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ABSTRACT 

 Medium resolution (  3 GHz) laser-induced fluorescence (LIF) excitation spectra of a 

rotationally cold sample of YbOH in the 17300-17950 cm-1 range have been recorded using two-

dimensional (excitation and dispersed fluorescence) spectroscopy.  High resolution (  0.65 nm) 

dispersed laser induced fluorescence (DLIF) spectra and radiative decay curves of numerous bands 

detected in the medium resolution LIF excitation spectra were recorded. The vibronic energy levels 

of the 2X +  state were predicted using a discrete variable representation approach and compared 

with observations. The radiative decay curves were analyzed to produce fluorescence lifetimes. 

DLIF spectra resulting from high resolution (  < 10 MHz) LIF excitation of individual low-

rotational lines in the 2 2

1/2 (0,0,0) (0,0,0)A X + −  , 2 2

1/2 (1,0,0) (0,0,0)A X + −  ,  and 

2[17.73] 0.5(0,0,0) (0,0,0)X + = −   bands were also recorded. The DLIF spectra were analyzed 

to determine branching ratios which were combined with radiative lifetimes to obtain transition 

dipole moments.  The implications for laser cooling and trapping of YbOH are discussed.  
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I. INTRODUCTION 

Laser-cooled, linear triatomic molecules (e.g., YbOH) may be a sensitive venue for 

investigating T-violating physics beyond the Standard Model (BSM).1 This BSM physics includes 

the determination of the electron electric dipole moment (eEDM) and/or the nuclear magnetic 

quadrupole moment (MQM).  Both eEDM and MQM result in a parity- and time-reversal-violating 

molecular EDM, although originating from different underlying physics.2 The effective electric 

field (Eeff) and the time-reversal-violating magnetic quadrupole moment interaction constant (WM) 

relevant to these probes of BSM physics in YbOH are predicted to be similar to that of YbF3–5, 

which has been used previously for eEDM measurements6.  The use of YbOH has experimental 

advantages due to the presence of parity doublets arising from the metastable, degenerate bending 

modes.  The 171YbOH isotopologue has also been considered as a venue for detecting nuclear spin 

dependent symmetry-violating effects.7 The precision of these proposed measurements would be 

greatly improved by laser cooling of YbOH to micro-kelvin temperatures and subsequent trapping, 

thus providing long coherence times.   

Cooling and trapping seems possible given the success of laser cooling of SrF8, CaF9 , YbF10 

and YO11. Like these molecules, YbOH has electronic transitions involving metal-centered, non-

bonding electrons which are very diagonal (i.e. vibration selection rule of  v = 0).  In comparison 

to SrF, CaF, YO and YbF, the requisite spectroscopic data needed for the design and 

implementation of YbOH laser cooling/trapping is rather limited. The high temperature, Doppler 

limited, spectroscopic study of various bands of the 2 2

1/2A X + −   and 2 2

3/2A X + −  electronic 

transitions was reported some time ago.12  We have reported on the rotational spectroscopy13 of 

174YbOH and, more recently, on the analysis of the high-resolution electronic spectroscopy14 of 
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the 2 2

1/2 (0,0,0) (0,0,0)A X + −  , 2 2

1/2 (0,0,0) (1,0,0)A X + −   and 2 2

1/2 (1,0,0) (0,0,0)A X + − 

bands of supersonic molecular beam samples of 172YbOH and 174YbOH.  The latter study included 

optical Stark and Zeeman spectroscopy for the 2 2

1/2 (0,0,0) (0,0,0)A X + −   band of 174YbOH 

which were analyzed to determine the magnitude of the molecular frame permanent electric dipole 

moment, el , and magnetic g-factors for the 2 (0,0,0)X +  and 2

1/2 (0,0,0)A   states.  An 

additional band near 17730 cm-1, designated as the [17.73]=0.5- 2 (0,0,0)X + transition, has also 

been recorded and analyzed at high spectral resolution15.  It is noteworthy that the [17.73] =0.5 

state, which hereafter will be designated simply as [17.73]0.5,  has a significantly shorter inter-

nuclear separation than that of the 2

1/2A   and 2X + states, suggestive of an 

 ( )13 2

Yb (6s6 )Yb
Xe 4

p
f  ++

 dominant configuration similar to the [561] and [571] states of YbF16.   

The scheme for cooling and trapping YbOH1 involves direct laser slowing of the forward 

velocity of molecules emanating from a cryogenic buffer gas source17,18 to a degree sufficient for 

three-dimensional magneto-optical trapping and transfer to a conservative optical dipole trap.  

Very recently, YbOH was laser-cooled in one dimension19 and  a subset of the data reported here 

was instrumental for that measurement.  In that study the transverse temperature of the YbOH 

beam was reduced by nearly two orders of magnitude to less than 600 µK and the phase space 

density increased by a factor of greater than six via Sisyphus cooling. To extend these results to 

allow for three-dimensional cooling and trapping will require detailed knowledge of vibrational 

branching ratios from a variety of electronic states in order to achieve a large number of photons 

to be scattered (>10,000) per molecule with minimal loss to dark vibrational sublevels. 

In this work we report spectroscopic measurements necessary for implementation of 

efficient photon cycling and determination of repumping schemes required for laser cooling and 
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trapping as well as supporting vibronic energy level calculations.  The data includes 

experimentally measured fluorescence branching ratios, 
iv ,fvb   , and fluorescence lifetimes, iv   , 

which are used to obtain transition dipole moments (TDMs) associated with the numerous visible 

transitions of 174YbOH.  Analogous to the laser cooling scheme for YbF5, the main cooling 

transitions for 174YbOH will be the PP11(1) (  =17323.5699 cm-1) and PQ12(1) (  =17323. 5952 

cm-1) lines14 of the 2 2

1/2 (0,0,0) (0,0,0)A X + −  origin band.  The  PP11(1) and satellite  PQ12(1)  

lines are rotationally closed excitations. Vibrational repumping will be required to recover 

population that decays to levels other than the 
2 (0,0,0)X +  state. Repumping pathways can 

involve either direct 2 2

1 2 3 1/2( , , ) (0,0,0)X v v v A+ →  excitation or indirect pumping into an excited 

state other than 2

1/2 (0,0,0)A  which spontaneously emits to 2 (0,0,0)X + : 

   2 2

1 2 3 1 2 3

.

( , , )  excited( , , )  (0,0,0)
sponlaser

X v v v v v v X+ +      → → .   (1) 

Repumping of both the Yb–O stretching, 1, and the Yb–O–H bending, 2, vibrational levels of 

the 2X +  state will be required for efficient laser cooling. Excited O-H stretching modes, 3, 

should not be strongly coupled to either the 
2 (0,0,0)X +  or 2

1/2 (0,0,0)A  levels.   

In the present dispersed fluorescence measurements, the rotational fine structure is not 

resolved and the determined property is the rotationally averaged Einstein A-coefficient, iv ,fvA   : 

 
( )

2 2
3 3

, , ,

4

0

,

1 7

i i

64
3.137 10

4 3
iv fv iv fv iv fv iv fv ,fv iv ,fv v vA

h
μb μ ν ν






− −

            = = =  ,   (2)  

where ,iv fvμ    is the vibronic TDM and h is Planck’s constant.  The numerical coefficient of Eq. 2 

assumes units of Debye (D) and wavenumbers (cm-1).  The ,iv fvμ    values are useful for determining 
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the Einstein A-coefficient for rotationally resolved transitions, ,v J v JA    , relevant for optical 

pumping of individual quantum levels:  

  
( )

7 , , ,, ,

2
3

7

,

3

(2 1) (2 1)
3.137 10 3.137 10

v J v J J J iv fvv J v J v J v J

v J v J

μ
A

S

J

S

J

       



      − −

   =
 

=    
+ +

  . (3) 

In Eq. 3, ,v J v JS     is the line strength factor and ,J JS    the Hönl-London factor, which is readily 

obtained from the eigenvalues and eigenvectors for the ground and excited state. 

II. EXPERIMENTAL SECTION 

A rotationally cold (Trot. 20 K) YbOH sample was generated by laser ablation of a 

continuously rotating ytterbium metal rod in a supersonic expansion of room temperature vapor of 

50% hydrogen peroxide solution seeded in argon at a stagnation pressure of ∼2 MPa. The 

production of YbOH was approximately a factor of four larger when methanol is substituted for 

the hydrogen peroxide solution, but in that case the spectra are contaminated with YbOCH3.  Initial 

detection was achieved by performing pulsed dye laser survey scans using a two-dimensional (2D) 

(excitation and dispersed laser induced fluorescence (DLIF)) spectroscopic technique20,21 in the 

17300 cm -1 and 17950 cm -1 spectral range. Typically, the 2D spectra were obtained by co-adding 

the signal of 20 laser ablation samples at each pulsed dye laser wavelength. The entrance slit width 

of the monochromator was set to 2 mm resulting in an approximately ± 4 nm DLIF spectral 

resolution, and a 1 s detection window used for the intensified charge coupled detector (ICCD) 

attached to the monochromator.  Subsequently, higher resolution DLIF spectra resulting from 

either medium-resolution pulsed dye laser or single frequency cw-dye laser excitation were 

recorded.  For these measurements, the monochromator slits were typically reduced approximately 

0.2 mm resulting in an approximately ± 0.4 nm spectral resolution and 10,000 laser ablation 
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samples were averaged. DLIF measurements of rotationally resolved excitations were also 

performed. In these measurements low-J branch features of the 2 2

1/2 (0,0,0) (0,0,0)A X + −  , 

2 2

1/2 (1,0,0) (0,0,0)A X + −   and [17.73]0.5- 2 (0,0,0)X +  bands were excited using cw-dye laser 

radiation.  The relative sensitivity of the spectrometer as a function of wavelength was calibrated 

using a black-body radiation source. The wavelength calibration of the DLIF spectra was achieved 

by recording the emission of an argon pen lamp. Fluorescence lifetime measurements were 

performed by tuning the wavelength of the pulsed dye laser to intense bandheads and monitoring 

the DLIF spectrum with a relatively wide (1 s) ICCD detection window. The detection window 

was progressively stepped further in time from the incident pulsed laser in 10 or 20 nanosecond 

increments. The resulting fluorescence decay curves were fit to a first order exponential to 

determine the upper state fluorescence lifetimes iv  . 

III. COMPUTATIONAL DETAILS 

 

Electronic ground state vibrational levels of  YbOH were obtained from a four-dimensional 

discrete variable representation (DVR) calculation. (For a review of DVR methods, see Ref.22) 

The present DVR calculations used grid points in reduced normal coordinate representation and 

employed an established DVR formulation for rectilinear coordinates. Expressions for the DVR 

basis functions and corresponding kinetic matrix elements can be found in Ref. 23. The normal 

coordinates were obtained from harmonic frequency calculations using the equation-of-motion 

electron-attachment coupled cluster singles and doubles (EOMEA-CCSD) method24 and 

correlation-consistent core-valence triple-zeta basis set for Yb25 and cc-pVTZ basis sets for O and 

H26 . Scalar-relativistic effects were taken into account using the spin-free exact two-component 

theory in its one-electron variant (SFX2C-1e)27,28. Electronic energies for 2178 structures covering 
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the local potential energy surface up to around 10000 cm-1 above the energy of the equilibrium 

structure were computed using the SFX2C-1e-EOMEA-CCSD method and subsequently fit into a 

six-order polynomial function of three internal coordinates (Yb-O bond length, O-H bond length, 

and Yb-O-H angle). The fitting approach was implemented as a means to expedite the calculation. 

Specifically, around 2000 energies obtained from the electronic structure calculations were used 

to generate a fitted potential from which approximately 214 points were used in the DVR 

calculations. The analytic potential function thus obtained reproduces ab initio energies reasonably 

well, with a maximum deviation of 6.1 cm-1 and a root mean square deviation of 1.2 cm-1. Details 

about the potential energy surface and the normal coordinates are given in the Supporting 

Information. Note that although the fit is not able to accurately describe the surface outside of this 

region, the fitted potential faithfully reproduces the potential energy surface for the region relevant 

to the DVR calculation. In the DVR calculations, potential energies on the DVR grid points in 

normal coordinate representation were obtained on the fly by referencing to the analytic potential 

function in internal coordinates. We used 21 evenly spaced DVR points covering the range [-4.0q, 

4.0q] for Yb-O stretching mode, 28 points covering the range [-4.0q, 6.8q] for O-H stretching 

mode, and 21 points covering the range [-4.0q, 4.0q] for each bending mode, where q denotes 

corresponding dimensionless reduced normal coordinate. The computed vibrational levels were 

converged to below 2 cm-1 with respect to the range and density of DVR grid points used here. 

Note that we used a seemingly excessive range for O-H stretching mode, which is needed to sample 

the correct region for Yb-O-H bending when combined with displacements of bending modes. It 

is perhaps more efficient to use more sophisticated curvilinear-coordinate representations for DVR 

calculations of polyatomic molecules29–31.  Nevertheless, the DVR calculations presented here with 

simple normal-coordinate representation were affordable. Besides, the use of normal coordinates 
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is naturally consistent with an important motivation of the present study which is to obtain accurate 

splitting between (0200) and (0220) vibronic levels of the 2X + state.  All calculations were carried 

out using the CFOUR program package32–35 . 

IV. OBSERVATIONS 

 

The transition wavenumbers, associated energy levels and assignments for the eleven most 

intense bands observed in the 17300 cm-1 to 17950 cm-1 spectral range are presented in Figure 1.  

The lower energy levels associated with these transitions are all assigned to various 1 2 3( , , )l  

vibrational levels in the 2X +  state. The numbers next to the 2X + 1 2 3( , , )l    quantum numbers in 

Figure 1 are the observed energies in wavenumbers. The bands at 17323, 17730 and 17908 cm-1 

have been recorded and analyzed at high spectral resolution and are assigned to the

2 2

1/2 (0,0,0) (0,0,0)A X + −  , 2[17.73]0.5 (0,0,0)X +−   and 2 2

1/2 (1,0,0) (0,0,0)A X + −   transitions, 

respectively.  The origins, taken as the frequency of the QQ11(0) line, of these bands are precisely 

known14,15 to be 17323.6500, 17730.5874 and 17907.8571 cm-1.  The band at 17378 cm-1 is readily 

assigned to 2 2

1/2 (1,0,0) (1,0,0)A X + −   transitions based upon combination differences of the 

known origins of the 2 2

1/2 (0,0,0) (0,0,0)A X + −  , 2 2

1/2 (0,0,0) (1,0,0)A X + −   and 

2 2

1/2 (1,0,0) (0,0,0)A X + −   bands. The assignment of the remaining seven bands at 17332, 17345, 

17637, 17643, 17681, 17708, and 17900 cm-1 is more speculative. The previous study12 of a high 

temperature sample assigned a band near 17339 cm-1 to the 2 1 2 1

1/2 (0,1 ,0) (0,1 ,0)A X + −  transition 

and observed bands at 17638  5, 17681  5, and 17729  5 cm-1 to 2 1 2

1/2 (0,1 ,0) (0,0,0)A X + −   

transitions. The observed DLIF spectra and radiative lifetimes (see below) of the 17345 and 17681 

cm-1 bands strongly suggests that these bands have a common excited state. Under this assumption, 
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the 336 cm-1 separation of these two bands corresponds to the energy of the 
2 1(0,1 ,0)X + state. 

The assumed common excited state will simply be labelled as [17.68] although it certainly has 

some 2 1

1/2 (0,1 ,0)A   character. Based upon the DLIF spectra (see below) the five remaining bands 

at 17332, 17637, 17643, 17708 and 17900 cm-1 are assigned as excitation from the 2 (0,0,0)X +  

state to excited states of unknown character which are labelled as [17.33], [17.637], [17.643], 

[17.71] and [17.90], respectively.  

The 2D spectrum in the 17315 to 17385 cm-1 region, which is near the origin band, is 

presented in Figure 2. The majority of the fluorescence occurs at the laser excitation wavelength 

(‘on resonance’) as expected for the strong bands of  YbOH, which are promotions of non-bonding, 

metal-centered electrons. There is weak emission to the blue (anti-Stokes shifted) by 

approximately -11 nm (330 cm-1) in the 17340 to 17355 cm-1 range and stronger emission to the 

red (Stokes shifted) by approximately +18 nm (530 cm-1) for laser excitation at 17323, 17332 

and 17375 cm-1. Three excitation spectra extracted by vertical integration of the signal along the 

horizontal slices indicated in Figure 2 are presented in Figure 3: on resonance (“Ex1”), Stokes 

shifted by one quantum of Yb-OH stretching excitation 1   (“Ex2”), and anti-Stokes shifted by 

one quantum of bending excitation, 2   (“Ex3”).  The excitation spectra viewed on-resonance and 

Stokes shifted are similar with blue degraded bands at 17323, 17332 and 17375 cm-1.  A broad, 

weak, band in the 17345-17355 cm-1 range is evident in the anti-Stokes shifted spectrum. Also 

presented in Figure 3 is the predicted LIF excitation spectrum obtained using the derived 

spectroscopic parameters14 for the 
2 (0,0,0)X + , 

2 (1,0,0)X + , 2

1/2 (0,0,0)A   and 2

1/2 (1,0,0)A   

states. 
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High-resolution DLIF spectra recorded by tuning the pulsed dye laser to 17323, 17332, 

17345 and 17375 cm-1 are presented in Figure 4, along with the associated energy levels. The 

numbers above the spectral features are the measured shifts in wavenumber (cm-1) relative to the 

laser. The relative intensities of the DLIF spectra resulting from excitation of the 17323, 17332, 

17345 and 17375 cm-1 bands are approximately 1, 0.2, 0.02 and 0.05, respectively. Excitation of 

the 2 2

1/2 (0,0,0) (0,0,0)A X + −   band at 17323 cm-1 results in emission to the 2 (0,0,0)X +  and 

2 (1,0,0)X +  levels while excitation of the 2 2

1/2 (1,0,0) (1,0,0)A X + −   band at 17375 cm-1 results 

in emission to the 2 (0,0,0)X + , 2 (1,0,0)X + , 2 0(0,2 ,0)X +  and 2 (2,0,0)X + levels.  The 

excitation of the weak band near 17345 cm-1, which is most evident in the excitation spectrum 

extracted from the horizontal slice of the 2D spectrum shifted to the blue (anti-Stokes ) from the 

laser by one quantum of the 2X +  bending (330 cm-1) (Figure 3), produced emission primarily 

to the 2 1(0,1 ,0)X + but also weakly to the 2 (0,0,0)X + , 2 (1,0,0)X + 2 1(1,1 ,0)X +  and 

2 (2,0,0)X + levels. The appearance of vibronically induced 2 = 1 features in this DLIF 

spectrum illustrates that the [17.68]  state is not purely the 2 1

1/2 (0,1 ,0)A   state. The relatively 

strong, blue degraded band near 17332 cm-1 (Figure 2), which was not reported in the previous 

study12, is unassigned.  The DLIF spectrum resulting from excitation of the 17332 cm-1 band is 

very nearly identical to that resulting from excitation to the 2

1/2 (0,0,0)A  state (Figure 4). This 

band is assigned as the 2[17.33] (0,0,0)X +−  transition based upon the observed lack of anti-Stokes 

spectral features. Although the intensities of the 17332 cm-1 and 17323 cm-1 bands are comparable 

under the relatively high pulsed laser intensity used to record the 2D spectrum of Figure 2, under 

lower pulsed laser intensities the 2 2

1/2 (0,0,0) (0,0,0)A X + −  band at 17323 cm-1 is approximately 

5 times more intense than the 2[17.33] (0,0,0)X +−   band at 17332 cm-1.  
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The 2D spectrum in the 17630 to 17750 cm-1 spectral range is presented in Figure 5. The 

bands near 17681, 17708 and 17730 cm-1 exhibit relatively strong and narrow emission shifted by 

multiple quanta of Yb-OH stretching 1   (+18 nm 530 cm-1).  The 17681 cm-1 band also exhibits 

emission shifted by one quantum of Yb-OH bending 2   (+11 nm 330 cm-1).  Also evident in the 

2D spectrum is a weak, sharp band at 17637 cm-1 that has very diagonal fluorescence and a weak, 

spectrally broad band in the 17640 to 17660 cm-1 range.  The weak, non-horizontal, emission in 

the 2D spectrum blue shifted from the laser by approximately -11.5 nm (365 cm-1) at 17630 nm 

is an artifact of amplified stimulated emission (ASE) of the pulsed dye laser. The ASE is exciting 

the very strong 6s2 1S0 → 6s6p 3P1 transition of Yb(I) at 17992.007 cm-1 (555.8nm) giving rise to 

an emission that is shifted from the laser wavelength (17630-17992 365 cm-1). 

 The medium resolution excitation spectra extracted from the horizontal slices of the 2D 

spectrum of Figure 5 taken on-resonance (“Ex1”), Stokes shifted by one quanta of 2  , (“Ex2”), 

and Stokes shifted by one quanta of 1   (“Ex3”) are presented Figure 6.  The strong band at 17730 

cm-1, designated as the [17.73]0.5- 2 (0,0,0)X + transition, has been recorded and analyzed at high 

spectral resolution15.  The much weaker 17637, 17681, and 17708 cm-1 bands are all sharp and 

blue degraded, whereas the very weak 17643 cm-1 band, which is most evident in the 2   Stokes 

shifted excitation spectrum, is broader and unstructured.  

The high-resolution DLIF spectra resulting from pulsed laser excitation of the bandheads 

at 17637, 17643, 17681, 17708, and 17730 cm-1 are presented in Figure 7 along with an associated 

energy level diagram.  The numbers above the spectral features are the measured shifts in 

wavenumber (cm-1) relative to the laser. The DLIF spectra for the weak 17637 and 17643 bands 

were recorded at slightly lower resolution to enhance the signal to noise ratio. The DLIF spectra 
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from the [17.73]0.5 and [17.71] states exhibit long progression in the 1 stretching mode and 

weaker emission shifted by intervals of 1+22.  The [17.68] state emits to 1 levels (i.e. 

2 (1,0,0)X + and 2 (2,0,0)X + ), the 2 1(0,1 ,0)X + level, and weakly to the 2 1(1,1 ,0)X +  level. The 

[17.643] state emits with high efficiency to the 2 1(0,1 ,0)X +  level and weakly to the 2 (0,0,0)X +  

and 2 1(1,1 ,0)X +  levels. The [17.637] state emits with high efficiency to the 2 (0,0,0)X + level 

and weakly to 2 1(0,1 ,0)X +  and 2 (1,0,0)X + levels. 

The 2D spectrum in the 17880 to 17920 cm-1 range is presented in the bottom portion of 

Figure 8. The excitation spectrum recorded by monitoring the emission Stokes shifted by one 

quantum of 1   (+18 nm 530 cm-1) is presented at the top of Figure 8. The band at 17908 cm-1 is 

the 2 2

1/2 (1,0,0) (0,0,0)A X + −   transition which has been recorded and analyzed at high spectral 

resolution14.  The nature of the excited state associated with the 17900 cm-1 band is unknown.  

Although the intensities of the 17900 cm-1 and 17908 cm-1 bands are comparable under the 

relatively high pulsed laser intensity used to record the 2D spectrum of Figure 8, under lower 

pulsed laser intensities the 2 2

1/2 (1,0,0) (0,0,0)A X + −  transition at 17908 cm-1 is approximately 

three times more intense than the 2[17.90] (0,0,0)X +−   band at 17900 cm-1. The DLIF spectra 

resulting from pulsed dye laser excitation at 17900 and 17908 cm-1 bandheads are presented in 

Figure 9 along with the associated energy levels and assignments. The DLIF spectra resulting from 

excitation of the 2

1/2 (1,0,0)A   and [17.90] states are very similar and dominated by emission to the

2 (1,0,0)X +  state.   

 Fluorescent decay data for the 2

1/2 (0,0,0)A  , [17.33], [17.90] and 2

1/2 (1,0,0)A   levels are 

presented in Figure 10, while those for the [17.637], [17.643], [17.68] and [17.73]0.5 states are 
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presented in Figure 11. The DLIF signal from the [17.71] state was too weak to obtain a reliable 

decay curve. Also presented are the curves obtained by fitting the data points to an exponential 

decay. The 2

1/2 (0,0,0)A  , [17.33], [17.643], [17.90] and 2

1/2 (1,0,0)A   levels all have relatively 

short lifetimes ranging from between 20  2 ns for the 2

1/2 (0,0,0)A   level to 35  6 ns for the 

[17.643] level.  The lifetimes for the [17.637], [17.68] and [17.73]0.5 states are significantly 

longer.  

 Decay curves obtained by exciting the 2 1

1/2[17.68] (0,1 ,0)A−    band at 17345 cm-1 and 

monitoring both the on-resonance and anti-Stokes emission shifted by one quantum of Yb-OH 

bending 2   (-11 nm 330 cm-1) are presented in Figure 12. The 17345 cm-1 band is overlapped 

with the more intense 2 2

1/2 (0,0,0) (0,0,0)A X + −   and 
2[17.33] (0,0,0)X +−  bands (see Figure 3). 

The anti-Stokes emission is primarily that from the [17.68] level while the on-resonance emission 

is dominated by that due to excitation of the overlapping 2 2

1/2 (0,0,0) (0,0,0)A X + −   and 

2[17.33] (0,0,0)X +−  bands. The determined relatively long lifetime (11015 ns) for the anti-

Stokes emission is consistent with that determined for the emission resulting from excitation of 

the 2[17.68] (0,0,0)X +−  transition at 17680 cm-1 (898ns). The on-resonance emission exhibits a 

short lifetime (214 ns) similar to that of the 2

1/2 (0,0,0)A   and [17.33] states which are 

simultaneously excited at 17345 cm-1.  

 The DLIF spectra resulting from excitation of the PP11(1) lines of the 

2 2

1/2 (0,0,0) (0,0,0)A X + −  (  =17323.5699 cm-1), 2 2

1/2 (1,0,0) (0,0,0)A X + −  (  =17907.9028 

cm-1) and 2[17.73]0.5 (0,0,0)X +−  (  =17731.9707 cm-1) , which are used in the optical pumping 

scheme19, are presented in Figure 13 and compared with pulsed dye laser DLIF spectra recorded 
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at similar resolution. The sensitivities of the cw-dye laser measurements are less than those of the 

pulsed dye laser measurements. Hence, the entrance slit width of the monochromator was 

relatively large and the spectra of Figure 13 are broader than those of Figures 4, 7 and 9.  

V. ANALYSIS  

The fluorescence decay curves were fit to a first-order exponential to determine the upper 

state fluorescence lifetimes iv   which are presented in Table 1. The predicted decay curves using 

the fitted lifetimes are also presented in Figures 10, 11 and 12. The DLIF spectra resulting from 

excitation of the 2

1/2 (0,0,0)A  , [17.33], [17.637], [17.643], [17.68], [17.73]0.5, [17.90] and 

2

1/2 (1,0,0)A   states were corrected for wavelength sensitivity and the integrated peak areas used 

to determine the branching ratios, 
iv ,fvb   , which are also presented in Table 1. The

2[17.68] (0,0,0)X +−   transition at 17681 cm-1 was used, as opposed to 
2 1[17.68] (0,1 ,0)X +−   

transition at 17345 cm-1, because it is more intense and not overlapped. Also presented in Table 1 

are the magnitudes of the transition dipole moments, 
,iv fvμ  

, obtained using Eq. 2 and the 

measured ,iv fvν   , iv   and  
iv ,fvb   values.  

VI. DISCUSSION 

A. Vibrational levels of the 2X + state. 

The spacing between 
2 (0,0,0)X +  and

2 (1,0,0)X +  has been previously determined14 to 

be  529.3269(3) cm-1.  The observation of multiple vibronically induced bands in the excitation 

and DLIF spectra in the present study made it possible to determine the energies of eight additional 

vibrational levels of the 2X +  state up to 2100 cm-1. The energies of the eight
2X + state 

vibrational levels as determined from the DLIF spectra are listed in Table 2 and have estimated 

errors on the order of  5 cm-1 depending upon signal-to-noise ratio and proximity to argon 
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emission calibration lines.  As noted above, there is strong experimental evidence that the bands 

at 17345 cm-1 and 17681 cm-1 share a common upper level. Specifically, the lifetime determined 

from the anti-Stokes emission of the 17345 cm-1 band (Figure 11) is similar to that of the 17681 

cm-1 band as are DLIF spectral patterns (Figures 4 and 7). Note that although the patterns are 

similar, the relative intensities of the two DLIF differ, because the 17345 cm-1 band is overlapped 

with the more intense 2 2

1/2 (0,0,0) (0,0,0)A X + −   and 
2[17.33] (0,0,0)X +−  bands. Under the 

assumption that these two bands have a common excited state, as indicated in Figure 1, the energy 

of the
2 1(0,1 ,0)X +  level is 336  5 cm-1 which is consistent with the value of 329   5 cm-1 

obtained from the DLIF spectrum. 

Also presented in Table 2 are the ab initio vibrational energies obtained from discrete 

variable representation (DVR) calculations. The ab initio energy levels agree fairly well with 

measured ones, with a maximum deviation of 10 cm-1 for the (1,22,0) state. A predicted splitting 

of 24 cm-1 between (0200) and (0220) states seems reasonable, compared with the corresponding 

value of 30 cm-1 in SrOH36.  This indicates that scalar-relativistic equation-of-motion coupled-

cluster technique used here is capable of providing accurate description of local potential energy 

surface for the ground state of YbOH, and the four-dimensional DVR approach appears to be an 

appropriate method for calculations of vibrational levels for linear triatomic molecules. The 

observed and ab initio predicted state vibrational energies were fit to the phenomenological 

expression37:  

2 2 2 2

1 2 2 22 2

1,2 1,2 1,2

( , , , ) ( ) ( ) ( ,0,0,0)
2 2

i i
i i ik i

i i k

d d
E X v v l v x v g l E X+ +

= = =

 = + + + + −    , (4) 
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where di is the degeneracy of the vibrational mode (i.e. 1 and 2 for 1 and 2, respectively).   The 

results are presented in Table 2.  The determined 
22g  parameter ( 5 cm-1) is consistent with 7.56 

cm-1 value determined for the 2X +  state of SrOH38.  The levels in the 0-2100 cm-1 energy range 

that have not been experimentally detected are 
2 2(0,2 ,0)X + , 

2 2(1,2 ,0)X + , 
2 1(0,3 ,0)X + ,

2 3(0,3 ,0)X + , 
2 1(1,3 ,0)X +  and 

2 3(1,3 ,0)X + . 

B. The excited states 

Nine excited vibronic states have been identified in the relatively small ( 650 cm-1) 

spectral region probed. Simple molecular orbital considerations provide some insight into the 

cause of this high density of states and suggests that there may be at least nine Hund’s case (a) 

low-lying excited electronic states. In simplest terms, these nine states are the 2

r  and 2 +  states 

arising from a 14 14 6f p (Yb+) configuration, the 2

i , 2

i , 2

i  and 2 +  states from the 13 24 6f s (Yb+) 

configuration, and the 2

r , 2

r  and 2 + states from the 14 14 5f d (Yb+) configuration.  The multiple 

vibronic levels of these nine electronic states will strongly interact due to large spin-orbit and 

vibronic coupling. 

The state at 17323 cm-1 is analogous to the 
2

1/2 ( 0)A v = (E=18106 cm-1) state of YbF.  In 

the case of YbF there are two =1/2 states, often labeled as [557] and [561], which are 474 and 

593 cm-1 above the 2

1/2 ( 0)A v = state.  Similarly, for YbOH there are two =1/2 states, the 

[17.73]0.5 and 2

1/2 (1,0,0)A  , observed at 407 and 592 cm-1 above the 2

1/2 (0,0,0)A  state. In the 

case of YbF, the branching ratios39 to the
2X + (v=0, 1 and 2) levels from the [557] state are 13.2 

, 70.7 and 13.9%, which are similar to those from the [561] state of 2.8, 89.0 and 7.8% , 

respectively. The fine and hyperfine parameters for the [557] and [561] states are also similar, 
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which has been used to suggest that these two states are strong admixtures of an
2

1/2 ( 1)A v = state 

of the 14 14 6f p (Yb+) configuration and a perturbing state having an  ( )13 2

Yb (6s6 )Yb
Xe 4

p
f  ++

 

dominant configuration. Unlike YbF, the YbOH branching ratios (Table 1) for the two =1/2 

states at  407 and  592 cm-1 above the 2

1/2 (0,0,0)A  state are very dissimilar with the emission 

from the [17.73]0.5 state being predominantly to the
2 (0,0,0)X +  level and that for the

2

1/2 (1,0,0)A   being predominately to the 
2 (1,0,0)X +  level. The fine structure parameters14,15 and 

lifetimes (Table 1) for the [17.73]0.5 and 2

1/2 (1,0,0)A  states are also very dissimilar, unlike those 

for the [557] and [561] states of YbF. It can be concluded that the state at 17908 cm-1 is the 

relatively unperturbed 2

1/2 (1,0,0)A  level. The short radiative lifetimes  ( 22 ns), near-diagonal 

fluorescence and the rotational analyses14 for the 2

1/2 (0,0,0)A   and 2

1/2 (1,0,0)A   states indicates 

a predominant 14 14 6f p (Yb+) character for both levels. The observed long progression in Yb-OH 

stretching, 1   , in the DLIF spectrum and the relatively long radiative lifetime (124  2ns) of the 

[17.73]0.5 state is evidence that the dominant configuration for this state is 

 ( )13 2

Yb (6s6 )Yb
Xe 4

p
f  ++

 .  No other states of this nature have been observed at lower energy 

suggesting that the excited state of the 17730 cm-1 band is [17.73]0.5(0,0,0) . 

Assignment of the [17.33], [17.637], [17.643], [17.68], [17.71] and [17.90] states is more 

difficult. The DLIF spectra resulting from the excitation of these six excited electronic states 

exhibit numerous transitions that are nominally vibrationally forbidden. Such bands are parallel 

polarized although the 2 2

1/2A X + −   electronic transition moment is perpendicular. These 

transitions appear as a result of coupling through the bending vibrations between electronic states 

whose -values differ by one unit (i.e. 2

1/2A  state coupling with the 2  and 2  electronic 
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states)40.  Levels from 2 1

1/2 (0,1 ,0)A  , and possibly some components of the 2

1/2 (0,2 ,0)lA 

vibronic states, will have energies between those of the 2

1/2 (0,0,0)A  and 2

1/2 (1,0,0)A  levels.  The 

2 1(0,1 ,0)A   and 2 (0,2 ,0)lA  vibronic states are subject to both Renner-Teller and spin-orbit 

interactions41 and are characterized by the approximately good quantum numbers after accounting 

for these interactions. In the absence of the electronic spin, the projection of the total angular 

momentum on to the symmetry axis is ( )K l=  + , where  and l  are the quantum numbers 

associated with the projection of the total electronic orbital and vibrational angular momenta on 

the symmetry axis. The large spin-orbit coupling expected for the 
2A   state of YbOH suggests 

that the total electron spin angular momentum, S , is quantized in the molecular frame. The 

projection of total electron spin angular momentum on the symmetry axis is .  Consequently, the 

vibronic energy levels will be approximately those of a Hund’s case (a)-type angular momentum 

coupling scheme where the quantum number P l= ++  associated with the projection of the 

total vibronic angular momentum on the symmetry axis is conserved.  Standard practice37 is to 

label the Renner-Teller and spin-orbit vibronic states by 
2 1S

P
K

+
.  Therefore, the expected Hund’s 

case (a)-type levels from 2 1

1/2 (0,1 ,0)A   and 2

1/2 (0,2 ,0)lA  vibronic states are: 

2 1 2 2 2 2

3/2 5/2(0,1 ,0) , , andA   →          (5) 

and 

2 2 2 2 2

5/2 7/2(0,2 ,0) , , andl

r iA   →     .     (6) 

The lower and upper energy vibronic states with the same symmetry are distinguished by ‘’ and 

‘’, respectively. The large spin-orbit interaction (A1350 cm-1)12 places the 2   and 
2

3/2 levels 
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of the 2 1

1/2 (0,1 ,0)A   state and the
2 2

7/2 and i   levels of the 2 (0,2 ,0)lA  state at energies outside 

the probed spectral range37,41,42.  Assuming that the excited state bending frequency, 2  , is  similar 

to that of the
2X + state of 329 cm-1,  then the 

2    level of the 2 1

1/2 (0,1 ,0)A  state should be near 

17650 cm-1 (=T00+ 2 ) and the 
2

5/2  level only slightly higher.  The [17.643] state, which 

fluoresces with high efficiency to the
2 1(0,1 ,0)X + level (Figure 7), is likely to have a dominant 

2 1 2

1/2 (0,1 ,0)A    character. This is supported by the observed short lifetime (35 6 ns) and the 

predicted branching ratios (see below). The 2 1 2 2

1/2 (0,1 ,0) (0,0,0)A X + −   transition is 

expected40 to be more intense than the 2 1 2 2

1/2 5/2(0,1 ,0) (0,0,0)A X +  −   transition, though both 

are vibronically induced.  The [17.68] and [17.71] excited states associated with the relatively 

intense 
2[17.68] (0,0,0)X +−  band and the much weaker 

2[17.71] (0,0,0)X +−  band (Figure 6) are 

most likely highly mixed with the near [17.73]0.5 ,  ( )13 2

Yb (6s6 )Yb
Xe 4

p
f  ++

  state.   The [17.68] state 

was assigned as nominally the 
2 1 2

1/2 (0,1 ,0)A    level in the study of the high temperature 

sample12.  

The [17.33] and [17.90] states, neither of which were reported in the previous study14, are 

particularly interesting. The excitation spectra for the 
2[17.33] (0,0,0)X +−  and 

2[17.90] (0,0,0)X +−  band are approximately a factor of four weakeris slightly than those for the 

adjacent  2 2

1/2 (0,0,0) (0,0,0)A X + −   and 2 2

1/2 (1,0,0) (0,0,0)A X + −  bands. The [17.33] state, 

which is approximately 10 cm-1 higher than the 2

1/2 (0,0,0)A   state, and the [17.90] state, which 

is approximately 10 cm-1 lower than the 2

1/2 (1,0,0)A   state, have very nearly identical DLIF 

spectra and fluorescent lifetimes as the nearby and 2

1/2 (0,0,0)A   and 2

1/2 (1,0,0)A   levels. The 
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very diagonal nature of the DLIF spectra for these states implies that potential energy surfaces for 

the excited states are very nearly identical to those of the 2X +  state. The short radiative lifetimes 

(22 ns) for all four excited states implies that that they are all associated with Yb+-centered atomic 

like transitions.  The exact nature of the [17.33] and [17.90] states is a mystery at this point.  One 

very speculative assignment is that YbOH in the 2

1/2A   state is slightly bent and that two bands 

are associated with excitation to the Ka=0 and aK =1 levels of an asymmetric rotor.   Under this 

assumption the 17323 and 17332 cm-1 bands would be assigned as the 2 2(0,0,0) ( 0)aX A A K+  → =  

and 
2 2(0,0,0) ( 1)aX A A K+  → = transitions, respectively. The observed relative intensities, with 

the higher energy band at 17332 cm-1 band being much weaker, would be consistent with this 

assignment.  A similar assignment for the weak 17900 and more intense 17908 cm-1 bands would 

require the highly unusual case of the aK =1 levels being lower in energy than the Ka=0 levels.  

The switching of Ka ordering has been observed in the bending vibrational levels of quasilinear 

molecules43  but not, to our knowledge, in stretching modes.  

C. Prediction of branching ratios  

The measured 
iv ,fvb   values for 2 2

1/2 (0,0,0)A X + →  (0,0,0), (1,0,0), (0,20,0) and (2,0,0) 

transitions are 89.73%, 9.74%, 0.27% and 0.26%, all with estimated errors of 0.05% , which 

compare favorably with the previously predicted1 values of  86.73%, 11.73% ,0.10% and 0.13%.  

In the present study, the branching ratios for the 2
1/2 (0,0,0)A  state, as well as those for the 

2
1/2 (1,0,0)A   and 2 1

1/2 (0,1 ,0)A  states, were also predicted assuming that these levels are 

unperturbed and that stretching and bending potentials for the 2
1/2A   and 2X +  states are 

harmonic.  Assuming the Born-Oppenheimer approximation the branching ratios are given by, 
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 



=


,      (7) 

where 
'v vq   are the Franck-Condon factors (FCFs) and  is the emission frequency.  This assumes 

that vibronic coupling interactions (i.e. Coriolis, Renner-Teller, Fermi, etc.) and spin-orbit 

interactions are negligible and the total wave function can be written as the product of an electronic 

and vibrational wave function. Under these assumptions the relative intensities are proportional to 

the product of the two-dimensional FCF of the -symmetry stretching modes (ν1 and ν3) and a FCF 

for the one-dimensional -symmetry bending mode (ν2):  

  

2 2

1 3 1 3 2 2FCF , ,          =
.       (8) 

In the present study the one-dimensional -symmetry bending mode FCFs are evaluated using the 

analytical formula for non-displaced harmonic oscillators44. Evaluation of the two-dimensional 

FCF is more problematic. The previous prediction1 of FCFs and 
iv ,fvb   values followed the 

procedure of Sharp and Rosenstock45 to evaluate the two-dimensional integrals of Eq. 8.  Here 

alternative closed-form formulas46,47 for the two-dimensional FCFs are employed similar to what 

was carried out for modelling the SrOH two-dimensional FCFs31.  In the SrOH study only emission 

from the lowest vibrational level of the excited electronic state (i.e. 2

1/2 (0,0,0)A  ) was modeled 

and the formula for the two-dimensional FCF, 
2

2 2
1 3 1 3, 0, 0 , ,A X   + = =  , derived by 

Chang46 was employed.  Modelling the relative intensities of the present YbOH DLIF spectra 

requires using formulas for FCFs of the more general form 
2

2 2
1 3 1 3, 0, 0 , ,A X   +    , 

which have recently been derived by Sattasathuchana et al.47.  The analytical solutions such as 

those derived by Chang46  and Sattasathuchana et al.47 for the  two-dimensional FCFs have some 
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advantages over those of Sharp and Rosenstock45 because they are relatively easy to code, and are 

exact and free from convergence problems.  All three approaches assume a harmonic motion and 

account for the change in normal modes upon excitation (i.e. Duschinsky effect). The Sharp and 

Rosenstock45 approach treats the Duschinsky effect by assuming the same internal symmetry 

coordinates for the ground and excited states whereas the methods by Chang46 and Sattasathuchana 

et al.47  employ the more accurate method of using the Cartesian displacement coordinates common 

to both electronic states48.  This approach requires relating the normal coordinates of the 2X +  

state, Q( 2X + ), to those of the 
2A   states, Q( 2A  ) :  

2 2( ) ( )X A+ =  +Q JQ D  .      (9)  

In Eq. 9, D is the vector of geometry displacements given in terms of the normal coordinates of 

the ground state and J  is the Duschinsky rotation matrix.  For the linear-to-linear transition studied 

here the J  rotation matrix associated with the two -type stretching modes is a unit matrix.  Details 

of the prediction are found in Supporting Information. 

The determined two dimensional 
2

2 2
1 3 1 3, , , ,A X   +   and one dimensional 

2
2 2

2 2, ,A X +    FCFs  are presented in Table 3.  Also presented are the predicted and 

observed 
iv ,fvb    values.  The agreement for the DLIF spectra for emission from the 2

1/2 (0,0,0)A   

and 2
1/2 (1,0,0)A  states are reasonable. The predicted branching ratios for the 2 l

1/2 (0,1 ,0)A 

levels most closely match those for the [17.643] level.  The 2 2 0
1/2 (1,0,0) (0,2 ,0)A X + →   

transition exhibits the largest difference between the observed (11.61%) and calculated (<0.05%) 

branching ratios. Fermi-resonance type of coupling between 1=1 and 2=2 levels in the 2
1/2A   
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and/or the 2X + states, which was not accounted for in the calculations, may be responsible for 

this relatively poor agreement. 

D. Relevance to laser cooling 

The measurements performed here can be used to determine the optimal scheme to achieve 

rapid photon cycling for laser cooling of YbOH. Typical molecular laser cooling experiments 

involve ~104 - 105 photon scatters per molecule in order to cool and trap molecules at < mK 

temperature. Achieving this level of photon cycling requires “repumping” all population that 

decays to levels with probability >10-4. Practical considerations motivate directing these 

repumping lasers through several different excited vibronic levels in order to maximize the 

scattering rate, and therefore increase the capture velocity of the cooling laser beams. These two 

concerns—closing off vibrational loss channels and maximizing the photon scattering rate— are 

often in competition because higher-lying excited vibronic states tend to have less diagonal 

Franck-Condon factors.  

We use a Markov chain model to predict the average number of photons scattered before 

molecules are optically pumped into a dark vibrational state. We make the reasonable assumption 

that the decays from a given excited level to 
2 (4,0,0)X +  are about half the size of the 

corresponding decay to 
2 (3,0,0)X + , which is the measured ratio of the DLIF spectrum resulting 

from the [17.73]0.5  level. Several viable repumping schemes are displayed in Figure 14. Figure 

14(a) shows a simple scheme in which all repumping transitions are driven through the 

2
1/2 (0,0,0)A  state.  Based on our measurements, this scheme will allow ~4,000 photon scatters 

before optical pumping into a dark state. While this maximizes the number of photons that can be 

scattered for a given number of lasers, it decreases the attainable scattering rate by a factor of ~16 
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(Ref. 49). Our measurements also indicate that the [17.73]0.5 and 2
1/2 (1,0,0)A  states will be 

useful for “two-step” repumping methods. Figures 14(b) and 14(c) show how these states can be 

used to provide auxiliary repumping routes. The Markov chain model predicts that both schemes 

will allow ~3,000 photon scatters before optical pumping into the dark vibrational levels. However, 

either scheme increases the scattering rate by a factor of ~2.3 relative to scheme (a). Because the 

capture velocity will scale with this scattering rate, such a tradeoff is favorable. 

Several of the excited electronic states are not directly useful for laser cooling due to their non-

diagonal Franck-Condon factors. However, these states are useful for the spectroscopic task of 

locating losses from the optical cycle. This is because they allow optical pumping into relatively 

high-lying vibrational levels in the 2X +  manifold, e.g. 
2 (4,0,0)X +  or 

2 0(0,4 ,0)X + .  A pump-

probe style experiment can then be used to determine repumping pathways with rotational 

resolution. Furthermore, the finding that the [17.68] and [17.643]  levels couple strongly to both 

the 
2 (0,0,0)X +  and 

2 1(0,1 ,0)X +  levels is important in that it will allow efficient optical pumping 

into the metastable bending mode proposed for the ultimate electron EDM measurement in trapped 

YbOH molecules.   

VII. SUMMARY 

 The measurements reported here will assist in implementation of efficient photon cycling and 

repumping schemes required for laser cooling and trapping and were already exploited in the recent 

demonstration of one dimensional laser-cooling of YbOH to temperatures around 10 uK19 . 

Although understanding the excited state distribution is problematic, the vibronic energy pattern 

for 2X +  appears to be free of local perturbations up to an energy of 2100 cm-1. The 

2 1(0,1 ,0)X + state, which is the target for the EDM measurements1, can be state selectively 
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populated by exciting the relatively intense 
2 (0,0,0) [17.68]X + →  transition near 17681 cm-1 

and/or the weaker 
2 (0,0,0) [17.643]X + →  transition. The strongly vibronically mixed [17.68] 

excited state, which exhibits some 2 1

1/2 (0,1 ,0)A   character, fluoresces with relatively high 

probability (
iv ,fvb   =21.8 %) to the desired 2 1(0,1 ,0)X + state. Similarly, the [17.643] excited state 

preferentially fluoresces (
iv ,fvb   =73.1 %) to the desired 2 1(0,1 ,0)X + state. 

The ab initio vibrational levels for the electronic ground state of YbOH obtained from DVR 

calculations using a relativistic coupled-cluster potential energy surface agree quite well with 

measurement. The predicted location of unobserved levels will assist in future spectroscopic 

studies.  It is of significant interest to generalize the present computational scheme to include 

treatment of Renner-Teller effects and to enable accurate ab initio calculations for vibronic levels 

of 2A  states. 
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coordinates (in Bohr) as well as equilibrium structure in Cartesian coordinate (in Bohr) of YbOH 

used in the DVR calculation are shown in Table S2 and the equilibrium structure in Table S3. The 

coefficients of six-order polynomial analytical potential energy function obtained by fitting the ab 

initio energies are presented in Table S4. This material is available free of charge via the Internet 

at http://pubs.acs.org                                                     
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Figure Captions: 

Fig. 1. The energies levels and associated state assignments for the dominant spectral features in 

the laser excitations spectrum of a supersonically cooled 174YbOH sample in the 17300 cm-1 to 

17950 cm-1 spectral range. The vibrational quantum numbers associated with the 2

1/2A   and  

2X +  are given in parentheses. The numbers next to the quantum numbers for the 2X +  state are 

the energies in wavenumbers. The 2 2

1/2 (0,0,0) (0,0,0)A X + −  ,  2 2

1/2 (1,0,0) (0,0,0)A X + −  , 

2 2

1/2 (0,0,0) (1,0,0)A X + −   and [17.73]0.5- 2 (0,0,0)X + transition have been recorded at high 

resolution and analyzed14,15.   

Fig. 2.   The 2D spectrum in the 17315 to 17385 cm-1 spectral range. The horizontal axis is the 

excitation wavelength of the pulsed dye lase and the vertical axis is the shift in wavelength (nm) 

of the dispersed the fluorescence relative to the excitation wavelength.  

Fig. 3. Excitation spectra extracted by vertical integration of the signal along the horizontal slices 

of the 2D spectrum of Figure 1 and the predicted LIF spectrum in the17315 to 17385 cm-1 range. 

A) on- resonance (“Ex1”); B) Stokes shifted by one quantum of Yb-OH stretch 1   (“Ex2”); C) 

anti-Stokes shifted by one quantum bending 2   (“Ex3”); D) the predicted LIF excitation spectrum 

based upon the previous analysis14.  

Fig. 4. Left: The dispersed laser induced fluorescence spectra resulting from pulsed dye laser 

excitation of the band heads at 17323, 17332, 17345, and 17375 cm-1.  The features marked as 

“Ex” is the emission occurring at the laser excitation wavelength. The numbers above the spectral 

features are the measured shifts in wavenumber (cm-1) relative to the laser. Right: The energy 

levels and associated quantum number assignments.  
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Fig. 5.   The 2D spectrum in the 17625 to 17750 cm-1 spectral range. The band near 17300 cm-1  is 

the [17.73]0.5- 2 (0,0,0)X + transition and has been recorded at high resolution and analyzed13. The 

weak, non-horizontal, emission shifted by approximately -11.5 nm (365 cm-1) at 17630 nm is an 

artifact of amplified stimulated emission (ASE) of the pulsed dye laser. The ASE is exciting the 

very strong 6s2 1S0 → 6s6p 3P1 transition of  Yb(I)  at 17992.007 cm-1 giving rise to an emission 

that is shift from the laser wavelength. 

Fig. 6.  Excitation spectra extracted by vertical integration of the signal along the horizontal slices 

of the 2D spectrum of Figure 5 in the 17625 to 17750 cm-1 range. A) on-resonance (“Ex1”); B) 

Stokes shifted by one quantum of bending, 2   (“Ex2”); C) anti-Stokes shifted by one quantum of 

Yb-OH stretch, 1    (“Ex3”).  

Fig. 7. Left: The dispersed laser induced fluorescence spectra resulting from pulsed dye laser 

excitation of the band heads at 17637, 17643, 17681, 17708 and 17730 cm-1. The feature marked 

as “Ex” is the emission occurring at the laser excitation wavelength. The negative spike in DLIF2 

is due to pulsed dye laser amplified stimulated emission (ASE) and an imperfect background 

subtraction. The numbers above the spectral features are the measured shifts in wavenumber (cm-

1) relative to the laser. Right: The energy levels and associated quantum number assignments.  

Fig. 8. Bottom: The 2D spectrum in the 17880  to 17920 cm-1 spectral range. Top: Excitation 

spectrum extracted by vertical integration of the signal along the horizontal slice of the 2D 

spectrum which is Stokes shifted by one quantum of bending, 2   . The band near 17908 cm-1   is 

the 2 2

1/2 (1,0,0) (0,0,0)A X + −   transition and has been recorded at high resolution and analyzed14. 

Fig. 9. Left: The dispersed laser induced fluorescence spectra resulting from pulsed dye laser 

excitation of the band heads at 17900 and 17908 cm-1. The features marked as “Ex” are emission 
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occurring at the laser excitation wavelength.  The “*” marked feature is due to emission from the 

excited 6s2 1S0 → 6s6p 3P1 transition of Yb(I) at 17992.007 cm-1 excited by pulsed dye laser 

amplified stimulated emission(ASE) and an imperfect background subtraction. The numbers 

above the spectral features are the measured shifts in wavenumber (cm-1) relative to the laser. 

Right: The energy levels and associated quantum number assignments.  

Fig. 10. Fluorescence decay data for the 2

1/2 (0,0,0)A  , [17.33], 2

1/2 (1,0,0)A    and [17.90] states 

of YbOH. The dashed lines are predicted decays using the optimized lifetimes. The 2

1/2 (0,0,0)A 

, [17.33], 2

1/2 (1,0,0)A  and [17.90] states exhibit very diagonal (v=0) fluorescence.  

Fig. 11. Fluorescence decay data for the [17.637], [17.642], [17.68], and [17.73]0.5 states of 

YbOH. The dashed lines are predicted decays using the optimized lifetimes. The [17.637], 

[17.642], [17.68]and [17.73]0.5 states exhibit very non-diagonal (v0) fluorescence.  

Fig. 12. Fluorescence decay data resulting from exciting the band at 17345 cm-1, which is 

nominally the 2 1 2 1

1/2 (0,1 ,0) (0,1 ,0)A X + −  transition. The band at 17345 cm-1 is overlapped with  

high-J transition of the 2 2

1/2 (0,0,0) (0,0,0)A X + −   and 
2[17.33] (0,0,0)X +−  bands. Decay 

curves obtained by monitoring the on-resonance emission exhibits a short lifetime (214 ns) 

similar to that of the resulting from exciting the 2

1/2 (0,0,0)A   and [17.33] states. The anti-Stokes 

emission shifted by one quantum of Yb-OH bending, 2  , exhibits a longer lifetime (11015 ns) 

and is due to emission from the [17.68] level which is nominally 2 1

1/2 (0,1 ,0)A  .  

Fig. 13. A comparison of the dispersed laser induced fluorescence spectra resulting from pulsed 

dye laser excitations of the band heads at 17323, 17730 and 17908 cm-1 and continuous wave (cw) 
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dye laser excitation of the PP11(1) lines of the 2 2

1/2 (0,0,0) (0,0,0)A X + −  (  =17323.5699 cm-1), 

2 2

1/2 (1,0,0) (0,0,0)A X + −  (  =17907.9028 cm-1) and 2[17.73]0.5 (0,0,0)X +−  (  =17731.9707 

cm-1) bands. The features marked as “Ex” are emissions occurring at the laser excitation 

wavelength. The emission near 555.8 nm is due to the 6s2 1S0 → 6s6p 3P1 transition of Yb(I) at 

17992.007 cm-1 which is produced and excited in the laser ablation source.   

Fig. 14. Proposed re-pumping schemes: a) a simple scheme in which all repumping transitions are 

driven through the 2
1/2 (0,0,0)A  state; b) indirect repumping route through the 2

1/2 (1,0,0)A 

state and c) indirect repumping route through the 2
1/2 (1,0,0)A  and [17.73]0.5 states. 
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Table 1 

The lifetimes, iv   (ns), branching ratios, 
iv ,fvb   (%), and vibronic transition dipole moments, 

,iv fvμ  
(D). 

  2

1 2 3( , , )lX   +  

  (0,0,0) (0,11,0) (1,0,0) (0,20,0) (1,11,0) (2,0,0) (0,40,0) (3,0,0) (0,60,0) 

E( 2X + ) cm-1  0 328 529 625 851 1053 1140 1576 1663 
2

1/2 (0,0,0)A   

E:17328 cm-1 

: 201 ns 

% 89.73a  9.74 0.27  0.26  <0.05  

(D) 5.24  1.81 0.30  0.31    

[17.33] 

E:17332 cm-1 

: 242 ns 

% 89.6  8.8 0.6  1.0    

(D) 4.8  1.6 0.4  0.6    

[17.637] 

E:17637 cm-1 

: 9310 ns 

% 74.3 10.4 6.6  2.7 4.2 1.8   

(D)          

[17.643] 

E:17643 cm-1 

: 356 ns 

% 8.4 73.1 3.2  15.3     

(D)          

[17.68] 

E: 17681 cm-1 

: 894 ns 

% 54.1 21.8 12.8  0.6 8.7 2.0   

(D) 1.87 1.23 0.95  0.22 0.82 0.44   

[17.73]0.5b 

E:17730 cm-1 

: 1244 ns 

% 58.96  25.18 0.60  11.99 0.80 1.17 0.78 

(D) 1.65  1.13 0.18  0.86 0.21 0.27 0.28 

[17.90] 

E:17900 cm-1 

: 261 ns 

% 8.4  65.1 9.4  14.6  2.5  

(D) 1.34  3.89 1.49  1.92  0.87  
2

1/2 (1,0,0)A   

17908 cm-1 

: 251 ns 

% 6.19  64.90 11.61  14.98  2.32  

(D) 1.17  3.97 1.69  1.99  0.82  

a) Errors of 
iv ,fvb   values are  0.05 for the  2

1/2 (0,0,0)A  , 2

1/2 (1,0,0)A   and [17.73]0.5 states and  0.1 for 

all other states.   

b) 
iv ,fvb    =0.52 for [17.73]0.5→

2 (4,0,0)X +  transition 
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Table 2. Energies of the vibrational levels of the 2X + state (cm-1). 

 

 

 

 

 

 

 

 

 

a) The number in parentheses are the difference between the observed energies and those 

calculated using least squares optimized values of 1=531cm-1, x11=-1.9 cm-1, 2= 310 cm-1 

and g22=5.2 cm-1. 

b) Ref.55. The number in parentheses are the difference between the observed energies and 

those calculated using least squares optimized values of 1=531cm-1 , x11=-1.9 cm-1, 2= 310 

cm-1 and g22=5.2 cm-1. 

c) Ref14 

  

2

1 2 3( , , )lX   +  Measureda Ab initio/DVRb 

(0,11,0) 329(14) 322(3) 

(1,0,0) 529.33c(2) 532(4) 

(0,20,0) 626(7) 629(0) 

(0,22,0) - 653(5) 

(1,11,0) 837(-5) 845(-3) 

(0,31,0) - 947(-2) 

(0,33,0) - 996(9) 

(2,0,0) 1054(4) 1059(6) 

(1,20,0) 1140(-9) 1150(-8) 

(1,22,0) - 1170(-7) 

(3,0,0) 1579(8)  

(2,22,0) 1658(-11)  

(4,0,0) 2082(-3)  
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Table 3. Franck-Condon factors and branching ratios 

Band Calc. FCFs Branching Ratios (%) 

 Stretcha Bendb Calc.c Obs. 
2 2

1/2(0,0,0) (0,0,0)A X + →   0.8655 0.9995 87.81 89.73 
2 2

1/2 (0,0,0) (1,0,0)A X + →   0.1176 0.9995 10.87 9.74 
2 2 0

1/2(0,0,0) (0,2 ,0)A X + →   0.8655 0.0005 0.04 0.27 
2 2

1/2(0,0,0) (2,0,0)A X + →   0.0150 0.9995 1.26 0.26 
2 2

1/2 (0,0,0) (3,0,0)A X + →   0.00016 0.9995 0.01 <0.05 
2 2

1/2 (1,0,0) (0,0,0)A X + →   0.1301 0.9995 14.49 6.19 
2 2

1/2 (1,0,0) (1,0,0)A X + →   0.6339 0.9995 64.52 64.90 
2 2 0

1/2 (1,0,0) (0,2 ,0)A X + →   0.1301 0.0005 <0.05 11.61 
2 2

1/2 (1,0,0) (2,0,0)A X + →   0.1909 0.9995 17.73 14.98 
2 2

1/2 (1,0,0) (3,0,0)A X + →   0.0385 0.9995 3.25 2.32 
2 1 2

1/2 (0,1 ,0) (0,0,0)A X + →   0.8655 0 0 8.4d 
2 1 2 1

1/2 (0,1 ,0) (0,1 ,0)A X + →   0.8655 0.9984 88.8 73.1 
2 1 2

1/2(0,1 ,0) (1,0,0)A X + →   0.1176 0 0 3.2 
2 1 2 1

1/2 (0,1 ,0) (1,1 ,0)A X + →   0.8655 0.0015 11.3 15.3 
2 0 2

1/2 (0,1 ,0) (2,0,0)A X + →   0.0150 0 0 < 1% 

     

a) Two dimensional 
2

2 2
1 3 1 3, , , ,A X   +  in the harmonic approximation. 

b) One dimensional 
2

2 2
2 2, ,A X +    in the harmonic approximation. 

c) Eq. 7. 

d) The observed data for the [17.643] level. 
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