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ABSTRACT

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental vari-

ables (IVs) to decide whether the ordinary least squares (OLS) or the two-stage least squares (2SLS) method

is appropriate. Guggenberger (2010) shows that the second-stage t-test– based on the outcome of a Durbin-

Wu-Hausman type pretest for exogeneity in the first-stage– has extreme size distortion with asymptotic size

equal to 1 when the standard asymptotic critical values are used. In this paper, we first show that the standard

residual bootstrap procedures (with either independent or dependent draws of disturbances) are not viable

solutions to such extreme size-distortion problem. Then, we propose a novel hybrid bootstrap approach,

which combines the residual-based bootstrap along with an adjusted Bonferroni size-correction method. We

establish uniform validity of this hybrid bootstrap in the sense that it yields a two-stage test with correct

asymptotic size. Monte Carlo simulations confirm our theoretical findings. In particular, our proposed hy-

brid method achieves remarkable power gains over the 2SLS-based t-test, especially when IVs are not very

strong.
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1. Introduction

Inference after data-driven model selection is widely studied in both the statistical and economet-

ric literature. For instance, see Hansen (2005), Leeb and Pötscher (2005a, 2009), who provide an

overview of the importance and difficulty of conducting valid inference after model selection. In

particular, it is now well known that widely used model-selection practices such as pretesting may

have large impact on the size properties of two-stage procedures and thus invalidate inference on

parameter of interest in the second stage. For the classical linear regression model with exogenous

covariates, Kabaila (1995) and Leeb and Pötscher (2005b) show that confidence intervals (CIs)

based on consistent model selection have serious problem of under-coverage, while Andrews and

Guggenberger (2009b) show that such CIs have asymptotic confidence size equal to 0. Further-

more, Kabaila and Leeb (2006) derive an upper bound for the large-sample limit minimal coverage

probability of CIs after “conservative" model selection such as Akaike Information Criterion (AIC)

and various pretesting procedures. Andrews and Guggenberger (2009a) find extreme size distor-

tion for the two-stage test after “conservative" model selection and propose various least favourable

critical values (CVs). In comparison, the literature on models that contain endogenous covariates,

such as widely used instrumental variable (IV) regression models, remains relatively sparse.

The uniform validity of post-selection inference for structural parameters in linear IV models

was studied by Guggenberger (2010a), who advised not to use Hausman-type pretesting for exo-

geneity to select between ordinary least squares (OLS) and two-stage least squares (2SLS)-based

t-tests because such two-stage procedure can be extremely over-sized with standard asymptotic

CVs, even when IVs are strong.1 Instead, Guggenberger (2010a) recommended to use a t-statistic

based on the 2SLS estimator or, if weak IVs are a concern, an identification-robust method2 to

perform inference directly on the structural parameters. However, it is well known that the 2SLS-

based t-statistic itself may have undesirable size properties when IVs are not strong (especially if

the number of IVs is large), and compared with the t-statistic, identification-robust methods of-

ten yield relatively large confidence intervals in such cases. As such, in the quest for statistical

power, many empirical practitioners still use Hausman-type pretesting in IV applications despite

the important concern raised by Guggenberger (2010a). In particular, their motivation of imple-

menting the two-stage procedure also lies in the fact that valid IVs (i.e., exogenous IVs) found

in practice may be rather uninformative, while strong IVs are typically more or less invalid and

such deviation from IV exogeneity may also lead to serious size distortion in standard t-test and

identification-robust tests (e.g., see Berkowitz, Caner and Fang (2008, 2012), Doko Tchatoka and

Dufour (2008), Conley, Hansen and Rossi (2012), Guggenberger (2012), Andrews, Gentzkow and

Shapiro (2017)).

Recently, Young (2019) analyzes a sample of 1359 empirical applications involving IV regres-

1Similar concerns were also raised by Guggenberger and Kumar (2012) about pretesting the instrument exogeneity

using a test of overidentifying restrictions, and by Guggenberger (2010b) and Kabaila, Mainzer and Farchione (2015)

about pretesting for the presence of random effects before inference on the parameters of interest in panel data models.
2Such as Anderson and Rubin (1949, AR), Kleibergen (2002, KLM), and Moreira (2003, CLR) among others.
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sions in 31 papers published in the American Economic Association (AEA): 16 in AER, 6 in AEJ:

A.Econ., 4 in AEJ: E.Policy, and 5 in AEJ: Macro. He highlights that the IVs often do not appear

to be strong in these papers, so that inference methods based-on standard normal CVs can be rather

unreliable, and he advocates for the usage of bootstrap methods to improve the quality of infer-

ence. Furthermore, he argues that in these papers IV confidence intervals almost always include

OLS point estimates and there is little statistical evidence of endogeneity and evidence that OLS is

seriously biased, based on the low rejection rates of Hausman tests in his data. In his simulations

based upon the published regressions (Table XIV), the rejection frequencies can be as low as 0.237

and 0.386 for 1% and 5% significance levels, respectively, for asymptotic Hausman tests, and even

as low as 0.105 and 0.208, respectively, for bootstrap Hausman tests.

However, Young (2019)’s finding from the AEA data that OLS estimates seem to be not very

different from 2SLS estimates may be attributed to the fact that the used IVs are not strong (2SLS

is biased towards OLS under weak IVs), and Hausman-type tests also have low power in this case

(e.g., see Doko Tchatoka and Dufour (2018, 2020)). It is therefore unclear whether OLS is not se-

riously biased in these data. In particular, as shown by Guggenberger (2010a) and Doko Tchatoka

and Dufour (2018, 2020), the Hausman test is not able to reject the null hypothesis of exogeneity in

situations where there is only a small degree of endogeneity: for sequences of correlations between

the structural and reduced form errors that are local to zero of order n−
1
2 (i.e., local endogeneity),

where n is the sample size, the Hausman pretest statistic has a noncentral chi-squared limiting

distribution, and its noncentrality parameter is small when IVs strength is not high. Therefore, the

pretest has low power and as a result, OLS based inference is selected in the second stage with high

probability. However, the OLS-based t-statistic often takes on very large values even under such

local endogeneity, causing extreme size distortions in the two-stage test. Indeed, Guggenberger

(2010) shows that the asymptotic size of the naive two-stage test equals 1 for empirically relevant

choices of parameter space.

In this paper, we study the possibility of proposing uniformly valid inference method for the

two-stage test procedure by using alternative data-dependent CVs. Following Young (2019)’s rec-

ommendation of using bootstrap methods for IV models, we first study the validity of bootstrapping

the two-stage procedure. It is well documented in the literature that resampling methods such as

bootstrap and subsampling can be invalid when IVs are weak; see e.g., Andrews and Guggenberger

(2010b) and Wang and Doko Tchatoka (2018). Here, by deriving the null limiting distributions of

the bootstrap test statistics and their associated asymptotic sizes, we show that the (residual-based)

bootstrap method is invalid for the two-stage procedure even under strong IVs. In particular, the

usual intuition for bootstrapping the Hausman test is that one should restrict the bootstrap data gen-

erating process (DGP) under exogeneity of the regressors, which corresponds to the pretest null

hypothesis. Interestingly, we find that such bootstrap DGP can still result in extreme size distortion

for the two-stage test with asymptotic size close to 1 in some settings, while the bootstrap DGP

without the null restriction typically has much smaller size distortions. As such, in general boot-

strap is not the solution to guarantee uniform inference for the two-stage test procedure. This is
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in contrast to the case of bootstrapping the Durbin-Wu-Hausman tests (without the second-stage t-

test), which achieves higher-order refinement under strong IVs and remains first-order valid under

weak IVs; e.g., see Doko Tchatoka (2015).

To address the bootstrap failure, we propose a novel hybrid bootstrap procedure, which makes

use of the standard bootstrap CVs and an appropriate size-correction method. This procedure con-

sists of developing a set of size-corrected bootstrap CVs for the two-stage test statistic, and we

show that these CVs are uniformly valid in the sense that they yield tests with correct asymp-

totic size. In particular, since the standard bootstrap CVs cannot mimic well the key localized

endogeneity parameter, more attention is required on this parameter when designing the bootstrap

DGP. Furthermore, a Bonferroni-based size-correction technique is also implemented to deal with

the presence of this localization parameter in the limiting distribution of interest. Different from

conventional Bonferroni bound, which may lead to conservative test with asymptotic size strictly

less than the nominal level, our technique always leads to correct asymptotic size.

In terms of practical usage of our method, we are particularly interested in the IV applica-

tions where the values of endogeneity parameters are relatively small; e.g., Hansen, Hausman and

Newey (2008) report that the median of the estimated endogeneity parameters is only 0.279 in their

investigated AER, JPE, and QJE papers. These are cases where the Hausman-type pretest would

not reject exogeneity and the naive two-stage procedure would lead to extreme size distortion. On

the other hand, as the problem of size distortion is circumvented by our method, we may take

advantage of the power superiority of the OLS-based t-test over its 2SLS counterpart. In addition,

Doko Tchatoka and Dufour (2020) show that pretest estimators based on Durbin-Wu-Hausman

exogeneity tests can outperform both the OLS and 2SLS estimators in terms of mean squared error

if identification is not very strong, even with moderate endogeneity. As such, our proposed method

is also attractive from the viewpoint of inference for this type of models. Monte Carlo experiments

confirm that our hybrid bootstrap procedure is able to achieve remarkable power gains over the

2SLS-based t-test and the AR test, especially when the IVs are not very strong.

Our size-correction procedure is closely related to recent studies by McCloskey (2017), who

proposes Bonferroni-based size-correction procedures for general nonstandard testing problems,

and McCloskey (2019) applied this method to post-selection inference in linear regression model.

Wang and Doko Tchatoka (2018) proposed size-correction method for subvector inference in linear

IV models in which the structural nuisance parameter may be weakly identified, while Han and

McCloskey (2019) used it for inference in moment condition models where the estimating function

may exhibit mixed identification strength and a nearly singular Jacobian. Different from our hybrid

bootstrap procedures, these procedures are based on simulations from limiting distributions.

The remainder of this paper is organized as follows. Section 2 presents the setting, test statistics

and parameter space of interest. Section 3 presents the results of both standard and hybrid bootstrap

methods for the two-stage testing. Section 4 investigates the finite sample power performance of

our methods using Monte Carlo simulations. Conclusions are drawn in Section 5 and the proofs

are provided in the Appendix.

3



Throughout the paper, for any positive integers n and m, In and 0n×m stand for the n × n

identity matrix and n × m zero matrix, respectively. For any full-column rank n × m matrix

A, PA = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of A, and

MA = In−PA. The notation vec(A) is the nm×1 dimensional column vectorization of A. B > 0 for

a m×m squared matrix B means that B is positive definite. λ min(A), λ max(A), and rank(A) denote

the minimum and maximum eigenvalues and the rank of matrix A, respectively. ‖U‖ denotes the

usual Euclidean or Frobenius norm for a matrix U. The usual orders of magnitude are denoted by

OP(.) and oP(.), “
P→” stands for convergence in probability, while “

d→” stands for convergence

in distribution. We write P∗ to denote the probability measure induced by a bootstrap procedure

conditional on the data, and E∗ and Var∗ to denote the expected value and variance with respect

to P∗. For any bootstrap statistic T ∗ we write T ∗ →P∗
0 in probability if for any δ > 0, ε > 0,

limn→∞P[P∗(|T ∗|> δ )> ε] = 0, i.e., P∗(|T ∗|> δ ) = oP(1); see e.g. Gonçalves and White (2004)

and Dovonon and Gonçalves (2017). Also, we write T ∗ = OP∗(nϕ) in probability if and only if for

any δ > 0 there exists a Mδ <∞ such that limn→∞P[P∗(|n−ϕT ∗|>Mδ )> δ ] = 0, i.e., for any δ > 0

there exists a Mδ < ∞ such that P∗(|n−ϕT ∗|> Mδ ) = oP(1). Finally, we write T ∗ →d∗
T in proba-

bility if, conditional on the data, T ∗ weakly converges to T under P∗, for all samples contained in

a set with probability approaching one.

2. Framework

2.1. Model and Test Statistics

We consider the following linear IV model

y1 = y2θ +Xζ +u, (2.1)

y2 = Zπ +Xφ + v, (2.2)

where y1,y2 ∈ Rn, X ∈ Rn×k1 is a matrix of exogenous variables, Z ∈ Rn×k2 is a matrix of instru-

ments (k2 ≥ 1), (θ ,ζ ′,φ ′,π ′)′ ∈ R1×k1×k1×k2 are unknown parameters, and n is the sample size. We

assume that the matrix Z̄ = [X : Z] ∈ Rn×k (k = k1 +k2) has full-column rank with probability one.

The object of inferential interest is the structural parameter θ and we consider the problem of

testing the null hypothesis H0 : θ = θ 0. We study the two-stage testing procedure for assessing

H0, where an exogeneity test– such as the one proposed by Durbin (1954), Wu (1973, 1974), and

Hausman (1978)– is undertaken in the first stage to decide whether a t-test based on the OLS or

2SLS estimator is appropriate for testing H0 in the second stage. As discussed in the introduction,

Guggenberger (2010a) shows this two-step methodology introduces substantial size distortions in

the second stage t-test when standard asymptotic CVs are used (i.e., chi-squared CV for the pretest

and standard normal CV for the second-stage t test), but we believe that this problem could be

circumvented by using, for example, an appropriate size-correction technique.
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To introduce the test statistics, define W⊥ = MXW for any matrix W with n rows. Let θ̂ 2SLS =

y⊥
′

2 PZ⊥y⊥1 /(y
⊥′
2 PZ⊥y⊥2 ), and θ̂ OLS = y⊥

′
2 y⊥1 /(y

⊥′
2 y⊥2 ) be the OLS and 2SLS estimators of θ respec-

tively in (2.1). Also, define V̂2SLS = (y⊥
′

2 PZ⊥y⊥2 /n)−1σ̂2
u(θ̂ 2SLS) and V̂OLS = (y⊥

′
2 y⊥2 /n)−1σ̂2

u(θ̂ OLS),

where σ̂2
u(θ̂ l) = n−1(y⊥1 − y⊥2 θ̂ l)

′(y⊥1 − y⊥2 θ̂ l), l ∈ {OLS,2SLS} are the usual OLS-based 2SLS-

based estimators of the variance of the structural error (both without correction for degrees of

freedom). We consider the following Durbin-Wu-Hausman pretest statistic3 for the exogeneity of

y2 in (2.1):

Hn =
n(θ̂ 2SLS − θ̂ OLS)

2

V̂2SLS −V̂OLS

. (2.3)

The pretest reject the null hypothesis that y2 is exogenous in (2.1) (equivalently, the null hypothesis

that OLS is unbiased) if Hn > χ2
1,1−β , where χ2

1,1−β is the (1− β )th quantile of χ2
1-distributed

random variable for some β ∈ (0,1). If θ is strongly identified (Z being strong instruments) and

y2 is exogenous, Hn follows a χ2
1 distribution asymptotically under assumptions given in Hausman

(1978).

The two-stage test statistic associated with a pretest using Hn in the first-stage is given by:

T̄n(θ 0) = TOLS(θ 0)1(Hn ≤ χ2
1,1−β )+T2SLS(θ 0)1(Hn > χ2

1,1−β ), (2.4)

where Tl(θ), l ∈ {OLS,2SLS} is the usual t-statistic with OLS or 2SLS estimates, i.e.

Tl(θ) = n1/2(θ̂ l −θ)/V̂
1/2

l , l ∈ {OLS,2SLS}. (2.5)

Define Tn(θ 0) as ±T̄n(θ 0) or |T̄n(θ 0)|, depending on whether the test is a lower/upper one-sided

or a symmetric two-sided test, respectively. The nominal size α test with a standard normal CV

rejects H0 : θ = θ 0 if

Tn(θ 0)> c∞(1−α), (2.6)

where c∞(1−α) = z1−α for the one-sided test and z1−α/2 for the symmetric two-sided test, re-

spectively and z1−α is the (1−α)-th quantile of a standard normal distribution.

2.2. Parameter Space and Asymptotic Size

We define the parameter space Γ of the nuisance parameter vector γ following Andrews and

Guggenberger (2009, 2010a, 2010b). Importantly, as pointed out in these papers, one may in-

dex the model by nuisance parameters that have three components: γ = (γ1,γ2,γ3). (i) The first

component γ1 determines the point of discontinuity of the limiting distribution of interest. The

3Alternative formulations of this statistic are given in Hahn, Ham and Moon (2010); Doko Tchatoka and Dufour

(2018, 2020) but we only keep that in (2.3) to shorten the presentation.
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parameter space of γ1 is Γ1. (ii) The second component γ2 also affects the limiting distribution of

interest, but does not affect the distance of the first component to the point of discontinuity. The

parameter space of γ2 is Γ2. (iii) The third component γ3 does not affect the limiting distribution

(by virtue of the CLT). The parameter space of γ3 is Γ3, which in general may depend on γ1 and γ2,

i.e., Γ3 ≡ Γ3(γ1,γ2). To obtain the asymptotic size results, the first and second components need

to be finite dimensional, while the third component is allowed to be infinite dimensional [e.g.,

the error distribution;4 see the application examples in Andrews and Guggenberger (2009, 2010a,

2010b)].

Assume that (ui,vi, Z̄i), i = 1, ...,n, are i.i.d. with distribution F . Define the vector of nuisance

parameters γ = (γ1,γ2,γ3) by

γ1 = ρ, γ2 =‖ Ω 1/2π/σ v ‖, γ3 = (F,π,ζ ,φ), (2.7)

where σ2
u = EFu2

i , σ2
v = EFv2

i , ρ =CorrF(ui,vi), Ω = QZZ −QZX Q−1
XX QXZ , Q =

[

QXX QXZ

QZX QZZ

]

=

EF Z̄iZ̄
′
i . Here, γ1 measures the degree of endogeneity of y2, and γ2 measures the overall strength

of the IVs.5 Let

Γ1 = [−1,1], Γ2 = [κ,κ] (2.8)

for some 0 < κ < κ < ∞. As the lower bound κ of Γ2 is strictly positive, weak IV framework of

Staiger and Stock (1997) is ruled out of the scope of the paper.6 Γ3(γ1,γ2) is defined as follows:

Γ3(γ1,γ2) =
{

(F,π,ζ ,φ) : EFui = EFvi = 0, EFu2
i = σ2

u, EFv2
i = σ2

v ,

EF Z̄iZ̄
′
i = Q for some σ2

u,σ
2
v > 0, pd Q ∈ Rk×k, and π ∈ Rk2

that satisfy CorrF(ui,vi) = γ1, ||Ω 1/2π/σ v||= γ2, ζ ,ψ ∈ Rk1;

EFuiZ̄i = EFviZ̄i = 0; EF(u
2
i ,v

2
i ,uivi)Z̄iZ̄

′
i = (σ2

u,σ
2
v ,σuσ vρ)Q;

EF(u
2
i viZ̄i) = EF(uiv

2
i Z̄i) = 0,var(uivi)/(σ

2
uσ2

v) = 1+ γ2
1;

λ min(EF Z̄iZ̄
′
i)≥ M−1;

∥

∥

∥

∥

EF

(

|ui/σu|2+δ , |vi/σ v|2+δ , |uivi/(σuσ v)|2+δ
)′
∥

∥

∥

∥

≤ M,

∥

∥

∥

∥

EF

(

||Z̄iui/σu||2+δ , ||Z̄ivi/σ v||2+δ , ||Z̄i||2+δ
)′
∥

∥

∥

∥

≤ M } (2.9)

for some constant δ > 0 and M < ∞, where pd denotes positive definite.

4As pointed out by Andrews and Guggenberger (2010b, p.434), due to the CLT, the limiting distribution of interest

often does not depend on the specific error distribution, and only depends on whether it has certain moments finite and

uniformly bounded.
5Note that γ2 = (µ2/n)1/2, where µ2 denotes the well-known concentration parameter in the IV literature.
6However, the Monte Carlo experiments (see Section 4) show that our proposed tests perform very well even when

IVs are weak.
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Finally, define the parameter space Γ of γ as

Γ = {γ = (γ1,γ2,γ3) : γ1 ∈ Γ1,γ2 ∈ Γ2,γ2 ∈ Γ3(γ1,γ2)}. (2.10)

Let cn denote a (possibly data-dependent) CV being used for the two-stage testing. The finite

sample null rejection probability (NRP) of the two-stage test evaluated at γ ∈ Γ is given by

Pθ 0,γ [Tn(θ 0)> cn], where Pθ 0,γ [En] denotes the probability of event En given γ. Then, the asymp-

totic NRP of the test evaluated at γ ∈ Γ is given by

limsup
n→∞

Pθ 0,γ [Tn(θ 0)> cn] , (2.11)

and the asymptotic size of the test is given by

AsySz[cn] = limsup
n→∞

sup
γ∈Γ

Pθ 0,γ [Tn(θ 0)> cn] . (2.12)

In general, asymptotic NRP evaluated at a given γ ∈ Γ is not equal to the asymptotic size of the

test. To control the asymptotic size, one needs to control the null limiting behaviour of the test

statistic Tn(θ 0) under drifting parameter sequences {γn : n ≥ 1} indexed by the sample size [e.g.,

see Andrews and Guggenberger (2009, 2010a, 2010b)].

Guggenberger (2010a) shows that the asymptotic size of the two-stage test with the standard

fixed normal CV (i.e., AsySz[c∞(1−α)]) is realized under relevant choices of the parameter space.

In particular, to derive AsySz[c∞(1−α)], it is enough to study the asymptotic NRP along some

sequence of the type {γn,h} for some h ∈H , as the highest asymptotic NRP is materialized among

such sequence, where

H =
{

h = (h1,h2) ∈ R2
∞ : ∃{γn = (γn,1,γn,2,γn,3) ∈ Γ : n ≥ 1} : n1/2γn,1 → h1, γn,2 → h2

}

≡ H1 ×H2 ≡ R∞ × [κ,κ] (2.13)

with R∞ = R∪{±∞}. The relevant drifting sequences {γn,h} are defined by Guggenberger (2010a)

as follows: γn,h ≡ (γn,h,1,γn,h,2,γn,h,3) for h = (h1,h2) ∈ H , where γn,h,1 =CorrFn
(ui,vi), γn,h,2 =

||Ω 1/2
n πn/(EFn

v2
i )

1/2|| with Ωn = EFn
ZiZ

′
i −EFn

ZiX
′
i (EFn

XiX
′
i )

−1
EFn

ZiX
′
i satisfy:

n1/2γn,h,1 → h1, γn,h,2 → h2, and γn,h,3 = (Fn,πn,ζ n,φ n) ∈ Γ3(γn,h,1,γn,h,2). (2.14)

Under H0 and the drifting sequences {γn,h : h ∈ H } satisfying (2.14) with |h1|< ∞ (i.e., local

endogeneity), Guggenberger (2010a) shows that (for a symmetric two-sided test):







T2SLS(θ 0)

TOLS(θ 0)

Hn







d→ ηh =







s′k2
ψu

(1+h2
2)

−1/2(h2s′k2
ψu +ψuv +h1)

(1+h2
2)

−1
(

s′k2
ψu −h2ψuv −h2h1

)2






≡







η1,h

η2,h

η3,h






, (2.15)
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Tn(θ 0)
d→ T̃h =

∣

∣

∣η2,h1(η3,h ≤ χ2
1,1−β )+η1,h1(η3,h > χ2

1,1−β )
∣

∣

∣ , (2.16)

with vec(ψu,ψuv) ∼ N

(

0,

(

Ik2
0

0′ 1

))

, and sk2
∈ Rk2 is an arbitrary vector with ||sk2

|| = 1. Note

that s′k2
ψu − h2ψuv − h2h1 ∼ N(−h2h1,1+ h2

2), and the limiting distribution of Hn is therefore

a noncentral chi-squared distribution χ2
1(h

2
1h2

2(h
2
2 + 1)−1), where the value of the noncentrality

parameter determines the power of the Hausman pretest. As such, it can be shown from (2.16) that

the asymptotic size of Tn(θ 0) (i.e., AsySz[c∞(1−α)]) equals 1, i.e., the maximal rejection of the

two-stage test is realized under certain drifting sequence {γn,h : h ∈ H } with local endogeneity.

Such extreme size distortion occurs because when the Hausman test does not reject the null of

exogeneity, OLS-based t-test is used in the second stage, but the maximal asymptotic rejection

probability for H0 : θ = θ 0 with the OLS-based t-test equals 1 [e.g., see the discussion in p.376 of

Guggenberger (2010a)]. Also, similar result is shown for one-sided tests.

3. Main Results

3.1. Standard residual bootstrap

In this section, we study the asymptotic behaviour of standard (residual-based) bootstrap proce-

dures for the two-stage test, and we show that this bootstrap cannot consistently estimate the dis-

tribution of the statistic of interest. To simplify the exposition, we focus on the case of symmetric

two-sided test, but our results remain valid for one-sided test.

Residual Bootstrap Algorithm:

1. Given H0 : θ = θ 0, compute the residuals from the first-stage and structural equations:

v̂ = y⊥2 −Z⊥π̂, (3.1)

û(θ 0) = y⊥1 − y⊥2 θ 0, (3.2)

where π̂ = (Z⊥′Z⊥)−1Z⊥′y⊥2 denotes the least squares estimator of π . We re-center these

residuals by subtracting sample means to yield (ũ(θ 0), ṽ).

2. Generate the bootstrap pseudo-data following

y⊥∗
2 = Z⊥∗π̂ + v∗, (3.3)

y⊥∗
1 = y⊥∗

2 θ 0 +u∗, (3.4)

where Z⊥∗ is drawn from the empirical distribution of Z⊥, and there are two options to

generate the bootstrap disturbances:
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(a) v∗ and u∗ are drawn independently from the respective empirical distributions of ṽ and

ũ(θ 0),

(b) (v∗,u∗) are drawn dependently from the joint empirical distribution of (ṽ, ũ(θ 0)).

Following Young (2019), we refer to (a) as independent transformation of distrubances and

(b) as dependent transformation of disturbances. Note that for bootstrapping the Hausman

test, for better size control it is usually recommended to generate (u∗,v∗) by the independent

transformation, so that the bootstrap samples are obtained under the null hypothesis of the

Hausman test (i.e., null of exogeneity). However, as we will see below, this is not necessarily

the case for the bootstrap two-stage tests.

3. Compute the bootstrap analogue of the two-stage statistic (for a symmetric test):

T ∗
n (θ 0) =

∣

∣

∣T
∗

OLS(θ 0)1(H
∗
n ≤ χ2

1,1−β )+T ∗
2SLS(θ 0)1(H

∗
n > χ2

1,1−β )
∣

∣

∣ , (3.5)

where T ∗
OLS(θ 0), T ∗

2SLS(θ 0) and H∗
n are the bootstrap analogues of TOLS(θ 0), T2SLS(θ 0) and

Hn, respectively, which are obtained from the bootstrap samples generated in Step 2.

4. Repeat Steps 2-3 B times and obtain T ∗
n (θ 0), b = 1, ...,B. The bootstrap test rejects H0 if the

bootstrap p-value 1
B ∑

B
b=11

[

T ∗(b)
n (θ 0)> Tn(θ 0)

]

is less than α.

Guggenberger (2010a) shows that the null limiting distribution of the two-stage test statistic

Tn(θ 0) under the parameter sequences {γn,h : h ∈ H } satisfying (2.14) with |h1|< ∞ is given by

(2.16). To check whether the bootstrap consistently estimates the distribution of the two-stage test

statistic, one needs to check whether we have

sup
x∈R

|P∗ (T ∗
n (θ 0)≤ x)−P(Tn(θ 0)≤ x)| →P 0 (3.6)

under H0 and such drifting parameter sequences.

First, we note that the following convergence results hold for the bootstrap statistics, condi-

tional on the sample:











(n−1Z⊥∗′Z⊥∗)−1/2
(

n−1/2Z⊥∗′u∗
)

/E∗(u∗2
i )

(n−1Z⊥∗′Z⊥∗)−1/2
(

n−1/2Z⊥∗′v∗
)

/E∗(v∗2
i )

n−1/2
(

u∗
′
v∗−E∗

[

u∗
′
v∗
])

/
(

E∗(u∗2
i )E∗(v∗2

i )
)1/2











→d∗







ψ∗
u

ψ∗
v

ψ∗
uv






∼ N

(

0,

(

I2k2
0

0′ 1

))

, (3.7)

in probability, where E∗(u∗2
i ) = n−1ũ(θ 0)

′ũ(θ 0) and E∗(v∗2
i ) = n−1ṽ′ṽ. (3.7) shows that both

bootstrap procedures (with dependent and independent transformations) do replicate well the ran-

domness in the original sample. Theorem 3.1 gives the null limiting distributions of the bootstrap

two-stage test statistics under the drifting parameter sequences {γn,h : h ∈ H } satisfying (2.14)

with |h1|< ∞.
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Theorem 3.1 Conditional on the sample, the following convergence holds under H0 and {γn,h :

h ∈ H } satisfying (2.14) with |h1|< ∞:







T ∗
2SLS(θ 0)

T ∗
OLS(θ 0)

H∗
n






→d∗

η∗
h =











s′k2
ψ∗

u

(1+h2
2)

−1/2
(

h2s′k2
ψ∗

u +ψ∗
uv +hb

1

)

(1+h2
2)

−1
(

s′k2
ψ∗

u −h2ψ∗
uv −h2hb

1

)2











,

T ∗
n (θ 0) →d∗

T̃ ∗
h =

∣

∣

∣η∗
2,h1(η

∗
3,h ≤ χ2

1,1−β )+η∗
1,h1(η

∗
3,h > χ2

1,1−β )
∣

∣

∣
,

in probability, where η∗′
h = (η∗

1,h,η
∗
2,h,η

∗
3,h), hb

1 = 0 for the bootstrap based on independent trans-

formation of disturbances, and hb
1 = h1 +ψuv with ψuv ∼ N(0,1) for the bootstrap based on de-

pendent transformation of disturbances.

According to Theorem 3.1, the standard bootstraps are not able to mimic well the key local-

ization parameter h1, thus resulting in the discrepancy between the original and bootstrap samples.

In particular, we note that hb
1 corresponds to the localization parameter of endogeneity in the boot-

strap world, and the bootstrap with independent transformation (henceforth dubbed as independent

bootstrap) removes all the endogeneity when generating the bootstrap samples. On the other hand,

while the bootstrap with dependent transformation (henceforth dubbed as dependent bootstrap) is

able to mimic the situation of local endogeneity in the original sample (note that hb
1 is finite with

probability approaching one when h1 is finite), the approximation is imprecise and results in the

extra error term ψuv ∼ N(0,1), whose value depends on the actual realization of the sample. In

particular, these results suggest that the (conditional) limiting distribution of H∗
n under the indepen-

dent bootstrap is a central chi-squared distribution, while that under the dependent bootstrap is a

noncentral chi-squared distribution χ2
1

(

(h1 +ψuv)
2h2

2(h
2
2 +1)−1

)

. Therefore, the power properties

of the bootstrap pretest statistic H∗
n under either procedure will be different from those of Hn.

From Theorem 3.1, it is clear that the (conditional) null limiting distribution of the bootstrap

two-stage test statistic is different from the null limiting distribution of the original two-stage test

statistic in (2.16).Therefore, the bootstrap consistency in (3.6) cannot hold in the current context.

However, even if the bootstrap is inconsistent, it might still be able to provide a valid test if its

asymptotic NRP does not exceed the nominal size under any sequence in (2.14). To further shed

light on the behaviour of the bootstrap statistics, we apply (2.16) and Theorem 3.1, and plot the

95% quantiles of T̃h and T̃ ∗
h in Figure 1 as a function of h1 with h2 ∈ {.2, .4, .6, .8,1,2} and β = .05.

We highlight some interesting findings below.

First, we observe that the quantiles of T̃ ∗
h for the independent bootstrap can be much lower

than those of T̃h when the values of h1 and/or h2 are small, suggesting that this bootstrap proce-

dure can seriously overreject in such cases. Indeed, its quantiles always correspond the case that

the endogeneity parameter exactly equals zero as its data generating process totally removes the

degree of endogeneity in the bootstrap world. By contrast, the quantiles of T̃ ∗
h for the dependent

bootstrap turn out to be rather close to those of T̃h across various values of h1 and h2. However,
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Figure 1. 95% quantiles of T̃h and T̃ ∗
h

Note: The results are based on 100,000 simulation replications.

the figure suggests that this bootstrap procedure may also have some slight over-rejection when

the quantiles of T̃h are relatively high (e.g., when h2 = .4 and h1 = 5). In addition, we note that

the quantiles of T̃ ∗
h for the dependent bootstrap converge in each sub-figure to the standard nor-

mal CV when the value of h1 increases: when |h1| is large, the Hausman pretest rejects with high

probability so that the two-stage test becomes the 2SLS-based t-test, and the dependent bootstrap

does mimic well such behaviour. On the other hand, we note that the quantiles for the independent

bootstrap becomes close to the standard normal CV only when h2 is fairly large (e.g., when h2=2).

Intuitively, when h2 becomes large, the term with ψ∗
u becomes dominant in the limit of T ∗

OLS(θ 0)

(i.e., η∗
2,h) while the term with ψ∗

uv becomes dominant in the limit of H∗
n (i.e., η∗

3,h, which equals

(1+h2
2)

−1(s′k2
ψ∗

u−h2ψ∗
uv)

2 for the independent bootstrap), so that conditional on the sample, η∗
3,h

becomes independent from both η∗
1,h and η∗

2,h in this case, as ψ∗
u and ψ∗

uv are independent from

each other (e.g., see (3.7)).

Furthermore, we can obtain the asymptotic sizes of the two bootstrap tests by applying the

results in (2.16) and Theorem 3.1. Specifically, the asymptotic size of the bootstrap two-stage test

can be defined as:

AsySz [ĉ∗n(1−α)] := limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[Tn(θ 0)> ĉ∗n(1−α)] , (3.8)

where ĉ∗n(1−α) denotes the (1−α)-th quantile of the distribution of T ∗
n (θ 0), based on the depen-

dent or independent transformation. The next theorem gives an explicit formula of the asymptotic
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size. Note that the asymptotic size depends on α , β , and κ , but it does not depend on k1 and k2.

Theorem 3.2 AsySz[ĉ∗n(1−α)] equals sup
h∈H

P[T̃h > c∗h(1−α)], where T̃h is defined in (2.16) and

c∗h(1−α) is the (1−α)-th quantile of T̃ ∗
h defined in Theorem 3.1.

Following Guggenberger (2010a, Table 1), we report the asymptotic sizes of the (symmetric)

two-stage tests based on the standard normal CV, the independent bootstrap CV, and dependent

bootstrap CV in Table 1 when α = .05 for κ ∈ {.001, .1, .5,1,2,10} and β ∈ {.05, .1, .2, .5}. First,

we note that both the standard normal CVs and the independent bootstrap CVs have asymptotic

size much larger than .05; e.g., when κ = .001, the two methods have asymptotic sizes equal to

100%,95.1%,85.3%,55.4% and 97.7%,92.8%,83.0%,53.7%, respectively. In addition, it turns

out that the independent bootstrap CVs always have smaller size distortion than the standard nor-

mal CVs, and this is in line with the results in Figure 1, in which the quantiles of the independent

bootstrap limit T̃ ∗
h are always higher than the standard normal CVs. On the other hand, we note

that although in general also unable to achieve uniform size control, the dependent bootstrap CVs

have asymptotic sizes quite close to the nominal level.

Remarks

1. How do these asymptotic size results correspond to real-world data? For instance, as re-

marked by Guggenberger (2010a), Angrist and Krueger (1991)’s influential study on return to

schooling has estimated concentration parameters equal to 95.6 and 257 for the cases with 3 IVs

and 180 IVs, respectively. And they correspond to the values of γ2 equal to .017 and .028, re-

spectively, for the sample size n = 329,509 in their study. Therefore, Table 1 suggests that a

Hausman-pretest-based two-stage procedure with either the asymptotic CV or the independent

bootstrap CV would lead to extreme distortion of null rejection probability for the Angrist and

Krueger (1991) data, while the one based on the dependent bootstrap CV would not suffer from

serious size distortion.

2. As seen in Table 1, the asymptotic size of the dependent bootstrap test can be either higher

or lower than the nominal level (thus asymptotically conservative or over-sized), depending on the

value of the lower bound of IV strength κ . Still, it has asymptotic sizes quite close to the nominal

level across various settings, and is therefore much more desirable than the independent bootstrap

in terms of size control for the two-stage test. Note that the extreme size distortion of the inde-

pendent bootstrap is not a surprise, as this scheme assumes exogeneity while the endogeneity is

local-to-zero in the true DGP. However, as we will see in Section 4, the dependent bootstrap has

relatively low finite-sample power compared with alternative methods considered in the simula-

tions (including our novel hybrid bootstrap procedures that are based on independent draws of the

structural and reduced-form residuals). In the next section, we will show that the hybrid bootstrap

procedures achieve both correct asymptotic size and better finite-sample power properties. In par-

ticular, the use of the independent bootstrap is paramount for the validity of these procedures since

it helps to first remove all the endogeneity in the bootstrap world before applying an appropriate
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size-correction method to account for the localized endogeneity parameter h1, which cannot be

well estimated by the standard bootstrap.

3. Besides the residual-based i.i.d. bootstrap procedures described in this section, we may

also consider alternative procedures such as the wild bootstrap. Specifically, we may generate the

bootstrap disturbances u∗ and v∗ in (3.3) and (3.4) with dependent transformation by u∗i = ûi(θ 0)wi

and v∗i = v̂iwi for some randomly generated i.i.d. sequence of weights {wi}n
i=1 that is independent

from the sample and satisfies E[wi] = 0 and Var[wi] = 1 (e.g., the standard normal weight or the

Rademacher weight, which puts probability one half on the values one and negative one). For the

independent transformation, we may generate u∗i = ûi(θ 0)w1i and v∗i = v̂iw2i by two independent

i.i.d. sequences of weights {w1i}n
i=1 and {w2i}n

i=1. Then by using an appropriate bootstrap CLT, we

can show that the results in Theorem 3.1 also hold for the wild bootstrap procedures. Furthermore,

as having the same null limiting distributions as their i.i.d. bootstrap counterparts, the dependent

and independent wild bootstraps will have the same asymptotic size results as those reported in

Table 1.

Table 1. Asymptotic size (in %) of two-stage tests for α = .05.

Std Normal CV BS-independent BS-dependent

κ \ β .05 .1 .2 .5 .05 .1 .2 .5 .05 .1 .2 .5

.001 100 95.1 85.3 55.4 97.7 92.8 83.0 53.7 1.2 1.2 1.3 2.0

.1 95.5 90.4 80.2 50.7 93.9 88.4 77.6 48.8 1.3 1.5 1.9 3.0

.5 60.4 50.5 39.2 22.2 55.9 45.3 34.5 19.3 6.6 6.6 6.5 6.5

1 27.7 21.7 16.2 9.7 24.7 18.5 12.9 7.8 6.8 6.6 6.5 6.1

2 10.8 9.3 7.7 6.2 10.1 8.3 6.6 5.2 6.1 6.0 5.7 5.3

10 5.3 5.3 5.2 5.2 5.3 5.3 5.3 5.2 5.3 5.3 5.3 5.2

Note: The results are based on 100,000 simulation replications.

3.2. Hybrid bootstrap

In this section, we introduce hybrid bootstrap procedures that are able to achieve correct asymptotic

size for the two-stage test. First, we show how to construct a hybrid bootstrap CV in the current

context by using Bonferroni bounds. Note that in the case of local endogeneity with |h1|< ∞, the

localization parameter h1 cannot be consistently estimated. However, we may still construct an

asymptotically valid confidence set for h1 by using some appropriate choice of estimator ĥ
n,1 . For

example, we can define a 2SLS-based estimator ĥn,1(θ̂ 2SLS) = n1/2ρ̂(θ̂ 2SLS), where

ρ̂n(θ̂ 2SLS) = n−1(y⊥1 − y⊥2 θ̂ 2SLS)
′(y⊥2 −Z⊥π̂)/(σ̂u(θ̂ 2SLS)σ̂ v). (3.9)
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Then a confidence set of h1 can be constructed by using the fact that under the drifting parameter

sequences,

ĥn,1(θ̂ 2SLS)→d h̃1 ∼ N
(

h1,1+h−2
2

)

. (3.10)

Alternatively, one may consider using the null-imposed estimator ĥn,1(θ 0) = n1/2ρ̂n(θ 0), whose

null limiting distribution follows N(h1,1).

Then, uniformly valid hybrid bootstrap CVs for testing H0 : θ = θ 0 under the two-stage pro-

cedure can be constructed by using Bonferroni bounds: we first construct a 1 − (α − δ ) level

first-stage confidence set for h1, then take the maximal (1− δ )-th quantile of appropriately gen-

erated bootstrap statistics over the first-stage confidence set. Specifically, let CI
α−δ

(ĥ
n,1) denote

the 1− (α − δ ) level confidence set for h1 for some 0 < δ ≤ α < 1. The bootstrap-based simple

Bonferroni critical value (SBCV) is defined as

cB−S(α,α −δ , ĥ
n,1 , ĥn,2) = sup

h1∈CI
α−δ

(ĥ
n,1

)

c∗
(h1,ĥn,2)

(1−δ ), (3.11)

where ĥn,2 =‖ Ω̂ 1/2π̂/σ̂ v ‖, Ω̂ = Q̂ZZ −Q̂ZX Q̂−1
XX Q̂XZ with Q̂AB = n−1A′B, and c∗

(h1,ĥ2)
(1−δ ) is the

(1− δ )-th quantile of the distribution of T ∗
n,(h1,ĥ2)

(θ 0), which is the bootstrap analogue of Tn(θ 0)

generated under the value of localization parameter equal to h1.

As we have seen in the previous section, the standard bootstrap procedures cannot mimic well

the localization parameter h1. Therefore, attention has to be taken when considering the bootstrap

DGP. In particular, we propose to generate T ∗
n,(h1,ĥ2)

(θ 0) as follows:

T ∗
n,(h1,ĥ2)

(θ 0)

=
∣

∣

∣
T ∗

OLS,(h1,ĥ2)
(θ 0)1

(

H∗
n,(h1,ĥ2)

≤ χ2
1,1−β

)

+T ∗
2SLS(θ 0)1

(

H∗
n,(h1,ĥ2)

> χ2
1,1−β

)∣

∣

∣
, (3.12)

where T ∗
OLS,(h1,ĥ2)

(θ 0) and H∗
n,(h1,ĥ2)

are the bootstrap analogues of TOLS(θ 0) and Hn, respectively,

evaluated at the value of localization parameter equal to h1. To obtain these bootstrap analogues,

we first generate the bootstrap counterpart of the OLS estimator under h1:

θ̂
∗
OLS,(h1,ĥ2)

= θ̂
∗
OLS +(ĥ2

2 +1)−1σ̂uσ̂−1
v h1, (3.13)

where θ̂
∗
OLS is generated by the standard bootstrap procedure in Section 3.1 with independent trans-

formation of disturbances, so that θ̂
∗
OLS has localization parameter equal to zero in the bootstrap

world. By doing so,
√

n(θ̂
∗
OLS,(h1,ĥ2)

−θ 0) has appropriate (conditional) null limiting distribution.

Then, we obtain T ∗
OLS,(h1,ĥ2)

(θ 0) and H∗
n,(h1,ĥ2)

as follows:

T ∗
OLS,(h1,ĥ2)

(θ 0) =

√
n(θ̂

∗
OLS,(h1,ĥ2)

−θ 0)

V̂
∗1/2

OLS

, (3.14)
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H∗
n,(h1,ĥ2)

=
n(θ̂

∗
2SLS − θ̂

∗
OLS,(h1,ĥ2)

)2

V̂ ∗
2SLS −V̂ ∗

OLS

, (3.15)

and we can show that the following (conditional) convergence in distribution holds:





T ∗
OLS,(h1,ĥ2)

(θ 0)

H∗
n,(h1,ĥ2)



→d∗





(1+h2
2)

−1/2(h2s′k2
ψ∗

u +ψ∗
uv +h1)

(1+h2
2)

−1
(

s′k2
ψ∗

u −h2ψ∗
uv −h2h1

)2



 , (3.16)

in probability P. This implies that T ∗
n,(h1,ĥ2)

(θ 0), the resulting bootstrap counterpart of the two-

stage test statistic, has the desired (conditional) limiting distribution evaluated at the value of lo-

calization parameter equal to h1 (different from the limiting distributions in Theorem 3.1).

As seen from (3.11), the bootstrap SBCV equals the maximal CV c∗
(h1,ĥ2)

(1−δ ) over the values

of the localization parameter h1 in the set CI
α−δ

(ĥ
n,1). We can now state the following theorem for

cB−S(α,α −δ , ĥ
n,1 , ĥn,2).

Theorem 3.3 Suppose that H0 holds, and then for any 0 < δ ≤ α < 1, we have:

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

:= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

≤ α.

Theorem 3.3 states that tests based on cB−S(α,α −δ , ĥ
n,1 , ĥn,2) control the asymptotic size. In

practice, cB−S(α,α −δ , ĥ
n,1 , ĥn,2) can be obtained by using the following algorithm.

Hybrid Bootstrap Algorithm for cccB-S(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS,V̂

∗(b)
OLS ,V̂

∗(b)
2SLS

}

,b = 1, ...,B, using the standard

bootstrap procedure with independent transformation of disturbances.

2. Choose α and δ , and compute CI
α−δ

(ĥ
n,1).

3. Create a fine grid for CI
α−δ

(ĥ
n,1) and call it C grid

α−δ
.

4. For each h1 ∈ C grid
α−δ

, generate T
∗(b)

n,(h1,ĥ2)
(θ 0), b = 1, ...,B, using the bootstrap statistics gener-

ated in Step 1. The same set of
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS,V̂

∗(b)
OLS ,V̂

∗(b)
2SLS

}

,b = 1, ...,B, can be used repeat-

edly for each h1.

5. Compute c∗
(h1,ĥn,2)

(1−δ ), the (1−δ )th quantile of the distribution of T ∗
n,(h1,ĥ2)

(θ 0) from these

B draws of bootstrap samples.

6. Find cB−S(α,α −δ , ĥ
n,1 , ĥn,2) = sup

h1∈C
grid

α−δ

c∗
(h1,ĥn,2)

(1−δ ).

Note that as shown in Theorem 3.3, although controlling the size, the bootstrap SBCV may

yield a conservative test whose asymptotic size does not reach its nominal level. For further refine-

ment on the Bonferroni bound, we propose a size-correction method to adjust the bootstrap SBCV
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so that the resulting test is not conservative with asymptotic size exactly equal to α . Specifically,

the size-correction factor for the bootstrap SBCV is defined as:

η̂n = inf

{

η : sup
h1∈H1

P∗
[

T ∗
n,(h1,ĥn,2)

(θ 0)> cB−S(α,α −δ , ĥ∗
n,1
(h1), ĥn,2)+η

]

≤ α

}

,(3.17)

where ĥ∗
n,1
(h1) denotes the bootstrap analogue of ĥ

n,1 with localization parameter equal to h1 and is

generated by the same bootstrap samples as those for T ∗
n,(h1,ĥn,2)

(θ 0). More precisely, we define

ĥ∗
n,1
(h1) = ĥ∗

n,1
+h1, (3.18)

where ĥ∗
n,1

= n1/2ρ̂∗
n(θ̂

∗
2SLS) = n−1/2(y⊥∗

1 − y⊥∗
2 θ̂

∗
2SLS)

′(y⊥∗
2 − Z⊥∗π̂∗)/(σ̂∗

u(θ̂
∗
2SLS)σ̂

∗
v) is gener-

ated by the standard bootstrap procedure with independent transformation (so that the localiza-

tion parameter equals zero in the bootstrap world). Note that ĥ∗
n,1

converges in distribution to

N
(

0,(1+h−2
2 )
)

in probability, while ĥ∗
n,1
(h1) converges in distribution to N

(

h1,(1+h−2
2 )
)

in prob-

ability, i.e., same as the limiting distribution of ĥ
n,1 in (3.10).

We emphasize that ĥ∗
n,1
(h1) needs to be generated simultaneously with T ∗

n,(h1,ĥn,2)
(θ 0) using the

same bootstrap samples, so that the dependence structure between the statistics Tn(θ 0) and ĥ
n,1 is

well mimicked by the bootstrap statistics. This is important for the procedure described in (3.17)

to correct the conservativeness of the Bonferroni bound. Similarly, for the implementation of the

size-correction method, one cannot replace cB−S(α,α−δ , ĥ∗
n,1
(h1), ĥn,2) in (3.17) with cB−S(α,α−

δ , ĥ
n,1 , ĥn,2), as it also breaks down the dependence structure.

The goal of the size-correction method is to decrease the bootstrap SBCV as much as possible

by using the factor η while not violating the inequality in (3.17), so that the asymptotic size of the

resulting tests can be controlled. Then, the size-corrected bootstrap CV can be defined as

cB−C(α,α −δ , ĥ
n,1 , ĥn,2) = cB−S(α,α −δ , ĥ

n,1 , ĥn,2)+ η̂n, (3.19)

and one can expect that relatively small η̂n results in relatively less conservative (and more pow-

erful) test. In particular, under a proper algorithm for the size-correction method, and given some

fixed α ∈ (0,1) and δ ∈ (0,α], the size-correction factor η̂n(·) is continuous as a function of ĥ
n,1 .

We can now state the following theorem on the uniform size control of the bootstrap CVs based on

the size-correction method.

Theorem 3.4 Suppose that H0 holds, and then for any 0 < δ ≤ α < 1, we have:

AsySz
[

cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

:= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[

Tn(θ 0)> cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

= α.

Theorem 3.4 shows that cB−C(α,α − δ , ĥ
n,1 , ĥn,2), the size-corrected bootstrap CVs, yield

tests with the correct asymptotic size. To implement such tests in practice, we must com-
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pute cB−S(α,α − δ , ĥ
n,1 , ĥn,2) and η̂n. These values can be computed sequentially starting with

cB−S(α,α −δ , ĥ
n,1 , ĥn,2). Then the size-correction factor η̂n can be computed by evaluating (3.17)

over a fine grid of H1 as follows.

Hybrid Bootstrap Algorithm for cccB-C(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS,V̂

∗(b)
OLS ,V̂

∗(b)
2SLS, ĥ

∗(b)
n,1

}

,b = 1, ...,B, using the

standard bootstrap procedure with independent transformation of disturbances.

2. Let cB−S(α,α −δ , ĥ
n,1 , ĥn,2) be the obtained bootstrap SBCV.

3. Create a fine grid of the set H1 in (3.17) and call it H
grid

1 .

4. For each h1 ∈ H
grid

1 , obtain T
∗(b)

n,(h1,ĥn,2)
(θ 0) and cB−S(α,α − δ , ĥ∗(b)

n,1
(h1), ĥn,2), b =

1, ...,B, using the bootstrap statistics generated in Step 1. Note that the same set of
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS,V̂

∗(b)
OLS ,V̂

∗(b)
2SLS, ĥ

∗(b)
n,1

}

,b = 1, ...,B, can be used repeatedly for each h1.

5. Create a fine grid of [−cB−S(α,α −δ , ĥ
n,1 , ĥn,2), 0] and call it S

grid

n .

6. Find all η ∈ S
grid

n such that

sup
h1∈H1

1

B

B

∑
b=1

1

[

T
∗(b)

n,(h1,ĥn,2)
(θ 0)> cB−S(α,α −δ , ĥ∗(b)

n,1
(h1), ĥn,2)+η

]

≤ α

and set η̂n equal to the smallest η .

7. The size-corrected bootstrap CV is given by

cB−C(α,α −δ , ĥ
n,1 , ĥn,2) = cB−S(α,α −δ , ĥ

n,1 , ĥn,2)+ η̂n.

Remarks

1. We note that the computational cost of the proposed hybrid bootstrap procedures is not very

high. In particular, the same bootstrap samples can be used in the Algorithms for cB−S(α,α −
δ , ĥ

n,1 , ĥn,2) and cB−C(α,α −δ , ĥ
n,1 , ĥn,2): there is no need to generate a new set of bootstrap sam-

ples to implement the size-correction method in (3.17). Moreover, the same set of bootstrap statis-

tics can be used repeatedly for each value of localization parameter h1 when constructing the

localized quantiles c∗
(h1,ĥn,2)

(1− δ ) in Step 4 of the Algorithm for cB−S(α,α − δ , ĥ
n,1 , ĥn,2). Simi-

larly, the bootstrap statistics can be used repeatedly for each h1 when evaluating the size-correction

factor in Step 4 of the Algorithm for cB−C(α,α −δ , ĥ
n,1 , ĥn,2).

2. Note that in many empirical studies, the values of the endogeneity parameter are typically

quite low. For instance, Hansen et al. (2008, p.407, Table 6) report that the median, the 75% and the

90% quantiles of estimated endogeneity parameters are only 0.279, 0.466, and 0.555, respectively,

in the investigated AER, JPE and QJE papers. These are exactly the cases where the Hausman

17



pretest may not reject and naive two-stage procedure would leads to extreme size distortion (this

also can be seen from the quantiles of the two-stage test statistics in Figure 1, where the highest

quantiles occur at low values of h1).

Furthermore, we note that it is possible for empirical researchers to reduce the parameter space

of the endogeneity parameter ρ , by considering a reasonable range for the values of the structural

parameters and by using a data-dependent mapping between the structural parameters and ρ . For

example, Staiger and Stock (1997, p.579) argue that the range of the endogeneity parameter is

[-0.5, 0.5] in their analysis of the return to education using the dataset of Angrist and Krueger

(1991). Their IV model has one RHS endogenous variable (‘years of education’), and to restrict

the value of the endogeneity parameter, the authors consider the reasonable range of the return to

education to be [0, 0.18]; i.e., an additional year of education increases expected weekly earning

by at most 18%. (which substantially exceeds economic plausible values).

When applying the size-correction algorithm, researchers can directly incorporate such infor-

mation on ρ into the construction of CVs, and maximize over a subspace of the endogeneity

parameters in H1. Such reduction of nuisance parameters’ space can both reduce computational

cost and improve the power of the size-corrected tests.

4. Finite sample power performance

In this section, we study the finite-sample power performance of four tests: the Anderson-Rubin

(1949, AR) test, the 2SLS-based t-test (without Hausman pretest), the two-stage test based on the

dependent bootstrap CVs, and the two-stage test based on the hybrid bootstrap CVs. We do not

include the two-stage tests based on the standard normal CVs and the independent bootstrap CVs,

as they have extreme size distortion (e.g., see Table 1).

We conduct Monte Carlo simulations by using the linear IV model in (2.1). The sample size is

set at n = 100, the number of Monte Carlo replications is set at 2,000, and the number of bootstrap

replications is set at B = 199. We set α = .05 for the nominal levels of the AR test, the 2SLS-

based t test, and the two bootstrap-based two-stage tests, and set β = .05 for the nominal level of

the Hausman pretest. The size-correction algorithms described in Section 3.2 are executed with

δ = .025. The number of exogenous regressor is set at k1 = 0, and the number of instruments is

set at k2 = 1. Following the discussions in Remark 2 of Section 3.2, we investigate the case where

the degree of endogeneity can be restricted by the empirical researcher and the maximization of

the CVs can be computed over ρ ∈ [−0.5,0.5].

Figures 2 - 5 show the finite-sample power curves of the four tests. The true values of the

endogeneity parameter are set at ρ ∈ {0,0.1n−1/2,0.5n−1/2,0.9n−1/2,0.2,0.4}. The values of the

concentration parameter, which characterizes the overall IV strength, are set at µ2 ∈ {1,5,10,100}
for Figures 2 - 5, respectively. We highlight some findings below. First, it is clear that when the IV

is relatively weak (e.g., Figures 2 - 3), the hybrid bootstrap-based two-stage test has remarkable

power gain over both AR test and 2SLS-based t-test. Such power gain originates from the inclusion
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of the OLS-based t-test in the two-stage test. In addition, we note that although having much better

size control than the independent bootstrap (e.g., Table 1), the dependent bootstrap-based two-

stage test has relatively low power in many cases. In particular, it always has lower power than

the 2SLS-based t-test and the hybrid bootstrap test. On the other hand, when the IV is very strong

(e.g., Figure 5), all the tests have almost the same power properties. In the Appendix, we also

report the simulation results for the case with n = 500, and the results are very similar to those in

Figures 2 - 5. Besides the residual-based i.i.d bootstrap procedure, we also tried simulations with

the wild bootstrap procedure (using standard normal weights) discussed in Remark 3 of Section

3.1, and the results were also very similar.

In sum, the Monte Carlo simulations suggest that our method could be particularly attractive

in the cases where the available instruments may not be strong so that IV-based inference methods

could suffer from low power but naively using two-stage procedure to select between the OLS and

2SLS-based t-tests may result in extreme size distortion.

5. Conclusions

In this paper, we study how to conduct uniformly valid inference for the two-stage procedure by

using data-dependent critical values. We first show that standard bootstrap procedures with depen-

dent or independent transformation of disturbances cannot consistently estimate the null distribu-

tion of the two-stage test statistics under local endogeneity. In particular, these bootstrap methods

cannot mimic well the key localization parameter in the model. We also study the asymptotic sizes

of the two bootstrap procedures, and find that the bootstrap two-stage test with independent trans-

formation has extreme size distortion while the one with dependent transformation is much less

distorted. Then, we propose a hybrid bootstrap approach, which makes use of the standard boot-

strap procedure with independent transformation and a Bonferroni-based size-correction method,

which allows us to handle the localization parameter properly. We show that the hybrid boot-

strap method is uniformly valid in the sense that it yields correct asymptotic size. Monte Carlo

simulations confirm that our proposed method is able to achieve remarkable power gains over the

2SLS-based t-test and AR test, especially when the instruments are not very strong.
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Figure 2. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 1
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Figure 3. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 5
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Figure 4. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests:µ2 = 10
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Figure 5. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 100
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A. Appendix

Section A.1 contains the proofs of the theoretical results in the paper.

A.1. Mathematical Proofs

Lemma A.1 If for some δ > 0, E
[

||Z⊥
i ||2+δ

]

< ∞, E
[

|ui|2+δ
]

< ∞ and E
[

|vi|2+δ
]

< ∞, then for

j = 1, ...,k2, E∗
[

∣

∣

∣
Z⊥∗

j,i u∗i

∣

∣

∣

2+δ
]

and E∗
[

∣

∣

∣Z⊥∗
j,i v∗i

∣

∣

∣

2+δ
]

are bounded in probability.

PROOF OF LEMMA A.1

The proof follows closely Lemma A.1 of Moreira, Porter and Suarez (2009). We give the proof

for E∗
[

∣

∣

∣
Z⊥∗

j,i v∗i

∣

∣

∣

2+δ
]

. The proof for E∗
[

∣

∣

∣
Z⊥∗

j,i u∗i

∣

∣

∣

2+δ
]

is very similar thus omitted.

We note that by independence, E∗
[

∣

∣

∣
Z⊥∗

j,i v∗i

∣

∣

∣

2+δ
]

= E∗
[

∣

∣

∣
Z⊥∗

j,i

∣

∣

∣

2+δ
]

E∗
[

|v∗i |2+δ
]

. For j =

1, ...,k2,

E∗
[

∣

∣

∣Z
⊥∗
j,i

∣

∣

∣

2+δ
]

= n−1
n

∑
i=1

∣

∣

∣Z
⊥
j,i

∣

∣

∣

2+δ
→P E

[

∣

∣

∣Z
⊥
j,i

∣

∣

∣

2+δ
]

. (A.1)

Let v̄ = n−1 ∑
n
i=1 vi, and Z̄ = n−1 ∑

n
i=1 Z⊥

i . Using Minkowski and Cauchy-Schwartz inequalities,

we obtain

E∗
[

|v∗i |2+δ
]

= n−1
n

∑
i=1

|ṽi|2+δ

= n−1
n

∑
i=1

∣

∣

∣
vi − v̄− (Z⊥

i − Z̄)′(π̂ −π)
∣

∣

∣

2+δ

≤ C

{

n−1
n

∑
i=1

|vi − v̄|2+δ + ||π̂ −π||2+δ n−1
n

∑
i=1

||Z⊥
i − Z̄||2+δ

}

, (A.2)

where C denotes a large enough constant, which may take different values in different applications.

Using the Minkowski inequality again, we get

n−1
n

∑
i=1

||Z⊥
i − Z̄||2+δ ≤ C

{

n−1
n

∑
i=1

||Z⊥
i ||2+δ + ||Z̄||2+δ

}

→P C
{

E
[

||Z⊥
i ||2+δ + ||E[Z⊥

i ]||2+δ
]}

, (A.3)

using ||Z̄|| →P ||E[Z⊥
i ]|| ≤ E[||Z⊥

i ||] ≤ (E[||Z⊥
i ||2+δ ])1/(2+δ ) by Jensen’s inequality. Similarly,

using the Minkowski inequality again, we obtain

n−1
n

∑
i=1

|vi − v̄|2+δ ≤ C

{

n−1
n

∑
i=1

|vi|2+δ + |v̄|2+δ

}
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→P C
{

E[|vi|2+δ ]
}

, (A.4)

as v̄ →P 0. Since π̂ −π →P 0, the term E∗
[

|v∗i |2+δ
]

is bounded in probability.

Lemma A.2 Suppose that the H0 holds, then under {γn,h} defined in (2.14) with |h1|< ∞ we have:









n−1/2Z⊥∗′u∗

n−1/2Z⊥∗′v∗

n−1/2
(

u∗
′
v∗−E∗

[

u∗
′
v∗
])









→d∗
N

(

0,

(

diag(σ2
u,σ

2
v)⊗Ω 0

0′ σ2
uσ2

v

))

, (A.5)

in probability.

PROOF OF LEMMA A.2

The proof follows closely Lemma A.2 of Moreira et al. (2009). Let c = (c′1,c
′
2)

′ ∈ R
2k2 be a

nonzero vector. Define

X∗
n,i =

{

c′
(

U∗
i ⊗Z⊥∗

i

)

+d (u∗i v∗i −E∗[u∗i v∗i ])
}

/
√

n, (A.6)

where U∗
i = (u∗i ,v

∗
i )

′
is the i-th bootstrap draw of the (re-centered) residuals, and we use the

Cramer-Wald device to verify that the conditions of the Lyapunov Central Limit Theorem hold

for X∗
n,i. We give the proof for the case with independent transformation. The proof for the case

with dependent transformation is very similar thus omitted. To proceed, we note that:

(a) E∗
[

X∗
n,i

]

= 0 follows from the independence of the bootstrap draws between U∗
i and Z⊥∗

i

and from E∗ [U∗
i ] = 0.

(b) By noting that E
∗
[

U∗
i U∗′

i

]

= diag
(

n−1ũ′(θ 0)ũ(θ 0),n
−1ṽ′ṽ

)

, E∗
[

Z⊥∗
i Z⊥∗′

i

]

= n−1Z⊥′Z⊥,

E∗ [u∗2
i v∗2

i

]

= n−1 ∑
n
i=1 ũ2

i (θ 0)ṽ
2
i , and E∗ [u∗i v∗i ] = E∗ [u∗i ]E

∗ [v∗i ] = 0, we have

E∗
[

X∗2

n,i

]

= n−1

{

c′
[

diag
(

n−1ũ′(θ 0)ũ(θ 0),n
−1ṽ′ṽ

)

⊗
(

n−1Z⊥′Z⊥
)]

c+d2

(

n−1
n

∑
i=1

ũ2
i (θ 0)ṽ

2
i

)}

.

It is clear that E∗
[

X∗2

n,i

]

is bounded in probability.

(c) Finally, we note that

n

∑
i=1

E∗
[

∣

∣X∗
n,i

∣

∣

2+δ
]

≤ Cn−
δ
2 n−1

n

∑
i=1

E∗
[

∣

∣

∣
c′
(

U∗
i ⊗Z⊥∗

i

)∣

∣

∣

2+δ
+ |du∗i v∗i |2+δ

]

≤ Cn−
δ
2 E∗

[

∣

∣
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′
1Z⊥∗

i u∗i
∣

∣

∣

2+δ
+
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′
2Z⊥∗

i v∗i
∣

∣

∣

2+δ
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]
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≤ Cn−
δ
2

{

k2

∑
j=1

[

|c1 j|2+δ E∗
[

∣

∣

∣
Z⊥∗

j,i u∗i
∣

∣

∣

2+δ
+ |c2 j|2+δ E∗

[

∣

∣

∣
Z⊥∗

j,i v∗i
∣
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∣

2+δ
]]

+ |d|2+δ E∗
[

|u∗i v∗i |2+δ
]

}

→P 0,

where the convergence in probability is obtained by using the results in Lemma A.1 and the fact

that E∗
[

|u∗i v∗i |2+δ
]

= E∗
[

|u∗i |2+δ
]

E∗
[

|v∗i |2+δ
]

=
(

n−1 ∑
n
i=1[|ũi(θ 0)|2+δ ]

)(

n−1 ∑
n
i=1[|ṽi|2+δ ]

)

is

bounded in probability.

The required result follows by applying the Lyapunov Central Limit Theorem.

PROOF OF THEOREM 3.1

First, we note that

n−1/2y⊥∗′
2 PZ⊥∗u

∗/(E∗[u∗2
i ]E∗[v∗2

i ])1/2

=

[
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)′
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i ]E∗[v∗2

i ])1/2 +OP∗
(

n−1/2
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→d∗
h2s′k2

ψ∗
u, (A.7)

in probability, where the last equality follows from: (a) by Lemma A.2, n−1/2v∗
′
Z⊥∗ = OP∗(1) in

probability, and n−1/2Z⊥∗′u∗ = OP∗(1) in probability; (b) by the Markov Law of Large Numbers,

n−1Z⊥∗′Z⊥∗− n−1Z⊥′
Z⊥ →P∗

0 in probability; (c) n−1Z⊥′
Z⊥ →P Ω , which is positive definite,

and therefore
(

n−1Z⊥∗′Z⊥∗
)−1

→P Ω−1 in probability; and (d) E∗[u∗2
i ] = n−1ũ′(θ 0)ũ(θ 0)→P σ2

u

under H0, and E∗[v∗2
i ] = n−1ṽ′ṽ →P σ2

v . And the (conditional) convergence in distribution follows

from Lemma A.2, π̂ −π →P 0, and the definition of h2 and ψ∗
u.

Second, note that using similar arguments and Lemma A.2, we have

n−1/2y⊥∗′
2 u∗/(E∗[u∗2

i ]E∗[v∗2
i ])1/2

=
[

n−1/2π̂ ′Z⊥∗′u∗+n−1/2
(

v∗
′
u∗−E∗[v∗

′
u∗]
)

+n−1/2E∗[v∗
′
u∗]
]

/(E∗[u∗2
i ]E∗[v∗2

i ])1/2

→d∗
h2s′k2

ψ∗
u +ψ∗

uv +hb
1, (A.8)

in probability, where hb
1 = 0 for the independent transformation and hb

1 = h1 + ψuv for the

dependent transformation, because n−1/2E∗[v∗
′
u∗] = 0 for the independent transformation and

n−1/2E∗[v∗
′
u∗] = n1/2

(

n−1 ∑
n
i=1 ṽiũi(θ 0)

)

for the dependent transformation.

Third, we note that

n−1y⊥∗′
2 PZ⊥∗y

⊥∗
2 /E∗[v∗2

i ]
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= n−1
(

Z⊥∗π̂ + v∗
)′

PZ⊥∗

(

Z⊥∗π̂ + v∗
)

/E∗[v∗2
i ]

=
[

n−1π̂ ′Z⊥∗′Z⊥∗π̂ +n−1π̂ ′Z⊥∗′v∗+n−1v∗
′
Z⊥∗π̂ +n−1v∗

′
PZ⊥∗v

∗
]

/E∗[v∗2
i ]

= n−1π̂ ′Z⊥∗′Z⊥∗π̂/E∗[v∗2
i ]+OP∗

(

n−1/2
)

+OP∗
(

n−1/2
)

+OP∗
(

n−1
)

→P∗
h2

2, (A.9)

in probability. Using similar arguments, we obtain

n−1y⊥∗′
2 y⊥∗

2 /E∗[v∗2
i ]→P∗

h2
2 +1, (A.10)

in probability. Combining (A.7)-(A.10), we get the desired result.

PROOF OF THEOREM 3.2

We follow Andrews and Guggenberger (2010b) [e.g., the proof of Theorem 1; see also Guggen-

berger (2010a)], and note that there exists a “worst case sequence” γn ∈ Γ such that:

AsySz[ĉ∗n(1−α)]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[Tn(θ 0)> ĉ∗n(1−α)]

= limsup
n→∞

P
θ0,γn

[Tn(θ 0)> ĉ∗n(1−α)]

= lim
n→∞

P
θ0,γmn

[

Tmn
(θ 0)> ĉ∗mn

(1−α)
]

(A.11)

where the first equality holds by the definition of asymptotic size and the second by the choice of

the sequence {γn : n ≥ 1}. And {mn : n ≥ 1} is a subsequence of {n : n ≥ 1}; such a subsequence

always exists. Furthermore, there exists a subsequence {ωn : n ≥ 1} of {mn : n ≥ 1} such that:

lim
n→∞

P
θ0,γmn

[

Tmn
(θ 0)> ĉ∗mn

(1−α)
]

= lim
n→∞

P
θ0,γωn,h

[

Tωn
(θ 0)> ĉ∗ωn

(1−α)
]

(A.12)

for some h ∈ H . But, for any h ∈ H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and any

sequence {θ ωn,h : n ≥ 1}, we have
(

Tωn
(θ 0), ĉ

∗
ωn
(1−α)

) d→
(

T̃h,c
∗
h(1−α)

)

jointly. It follows that

AsySz[ĉ∗n(1−α)] = sup
h∈H

P[T̃h > c∗h(1−α)].

PROOF OF THEOREM 3.3

First, note that by following similar arguments as those in the proofs of Theorem 3.1, we can

obtain that the following (conditional) convergence in distribution holds:





T ∗
OLS,(h1,ĥ2)

(θ 0)

H∗
n,(h1,ĥ2)



→d∗





(1+h2
2)

−1/2(h2s′k2
ψ∗

u +ψ∗
uv +h1)

(1+h2
2)

−1
(

s′k2
ψ∗

u −h2ψ∗
uv −h2h1

)2



 , (A.13)
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in probability. Then, based on the formula of T ∗
n,(h1,ĥ2)

(θ 0), we conclude that the (conditional) null

limiting distribution of T ∗
n,(h1,ĥ2)

(θ 0) is the same as the null limiting distribution of Tn(θ 0) with the

value of localization parameter equal to h1, and this implies that c∗
(h1,ĥ2)

(1−δ )→P c(h1,h2)(1−δ ),

where c(h1,h2)(1−δ ) denotes the (1−δ )-th quantile of T̃h with h = (h1,h2).

Then, the proof is similar to the proof for Theorem 3.2 and those in McCloskey (2017). We

note that there exists a “worst case sequence” γn ∈ Γ such that:

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

P
θ0,γn

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= lim
n→∞

P
θ0,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn,1
, ĥ

mn,2
)
]

(A.14)

where {mn : n ≥ 1} is a subsequence of {n : n ≥ 1} and such a subsequence always exists. Further-

more, there exists a subsequence {ωn : n ≥ 1} of {mn : n ≥ 1} such that:

lim
n→∞

P
θ0,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn,1
, ĥ

mn,2
)
]

= lim
n→∞

P
θ0,γωn,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥωn,1

, ĥωn,2
)
]

(A.15)

for some h ∈ H . But, for any h ∈ H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and any

sequence {γωn,h
: n ≥ 1}, we have

(

Tωn
(θ 0), ĥωn,1

) d→
(

T̃h, h̃1

)

jointly. In addition, cB−S(α,α −
δ , ĥωn,1

, ĥωn,2
) is continuous in ĥωn,1

by the definition of the SBCV and Maximum Theorem. Hence,

the following convergence holds jointly by the Continuous Mapping Theorem:

(

Tωn
(θ 0),c

B−S(α,α −δ , ĥωn,1
, ĥωn,2

)
)

d→
(

T̃h,c
B−S(α,α −δ , h̃

1
,h

2
)
)

(A.16)

where cB−S(α,α −δ , h̃
1
,h

2
) = sup

h1∈CI
α−δ

(h̃1)

c(h1,h2)(1−δ ). Then, (A.14)-(A.16) imply that

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= lim
n→∞

P
θ0,γωn,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥωn,1

, ĥωn,2
)
]

= sup
h∈H

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)
]

, (A.17)

Now, for any h ∈ H , we have:

P
[

T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

= P
[

T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)≥ ch(1−δ )

]
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+ P
[

T̃h ≥ ch(1−δ )≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

+ P
[

ch(1−δ )≥ T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

≤ P
[

T̃h ≥ ch(1−δ )
]

+P
[

ch(1−δ )≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

= P
[

T̃h ≥ ch(1−δ )
]

+P
[

h1 /∈CIα−δ (h̃1)
]

= δ +(α −δ ) = α, (A.18)

where the inequality and the second equality follow from the form of cB−S(α,α − δ , h̃
1
,h

2
), and

the third equality follows from the definition of CIα−δ (h̃1). As (A.18) holds for any h ∈ H , it is

clear from (A.17) that AsySz[cB−S(α,α −δ , ĥ
n,1 , ĥn,2)]≤ α, as stated.

PROOF OF THEOREM 3.4 As in Theorem 3.3, we can show that there exists a sequence γn ∈ Γ ,

a subsequence {mn : n ≥ 1} of {n : n ≥ 1}, and a subsubsequnce {ωn : n ≥ 1} of {mn : n ≥ 1}
such that the following result holds:

AsySz
[

cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)+ η̂n

]

= limsup
n→∞

P
θ0,γn

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)+ η̂n

]

= lim
n→∞

P
θ0,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn,1
, ĥ

mn,2
)+ η̂mn

]

= lim
n→∞

P
θ0,γωn,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥωn,1

, ĥωn,2
)+ η̂

ωn

]

(A.19)

for some h ∈ H . Furthermore, as in the proof of Theorem 3.3, for any h ∈ Hh, any subsequence

{ωn : n ≥ 1} of {n : n ≥ 1}, and any sequence {γωn,h
: n ≥ 1}, we have

(

Tωn
(θ 0), ĥωn,1

) d→
(

T̃h, h̃1

)

jointly. Hence,

lim
n→∞

P
θ0,γωn ,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥωn,1

, ĥωn,2
)+ η̂

ωn

]

= sup
h∈H

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+ η̄

]

(A.20)

≡ sup
h∈H

P
[

T̃h > cB−C(α,α −δ , h̃
1
,h

2
)
]

, (A.21)

where η̄ = inf

{

η : sup
h1∈H1

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η

]

≤ α

}

. For the simplicity of exposi-

tion, define the following asymptotic rejection probability:

NRP[h,η ] ≡ P[T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η ]. (A.22)
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It is clear from (A.19)-(A.22) that AsySz[cB−C(α,α − δ , ĥ
n,1 , ĥn,2)] = sup

h∈H

NRP[h, η̄ ]. Hence, it

suffices to show that sup
h∈H

NRP[h, η̄ ] = α to establish Theorem 3.4.

First, from the result of Theorem 3.3 and the definition of the size-correction criterion, it is

clear that sup
h∈H

NRP[h, η̄ ]≤ α . We proceed to show that sup
h∈H

NRP[h, η̄ ]< α leads to contradiction.

Assume that sup
h∈H

NRP[h, η̄ ]< α and define the function K(·) : R− → [−α, 1−α] such that

K(x) = sup
h∈H

NRP[h,x]−α. (A.23)

As NRP[h, ·] is continuous on R−, the Maximum Theorem entails that K(·) is also continuous on

R−. Moreover, we have

K
(

−cB−S(α,α −δ , h̃
1
,h

2
)
)

= sup
h∈H

NRP[h,−cB−S(α,α −δ , h̃
1
,h

2
)]−α = 1−α > 0

and K (η̄) = sup
h∈H

NRP[h, η̄ ]−α < 0 (by assumption).

Then, we note that by the Intermediate Value Theorem, there exists η̇ such that

i) − cB−S(α,α −δ , h̃
1
,h

2
)< η̇ < η̄ ,

ii) K (η̇) = 0; i.e., sup
h∈H

NRP[h, η̇ ] = α.

However, this contradicts the size-correction procedure where

η̄ = inf

{

η : sup
h1∈H1

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η

]

≤ α

}

.

It follows that sup
h∈H

NRP[h, η̄ ] = α; i.e., AsySz[cB−C(α,α −δ , ĥ
n,1 , ĥn,2)] = α .

A.2. Further Simulation Results

In this section, we report further simulation results for the finite-sample power performance of the

four tests: the AR test, the 2SLS-based t-test (without Hausman pretest), the two-stage test based

on the dependent bootstrap CVs, and the two-stage test based on the hybrid bootstrap CVs. We

follow the same set ups as those in Section 4 but with the sample size n = 500. Figures A.1 - A.4

show the finite-sample power curves of the four tests, and the results are very similar to those in

Figures 2 - 5.
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Figure A.1. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 1
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Figure A.2. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 5
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Figure A.3. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests:µ2 = 10
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Figure A.4. Power of AR, 2SLS-t, dependent bootstrap, and hybrid bootstrap tests: µ2 = 100
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