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Abstract 

 

Volatility is directly associated with risks and returns. This study aims to examine 

the volatility characteristics on Tunisian stock market index (5 days a weak 

TUNindex) that include clustering volatility, leptokurtosis, and leverage effect. 

The first objective is then to use the GARCH type models to estimate volatility of 

the daily returns series, consisting of 2191 observations from 01/02/2011 to 

19/11/2019, with no significant weekdays effect. We use both symmetric and 

asymmetric models. The main findings suggest that the symmetric GARCHM and 

asymmetric TGARCH /APGARCH models can capture characteristics of 

TUNindex whereas EGARCH reveals no significant support for leverage effect 

existence. Looking at news impact curves, GJR model appears to be relatively 

better than other models. However, the volatility of stock returns is more affected 

by the past volatility than the related news from the previous period. The second 

objective is to use GARCHM- X S models to capture the effect of macro-economic 

instability via exchange rate growth and exchange rate volatility. For policy, 

GARCHM-XS2 turned to be the best model. The macroeconomic environment 

should be favourable to ensure growth in the stock market. Policies to reduce 

volatility in the the economy (more stable exchange rate) are a necessity for stock 

market. 
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1. Introduction 
 

The volatility analysis of stock markets is important for the investors in  

measuring and managing market risks more accurately which, in turn is useful in 

pricing capital assets, financial securities, and selecting portfolios. When 

volatility persists, securities firms are less able to use their available capital 

efficiently because of the need to reserve a larger percentage of cash-equivalent 

investments in order to reassure lenders and regulators; and greater volatility can 

reduce investor confidence in investing in stocks (Edwards, 2006). If volatility is 

changing at higher rate, it may results in high profits or huge losses (Hemanth & 

Basavaraj, 2016), and this should be boosted by providing empirical evidence 

from appropriate models. 

 

Volatility is an important input to many investment decisions and portfolio 

selection.understanding the pattern of stock market volatility is important to 

investors as well as for investment policy. Volatility is directly associated with 

risks and returns. A large number of empirical studies have been accomplished to 

address the concept of volatility of stock markets using the family of 

ARCH/GARCH processes. 

 

ARCH and GARCH models are used to capture both volatility and leptokurtosis. 

The so called “leverage effect” is also often observed in the financial time series 

(see (Black, (1976))). This usually occurs when stock price changes are 

negatively correlated with changes in volatility. Since ARCH and GARCH 

models are symmetric in nature, they fail to capture the leverage effect. In order 

to address this problem, many nonlinear extensions of the GARCH models have 

been proposed. These include asymmetric class of GARCH models such as 

exponential GARCH (EGARCH) model by (Nelson, 1991) the so-called GJR 

model by (Glosten, Jagannathan, & Runkle, 1993) and the power GARCH 

(APGARCH) model by (Ding, Engle, & Granger, 1993). In the light of these 

observations in the financial time series, a wide range of varying variance models 

have been used to estimate and predict volatility. 

 

The aim of this paper is to use the General Autoregressive Conditional 

Heteroscedastic (GARCH) type models to estimate volatility of the daily returns 

of the Tunisian stock market: that is Tunindex. The volatility of the Tunisian stock 

market is modeled using daily return series consisting of 2191 observations from 

01/02/2011 to 19/11/2019. ARCH effects test confirmed the use of GARCH 

family models. We use both symmetric and asymmetric models : GARCH(1, 1), 

GARCH-M(1, 1), EGARCH(1, 1), TGARCH(1, 1), PGARCH(1, 1) and 

APGARCH(1, 1) to capture the most common features of the stock market like 



4 

 

leverage effect and volatility clustering. We consider also GARCHM- X S- models 

to capture the effect of macro-economic instability via exchange rate growth and 

exchange rate volatility. Post-estimation test for further ARCH effects were done 

for each model to confirm its adequacy. Also LR and LM test are used to select 

the more adequat model. 
 

The rest of this paper is organized as follows. Following this introduction, Section 

2 provides a brief empirical review of the methodology of modeling volatility 

using some well known symmetric and asymmetric GARCH models. A data 

description, summary statistics, and analysis is provided in Section 3. 

Methodology is given in section 4. The results of the estimated GARCH type 

models are discussed in Section 5. Lastly, section 6 concludes the paper. 
 

2. Empirical review 
 

The volatility analysis of stock markets is important for the investors in measuring 

and managing market risks more accurately which, in turn is useful in pricing 

capital assets, financial securities, and selecting portfolios. The main 

methodologies that are applied in modelling the stock market volatility are ARCH 

models introduced by (Engle R. F., 1982) and generalized as GARCH by 

(Bollerslev T. , 1986). The progress in such studies is generally provided for the 

purpose of estimation and prediction of the conditional variance of stock returns 

over the specified period.  

 

Volatility is generally higher after the stock market falls than after it raises. 

Therefore, volatility of returns has an asymmetric predictable response to the 

changes in stock prices (it increases more when stock prices fall than when stock 

prices raise). So that there is a negative correlation between volatility and returns. 

This is so-called leverage effect and was reported by Black (1976).1 However, 

(Black, (1976)) and (Schwert, 1989) found empirically that leverage alone can not 

explain all the asymmetry. Asymmetric ARCH (AARCH) by (Engle, Ito, & Lin, 

1990), Exponential GARCH model (EGARCH) of (Nelson, 1991), Threshold 

ARCH model (TARCH) proposed by (Zakonian, 1990) and its modified version 

of (Glosten, Jagannathan, & Runkle, 1993) (GJR) are able to capture this 

predictable asymmetric effect. 

 

For instance, the reader might get benefit from the research done by (Ahmed & 

Suliman, 2011), (Naimy, 2013), (Shamiri & Isa, 2009),  (Kalu, 2010), and 

(Maqsood, Safda, & Shafi,, 2017). They used some models from GARCH family 

both symmetric and asymmetric to capture the stock market volatility. (Ahmed & 

                                                             

1 When leverage of firms increases, uncertainty increases too. 
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Suliman, 2011) worked with the reference of Sudan stock market, while (Kalu, 

2010) provides the volatility analysis of Nigerian stock exchange. Modeling 

volatility of Paris stock market using GARCH (1, 1) and compared with 

exponential weighted moving average (EWMA) was done by (Naimy, 2013). 

Similarly, (Shamiri & Isa, 2009) provide the comparison of usual GARCH model 

with the non linear asymmetric NAGARCH models based on Malaysian stock 

market. Table 6  give a sum up of more empirical review (sse Appendice). 

3. Data Description and Basic Statistics  
 

The time series data used for modeling volatility in this paper is the daily Tunisian 

Securities Exchange (TUNindex) index (5 days a weak) over the period from 

2/01/2011 to 11/19/2019, resulting in total observations of 2191 observations 

from excluding public holidays. Figure 1 give daily TUNindex and exchange rate 

evolution for this period. We could see from the graph that there were larger 

fluctuations in the both series during 2017 until 2019 compared with the period 

between 2011 and 2016.  

 

The daily returns (𝑅𝑡) are calculated as the continuously compounded returns 

which are the first differences of log index of TUNindex of successive days: We 

used time series data sourced from Bourse de Tunis of Tunisia. We denote by 𝑅𝑡 = 𝐿𝑆𝑃𝑡 − 𝐿𝑆𝑃𝑡−1 =△ 𝐿𝑆𝑃𝑡 ,            
where 

LSP = log(TUNindex) 

the return of stock market price TUNindex, where LSPt and LSPt-1 are the t and t 

−1 th day Stock price in log.  

 

Returns over the period is graphically shown below at Figure 2 (a).  

 

The descriptive analysis of the underlying variables was carried out to check the 

characteristics of the series. Figure 2 (b) and (d) shows summary statistics of stock 

market return, R, and exchange rate, Exrate. Statistics consist of the daily sample 

mean return, standard deviation, minimum return and maximum return, skewness, 

kurtosis, and JB statistic. 

 

The mean return is 0.000138 with the standard deviation of 0.005157. The mean 

exchange rate is 2.035 with the standard deviation of 0.499. For instance, the 

standard deviations indicate that Exchange Rate is more unstable/volatile 

compared with Stock Market return (R). There is also an excess in kurtosis as can 

be seen clearly for TUNindex returns. A high value of kurtosis 15.447 indicates a 

leptokurtic distribution that is an apparent departure from normality.  
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Another important test of normality is the Jarque-Bera (JB) statistic, which reject 

the null hypothesis of normality for the daily TUNindex returns at 5% level of 

significance. We can thus summarize that the TUNindex return series do not 

conform to normality but actually tend to have negative skewness (i.e. the 

distribution has not a thick tail). 

 

Figure 2 (a) show us that there is evidence of volatility clustering, meaning that 

large or small asset price changes tend to be followed by other large or small price 

changes of either sign (positive or negative). This implies that stock return 

volatility changes over time. 
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Figure 3 give evolution of exchange rate growth volatily (VEXG) and Figure 4 

illustrate evolution of  𝑉𝐸𝑋 𝑡− (and 𝑉𝐸𝑋 𝑡+ ) the partial sums of negative (and 

positive) changes in  volatility  of exchange rate (VEX) as defined by : 

VEX t− = ∑ ∆t
j=1 VEXj− = ∑ min (∆t

j=1 VEXj, 0), 
and  

VEX t+ = ∑ ∆t
j=1 VEXj+ = ∑ max (∆t

j=1 VEXj, 0).    
All these volatilities have different pattern after 2016. 
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Figure 3: Volatilty of Exchange rate growth (VEXG) from AR(1)-GARCH(2,1) 
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Figure 4: 𝑉𝐸𝑋 𝑡−  and 𝑉𝐸𝑋 𝑡+ for exchange rate volatility, VEX, from 

Before the application of AR(p)-GARCH technique, preliminary tests were 

conducted, such as the stationarity test of the variables (Tunindex, 𝑅𝑡, and Exrate) 

‘using the Augmented Dickey Fuller test (ADF), Philips Perron test (PP) and 

Kwiatkowski-Phillip-Schmidt-Shin (KPSS) test statistics. The test results are 

presented in Table 7 (see Appendice). 

 

Table 7 revealed that Tunindex and Exrate series are not stationary, however the 

results for return 𝑅𝑡 led towards the rejection of null hypothesis of unit root, and 

hence stationarity is present in return series. 

 

Finally, it is important to examine the considered serie 𝑅𝑡 to find the evidence of 

possible heteroscedasticity before applying the methodology of modeling 

conditional variance. In order to test the presence of heteroscedasticity in the 

TUNindex return series, the Lagrange Multiplier (LM) test will be applied to test 

the hypothesis that 𝛼1 =𝛼2 =…=𝛼𝑞 = 0, 

where q is the order of ARCH effect.2  

 

                                                             
2 The test procedure entails first obtaining the residuals 𝑢𝑡 from the ordinary least square 

regression of TUNindex returns on a constant. 
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Results of LM test for various ARCH order q = 1, 2, 3 are presented in Table 1 

which provide strong evidence of rejecting the null hypothesis of constant 

variance for all lags included. Rejecting H0 indicates the presence of ARCH effect 

in the TUNindex returns series 𝑅𝑡 and therefore we can conclude that the variance 

of the return of TUNindex is no-constant for all periods specified.3 

 

Table 1 : Results of ARCH-LM test for different values of q. 

 

ARCH order q  

Test statistic TR2 Probability 

1 

2 

3 
 

537.4039 

567.5435 

591.8380 
 

0.0000 

0.0000 

0.0000 
 

Notes: This table reports results from (Engle R. F., 1982)’s test of no ARCH, calculated on different 
lags. 

Once the volatility is confirmed in data, we proceed our analysis further to 

estimate the parameters of both conditional mean and conditional variance 

equations. 

 

4. Methodology : Conditional Mean  and Variance specifications   
 

To determine volatility, Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models are widely used.  Let  𝑅𝑡 denote a real 

valued discrete time stochastic process and 𝛹𝑡−1 is the information set of all 

information through time t. We define the model that contains the features of both 

conditional mean and conditional variance as given below. 

 

Conditional Mean Equation 𝑅𝑡 = 𝐸[𝑅𝑡 /  𝛹𝑡−1  ] + 𝑢𝑡,    𝑢𝑡~(0, 𝜎2𝑡)   (1) 

Where 𝛹𝑡−1is the information set, 𝐸[𝑅𝑡 /  𝛹𝑡−1  ] = 𝜇𝑡 is the expression used to 

model the conditional mean of 𝑅𝑡 given that the information through time t – 1, 𝛹𝑡−1, which might be an autoregressive (AR) process, moving average (MA) 

process, or a combination of the two processes termed as ARMA process. The 

error 𝑢𝑡 is assumed to be non constant quantity with respect to time and thus is 

given by 𝑢𝑡 = 𝜎𝑡ℎ𝑡 

                                                             
3 We assume a constant mean model and the LM test is applied to compute the test statistic 

value TR2, where T is the number of observations and R2 is the coefficient of multiple 

correlation obtained from regressing the squared residuals on q own lagged values. 
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where  𝜎2𝑡 = 𝑉[𝑅𝑡 /  𝛹𝑡−1] and ℎ𝑡~𝑊𝑁(0, 1) .   We briefly present a number of 

specifications of GARCH models to represent the situations for expressing the 

conditional variance. 

 

Several Conditional Variance specifications : 

Since the GARCH model was developed, a huge number of extensions and been 

suggested as a consequence of perceived problems with standard GARCH(p, q) 

models. First, the non-negativity conditions of parameters may be violated by the 

estimated model. Second, GARCH models cannot account for leverage effects, 

although they can account for volatility clustering and leptokurtosis in a series. 

Finally, the model does not allow for any direct feedback between the conditional 

variance and the conditional mean. The next few sections will discuss various 

models that are appropriate to capture the stylised features of volatility (most 

important extensions of GARCH model), that have been observed in the 

literature.4 Pricisely, 3 symmetric and 3 asymmetric model will be presented. In 

Addition, since Macroeconomic instability can effect stock market price, 3 other 

models named GARCH-X type are considered when macro-economic variables 

are introduced in conditional mean and or in conditional variance. If these models 

are instable, they will be noted by GARCH-XS. And then, 3 instable GARCH-X 

models are considered. 
 

A_ Symmetric GARCH Models :  

 

1_ GARCH Model : 

 
 GARCH model is defined as the linear function of past squared residuals and 

the lagged conditional variances as given below : 
 𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑝𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑞𝑖=1     ( 1) 

in which all the coefficients must be positive (the non-negativity conditions), 

and the condition ∑ 𝛼𝑖𝑝
𝑖=1 + ∑ 𝛽𝑖𝑞𝑖=1 < 1 

is needed for covariance stationarity, where 𝛼0 is the constant term, 𝛼𝑖 , i = 1, 

…, 0, q are the parameters or coefficients of ARCH specifications, and 𝛽𝑖,i=1, …, 
p are the parameters or coefficients of GARCH specifications. The q and p are the 

                                                             
4 Interested readers who wish to investigate further are directed to a comprehensive survey by 

(Bollerslev, Chou, & Kroner, ARCH Modelling in Finance: A Review of the Theory and 

Empirical Evidence, 1992). 
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respective orders of ARCH and GARCH processes. α parameter represents a 

magnitude effect or the symmetric effect of the model. β measures the persistence  

in conditional volatility irrespective of anything happening in the market. When 

β is relatively large, then volatility takes a long time to die out following a 

crisis in the market (Alexander, 2009). 

The simplest specification of this model is GARCH (1, 1) model, that is, 𝜎2𝑡 = 𝛼0 + 𝛼1𝑢2𝑡−1 + 𝛽1𝜎2𝑡−1. 

The non-stationarity in variance is the case where 𝛼1 + 𝛽1 ≥ 1 and the 
unconditional variance of 𝑢𝑡 is not defined (negative). Moreover, 𝛼1 + 𝛽1 = 1 is 

known as a unit root in variance, termed as IGARCH. 

 

2_ GARCH-M Models :  

 

Many theories in finance involve an explicit tradeoff between the risk and the 

expected return. The ARCH-in-Mean (ARCH-M) model introduced by (Engle, 

Lilien, & Robins, 1987) was developed to capture such relationship. 

 

This variant of GARCH family allows the conditional mean of return series to 

depend on its conditional variance. A simple GARCH-M (1, 1) model is defined 

by the two equations, the one for conditional mean is given by 𝜇𝑡= F(𝑅𝑡) + 𝛽 𝑋𝑡 + 𝐺𝐴𝑅𝐶𝐻 𝑒𝑓𝑓𝑒𝑐𝑡,    (2) 

where 

GARCH effect ≡𝜆 𝜎2𝑡 , 𝜆 𝜎𝑡, 𝑜𝑟 𝜆 𝑙𝑜𝑔(𝜎2𝑡),   (3) 

F(𝑅𝑡) might be an autoregressive (AR) process, moving average (MA) process, 

or a combination of the two processes termed as ARMA process, and X is a vector 

of macro-economic variables. While the equation for conditional variance is same 

as provided by the GARCH (p, q) model. Depending on the sign of 𝜆, an increase 

in the conditional variance will be associated with an increase or a decrease in the 

conditional mean. When dealing with market indices, 𝜆 is seen as a measure of 

the risk aversion degree of agents. If agents are risk averse they require a larger 

expected return from an asset riskier within a period when payoffs are riskier, 

leading to a positive sign of 𝜆. On the other hand, a larger expected return may 

not be required because investors may want to save more during riskier periods, 

leading to a negative sign of 𝜆, see (Glosten, Jagannathan, & Runkle, 1993).5  

                                                             
5 These authors argued that positive or zero relations between returns and volatility come from 

studies that use the standard GARCH-M model as (French, Schw ert, & Stamb augh, 1987) did. 

In their work, (Glosten, Jagannathan, & Runkle, 1993) used standard GARCH-M and got a 

positive correlation. However, they used Threshold GARCH model of (Zakonian, 1990) to 

allow positive and negative innovations to returns to have different impacts on volatility and 

they got a negative correlation. In contrast, (Campbell & Hentschel, 1992) using QGARCH (2, 
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3_ PGARCH (Power GARCH ) : 

 
Unlike the GARCH family, these models capture more regularities like long 

memory effect in just one model. The PGARCH (p, q) specification is as under; 𝜎𝑡 = 𝛼0 + ∑ 𝛼𝑖(|𝑢𝑡−𝑖|)𝑞𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑖𝑝𝑖=1   (4) 

where δ is the parameter for power term such that δ > 0. 

 

B_ Asymmetric GARCH Models  

 

4_ EGARCH Models :  

 

(Nelson, 1991) proposed the exponential GARCH (EGARCH) models 

particularly designed to allow positive and negative shocks to have a different 

impact on volatility. EGARCH model allows big shocks to have a greater impact 

on volatility than the standard GARCH model” (Engle & Ng, 1993). The 

EGARCH (p, q) specification is given by 

 𝑙𝑜𝑔 (𝜎2𝑡) = 𝛼0 + ∑  𝛼𝑖  |𝑢𝑡−𝑖𝜎𝑡−𝑖|𝑞𝑖=1 + ∑ 𝛽𝑖𝑙𝑜𝑔 (𝜎2𝑡−𝑖𝑝𝑖=1 ) + ∑  𝑖  𝑢𝑡−𝑖𝜎𝑡−𝑖𝑞𝑖=1    (5) 

where 𝒊 is the asymmetric or leverage effect parameter. This make the leverage 

effect exponential instead of quadratic, and therefore the estimates of the 

conditional variance are garanteed to be non-negative. The EGARCH model 

allaws for testing asymmetries and TARCH. Conditional variance is modeled to 

capture the leverage effect of volatility. If 𝑖 = 0 , then the model is symmetric. 

When 𝑖 < 0 , then positive shocks ( good news) generate less volatility than 

negative shocks ( bad news) and it implies that the relationship between volatility 

and returns is negative. When 𝑖  > 0 , it implies that positive innovations are more 

destabilizing than negative innovations. 

 

 If the relationship between the current return and future volatility is negative then 

γ will be negative and hence the leverage effect is confined. 

 

5_ TGARCH Models :  

 
Another important volatility model commonly used to handle the leverage effect 

is the threshold GARCH (TGARCH) model developed by Glosten, Jagannathan, 

and Runkle in 1993 (noted also by GJR model). The TGARCH (p, q) framework 

of conditional variance is given by 

                                                             

1)-M, which captures predictable asymetries, found a positive correlation for daily excess stock 

returns.  
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𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑞𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑝𝑖=1 + ∑ 𝑖𝑢2𝑡−𝑖𝑞𝑖=1 𝐼𝑡−𝑖  (6) 

Where 𝐼𝑡−𝑖 = 1 if   𝑢𝑡−𝑖 < 0 and 0 otherwise, 𝒊 is the parameter of leverage 

effect. If  𝒊 = 0 the model collapses to the classical GARCH (p, q) process. 

Otherwise, when the shock is positive, the effect on volatility is 𝛼𝑖 (i.e, 𝐼𝑡−𝑖 =0), 𝑎𝑛𝑑 when the shock is negative, the effect on volatility is 𝛼𝑖 + 𝑖 (i.e, 𝐼𝑡−𝑖 =1). Hence, we can say that for 𝑖 > 0, the effect of bad news (negative shock) 

have larger impact on conditional variance than does good news (it assumes that 

negative shocks have a higher impact than positive ones). 

 

 

6_ APGARCH Model 

 
Asymmetric Power GARCH is proposed by (Ding, Engle, & Granger, 1993). 

Unlike the PGARCH, this model capture leverage effects. The APGARCH (p, q) 

specification is as under; 

 𝜎𝑡 = 𝛼0 + ∑ 𝛼𝑖(|𝑢𝑡−𝑖| − 𝒊𝑢𝑡−𝑖)𝑞𝑖=1  + ∑ 𝛽𝑖𝜎𝑡−𝑖𝑝𝑖=1   (7) 

where 𝒊 is the leverage effect parameter (it allows positive and negative 

innovations to have a different effect in the expected volatility), and δ is the 

parameter for power term such that δ > 0 .6 

Comparisons or selection of more accurate model can be based on Likelihood 

ratio (LR) test. Test of GARCH(1, 1) against EGARCH(1, 1)  or TGARCH(1, 1) 

is equivalent to test   𝐻01 : 1 = 0, 
while test against PGARCH(1, 1)  model  is equivalent to test   𝐻02 : 1 = 0, 
 

and against GARCH-M(1, 1)  model  is equivalent to test   𝐻03 : 𝜆 = 0, 
while test  against APGARCH(1, 1)  model  is equivalent to test   𝐻04 : 1 = 1 = 0. 

 

                                                             
6 Note that, the APGARCH model includes several other ARCH extensions as special cases : 

 The ARCH of (Engle R. F., 1982), when , δ =2, 𝑖= 0 (i = 1, …, p) and 𝛽𝑖= 0 (j = 1,…, 
p). 

 The GARCH of (Bollerslev T. , 1986), when , δ  = 2   𝑖 = 0 = 0 (i = 1, …, p). 

 The GJR of (Glosten, Jagannathan, & Runkle, 1993), when δ = 2. 

  The TARCH of (Zakonian, 1990) when δ = 1. 
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The LR test statistic is given by 

LR = −2(LLR –LLU ) ~ ӽ2 (m) ;
7 

where LLR and LLU are respectively restricted and unrestricted  log-likelihood,  

and m is the number of restrictions (m = 1 for 𝐻0𝑖 , 𝑖 = 1, 2, 3 and m = 2 for 𝐻04).8  
 

C_ GARCHM-XS models 
 

To examine the behavior of the GARCH models, as suggested by (Engle & Ng, 

1993), different diagnostics tests for volatility models are used. These tests 

examine whether we can predict volatility by some variables observed in the past 

which are not included in the volatility model being considered.9  

The diagnostics tests are derived by writing the volatility model in a more general 

form, of which the volatility model under the null hypothesis is a special case : 𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑝𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑞𝑖=1 + 1 ′𝑍𝑡 

where 1 is the (m×1) vector of additional parameters and 𝑍𝑡  is the vector of m 

corresponding additional explanatory variables, which are missing in the original 

volatility model. For example, these may be the variables which incorporate the 

instability and or asymmetry in the volatility model.  
 

This type of model can be used to capture the effect of macro-economic 

instability. In order to approximate and quantify this instability, we use daily 

exchange rate growth volatility, 𝑉𝐸𝑋𝐺t, and the partial sums of negative and the 

partial sums of positive changes in  volatility  of exchange rate, 𝑉𝐸𝑋 t− and 𝑉𝐸𝑋 t+. 

Three model are then considered. Since Volatilty of Exchange rate growth 

(VEXG), volatility of Exrate (VEX), partial sums of negative and the partial sums 

of positive changes in  volatility  of exchange rate ( 𝑉𝐸𝑋 t−, and 𝑉𝐸𝑋 t+) evolutions 

take different patturns after 2016 (see Figure 3 and Figure 4), they may have 

different effects on TUNindex return volatility. Then three other models are 

considered to take account of possible structure change in original three 

specifications. 

 

                                                             
7 Chi-square critical points are ӽ2 (1) = 3.84 and ӽ2 (2) = 5.99 at 5% and ӽ2 (1) = 2.71 and ӽ2 (2) = 

4.61 at 10%. 
 
8 LR statistic follows asymptotically a Chi-squared distribution. 
9 If these variables can predict the squared normalized residual, then the variance model is 

misspecified. That is, if the test of significance of the other explanatory variables shows 

significant results, then we may conclude that the volatility model is not performing well. 
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7_GARCHM-XS1 model : 

For this model, macro-economic instability for conditional mean and conditional 

variance is measered by explanatory variables : exchange rate growth volatility, 

VEXG*D2017, and exchange rate growth, 𝐸𝑋𝐺𝑡 ,  as follow : 𝜇𝑡= c+ 𝑅𝑡−1 + 𝜆 𝜎𝑡 + 𝛽  𝑉𝐸𝑋𝐺𝑡 × 𝐷2017 + 𝛽 ′ 𝐸𝑋𝐺𝑡 (8) 𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑝𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑞𝑖=1 + 1 VEXG×D2017 (9) 

where D2017 = 1 if year ≥ 2017 and 0 if not, where VEXG is the volatility of 

EXG ; 

EXG = Log(EXRate) 

with EXRate denote exchange rate.  Both 𝑉𝐸𝑋𝐺𝑡 and 𝐸𝑋𝐺𝑡 and  𝑅𝑡 are stationary 

processes (see Table 7 and Table 8 in Appendice). 

The following two models take account of macro-economic instability only in 

conditional variance equations. 

 

8_ GARCHM-XS2 model : 𝜇𝑡= c+ 𝑅𝑡−1 + 𝜆 𝜎𝑡 (10) 

and 𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑝𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑞𝑖=1 + 1  𝑉𝐸𝑋 t− + 𝟐 𝑽𝑬𝑿 𝐭− ×D2017 ( 10) 

where 𝑉𝐸𝑋 𝑡− = ∑ ∆𝑡𝑗=1 𝑉𝐸𝑋𝑗− = ∑ 𝑚𝑖𝑛 (∆𝑡𝑗=1 𝑉𝐸𝑋𝑗 , 0),    (11) 

is the partial sums of negative changes in  volatility  of exchange rate, and VEX 

is the volatility  of exchange rate. 

9_ GARCHM-XS3 model : 𝜎2𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑢2𝑡−𝑖𝑝𝑖=1 + ∑ 𝛽𝑖𝜎2𝑡−𝑖𝑞𝑖=1 +1  𝑉𝐸𝑋 𝑡+ + 𝟐 𝑽𝑬𝑿 𝒕+ ×D2017 (12) 

where 𝑉𝐸𝑋 𝑡+ = ∑ ∆𝑡𝑗=1 𝑉𝐸𝑋𝑗+ = ∑ 𝑚𝑎𝑥 (∆𝑡𝑗=1 𝑉𝐸𝑋𝑗 , 0),    (13) 

is the partial sums of positive changes in  volatility  of exchange rate.  Both 𝑉𝐸𝑋 𝑡− 

and 𝑉𝐸𝑋 𝑡+ are stationary series (see Table 8 in Appendice). 

Note that if 2 = 0, GARCHM-XS2 and GARCHM-XS3 will be stable and will 

be denoted respectively by GARCHM-X2 and GARCHM-X3. 
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Also, if 𝛽 = 0 and 1 = 0, GARCHM-XS1 will be stable and will be denoted by 

GARCHM-X1. 

 

We test the null hypothesis that these additional missing variables are not 

significant vs the alternative that they are significant, that is, H0 : 1 = 0. The test 

statistic is computed as 

LM = T.R2 

where R2
 is the squared multiple correlation of above regression, and T is the 

number of observations in the sample.10  

5. Empirical results  

D_ GARCH type models 
 

The time series data used for modeling volatility in this paper is the daily Tunisian 

stock index, that is TUN-index return, (5 days a weak) over the period from 

03/01/2011 to 19/11/2019. To remove the autocorrelation effect and to get a white 

noise sequence, we fitted the Box-Jenkins models to the data. It was found that 

the AR (1) model was fitted well to the returns series, the results of which are 

given in Table 2.11 

 

Table 2 : Results of AR(1) fit for TUNindex return 

Variable 𝑅𝑡  Coefficient Std. Error t-Statistic Prob.   𝑅𝑡−1 0.242874 0.020600 11.78975 0.0000 

C 0.000167 0.000101 1.653485 0.0984 

F-statistic 138.9981    

Prob(F-statistic) 0.000000    

Sum squared resid 0.048806    

Akaike info criterion -7.871855    

Durbin-Watson stat 1.986866     

 

The plot of the autocorrelation (Figure 5) of squared residuals, indicate the high 

volatility present in the data set, as there are many spikes showing the significant 

                                                             
10 The LM test statistic is distributed asymptotically as chi-square with m degrees of freedom, 

where m is the number of additional parameters in the model. We refer to (Engle, R. F., 1984) 

for more details on the asymptotic theory of the LM test. 
 
11 Returns serie present significant autocorrelation, then  𝐸[𝑅𝑡 /  𝛹𝑡−1  ] = 𝜇𝑡 is an 

autoregressive (AR(1)) process ; 𝜇𝑡 = F(𝑅𝑡) = 𝐶 + ∅1𝑅𝑡−1. 
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autocorrelations of different orders. This suggests that we should fit a volatility 

model to this data. 

 

 
Figure 5 : Autocorrelation of squared residuals. 

 

Before fitting the volatility models, it is important to check whether a day of the 

week effect is present in the series. Usually it is seen that the average return on 

Monday is significantly less than the average return over the other days of the 

week. It is important to know whether there are variations in volatility of stock 

returns by day of the week patterns and whether a high (low) return is associated 

with a corresponding high (low) return for a given day.12 To get the data free of 

the effect of the week days, the day of the week effect is estimated in return 

equation by using Ordinary Least Square method (OLS) (see (Pagan & Schwert, 

1990) and (Engle & Ng, 1993)). We fit the simple linear regression using OLS  

with return series on dummy variables for Monday, Tuesday, Wednesday, 

Thursday, and Friday, which are noted respectively by DM, DT, DW, DTh, DF as 

regressors. Each of these day-of-the-week dummies takes a value of 1 on the 

corresponding weekday and a value of 0 otherwise. To avoid problem of 

multicollinearity, the dummy variable for Friday, DF, is dropped from the 

regression equation. The regression equation results are presented in Table 3. 

Table 3 : Day of the week effect for TUNindex return. 

Variable Coefficient Std. Error t-Statistic Prob.   

C -5.20E-05 0.000108 -0.481232 0.6304 

DM 0.000780 0.000630 1.238882 0.2155 

DT 0.000418 0.000560 0.747763 0.4547 

DW 0.000362 0.000567 0.638554 0.5232 

DTh 0.000156 0.000560 0.279429 0.7799 

F-statistic 0.600283    

Prob(F-statistic) 0.662463    

Sum squared resid 0.048752    

                                                             
12 Such a knowledge may allow investors to adjust their portfolios by taking into account day 

of the week variations in volatility. Finding certain patterns in volatility may be useful in 

several ways, including the use of predicted volatility patterns in hedging and speculative 

purposes and use of predicted volatility in valuation of certain assets. 
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Akaike info criterion -7.870214    

Durbin-Watson stat 1.989127     

 
From Table 3, we conclude that there is no significant effect of the weekdays on 

Tunindex return. Then, from white noise sequence : residuals of the regression 𝑅𝑡 = 𝐶 + ∅1𝑅𝑡−1, we can estimate the different volatility models using the 

maximum likelihood estimation procedure. 

 
We consider the symmetric and asymmetric GARCH models including GARCH 

(1, 1), GARCH-M (1, 1), EGARCH (1, 1), TGARCH (1, 1), PGARCH (1, 1), and 

APGARCH (1, 1).13  

 

We fit the above models to our Return serie looking for some relationship between 

return and its own estimated conditional variance. The estimation results are 

reported at Table 4 Panel A using Gaussian and Student-t distribution 

assumptions.14  Table 4We conducted at first stage comparative tests of the 

models against conventional models presented in previous section. The criteria 

used to determine the performance include the log likelihood (LL) value 

comparison and likelihood ratio (LR) test as given by (Brooks, 2008 ) and 

according to (Alexander, 2009). Table 9  (see Appendice) reports the log-

likelihood (LL) values for each estimated model. Models based on the Student-t 

distribution generally produce the largest LL value.15 Only models based on 

Student t distribution will be then discussed. 

 

 The constant mean parameter in mean equation is insignificant except in  

GARCH-M (1, 1) model of these underlying models.16 However, we observe the 

significant constant (𝛼0) in all models except in PGARCH and APGARCH, and 

significant ARCH effect (𝛼1) and significant GARCH effect (𝛽1) in all 

conditional variance equations. 

 

                                                             
13 The estimation procedure uses the Broyden-Fletcher-Goldfarb Shanno (BFGS) optimization 

method useful for solving unconstrained non-linear problems. 
14 In the context of nonnormality, the usual standard error estimates will be inappropriate, and 

a different variance-covariance matrix estimator that is robust to nonnormality, due to 

(Bollerslev & Wooldridge, Quasi Maximum Likelihood Estimation and Inference in Dynamic 

Models with Time Varying Covariances, 1992), are used. This procedure (i.e. maximum 

likelihood with Bollerslev-Wooldridge standard errors) is known as Quasi-Maximum 

Likelihood, QML. 
15 Whereas the LL value for models that assume the Gaussian distribution are consistently much 

worse than those associated with Student-t distributions. This informs that the more leptokurtic 

Student-t assumption is generally better than the competing Gaussian distribution. 
16 These results are not reported in Table 4. 
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There is a significant contribution of GARCH effect in conditional mean of 

GARCH-M (1, 1) model. GARCH-M (1, 1) model reports a significant positive 

risk-premium (the 𝜆 estimated parameter : 0.224896) indicating that data series 

is positively related to its volatility. So there is feedback from the conditional 

variance to the conditional mean.17 This is not surprising because if agents are risk 

averse they require a larger expected return from an asset riskier within a period. 

Our results are in agreement with (Campbell & Hentschel, 1992)’s results and 

against (Glosten, Jagannathan, & Runkle, 1993)’ one. This result underscore that 

high and low of TUNindex are associated with the rise and fall of the returns 

volatility, that is, an increase in the risk leads to an increase in the amount of the 

risk premium demanded by investors to compensate for the additional amount of 

risk to which they are exposed. 

 

Using the AIC criteria, GARCH-M is more adequate than the GARCH model. 

The AR terms are all significant for both models for the mean equation.18 The 

parameter’s estimates of the both GARCH(1, 1) and GARCH-M (1, 1) models are 

statistically significant.19 The significance of the parameters shows that there 

exists volatility clustering. The results also indicate that the persistence in 

volatility, as measured by the sum 𝛼1 + 𝛽1 in both models, is closer to one 

[0.817651& 0.817116], suggesting an important presence of ARCH and GARCH 

effects. This implies that current volatility of daily return can be explained by past 

volatility that tends to not persist over time and one can conclude that the 

volatilities associated with each of the significant variables do not last for long 

before it fades away. The conclusion of persistence volatility is not a strong 

conclusion for these specifications because sum of 𝛼1 and 𝛽1 is lower than one, 

indicating that the conditional variance process is stationary.20 Also, the GARCH 

is greater than ARCH estimates (𝛽1 > 𝛼1) in the two models, it implies that the 

volatility of stock prices is more affected by the past volatility than the related 

news from the previous period. 

                                                             
17 The existence of risk premium is, therefore, another reason that some historical stock returns 

have serial correlations.  
18 The AR terms are positive for all considered models, implying that past returns have 

positive impact. ∅1 ≈ 0.2 for all models. 
19 Both constants for the variance equation are approximately equal to zero. This shows that 

current volatility is heavily premised on squared lagged residuals and previous stock return 

volatility. 

20 The sum of 𝛼1 and 𝛽1in GARCH (1, 1), GARCH-M (1, 1), TGARCH(1, 1), EGARCH(1, 1), 

are respectively equal to 0.817651, 0.817116, 0.761878, and 1.278964. Estimated parameters 

(𝛼1 and 𝛽1) of almost all the models that when added were not very close to unity (with one 

exception of EGARCH model). The sum of ARCH and GARCH coefficients is not very close 

to one, indicating that volatility shocks are not persistent, indicating that large changes in returns 

tend not to be followed by larger changes and small changes tend not to be followed by smaller 

changes.  
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The leverage effect (γ ) is estimated for three asymmetric GARCH models taking 

the values −0.028328, 0.115199 and 0.10416  respectively for EGARCH, 

TGARCH, and APGARCH models. We found significance for two from these 

three process (TGARCH, and APGARCH models) that confirm the leverage 

effect.  The positive value of asymmetry coefficient γ indicates that «good news»  

increase the future volatility more than the «bad news». For significant asymmetry 

coefficient, we say that Bad and good news will increase volatility of stock market 

returns in different magnitude, and that investors on the Tunisian stock exchange  

react differently to information depending be it good or bad in making investment 

decisions. 

 

For EGARCH model, the persistence parameter, 𝛽1 = 0.808820  is not very 

large, implying that the variance moves slowly through time. The coefficient 𝟏 = −0.028328 measures the presence of asymmetry. It is statistically not significant 

implying the absence of asymmetry and hence the TGARCH and APGARCH 

models are more adequate than EGARCH model.21  

 

In the models with a significant power parameter we found δ smaller than 2, in 

concordance with (Ding, Engle, & Granger, 1993) results for APGARCH model, 

while for PGARCH model, estimated δ is more than 2. The estimated power 

parameter (δ) in Power GARCH model is found to be 2.32379 and 1.76977 

repectively for symmetric and for asymmetric case (which are significant at 1% 

level). In addition, PGARCH and APGARCH models provide significant 

GARCH and ARCH effects.  

 

The performance of these estimated models are determined on the basis of some 

accuracy measures and some tests statistics. In our study, we compute the Akaike 

information criteria (AIC), ARCH-LM test, DW (Durbin-Watson) statistic, and 

log of likely-houd function (LL). The results are displayed in  Table 9 (see 

Annexe). A look on the table (Panel A) reveals that there are not big differences 

seen among the values of accuracy measures (AIC) obtained for all of estimated 

models. For symmetric models, LR tests , LL, and AIC criteria reveal that 

GARCH-M model is the best. Likelihood ratio test (LR) results for GARCH(1, 1) 

against one model of the considered models are also reported in Table 9 (see 

Appendice).  Only H03 which is rejected at 5% level. We can conclude that, 

                                                             
21 When, the negative asymmetry coefficient, 𝟏, is significant, we conclude that the variance 

may goes up more after negative residuals than after positive residuals. Positive and negative 

shocks have different effects on the stock market returns series.  
 



21 

 

GARCH-M(1, 1), as symmetric model, is superior to GARCH model and then 

may be the adequate specification for TUNindex return.22  

 

For asymmetric models, based on AIC criteria, we may suggest that TGARCH 

(1, 1) is more suitable process to capture the main features of TUNindex return 

like the volatility and the leverage effect. While, based on LL values, we suggest 

rather that APGARCH is the more suitable model. Likelihood ratio test (LR) 

results for GARCH(1, 1) against one of the asymmetric models reveal at 10% 

level, 𝐻01 is rejected and then only TGARCH(1, 1)  and EGARCH(1, 1) are  

adequate model for TUNindex return.23 

 

The forecasting accuracy of each model is measured with the root mean square 

error (RMSE), the mean absolute error (MAE), the Symmetric mean absolute 

percentage error (SMAPE), and Theil inequality coefficient (TIC).  Model(s) with 

the lowest value of the error measure would be argued to be the most accurate. 

Table 10  (see Appendice) outlines the values of these forecasting accuracy criteria 

for the out-of-sample TUNindex forecast. We may conclude that a model which 

will give a low RMSE (MAE and SMAPE) error must probably will produce 

suitable prediction. A look on the table say that these results are not conclusive. 

And, no model over perform the others. 

 
We plot then the observed and estimated TUNindex prices for the period from 

03/01/2011 to 19/11/2019 in Figure 8 (a)-(f) ; see Appendice. These graphs show 

a close match to the data exhibiting that all these estimated econometric models 

provide a good fit to the observed TUNindex time series. No model seems to be 

the better.  
 

But it is difficult to choose any one of these models on just the basis of the 

likelihood, AIC, etc. So we go for the news impact curve introduced by (Pagan 

& Schwert, 1990).24 A representation of the degree of asymmetry of volatility to 

positive and negative shocks is given by the news impact curve. Generally, there 

are two ways of bringing the asymmetry in volatility models, either by bringing a 

shift or by allowing a rotation of the news impact curve. EGARCH and GJR bring 

                                                             
22 With Models based on Gaussian distribution, LR test reject all null hypothesis (LR statistic 

is equal to 10.606, 11.946, 9.144, 16.116, and 8.668 respectively against EGARCH, TGARCH, 

PARCH, APGARCH, and GRCH-M).  
23 𝐻04 is not rejected even at 10% level. 
24 The news impact curve plots the next-period volatility (σ2t ) that would arise from various positive 

and negative values of 𝑢𝑡−1, given an estimated model. The curves are drawn by using the estimated 

conditional variance equation for the model under consideration, with its given coefficient estimates, 

and with the lagged conditional variance set to the unconditional variance. The news impact curve is 

capable of depicting the symmetric and asymmetric behavior of the different volatility models 

with respect to news. 
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the asymmetry by allowing the rotation in the news impact curve.25 The resulting 

news impact curves for the GARCH vs GJR, vs EGARCH  and vs 

APGARCH  models are given at Figure 6.26  
 

As can be seen from  Figure 6, the GARCH news impact curve (the Black line) is 

of course symmetrical about zero (centered around 𝑢𝑡−1 = 0), so that a shock of 

given magnitude will have the same impact on the future conditional variance 

(CV) whatever its sign. That is, positive and negative return shocks of the same 

magnitude produce the same amount of volatility. Then, since behavior of stock 

market is symmetric with respect to news, the GARCH model under predicts the 

amount of volatility following bad news (negative shock) and over predicts the 

amount of volatility following good news (positive shock).  

 

On the other hand, the GJR news impact curve (the Green line) is asymmetric, 

with negative shocks having more impact on future volatility than positive shocks 

of the same magnitude. It can also be seen that a negative shock of given 

magnitude will have a bigger impact under EGARCH (Blue line) than would be 

implied by a GARCH, GJR, and APGARCH models, while a positive shock of 

given magnitude will have more impact under GARCH than GJR, APGARCH, 

and EGARCH models.27 Thus, EGARCH highly over predict the volatility, which 

is absolutely wrong (1 is not significant). Therefore, we can not consider this 

model too in this situation. Overall, GJR model appears to be relatively better than 

other models for given data set. With GRJ model , when the shock is negative, 

the effect on volatility is 𝛼1 + 1 = 0.240710 + 0.115199 = 0.355909. Also, the 

GARCH estimates is greater than ARCH effect (𝛽1 = .521168  > 𝛼1 + 1) in this  

model, it implies that the volatility of stock returns is more affected by the past 

volatility than the related news from the previous period. 

                                                             
25 The nonlinear-asymmetric ARCH model of (Engle & Ng, 1993)  employ a shifted news 

impact curve to achieve asymmetry, while (Glosten, Jagannathan, & Runkle, 1993) and 

EGARCH of (Nelson, 1991) allow the asymmetry by rotation. 
26 These models allow several types of asymmetry in the impact of news on volatility. 
27 The latter result arises as a result of the reduction in the value of 𝛼1, the coefficient on the 

lagged squared error, when the asymmetry term is included in the model (see Table 44 Panel 

A). 
 



23 

 

.0000

.0002

.0004

.0006

.0008

.0010

.0012

.0014

-.04 -.03 -.02 -.01 .00 .01 .02 .03 .04 .05

Black: GARCH

Green: TGARCH

Red: APARCH

Blue: EGARCH

 

Figure 6 : News impact curves for TUNindex returns from various model (GARCH, 

TGARCH, EGARCH, and APGARCH) estimates . 

 

 

Table 4 : Estimation results of GARCH (1,1), GARCH-M (1,1) , EGARCH (1, 1), 

TGARCH (1,1), PARCH (1,1), APARCH (1,1) and GARCH-M(1, 1) models. Panel A :.28 

GARCH :  𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏 

      

 𝜶𝟎 𝜶𝟏 𝜷𝟏   

Normal  4.11E-06* 0.268236* 0.546047*  

Student 4.03E-06* 0.300366* 0.517285* 
 

EGARCH : Log(𝝈𝟐𝒕) = 𝜶𝟎 + 𝜶𝟏  |𝒖𝒕−𝟏𝝈𝒕−𝟏| + 𝟏  𝒖𝒕−𝟏𝝈𝒕−𝟏 + 𝜷𝟏𝐥𝐨𝐠 (𝝈𝟐𝒕−𝟏) 

 𝜶𝟎 𝜶𝟏 𝟏 𝜷𝟏  

Normal −2.39039* 0.44417* −0.039828** 0.811566*  

Student −2.449064* 0.470144* −0.028328 0.808820*  

 

TGARCH : 𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝟏𝒖𝟐𝒕−𝟏𝑰𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏 

 𝜶𝟎 𝜶𝟏 𝟏     𝜷𝟏  

Normal 4.10E-06* 0.176280* 0.158233* 0.558036*  

Student 4.01E-06* 0.240710* 0.115199*** 0.521168*  

 

PGARCH : 𝝈𝒕 = 𝜶𝟎 + 𝜶𝟏(|𝒖𝒕−𝟏|) + 𝜷𝟏𝝈𝒕−𝟏 

 𝜶𝟎 𝜶𝟏 𝛽1   
Normal 4.51E-07 0.403249* 0.040795 2.611111*  

Student 2.10E-06 0.436370* 0.117313*** 2.323790*  

 

 

                                                             
28 Data analysis are done using Eviews and Stata statistical software.  
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APGARCH : 𝝈𝒕 = 𝜶𝟎 + 𝜶𝟏(|𝒖𝒕−𝟏| − 𝟏𝒖𝒕−𝟏) + 𝜷𝟏𝝈𝒕−𝟏 

 𝜶𝟎 𝜶𝟏 𝟏 𝛽1  

Normal 0.000133 0.257792* 0.144572* 0.594149* 1.352831* 

Student 1.37E-05 0.293028* 0.10416*** 0.543048* 1.769747* 

 𝐆𝐀𝐑𝐂𝐇 − 𝐌 : 𝝁𝒕=𝐶 + ∅1𝑅𝑡−1 +𝜆 𝜎𝑡 and 𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏 

 𝜶𝟎 𝜶𝟏 𝜷𝟏 𝜆  

Normal  4.20E-06* 0.267014* 0.540360* 0.278879*  

Student 4.02E-06* 0.302543* 0.514573* 0.224896*  
 

Legend : * p<.1 ; ** p<.05 ; *** p<.01. Note :  𝐼𝑡−𝑖 = 1 if   𝑢𝑡−𝑖 < 0 and 0 otherwise. 

 

F_  GARCHM model with Macroeconomic Effects (GARCHM-X and 

GARCHM-XS) 
  In  previous section, the news impact curve [introduced by (Pagan & Schwert, 

1990) and discussed in detail by (Engle & Ng, 1993)], was used for measuring the 

effect of news on volatility. All considered models till now suppose stable 

specifications. However, since 2011 (YESAMIN revolution), economic and 

political situation is instable in Tunisia. Then in the following, we investigate 

macroeconomic effects via exchange rate on TUNindex return volatility. This 

section employed rather the AR(1)-GARCHM-X (or GARCHM-XS : GARCHM-

X with structural shift) model to investigate the effect of exchange rate growth 

and exchange rate volatility on stock Return volatility in Tunisia economy. All 

investigations are given at Table 11 Panel B for GARCHM-X models (see 

Appendice) and Table 5 Panel C for GARCHM-XS models as explained in 

section 4 (sub-section C). 

 

After the preliminary tests, the exchange rate growth, EXG, and its volatility, 

VEXG, using an AR(1)-GARCH(2, 1) model,  are calculated (see Figure 3). 

Given, the predicted volatility for exchange rate growth, the relationship between 

the conditional volatility in exchange rate and stock return is examined by 

estimating the conditional mean and conditional variance equations. 

 

Again, the performance of these estimated models are determined on the basis 

of some accuracy measures. We compute the Akaike information criteria (AIC), 

ARCH-LM test, Durbin-Watson (DW) statistic, and log of likely-houd function 

(LL). The results are displayed at  Table 12. A look on this table (Panel B and C) 

reveals that GARCHM-XS2 is more suitable process to capture the main features 

of TUNindex return. Comparisons or selection of more accurate model  based on 
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Likelihood ratio (LR) tests and LM tests  is also done. LM test results for 

GARCH(1, 1) against one model of the considered models (GARCHM- X1 or 

GARCHM-X2 or GRCHM-X3) are also reported in Table 12.29 Only  GARCHM-

X2 and GARCHM-X1 which are significant. Then, LR test conclude that 

GARCHM-X2 is instable. That is, in all, only GARCHM-XS2 model will be then 

discussed. 

 

Again, ARCH and GARCH coefficients in this model are found to be significant. 

The significance of the parameters shows that there exists volatility clustering. 

Also, the results indicate  coefficients  𝛼1 (0.266561) and 𝛽1 (0.533351) are less 

than ones in GARCHM-XS2  model.  With low values of 𝛽1,  one can conclude 

that the volatilities do not last for long before it fades away. Also, the GARCH is 

greater than ARCH estimates in the model implying that the volatility of stock 

return is more affected by the past volatility than the related news from the 

previous period. 

 

GARCHM-XS2 model reports a significant positive risk-premium (the 𝜆 

estimated parameter : 0.286812) indicating that data series is positively related to 

its volatility. This mean that since agents are risk averse they require a larger 

expected return from riskier asset within a period. 

 

Now, with respect to  exchange rate volatility, this result is predicated on the fact 

bad news about the volatilities of  exchange rate (referred to as exchange rate  

depreciation) correspond to positive volatility of stock return as it  increases the 

conditional volatility ; 1 =0.000743 (see results from model GARCHM-XS2).30   

                                                             
29 There is no big difference between estimates results of GARCHM-X2 and GARCHM-X3 

model.  
 
30 While that good news about the volatilities of exchange rate (referred to exchange rate   

appreciation) correspond to negative volatility of stock return, since it reduces the conditional 

volatility ; 1 = −0.000718 (see results from model GARCHM-XS3). This result is inconsistent 

with (Zakaria & Shamsuddin, 2012). 
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Table 5 : Results of  three GARCHM-XS (1, 1) models with structural shift- Panel C. 𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞        𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐦𝐞𝐚𝐧  𝜇𝑡 = c + 𝑅𝑡−1 + 𝜆 𝜎𝑡 + 𝜷𝑬𝑿𝑮 + 𝜷′𝑽𝑬𝑿𝑮 × 𝑫𝟐𝟎𝟏𝟕                                                   
C ∅𝟏 𝝀 𝛽 𝛽′                                        −0.001091 00.227084* 0.284238* 0.009069 3.194222*  

      𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝐒𝟏 : 𝜎2𝑡 = 𝛼0 + 𝛼1𝑢2𝑡−1 + 𝛽1𝜎2𝑡−1 + 𝟏  𝑽𝑬𝑿𝑮 × 𝑫𝟐𝟎𝟏𝟕                                                   𝜶𝟎 

 𝜶𝟏 𝜷𝟏 1   

         4.22E-06*          0.268286* 0.537486* −0.000194   

 𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝐒𝟐 : 𝜎2𝑡 = 𝛼0 + 𝛼1𝑢2𝑡−1 + 𝛽1𝜎2𝑡−1+ 𝟐  𝑽𝑬𝑿 𝒕− × 𝑫𝟐𝟎𝟏𝟕 + 𝟏  𝑽𝑬𝑿 𝒕− 𝜇𝑡 = 𝐶 + 𝜆 𝜎𝑡 + ∅1𝑅𝑡−1      

C 𝝀          ∅𝟏                   𝜶𝟎 𝜶𝟏 𝜷𝟏 𝟐                       1                      −0.001030** 0.286812*  0.224690* 5.75E-06*         0.266561*        0.533351*             −0.000624* 0.000743* 

      𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝐒𝟑 : 𝜎2𝑡 = 𝛼0 + 𝛼1𝑢2𝑡−1 + 𝛽1𝜎2𝑡−1+  𝟐  𝑽𝑬𝑿 𝒕+ × 𝑫𝟐𝟎𝟏𝟕  +   𝟏  𝑽𝑬𝑿 𝒕+ 

      

C 𝝀                 ∅𝟏                   𝜶𝟎 𝜶𝟏 𝜷𝟏     𝟐                             1 −0.001024* 0.285318*     0.224959*       5.67E-06*        0.265448*      0.534769* 0.000606*            −0.000718* 
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6. Conclusion 
 

This paper has presented results from modeling volatility in an empirical 

investigation of equity return series from the Tunisian Stock Exchange. The time 

series data 27se dis the daily Tunisian Securities Exchange (TUNindex) index (5 

days a weak) over the period from 03/01/2011 to 19/11/2019. The study compared 

varying GARCH-type models. Among many symmetric and asymmetric type 

heteroscedastic processes, we estimated 12 models : GARCH (1, 1), GARCH-M 

(1, 1), PGARCH (1, 1), EGARCH (1, 1), TGRACH (1, 1), APGARCH (1, 1), 

three GARCHM-X models, and three GARCHM-XS models. 

 

At the begenning, to remove the autocorrelation effect and to get a white noise 

sequence, we fitted the Box-Jenkins models to the data. It was found that an AR 

(1) model was fitted well to the conditional mean of returns series. In addition, 

there is no significant effect of the weekdays on Tunindex return. And Applied  

ARCH LM test confirm presence of volatility clustering in Tunindex return. 

 

Then, the presence of volatility clustering is strongly confined from all these 

estimated models as we obtained the significant estimates corresponding to 

ARCH effect and GARCH effect parameters. 

 

The results show also that the volatility process is not highly persistent, thus, 

giving evidence of the existence of risk premium for the TUNindex return series. 

This in turn supports the positive correlation hypothesis : that is between volatility 

and expected stock returns. 

 

Another fact revealed by the results is that the asymmetric TGARCH models 

provide better fit for Tunindex than the symmetric models. The asymmetric 

TGARCH (1, 1) and APGARCH models have significant estimates of the 

leverage effect. This proves the presence of leverage effect in the Tunindex return 

series. On the other hand, with asymmetric coefficient being not significant, the 

Exponential GARCH (1, 1) model proved to be not efficient model for modelling 

volatility. Analysis based on AIC criteria and LR test say that the TGARCH (1, 

1) model is more appropriate in term of capturing the volatility clustering and 

leverage effect of the TUNindex stock market within the six first considered 

models. 

 

For policy, GARCHM-X2 (1, 1) turned to be the best model using both the AIC 

and LL criterions, with the presence of instability found to be significant using 

LR test results.  
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The study concludes that positive and negative shocks impact differently on the 

stock market returns. Bad (and good) news will increase volatility of stock market 

returns in different magnitudes. The study results implies that the investment 

climate including the stability in the macroeconomic environment should be 

favourable to ensure growth in the stock market. Investors require the 

predictability of the future to make sound investment decisions. Policies to reduce 

volatility in the the economy (more stable exchange rate) are a necessity for stock 

market. 
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Figure 7 : Q-Q plot for daily Tunindex return 
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(f) AR(1)-GARCH-X1(1, 1) 

 

 Figure 8 : (a) Plot of observed and estimated Tunindex from GARCH (1,1) 

Model. (b) Plot of observed and estimated Tunindex from GARCH-M (1,1) 

Model. (c) Plot of observed and estimated Tunindex from EGARCH (1,1) 

Model. (d) Plot of observed and estimated Tunindex from TGARCH (1,1) 

Model. (e) Plot of observed and estimated Tunindex from PGARCH (1,1) 

Model (f) Plot of observed and estimated Tunindex from. GARCH-X1(1,1).  

All for daily data  
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Figure 9 : Descriptive statistics for daily data TUNindex 
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Figure 10 : correlogram of autocorrelation function for Daily data 
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Figure 11 : Tunindex return volatility 
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Table Empirical  Review 

Table 6 : Empirical Review 

Authors  Variables Model Sample Results 

Al Khazali (2003) Share prices  

-CPI 

-Industrial 

production 

index 

-Johansen 

cointegration test 

-GARCH 

-Countries : 21 emerging 

countries 

-Period : 1980-2001 

-Monthly data. 

-Negative short-term relationship between stock market 

returns and inflation. 

-Positive long-term relationship between stock market 

returns and inflation. 

(Hammoudeh & Li, 

2008) 

 GARCH model Arab Gulf stock markets Volatility was very high 

(Surya, 2008)  GARCH (1,1) Nepalese stock market 

1297 observations from 2003 to 

2009 

No significant asymmetry in the conditional volatility of returns 

high persistence and predictability of volatility 

(Ahmed & Suliman, 

2011) 
Khartoum Stock 

Exchange – 

KSE) 

 Sudan 
January 2006 to November 2010 

Conditional variance process was highly persistent 

Existence of risk premium for the KSE index return series 

Presence of leverage effect. 
(Goyal, 2012)  GARCH and PGARCH Indian stock price 

daily returns from 2000 to 2010 
Symmetric and asymmetric effect 

(Ndako, 2012)   South Africa Financial liberalisation is statistically important and not positive 

(Sharaf & Abdalla, 

2013) 
 GARCH(1,1), GARCH-

M(1,1), 

EGARCH(1,1) and GJR-

GARCH(1,1) models. 

Khartoum Stock Exchange (KSE) 

daily closing prices over the period 

from 2nd 

January 2006 to 31st August 2010 

High volatility process is present in KSE Index 

Existence of risk premium and indicates the presence of the 

leverage effect in the KSE index returns series 

(Ananzeh, Jdaitawi, 

& Al-Jayousi, 2013) 
Amman stock 

Exchange 
 Amman Stock Exchange for 27 

individual stocks 

daily data for the period 

2002-2012. 

Trading volume has no significant effect on the reduction of the 

volatility persistence for majority of stocks 

Trading volume significantly contributes to the return volatility 

process 
(Khositkulporn, 

2013), 
 Multiple regression and 

GARCH 
Thailand S&P 500 had a major influence on Thailand’s stock market, 

followed by the BSI and oil price 
(Koima, Mwita, & 

and Nassiuma, 

2015)) 

 GARCH (1, 1) Kenyan stock market Iin a financial crisis ; the negative returns shocks have higher 

volatility than positive returns shocks 

(Banumathy & 

Azhagaiah, 2015) 
daily closing 

prices of S&P 

CNX Nifty 

GARCH (1,1) and 

TARCH (1,1), EGARCH 

(1,1) and TGARCH (1,1) 

Indian stock 

Market 

Period : from 2003 to 2012. 

Negative shocks have significant effect 
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Index for 10 

years 
(Cheteni, 2016) Johannesburg 

Stock Exchange 

FTSE/JSE Albi 

index and the 

Shanghai Stock 

Exchange 

Composite 

Index 

GARCH model Countries South Africa and 

China stock markets 

Period : January 1998 to October 

2014 

Volatility was persistent in both exchange markets 

(Emeka & Aham, 

2016) 

-Share price 

index 

-Inflation rates 

-Exchange 

rates 

-Johansen’s integration 

-AR (1) GARCH-S 

(1.1) 

- GARCH-X 

-Country : Nigeria  

-Period : 1986-2012 

-Quarterly data 

-Negative relationship between stock price volatility and 

inflation rate. 

-Negative relationship between equity price volatility and 

the exchange rate. 

(Murekachiro, 

2016) 
ZSE industrial 

index 

returns 

GARCH (1,1) and 

EGARCH (1,1). 
Countries Zimbabwe stock 

market  

Period : 19 February 2009 to 

31 December 2014 

Asymmetric EGARCH (1 ;1) model outperformed the 

symmetric GARCH (1 ;1) 
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Tables 

Table 7 : Results of unit root test for original Tuindex series, and return series 

(Tunindex at first difference in log)31 for daily data 

(PP) 
   

 Level   1st Diff  

  TUNINDEX R EXRATE d(TUNINDEX) d® d(EXRATE) 

With 

Constant 
t-Statistic -0.2139 -35.1895  0.2683 -37.0465 -326.1843 -74.7960 

 Prob.  0.9343  0.0000  0.9766  0.0000  0.0001  0.0001 

  n0 *** n0 *** *** *** 

With 

Constant & 

Trend  

t-Statistic -2.4578 -35.2841 -2.3926 -37.0514 -325.6233 -74.8643 

 Prob.  0.3494  0.0000  0.3833  0.0000  0.0001  0.0001 

  n0 *** n0 *** *** *** 

Without 

Constant & 

Trend  

t-Statistic  1.0627 -35.2227  3.2466 -37.0503 -326.5386 -73.6475 

 Prob.  0.9252  0.0000  0.9998  0.0000  0.0001  0.0001 

  n0 *** n0 *** *** *** 

    (ADF)      

    Level   1st Diff 
 

  TUNINDEX R EXRATE d(TUNINDEX) d® d(EXRATE) 

With 

Constant 
t-Statistic -0.2505 -34.8711  0.4788 -36.6975 -22.2497 -35.7930 

 Prob.  0.9295  0.0000  0.9860  0.0000  0.0000  0.0000 

  n0 *** n0 *** *** *** 

With 

Constant & 

Trend  

t-Statistic -2.5670 -34.8891 -2.2895 -36.7177 -22.2442 -30.1716 

 Prob.  0.2957  0.0000  0.4390  0.0000  0.0000  0.0000 

  n0 *** n0 *** *** *** 

Without 

Constant & 

Trend  

t-Statistic  0.9849 -34.8611  3.6985 -36.6817 -22.2557 -35.5003 

 Prob.  0.9147  0.0000  1.0000  0.0000  0.0000  0.0000 

  n0 *** n0 *** *** *** 

    (KPSS)32    

    Level   1st Diff  

  TUNINDEX R EXRATE d(TUNINDEX) d® d(EXRATE) 

With 

Constant 
t-Statistic  4.9611  0.2164  5.9091  0.2550  0.0350  0.1759 

 Prob. *** n0 *** n0 n0 n0 

        

                                                             

 31This Result is The Out-Put of Program Has Developed By Dr. Imadeddin AlMosabbeh , College of Business and 

Economics, Qassim University-KSA 
 
32 Null Hypothesis: the variable is stationary. 
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With 

Constant & 

Trend  

t-Statistic  0.8320  0.0972  0.9962  0.1155  0.0308  0.0788 

 Prob. *** n0 *** n0 n0 n0 

        
 

 

Table 8 : Descriptive analysis for daily data : Exchange rate growth (EXG), its volatility 

(VEXG), and partial sums of positive and negative changes in volatility of Exchange rate 

(VEX).  

 EXG VEXG 𝑽𝑬𝑿 𝒕− 𝑽𝑬𝑿 𝒕+ 

 Mean  0.000309  3.95E-05 -0.005632  0.005712 

 Median  0.000278  2.34E-05 -0.002334  0.002308 

 Maximum  0.044029  0.000898  0.000000  0.018373 

 Minimum -0.095449  9.91E-06 -0.018422  2.77E-06 

 Std. Dev.  0.006685  6.01E-05  0.006254  0.006365 

 Skewness -1.055239  7.630818 -1.040332  0.994686 

 Kurtosis  26.81967  80.94890  2.406274  2.290192 

 Jarque-Bera  52441.65  578320.3  428.7633  408.5924 

 Probability  0.000000  0.000000  0.000000  0.000000 

 Observations 2201 2200 2198 2198 
 

Unit root test results 
Null Hypothesis : considered series has a unit root 

 

 EXG      VEXG  𝑽𝑬𝑿 𝒕− 𝑽𝑬𝑿 𝒕+ 

PP test statistic33  -69. 75309 -6.603327 Min-t34  -5.72584 -5.61725 

  Prob.*  0.0001  0.0000 Prob < 0.01 < 0.01 

      

ADF test statistic -34.22572 -6.881947 Max-t35 3.807805 -5.597716 

  Prob.*  0.0000  0.0000  > 0.99 < 0.01 

Conclusion  SL2 SL2  SL2 SL2 
 

Heteroskedasticity Test : ARCH(1)   

F-statistic 0.390477 

    Prob.    

F(1,2197) 0.5321 

Obs*R-squared 0.390763 

    Prob. Chi-

Square(1) 0.5319 
 

Note : Min-t : Minimize Dickey-Fuller t-statistic is applied. Break Date : 4/25/2017 for 𝑉𝐸𝑋 𝑡−and  4/20/2017 for 𝑉𝐸𝑋 𝑡+. Max-t : Maximize intercept break t-statistic. Break Date : 5/12/2017 for 𝑉𝐸𝑋 𝑡−and  4/03/2017 for 𝑉𝐸𝑋 𝑡+. 

                                                             
33 Test critical values : 

-3.433127, -2.862653, -2.567408 For  1% level 5% level 10% level. 

 
34 Test critical values : 

-4.949133, -4.443649, -4.193627 For 1% level 5% level 10% level 

 
35 Test critical values : 

-4.734858, -4.193627, -3.863839 For 1% level 5% level 10% level 
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Table 9 : Post estimation statistics for GARCH type models - Panel A . 

Model LLN and LLS LR Durbin-Watson 

 

AIC ARCH LM test 

(1) 

 Normal Student  Normal Student Normal Student Normal Student 

GARCH  8888.347 9019.677  1.97339 1.92224 -8.1126 -8.2316 0.8526 0.8693 

GRCH-M 8892.681 9023.337 7.32>3.84 1.952344 1.905654 -8.11569 -8.23409 0.9440 0.7040 

PGARCH 8892.919 9019.861 0.368 1.919251 1.920343 -8.11590 -8.23092 0.3689 0.9872 

EGARCH 8893.650 9017.814 3.726 1.959066 1.925533 -8.11657 -8.22905 0.7872 0.9874 

TGARCH 8894.320 9021.559 3.764>2.71 1.996806 1.928954 -8.11718 -8.23247 0.9167 0.7799 

APGARCH 8896.405 9021.822 4.29 1.955184 1.927031 -8.11817 -8.23180 0.5979 0.8804 

Note : LLN : log-likelihood with Normal distribution. LLS : log-likelihood with Student distribution. 

Chi-square critical points for LR test statistic are ӽ2 (1) = 3.84 and ӽ2 (2) = 5.99 at 5% and ӽ2 (1) = 2.71 

and ӽ2 (2) = 4.61 at 10%. For ARCH LM test, p-value is reported. 

 

Table 10 : Evaluation of out-of-sample volatility forecasts for GARCH type 

models. 

Panel A RMSE  MAE  SMAPE  TIC 

Conditional 

Volatility 

Model     
GARCH 0.004875 0.003270 181.4921 0.966455 

GARCH-M 0.004865 0.003279 165.0669 0.922021 

PGARCH 0.004875 0.003270 181.8473 0.967090 

EGARCH 0.004876 0.003269 185.8639 0.972218 

TGARCH 0.004876 0.003269 184.5602 0.970621 

APGARCH 0.004876 0.003269 185.0673 0.971294 
 

Note : RMSE :mean square error, MAE :mean absolute error, SMAPE :Symmetric mean absolute 

percentage error, and TIC :Theil inequality coefficient. 
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Table 11 : Results of  three GARCHM –X (1, 1) models –Panel B :36 𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞        𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐦𝐞𝐚𝐧  𝜇𝑡 = c + 𝑅𝑡−1 + 𝛃 𝐕𝐄𝐗𝐆 + 𝜆 𝜎𝑡 

C ∅1 β 𝜆   −0.001114* 0.226460* 3.495209* 0.276129*   

      𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝟏 : 𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏 𝜶𝟎 𝜶𝟏 𝜷𝟏    

4.26E-06* 0.271433* 0.532988*    

 𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝟐 : 𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏+ 𝟏  𝑽𝑬𝑿 𝒕− 𝜇𝑡 = 𝐶 + 𝜆 𝜎𝑡 + ∅1𝑅𝑡−1      

C 𝜆          ∅1                   𝜶𝟎 𝜶𝟏 𝜷𝟏 1      −0.000969* 0.271770*  0.227173* 4.44E-06* 0.267799* 0.542991* 5.19E-05* 

 𝐆𝐀𝐑𝐂𝐇𝐌 − 𝐗𝟑 : 𝝈𝟐𝒕 = 𝜶𝟎 + 𝜶𝟏𝒖𝟐𝒕−𝟏 + 𝜷𝟏𝝈𝟐𝒕−𝟏+ 𝟏  𝑽𝑬𝑿 𝒕+ 

C 𝜆          ∅1                   𝜶𝟎 𝜶𝟏 𝜷𝟏 1     −0.000963* 0.270424*  0.227340* 4.43E-06* 0.267479* 0.543287* −4.90E-05* 
 

 

Table 12 : Post Estimation Statistics for GARCHM-X and GARCH-XS models 

Model LLN  LM Durbin-Watson 

 

AIC ARCH LM test 

(1) 

Panel B  

GRCHM-X1 
8896.347 
8894.064 

8893.964 

7.332 > 3.84 1.952708 

1.949301 

1.949751 

-8.11812 

-8.11600 

-8.11594 

0.8646 

0.8425 

0.8414 
 

GRCHM-X2 2.766 > 2.71 

GRCHM-X3 2.566 

Panel C                            LR 

GRCHM-XS1 8896.720 

8898.488 

8898.218 

0.746 1.953829 

1.943178 

1.943841 

-8.1166 

-8.1191 

-8.1189 

0.9329 

 

0.9725 

0.9364 

 

GRCHM-XS2 8.848 > 5.99 

GRCHM-XS3 8.508 

Note : LLN : log-likelihood with Normal distribution. Chi-square critical points for LR test statistic are 

ӽ2 (1) = 3.84 and ӽ2 (2) = 5.99 at 5% and ӽ2 (1) = 2.71 and ӽ2 (2) = 4.61 at 10%. For ARCH  LM test, p-value 

is reported. LR = −2(LLR –LLU ) is test statistic to test GARCHM-X vs GARCHM-XS model. LM = T.R2 is 

test statistic to test GARCHM vs GARCHM-X model. 

                                                             
36 The Heteroskedasticity Consistent Covariance option is used to compute the quasi-maximum 

likelihood (QML) covariances and standard errors using the methods described by (Bollerslev & 

Wooldridge, Quasi Maximum Likelihood Estimation and Inference in Dynamic Models with Time 

Varying Covariances, 1992). 


