin 0 0.064

Table 10: Minimum Centrist/Decentrist Shares, 25 Largest Metro Areas in 2016 subsample
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