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ABSTRACT

The high-contrast imaging technique is meant to provide insight into those planets orbiting several

astronomical units from their host star. Space missions such as WFIRST, HabEx, and LUVOIR will

measure reflected light spectra of cold gaseous and rocky planets.

To interpret these observations we introduce ExoReL< (Exoplanetary Reflected Light Retrieval),

a novel Bayesian retrieval framework to retrieve cloud properties and atmospheric structures from

exoplanetary reflected light spectra. As a unique feature, it assumes a vertically non-uniform volume

mixing ratio profile of water and ammonia, and use it to construct cloud densities. In this way, clouds

and molecular mixture ratios are consistent.

We apply ExoReL< on three test cases: two exoplanets (υ And e and 47 Uma b) and Jupiter.

We show that we are able to retrieve the concentration of methane in the atmosphere, and estimate

the position of clouds when the S/N of the spectrum is higher than 15, in line with previous works.

Moreover, we described the ability of our model of giving a chemical identity to clouds, and we

discussed whether or not we can observe this difference in the planetary reflection spectrum. Finally, we

demonstrate how it could be possible to retrieve molecular concentrations (water and ammonia in this

work) below the clouds by linking the non-uniform volume mixing ratio profile to the cloud presence.

This will help to constrain the concentration of water and ammonia unseen in direct measurements.

Keywords: methods: data analysis - methods: statistical - planets and satellites: atmospheres - tech-

nique: spectroscopic - radiative transfer

1. INTRODUCTION

The diversity observed in the thousands of exoplan-

ets present nowadays in our catalog has extended the

horizon of our knowledge of the dynamical, physical,

and chemical properties of these alien worlds. This has

mostly been made possible by characterizing their at-

mospheres. Focusing on the gaseous giant planets pop-

ulation, the majority of them are made of hydrogen and

helium. Therefore, the relevant questions concern the

amounts of all elements other than hydrogen and he-

lium, i.e. the heavy elements, that are present. The

atmospheres of short-period gaseous planets (these are

generally hot or warm), Jupiter- and Neptune-size, have

Corresponding author: Mario Damiano
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been observed. The emission and transmission spectra

have revealed molecular absorption of H2O, CO, CH4,

CO2, TiO and VO (Swain et al. 2008, 2009; Snellen et al.

2010; Fraine et al. 2014; Evans et al. 2016; Sing et al.

2016; Damiano et al. 2017, 2019; Tsiaras et al. 2018)

and in some cases the presence of clouds and hazes in

the atmosphere (Berta et al. 2012; Knutson et al. 2014;

Sing et al. 2016; Barstow et al. 2017; Tsiaras et al. 2018).

The transit technique has provided most of the current

result as it benefits more from target planets being close

to their parent stars. However, these planets show a dif-

ferent environment compared to the scenario emerging

from the studies conducted in our Solar System planets

due to higher irradiation received (Burrows et al. 1997;

Seager & Sasselov 1998; Karkoschka 1998).

The high-contrast imaging technique is poised to pro-

vide insight into those planets orbiting several astro-
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nomical units from their host star so that their equilib-

rium temperature is low enough to let different chem-

ical and dynamical behavior emerge (e.g., condensa-

tion mechanism, cold trap effects, etc.) with respect

to the better studied hot counterparts. This tech-

nique has been successfully tested in studying forming

star and planet regions Barman et al. (2011); Skemer

et al. (2014); Macintosh et al. (2015). Future direct-

imaging exoplanet space mission and mission concept,

e.g. Wide-Field InfraRed Survey Telescope (WFIRST,

Spergel et al. (2013, 2015)), Habitable Exoplanet Imag-

ing Mission (HabEx, Mennesson et al. (2016)), Large

Ultra-Violet/Optical/InfraRed Surveyor (LUVOIR, Pe-

terson et al. (2017)), and Starshade rendezvous probe1,

will have the possibility to observe through high-contrast

imaging the starlight reflected by exoplanets, and to un-

veil their atmospheric structure. Rayleigh scattering,

molecular absorption, and scattering and absorption by

atmospheric condensates determine the reflection spec-

tra of gaseous exoplanets (Marley et al. 1999; Seager

et al. 2000). Clouds, if present in the atmosphere, are

the primary factor that controls the appearance of an

exoplanet. Previous studies have shown that the pres-

ence and formation of the clouds are regulated by the at-

mospheric temperature (Sing et al. 2016; Barstow et al.

2017). Assuming an atmospheric elemental abundance

the same as the Sun and a suitable atmospheric tem-

perature (∼ 200 - 300 K) gaseous giant exoplanets may

have ammonia, water, or silicate clouds in their atmo-

spheres (Sudarsky et al. 2000, 2003; Burrows et al. 2004).

The radiative properties of the clouds are sensitive to

the vertical extent and density of the cloudy layers and

the sizes of cloud particles (Ackerman & Marley 2001).

The elemental abundance of the atmosphere also affects

the formation of the clouds (Cahoy et al. 2010). For

these reasons, reflected light spectra of exoplanets con-

tain rich information on the composition and dynamic

processes of the exoplanetary atmosphere. In the wave-

length range within 0.4 and 1.0 µm, where the reflection

spectroscopy mostly operates, it is possible to probe the

molecular signatures of methane, ammonia, and water

vapor (Hu 2014; Burrows 2014; Marley et al. 2014) along

with the relative condensates. For example, the Jupiter

reflection spectrum (e.g. Karkoschka (1998)) contains

different levels of methane absorption which have been

used to reject simple models of a single reflective cloud

deck, favoring a more complex double-layer cloud struc-

ture (Sato & Hansen 1979).

1 https://smd-prod.s3.amazonaws.com/science-red/
s3fs-public/atoms/files/Starshade2.pdf

To interpret a spectrum and extrapolate information

from it, a comparison between the observed data and the

proposed model should be performed through a statis-

tical inverse modeling. While several transmission and

emission spectra inverse retrieval frameworks have been

developed and established (e.g. Irwin et al. (2008); Mad-

husudhan & Seager (2009); Benneke & Seager (2012);

Waldmann et al. (2015a,b)), reflected light spectroscopic

retrieval models, to date, have just started to be ex-

plored. Several models have been proposed (e.g. Lupu

et al. (2016); Feng et al. (2018); Batalha et al. (2019))

but these models use optical properties of clouds (op-

tical depth, scattering albedo, and asymmetry factor)

as free model parameters without bounding them to a

physical model of the cloud structure (e.g. particle size

and chemical cloud identity).

In this work, we present ExoReL< (Exoplanetary Re-

flected Light Retrieval), a novel inverse retrieval frame-

work based on a modified version of ExoReL (Hu 2019),

which is a cloud formation and radiative transfer model

to synthesize the wavelength dependence of the albedo

(and therefore planetary flux) of a gaseous planetary at-

mosphere. ExoReL< uses non-constant volume mixing

ratio vertical profile of water and ammonia as input to

compute the density and the particle size of water and

ammonia clouds, as well as a T-P profile consistent with

the lapse rate equation. This algorithm is used as for-

ward model for the Bayesian sampler nested sampling

(Skilling 2004; Sivia & Skilling 2006; Skilling 2006) and

its implementation MultiNest (Feroz & Hobson 2007;

Feroz et al. 2009, 2013; Buchner et al. 2014) to perform

inverse retrieval processes on reflected light spectra.

The parameters adopted in this work are consistent

with the gas giant exoplanets scenario that have equiv-

alent orbital distances of 1-6 AU around nearby F-G-K

stars. Moreover, we adopted a spectral resolution of

R=70 for our tests (similar to the WFIRST detector

spectral resolution), to explore the reflection spectra of

giant exoplanets at 0.4 - 1.0 µm except for the Jupiter

case (Sec. 5) that has been studied with a spectral res-

olution of R=120. Results and settings of this work are

also generally applicable to future direct imaging mis-

sion concepts as they will be sensitive to similar regimes

of planetary parameters.

In this paper, we describe our model and the basic

concept behind reflection spectroscopy. We will provide

insight on the Bayesian analysis and we will present

and discuss the results. The manuscript is organized

as follow: in Sec. 2 we provide details of ExoReL< .

In particular, we will discuss the atmospheric structure

model, the free parameter space and the details related

to the retrieval settings. In Sec. 3 we will give insight on

https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf
https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf
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the impact that each free parameter gives to the albedo

spectrum and therefore to the planetary reflected flux.

In Sec. 3.4 and 3.5 we will show some of the implications

of the set-up adopted in this work. In Sec. 4 we will ex-

plore the performance and the ability of our model to

retrieve information from different scenarios by apply-

ing it to two exoplanetary test case (υ And e in Sec. 4.1

and 47 Uma b in Sec. 4.2). In Sec. 5 we report the

results of the analysis of the albedo of Jupiter (Sec. 5).

In Sec. 6 we are going to discuss the results obtained

and the implications introduced by this novel model.

Finally, in Sec. 7 we will summarize the key points of

the paper, and we will discuss the future development

of ExoReL< .

2. ExoReL<

2.1. Amended forward model

The forward model that synthesizes the planetary ge-

ometric albedo and the reflection spectrum is a modified

version of the self-consistent ExoReL model presented

in Hu (2019). In particular, in ExoReL the atmosphere

is divided into layers and in each of these, the satura-

tion point of water and ammonia in the gas phase is

checked. If one or both reaches the saturation, the hu-

midity is calculated and the relative volume mixing ra-

tio (VMR) vertical profile decreases accordingly. The

amount subtracted from the VMR is then used to cal-

culate the physical and optical properties of the clouds.

In ExoReL< , we wanted to preserve this causal re-

lationship defined in Hu (2019), but, we also wanted

the flexibility to change parameters to obtain a dif-

ferent atmospheric structure. Therefore, we “reverse-

engineered” the process by directly define a non-uniform

VMR profile for water and ammonia to be used as a trig-

ger for the calculation of the respective clouds proper-

ties. We do not consider the saturation point, we rather

use four free parameters that uniquely define each VMR

profile (Fig. 1 left panel).

The forward model can synthesize either the albedo at

a specific phase angle or the planet/star contrast ratio.

In this work we focused on the albedo at a specific phase

angle (afterwards referred as “albedo” simply) as proof

of concept. In this work, we fixed the phase angle to

α =60◦ for the synthesized examples (Sec. 3 and 4), and

to the one reported in Karkoschka (1994) for the Jupiter

example (Sec. 5). For the retrieval process, choosing to

synthesize the albedo made the gravity of the planet less

significant as free parameter, which instead is important

if the planet/star contrast ratio is the quantity to be

retrieved (see Sec. 3.1)

2.2. Free parameters space

We chose to design the free parameters space to in-

clude general/observable features. For this reason, we

did not include the single scattering albedo (ω̄), the

asymmetry factor (ḡ) and the optical depth (τ) within

our free parameters (Lupu et al. 2016; Batalha et al.

2019). These parameters are calculated self-consistently

from other parameters since the clouds are linked to a

phyical model. The parameters space counts at max-

imum 10 parameters when both water and ammonia

condensates are considered. Four parameters are used

to determine the VMR vertical profile of the water and

four more to describe the ammonia one. As mentioned

in Sec. 2.1, we defined the following free parameters for

each of the molecular VMR vertical profile

• the VMR of the molecule below the respective

cloud layers;

• the Ptop as the altitude in term of pressure where

the top layer of the cloud is present;

• the vertical extension of the cloud (Dcld), which

quantify (in terms of difference) how much the

cloud extend downward from the Ptop;

• the condensation ratio (CR) that accounts for the

ratio between the leftover water in the gaseous

form above the cloud and the molecular VMR be-

low it.

The vertical profile of water and ammonia are defined

on a pressure grid spanning from 101 to 109 Pa, from

top to bottom (see Fig. 1 left panel). Moving upwards,

the VMR could drop due to the condensation of the

relative molecular species. The drop, is modeled as a

linear decrease in logarithmic space. The number of

layers where the VMR drops is regulated by the Ptop
and Dcld. The VMR drop is then defined:

Log(∆X) =
Log(Xbot)− Log(Xbot × CR)

Nlayers
(1)

where Nlayers is the number of layers between Ptop and

Pbot and X is the VMR. The four free parameters, pre-

viously mentioned, define uniquely the molecular verti-

cal profile. This assumption does not create appreciable

differences with the proper and consistent calculation

of the cloud density profile presented in Hu (2019). In

Fig. 1 right panel is shown the cloud relative to the de-

fined molecular VMR vertical profile shown on the left

panel. According to Hu (2019), the cloud density has

been calculated as follow

ρcld =
∆XiµPi
RTi

(2)
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Cloud extension (Dcld)

Condensation ratio (CR)

(VMR  CR, Ptop)⋅ (VMR, Ptop + Dcld)

Figure 1. Left panel: the molecular vertical profile. In this work it could be referred to water or ammonia. Where the drop
of molecular VMR occur, the cloud is present to compensate. Right panel: vertical profile of the cloud density relative to the
VMR profile in the left panel.

where ∆Xi is the VMR difference between two consec-

utive layers, µ is the molecular mean weight of the at-

mosphere, Pi and Ti are respectively the pressure and

the temperature of the relative layer, and R is the gas

constant.

Finally, the remaining two parameters are the VMR

of the methane (considered constant) and the gravity

acceleration of the planet.

A few challenges of the model used in this work arise

from the assumptions of the model itself. The configura-

tion used (see Sec. 2) implies that the clouds are water

or ammonia purely; however, this is not always the case.

In the case of Jupiter, for example, the ammonia clouds

are not made of ammonia solely, photochemical hazes

are present, and their influence can also be appreciated

in the bluest part of the reflection spectrum (Weiden-

schilling & Lewis 1973; Sato & Hansen 1979; Karkoschka

1994, 1998). Since the model does not include the effect

of hazes yet, we did not include the data points below

0.6 µm of the Jupiter albedo in our retrieval exercise

(see Sec. 5). We can also expect that other cold gaseous

exoplanets may have photochemical hazes in their at-

mosphere. It is crucial, then, to include the effects of

hazes to obtain the best realistic scenario.

In light of the mechanism of this model, other con-

densable species (e.g., NH4SH and CH4) have to be in-

cluded, so that other cold gaseous planet scenarios can

also be addressed (e.g., Neptune-Like planets).

2.3. MultiNest settings

The MultiNest algorithm (Skilling 2004, 2006; Sivia

& Skilling 2006; Feroz & Hobson 2007; Feroz et al.

2009, 2013; Buchner et al. 2014) is an established and

robust method in the analysis of the free parameters

space to recognize correlations and best parameters val-

ues for a model. Among its qualities, MultiNest is

designed to better handle multimodal posteriors. Un-

like Monte Carlo Markov Chain (MCMC) algorithms,

MultiNest can better avoid getting stuck into a local

minimum. Moreover, the calculation of the Bayesian ev-

idence is already included in the MultiNest algorithm.

The evidence allows the generalization of the Occams

razor: a theory with compact parameter space (i.e sim-

pler) will have larger evidence than a more complicated

one unless the latter is significantly better at explaining

the data. We implemented this concept in our model by

calculating the Bayesian factor, B to determine which

between two models (M1 and M2) better represents

the data. The Bayesian factor has been calculated as

follows (Trotta 2008)

BM1
M2

=
P(M1|D)

P(M2|D)
=
Z1

Z2

P(M1)

P(M2)
(3)

where Z is the total Bayesian evidence of the model

and D represents the data. Generally, we would assume

thatM1 andM2 are equally likely. For this reason the

ratio P(M1)
P(M2)

is irrelevant for the determination of which

model is better for the data. The choice is only related

to the total evidence of the Bayesian sampling of the

two models.

For the MultiNest algorithm, we choose a Gaussian

as likelihood function (i.e., the standard choice). The

priors for all the possible scenarios implemented in the

algorithm are listed in Tab. 1. The choice of priors

is fundamental for our scope as they reflect our initial

knowledge of the problem. For this reason, the priors

have been defined uniform among the ranges in Tab. 1

to give the same probability to all the possible values.
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Table 1. Priors for each scenario for the
MultiNest algorithm.

Parameter Cloud Models

Water Ammonia 2-cloud

Log(VMRH2O) [−12., 0.] [−12., 0.] [−12., 0.]

Log(VMRNH3) [−12., 0.] [−12., 0.] [−12., 0.]

Log(VMRCH4) [−12., 0.] [−12., 0.] [−12., 0.]

Log(Ptop,H2O) [0., 9.] - [0., 8.]

Log(Dcld,H2O) [0., 9.] - [0., 8.5]

Log(CRH2O) [−12., 0.] - [−12., 0.]

Log(Ptop,NH3) - [0., 9.] [0., 8.]

Log(Dcld,NH3) - [0., 9.] [0., 8.5]

Log(CRNH3) - [−12., 0.] [−12., 0.]

g [10., 100.] [10., 100.] [10., 100.]

Moreover, the ranges have been defined large enough to

not influence the final result of the Bayesian sampling

(Skilling 2004, 2006; Sivia & Skilling 2006).

Note that in the case of the 2-clouds model, the Ptop
of the deeper cloud (in ExoReL< the water cloud is

always below the ammonia one) is instead defined to be

relative to the bottom of the upper cloud and not to the

top of the atmosphere. In this way, the two clouds are

always separated and well distinguished.

3. IMPACT OF PARAMETERS TO THE

PLANETARY ALBEDO SPECTRUM

3.1. VMRCH4
and g

In the wavelength range within 400 and 1000 nm there

are numerous methane absorption bands (see Fig. 2 left

panel). The concentration of CH4 affects the depth of

these absorption bands. In Fig. 2 left panel, the clouds

have been located at low altitude to show the methane

molecular bands. The absorption can be severe with a

high concentration of CH4.

Gravity plays a weaker role in the calculation of the

albedo. Mostly, it affects the shape and depth of molec-

ular features. For the planet studied through high-

contrast imaging we may assume to know the mass of

the planet, so, the gravity will give us information about

the radius of the planet. Note that the effect of the grav-

ity will be better appreciated when the planetary flux or

the planet/star contrast ratio is retrieved, instead of the

albedo, as it depends directly on the planetary radius.

3.2. Ptop, Dcld, and CR

Ptop, Dcld, and CR are the parameters that together

with the molecular VMR uniquely define the cloud den-

sity vertical profile (see Sec. 2.2 and Fig. 1).

Ptop regulates the vertical position of the cloud and

the effects on the planetary reflectivity can be seen in

Fig. 3 top left panel. When the cloud is located high in

the atmosphere (low pressure), the cloud density is not

high enough to let the cloud be completely opaque, in

this regime light pass trough and the resulted reflectiv-

ity is weak. While the Ptop increases (moving down in

the atmosphere) the cloud is denser as the reflectivity

increases. However, if the cloud is too deep, the molec-

ular absorption (mostly CH4) is predominant and the

albedo shows deep absorption bands.

Dcld affects the extension of the cloud in the atmo-

sphere and it represents the vertical depth from Ptop.

While all other parameters are kept fixed, the cloud

depth affects the cloud density and the layer where the

optical depth reaches the unity (Pτ=1). If the cloud

depth is small it means that the cloud is quite thin, let-

ting most of the light through and resulting in a low

scattering and strong molecular absorption. While the

cloud extends further into the atmosphere, the cloud

density increases and the cloud can scatter more light

back to the space. At the same time Pτ=1 moves down

and molecular absorption features emerge as more col-

umn abundance is present on top of the cloud.

Since Pbot is calculated as the sum of Ptop and Dcld

one of the two values may dominate the other, for this

reason, we expect long tails in the posterior distribution

that are not necessary related with the physics of the

scenario, and every cases has to be taken into account

carefully.

The CR regulates the gradient of the cloud density

from top to bottom of the cloud. The overall effect on

the albedo is not significant, but it is useful to describe

the vertical structure of the cloud. Moreover, it reg-

ulates the concentration of water and ammonia in the

gas phase on top of the clouds, affecting in this way the
absorption of such molecules.

3.3. VMRH2O and VMRNH3

Even though we are not able to directly measure the

molecular VMR below the cloud, its effect can still be

observed in the total reflectivity of the planet. The

molecular VMR is directly linked with the cloud density;

the higher is the concentration of that molecule, more

is the material that can condense. For both ammonia

and water, the behavior is indeed similar, low spectral

continuum with a lower VMR and high continuum with

higher VMR (see Fig. 4 and Sec. 3.4) .

To calculate the albedos shown in Fig. 4, we tried

to isolate the sole effect of the VMR to the planetary

albedo. Other self-consistently calculated parameters

such as the optical depth, however, may have affected
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Figure 2. Left panel: the effect on the albedo due to the variation of the concentration of molecular methane in the
atmosphere. Right panel: the variation of the planetary reflectivity produced by different gravity value. For these graphs
the following parameters have been adopted: log(VMRH2O)=-2.5, log(VMRNH3)=-3.4, log(Ptop,H2O [Pa])=4.0, log(Dcld,H2O

[Pa])=5.5, and log(CRH2O)=-8.0, log(Ptop,NH3 [Pa])=3.0, log(Dcld,NH3 [Pa])=3.60, and log(CRNH3)=-8.0, and where applicable
log(VMRCH4)=-2.8, g=50 m/s2. The spectral resolution is R=70 and the phase angle is α =60◦.
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Figure 3. Top left panel: the effects of the variation of the albedo due to the Ptop. Top right panel: the variation of the
planetary reflectivity produced by different cloud thicknesses. Bottom panel: the albedo in relation to the condensation ratio.
The behavior of these parameters on ammonia clouds is similar. For these graphs the following parameters have been adopted:
log(VMRH2O)=-2.5, log(VMRNH3)=-3.4, log(VMRCH4)=-2.8, g=50 m/s2, and where applicable log(Ptop [Pa])=4.0, log(Dcld

[Pa])=5.5, and log(CR)=-8.0. The spectral resolution is R=70 and the phase angle is α =60◦.

the result. In the following section we show a test case

where the pressure level of the optical depth equal to

unity has been kept constant while changing some of

the other parameters.

The impact of the H2O VMR has previously been

explored on atmospheric reflected spectra (MacDonald

et al. 2018). Also in their work, MacDonald et al. (2018)

suggested that VMR H2O signatures impact the height

of clouds and the continuum of the albedo.

3.4. Probing deep down into the atmosphere

ExoReL< has been designed to reflect some key con-

cepts explained in Weidenschilling & Lewis (1973); Sato

& Hansen (1979). Our clouds are not opaque from

the top layer downward, and they are not semi-infinite
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Figure 4. Left panel: the effect on the albedo due to the variation of the VMR of the water. Only a water cloud has
been considered. Right panel: Same as left panel but relative to the ammonia. Only an ammonia cloud has been included.
For both graph we used log(VMRCH4)=-2.8 g=50 m/s2. Also the Ptop, Dcld, and CR are the same, but relative to the two
different model: log(Ptop [Pa])=4.0, log(Dcld [Pa])=5.5, and log(CR)=-8.0. The spectral resolution is R=70 and the phase angle
is α =60◦.

clouds, they rather are finite and located in altitude.

In our radiative transfer code we performs the calcula-

tions to a maximum optical depth value of τmax = 1000.

By adopting this strategy we can model photons that

are absorbed or scattered by regions of the atmosphere

where τ > 1. This gives the possibility to model the bot-

tom part of the atmosphere. By taking into account the

relation between the vertical VMR with the cloud struc-

ture (see Eq. 1 and 2) defined in this model, we may be

able to recover the molecular VMR of some trace gasses

before the depletion due to the condensation.

Fig. 5 shows a test case. We consider two clouds,

one of the two is the extension of the other (the cloud

described with the orange color is the extended version

of the blue one). Both clouds extend below the τ = 1

line (dashed line). The cloud illustrated in orange re-

quires higher molecular concentration (in this case NH3)

to reach a higher value of density in the lower layer.

Fig. 5 right panel shows the albedo resulted from the

cloud structure scenarios. The difference between the

two models is significant and it is due to higher scatter-

ing from the denser layer of the model in orange, but

also higher absorption from NH3 in the gas phase as it

increases more than two orders of magnitude (the solely

NH3 absorption feature is around 0.64 µm).

By using the VMR profile to define the cloud structure

(Fig. 1), we can estimate the depth of the clouds as well

as the VMR of the studied molecule before it condenses.

For the test case and the arguments presented in this

section, we expect a correlation between the Dcld and

the molecular VMR below the clouds.

3.5. Clouds: H2O vs NH3

The set-up used in this work to define the atmospheric

vertical cloud distribution allows us to identify different

types of clouds chemically. Depending on which VMR,

either H2O or NH3, is modified, different types of clouds

are calculated with particular cloud properties (e.g., sin-

gle scattering albedo). In this section, we wanted to

test if the cloud chemical composition difference can also

be observed in terms of the planetary albedo spectrum.

To test this hypothesis, we artificially constructed three

different test cases (Fig. 6). We simulated three arti-

ficial atmospheric scenarios for a Jupiter-like gas giant.

Firstly, we synthesized the atmospheric albedo spectrum

(black curve on the right panel of Fig. 6) resulting from

the presence of a water cloud at around 0.1 - 1 bar and

constant VMR for NH3 and CH4 (top-left panel of Fig.

6). Secondly, we switched the role of ammonia and water

by mirroring the values used for the first case (middle-

right panel of Fig. 6). This case is unrealistic as the

condensation of NH3 implies the one of H2O (ammonia

condenses at lower temperature), so the VMR of water

should be lower in the higher part of the atmosphere.

However, as proof of concept, the resulting albedo of the

second scenario (blue curve on the right panel of Fig. 6)

is noticeably different from the first case, mostly in the

red part of the spectrum. This is because in the second

case the water VMR is high across the atmosphere re-

sulting in a stronger water absorption bands. Finally, we

simulated a more realistic third case (bottom-left panel

of Fig. 6) in which the NH3 cloud structure is the same

of the one used in the second scenario, but the water

is now at a realistically lower VMR (similar to the one

obtained in the first case above the water cloud). Even

in this scenario, the resulted albedo spectrum shows dif-

ferences at longer wavelengths (red curve on the right

panel of Fig. 6). The absorption due to water is now

weak, and the albedo values at about 0.82 and 0.95 µm

is high.

By analyzing these three cases, it is then possible, in

principle, to discriminate between the different scenarios

and cloud structures. However, it is essential to under-

line that the algorithm presented in this work is used as a
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τ=1

τ=10

τ=100

τ=1000

log(NH3)=-2.5, log(Dcld)=5.5, log(CRNH3)=-8.0

log(NH3)=-0.01, log(Dcld)=6.0, log(CRNH3)=-10.5

Figure 5. Left panel: cloud structure for the test case. The orange cloud is an extension of the blue cloud. The two models
have the same values for the other parameters not reported in figure: log(VMRH2O) =-4.0, log(VMRCH4) =-4.0, log(Ptop) =-4.0,
g=50 m/s2. Right panel: the albedo resulted from considering the cloud structure on the left panel. The colors between the
two panels are related. The orange cloud resulted in an higher reflectivity, however, more NH3 is required to define such cloud.

Table 2. Relevant parameters used in the
model for the υ And e scenario.

Stellar parameter υ And

R? (R�) 1.56± 0.01 1

Teff (K) 6100± 80 1

Planetary parameters υ And e

Mp × sin(i) (MJup) 1.059± 0.028 2

a (AU) 5.24558± 0.00067 2

e 0.00536± 0.00044 2

Tinternal (K) 110 3

α (rad) 1.0472 3

Note—1Butler et al. (1999), 2Curiel et al.
(2011), 3assumed

forward model for a Bayesian sampler that always finds

the best set of parameters that produce the best model

to approximate the data. For this reason, we want to

point out that an intermediate scenario between cases 2

and 3 (middle and bottom right panels of Fig. 6) could

be indistinguishable from case 1. However, the result-

ing VMR of water would be too high to be physically

possible. This degeneracy can be ruled out by inferring

other information to the model, e.g., the temperature of

the planet, as the ammonia condenses at a lower tem-

perature than the water.

4. RESULT : EXOPLANET SCENARIOS

4.1. υ And e

ExoReL< has been initially tested on synthesized

data. We simulated υ And e scenario (Butler et al.

1999; Curiel et al. 2011) which is a cold-Jupiter planet.

It is one of the most Jupiter-like exoplanets found in

terms of mass (M × sin(i) = 1.059 MJup) and semi-

major axis (5.2456 AU)(see Tab. 2). But orbiting a

larger star than the Sun, it receives the same irradia-

tion as a planet at 2.8 AU in the Solar System. The

wavelength dependence of the albedo of this planet is

expected to be mostly dominated by the methane ab-

sorption and deep water cloud presence (see Fig. 7).

For this reason we synthesized the data point with the

values reported in the ”Input” column of the Tab. 3.

The error bars have been calculated by considering a

particular S/N (e.g., 15, 20 etc.) with respect to the dif-

ference between the albedo continuum and the bottom

of the strongest methane absorption band at ∼ 0.9 µm.

For the information retrieval process, we set uniform

priors to the parameters listed in Tab. 1 relative to the

water cloud case scenario.

We then run ExoReL< on the planetary albedo by

fitting only water clouds. Fig. 13 shows the marginal-

ized distribution of the free parameters of the model.

We have been able to not only detect and quantify the

amount of methane in the atmosphere but we also recov-
ered quantitative information about the concentration of

water before its condensation level. The gravity resulted

unconstrained as it does not affect the total albedo of

the planet (see Sec. 3.1). Finally, the water cloud is

located between 103.45 and 105.55 Pa with a strong CR

that led the VMR of water on top of the cloud to be

about 10−11. The results shown in Fig. 13 and reported

in Tab. 3 led to a pressure level where the optical depth

reaches the unity (τ = 1) to 105 Pa (1 bar). By look-

ing at the marginalized distribution we noted a weak

correlation between the VMR of water and the cloud

parameters as well as methane concentration with Ptop,

as expected. Overall, no strong correlations have been

found across the free parameters space.

Additionally, we have used ExoReL< to perform a

S/N analysis to observe the performance on the retrieved

parameters (see Tab. 3 and Fig. 8). We calculated the
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Figure 6. Left panels: the three different scenarios adopted to show the differences in the planetary albedo spectrum between
water and ammonia clouds. The top panel shows a water cloud vertical profile with constant ammonia and mathane VMR.
Middle and bottom panels are referred to the ammonia cloud scenarios but with different constant water VMR value. Right
panel: the resulting atmospheric albedo spectrum for each of the three scenarios in the left panels.

υ And e

Al
be

do

Simulated data

Figure 7. Albedo−wavelength dependence for the simu-
lated planet υ And e . The red points represent the plane-
tary albedo with a resolution of R=70 and a S/N=20. The
ExoReL< best fit model is also plotted (R=300 blue line,
and R=70 blue diamond).

error-bars at different S/N relative to the baseline. At

S/N = 5, we noticed that no constraints can be deter-

mined. At this S/N, we only have weak information

about the presence of methane in the atmosphere. At

S/N = 10, we have a weak detection of water below

the clouds and how much water have condensed, but it

is not enough to constrain quantitatively these parame-

ters. There is also a marginal quantification of methane

content in the atmosphere and the cloud depth is con-

strained. S/N = 15, presents a similar scenario with

water (VMR and CR) and methane weakly constrained

and the cloud depth quantified. At S/N = 20, results

get much better with detection of most of the parame-

ters (except for the gravity that does not play a signifi-

cant role in the albedo modulation) with most of them

also constrained (e.g. H2O, CH4, Ptop and Dcld). NH3

has narrow absorption bands in the probed wavelength

range, and for this reason, it is difficult to constrain it

completely.

We have also tried to retrieve information from the

spectrum by excluding the bluest points of the spec-

trum (data points with λ < 0.6 µm). We did not notice

significant shifts from the results presented before.

4.2. 47 Uma b

One of the exoplanets that is most likely to be ob-

served by WFIRST for spectroscopic studies is 47 Uma b

(Butler & Marcy 1996). It is a cold-Jupiter planet orbit-
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Table 3. Retrieval results for υ And e in function of S/N. The table also report
the median and 1σ uncertainty for the marginalized distribution of the listed
parameters.

Parameter Input S/N = 5 S/N = 10 S/N = 15 S/N = 20

Log(VMRH2O) −2.51 −1.39+1.28
−2.58 −1.82+1.46

−0.77 −2.26+1.36
−0.80 −2.18+0.61

−0.40

Log(VMRNH3) −3.37 −6.98+4.86
−4.55 −5.64+4.39

−5.04 −6.02+3.85
−5.48 −7.20+4.59

−4.35

Log(VMRCH4) −2.81 −2.79+1.20
−1.59 −2.32+1.14

−1.20 −2.75+0.91
−0.96 −2.66+0.59

−0.37

g 48.97 50.29+44.88
−37.18 48.86+47.08

−33.61 64.26+32.65
−46.58 45.75+49.84

−33.55

Log(Ptop,H2O) 4.14 3.34+2.80
−2.98 1.91+3.55

−1.75 3.97+1.82
−2.95 3.31+1.53

−2.59

Log(Dcld,H2O) 5.52 6.51+1.82
−1.50 5.53+0.91

−0.65 5.74+0.83
−0.68 5.50+0.48

−0.50

Log(CRH2O) −8.39 −5.95+3.99
−5.36 −8.85+5.25

−2.95 −8.15+4.88
−3.60 −8.91+4.91

−2.88

ln Z 68.0± 0.3 92.3± 0.1 102.8± 0.2 116.9± 0.2

Figure 8. Marginalized distribution of the retrieved parameters at different S/N. The example is relative to the water cloud
model, however, similar results are obtained with the ammonia cloud model.

ing a Sun-like star (G0V) at 2.1 AU (see Tab. 4). With

respect to the Jupiter-Sun system or the υ And e case,

47 Uma b, being closer to its host star, has got higher

equilibrium temperature. In terms of cloud structure

this means that the upper atmosphere of the planet is

expected to contain water clouds, as opposed to the am-

monia clouds typical of Jupiter (Sudarsky et al. 2000).

We used our self-consistent model (Hu 2019) to simu-

late the cloud structure. The simulated scenario agrees

with upper water clouds and absence of ammonia con-

densates. We interpolated the albedo in the same wave-

length grid used for the υ And e scenario (Sec. 4.1), we

considered a S/N of 20 and we added the error-bars to

the data points according to the chosen S/N. We then

used our framework to fit water clouds only to the sim-

ulated data (Fig. 9). The input parameters used to

synthesize the data and the result values are reported in

Tab. 5. The marginalized distributions of the process

is shown in Fig. 14 and the theoretical and retrieved

cloud structure is shown in Fig. 10. The Bayesian sam-

pling was able to retrieve and quantify the cloud ex-

tension (Dcld), the VMR of methane and the VMR of

the water in the deep layers of the atmosphere. There

is a weak correlation between VMRCH4
and Dcld. The

median values and the errors of the marginalized dis-

tribution agree with the true value used to synthesize

the albedo with the exception of the VMR of ammonia

(not enough NH3 bands in the wavelength range) and

the condensation ratio of the water. However, the re-

trieved CRH2O value ensure that on top of the clouds
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Table 4. Relevant parameters used in the
model for 47 Uma b.

Stellar parameter 47 Uma

R? (R�) 1.24± 0.04 1

Teff (K) 5892± 70 1

Planetary parameters 47 Uma b

Mp (MJup) 2.53± 0.07 2

a (AU) 2.1± 0.02 2

e 0.032± 0.014 2

g (m/s2) 27.8750 3

Tinternal (K) 110 3

α (rad) 1.0472 3

Note—1Fuhrmann et al. (1997), 2Butler
& Marcy (1996), 3assumed

47 Uma b

A
lb

ed
o

Simulated Data

Figure 9. Best fit models to the 47 Uma b simulated data.
The data have a spectral resolution of R=70, and the best
models fit are shown at R=300 (solid blue line) and R=70
(blue diamond).

the water concentration drops substantially, in this way,

the water absorption is absent. The Ptop marginalized

distribution is broad as the less dense part of the cloud

(i.e. the top part) is difficult to constrain, however, its

retrieved distribution is fairly consistent with the input

value.

5. RESULT: JUPITER TEST CASE

Most of the models used to explain the observation of

hot exoplanets relied entirely on theoretical considera-

tion as in the Solar System these kind of planets are not

present. In the case of temperate/cold planets, we can

test our model on realistic observations before applying

them to exoplanetary observations. The scenario of the

gaseous giant planets (Jupiter and Saturn) in our Solar

System is within the scope of the model presented in

this work. In this section, we present the result of the

Table 5. Retrieval results for 47 Uma b.
The table report the median and 1σ un-
certainty for the marginalized distribu-
tion of the listed parameters along side
the input parameters used to synthesize
the data.

Parameter Input Results

Log(VMRH2O) −1.50 −1.46+1.15
−0.43

Log(VMRNH3) −2.37 −7.43+5.14
−4.22

Log(VMRCH4) −1.80 −1.90+0.51
−0.52

Log(Ptop,H2O) 3.36 2.70+1.93
−2.32

Log(Dcld,H2O) 4.84 4.99+0.40
−0.26

Log(CRH2O) −4.84 −8.83+5.63
−2.98

CH4

NH3H2O
H2O cloud

47 Uma b cloud structure

Theoretical H2O cloud
Theoretical H2O VMR

Figure 10. In dark blue, theoretical water cloud structure
and theoretical VMR vertical profile of water synthesized by
using our self-consistent model (Hu (2019)). In light blue,
the retrieved cloud structure (solid line) and the water VMR
(dashed line). The VMR of ammonia (orange dashed line)
and methane (purple dashed line) have been considered con-
stant across the atmosphere.

information retrieval analysis on the Jupiter recorded by

Karkoschka (1998). This also gives us the possibility to

present and discuss the 2-cloud vs 1-cloud model.

The biggest among the Solar System’s planet has been

the object of deep studies to understand the composition

and the structure of its atmosphere (Weidenschilling

& Lewis 1973; Sato & Hansen 1979; Karkoschka 1994,

1998; Wong et al. 2004; Simon-Miller et al. 2001; Sato

et al. 2013). In literature, the Jupiter cloud structure

is defined by NH3, NH4SH, and H2O clouds from the

highest to the lowest respectively, positioned between

1 and 10 bars (Weidenschilling & Lewis 1973; Sato &

Hansen 1979). In those works, NH3 and NH4SH clouds

are expected to be enough to describe the observations.

This makes Jupiter a suitable candidate to explore the

performance of our 2-cloud model (in this case we can fit
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Figure 11. Best fit models to the Jupiter albedo data
(Karkoschka 1998). The continuous lines are relative the dif-
ferent cloud models: blue for the 2-clouds model and orange
for the ammonia cloud model. The data have been reduced
to spectral resolution R=120, and the best models fit are
also reported at R=120. Data with wavelength lower than
the vertical black dashed line have been excluded during the
retrieval process.

only ammonia and water clouds). We adopted Jupiter’s

albedo measured by Karkoschka (1998). The phase an-

gle relative to those observations is α = 6.8◦. We re-

duced the resolution to R=120 and we added error-bars

in agreement with a S/N=20 relative to the baseline of

the albedo. We then used this albedo to fed our algo-

rithm and try to retrieve information from it.

We ran ExoReL< on the Jupiter’s albedo with the

2-clouds model and with the ammonia cloud only model

in two different instances. We calculated the Bayesian

factor (see Sec. 2.3) associated with these two models

(ln
(
B 2−clouds

NH3−cloud

)
= 1.2), and the preference towards the

2-clouds model is not significant as the ammonia clouds

alone can explain most of the spectral information (see

Fig. 11).

The results of the retrieval are reported in Tab. 6

and the posterior distribution is shown in Fig. 15 and

Fig. 16. For completeness we show both the 2-cloud

model and ammonia cloud posteriors even though the

preference towards this model is not significant. The

two posteriors are indeed similar in some aspects. From

the retrieval, we obtained a quantification of ammonia

and methane with a ratio CH4/NH3 ∼ 1. The am-

monia concentration, however, drops above the clouds

to about 10−7. The log-concentration of methane has

been recovered to −3.65+0.27
−0.23 for the 2-cloud model and

to −3.54+0.25
−0.19 for the ammonia cloud only. The reported

error-bar correspond to 1σ confidence. If we consider 3σ,

the methane concentration values are in agreement with

the value reported in Wong et al. (2004), and other re-

trieval work Lupu et al. (2016) in which the process has

been performed on Jupiter data taken from Karkoschka

(1994). We found a multi-modal solution for the con-

CH4

NH3

NH3 cloud

H2O

H2O cloud

Figure 12. Retrieved atmospheric vertical profile of Jupiter.
The values used to compute this graph are relative to the
maximum likelihood of each parameter shown in the poste-
rior distribution (Fig. 15). The volume mixing ratios of the
trace gasses are represented with the dashed lines, while the
clouds are represented with continuous lines.

centration of water, probably due to the not high sig-

nificance of the 2-cloud model. The depth of the water

cloud is not significant, making the cloud too thin, which

is the reason why there is no much difference between

the 2-cloud model and the NH3 cloud model.

The clouds position (see Tab. 6 and Fig. 12) retrieved

is in general agreement with the theorized atmospheric

structure of Jupiter being between 1 and 20 bars (Wei-

denschilling & Lewis 1973; Sato & Hansen 1979). How-

ever, the actual structure is much more complex than

the one that we obtained, with NH4SH clouds and dif-

ferent haze layers (West et al. 1986).

We noticed however, some correlations among the free

parameters; the strongest is the one between the re-

trieved value of ammonia below the clouds and the con-

centration of methane. This is a consequence of the

correlations of these two parameters with the depth of

the ammonia cloud. Both the abundance of ammonia
and the depth affect the density of the clouds (see Sec.

3.4). The correlation between the methane VMR and

the cloud position is well known also in previous works

Irwin et al. (2015); Lupu et al. (2016).

6. DISCUSSION

Reflection spectroscopy is an emergent topic, and for

this reason, different retrieval models have been pro-

posed and tested. Regarding cold gaseous planets, a few

models have been published (Lupu et al. 2016; Nayak

et al. 2017; Batalha et al. 2019; Lacy et al. 2019). One

of these model (Lacy et al. 2019) is inspired by empirical

observation but the free parameters are not necessary

linked to physical quantities. The other models agree

on having the single scattering albedo (ω̄), the asym-

metry factor (ḡ) and the optical depth (τ) within their

free parameters as the clouds model is not linked to a
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Table 6. Retrieval results for Jupiter. The
table report the median and 1σ uncertainty
for the marginalized distribution of the listed
parameters.

Parameter 2-cloud NH3 cloud

Log(VMRH2O) −4.63+3.29
−2.34 −6.64+0.43

−4.22

Log(VMRNH3) −3.65+0.27
−0.21 −3.54+0.24

−0.22

Log(VMRCH4) −3.65+0.27
−0.23 −3.54+0.25

−0.19

Log(Ptop,NH3) 1.60+2.51
−1.50 1.38+2.35

−1.18

Log(Dcld,NH3) 6.32+0.45
−0.34 6.19+0.25

−0.26

Log(CRNH3) −3.49+2.01
−3.35 −3.64+1.89

3.40

Log(Ptop,H2O) 3.67+3.22
−3.40

Log(Dcld,H2O) 3.72+3.06
−3.48

Log(CRH2O) −5.37+4.17
6.15

ln Z 135.8± 0.1 134.6± 0.1

physical model of cloud structure (e.g. particle size and

chemical identity of cloud constituents are not taken into

account).

In this work we wanted to follow some of the other

models’ aspects and eventually propose a different point

of view. For the interpretation of hot-Jupiters observa-

tions, we could not get help from observations in the

solar system as this lacks this type of planets. For cold

gaseous planets, it is different; we can observe them

closely with much more details and take inspiration for

developing general models.

Weidenschilling & Lewis (1973) and Atreya et al.

(1999) have successfully predicted the bulk cloud struc-

ture of Jupiter by considering water and ammonia as

condensable species. This fact has been implemented in

our model and we made a distinction between water and

ammonia clouds as their physical properties are linked

to the relative non-uniform molecular VMR vertical pro-

file. However, the distinction between the two clouds

given by the information retrieval of the spectrum de-

pends on the case. The VMR of water and ammonia in

the atmosphere is directly linked with the density of the

corresponding cloud (Eq. 2); the more water or ammo-

nia is present in the atmosphere, the more dense a cloud

can be, affecting in this way the optical properties of the

cloud itself. Our cloud model is linked with a physical

model that calculates cloud density and particle size.

As presented in the literature, this is likely to bring a

correlation between the VMR of methane and the cloud

position (Irwin et al. 2015; Lupu et al. 2016). However,

there might be cases in which this correlation is not sig-

nificant as highlighted by Hu (2019), it depends on a

combination of S/N, spectral resolution, and particular

combinations of cloud position and methane VMR.

6.1. The role of Ptop and Dcld

Unlike the common definition of Ptop (Irwin et al.

2008; Madhusudhan & Seager 2009; Benneke & Seager

2012; Waldmann et al. 2015a,b; Lupu et al. 2016; Feng

et al. 2018; Batalha et al. 2019), in the algorithm pre-

sented here, it does not play a central role. The Ptop
regulates the least dense part of the cloud where not

much scattering is happening. This, in part, explains

why we observe broad posterior of Ptop in our marginal-

ized histograms. Most of the scattering happens at the

bottom of the cloud where it is denser. Dcld is the pa-

rameter related to the lower part of the cloud where most

of the scattering happens. Moreover, most of the time

the pressure value at which the optical depth reaches

the unity (Pτ=1) is close to the bottom of the cloud.

Finally, since the Pbot is defined as the sum of Ptop and

Dcld, most of the time Dcld will dominate the summa-

tion making the posterior of Ptop broader towards lower

value. To compare our work to those in the literature

Dcld is the parameter in which the attention should be

focused on.

6.2. Jupiter results

Even though our model is inspired by solar system ob-

servations and by Weidenschilling & Lewis (1973); Sato

& Hansen (1979) works, there are assumptions and sim-

plifications that creates differences between the litera-

ture and our models. The Jupiter’s cloud structures

theorized in literature assume the presence of hazes and

multiple (even more than two) cloud layers of different

molecular species. In our model, instead, we did not

include hazes. We have not modeled the condensation

of NH4SH, which could be necessary to have a better fit

Jupiter’s and other scenarios of reflected spectra.

The results we obtained for Jupiter (Tab. 6, Fig. 11,

12, and 15) show that a single cloud layer can be suffi-

cient to explain the albedo modulation. However, since

we have the sensibility to different cloud species, using a

2-cloud model configuration with NH3 and NH4SH con-

densates and the presence of hazes, may have a better

outcome than the water cloud that does not really con-

tribute to the albedo modulation. The overall position

of the NH3 cloud reflects, however, the clouds position

reported in Weidenschilling & Lewis (1973) and also the

position of clouds measured by planetary missions (West

et al. 1986). We want to point out that even if the the-

oretical values are used in the fully consistent model

ExoReL (Hu 2019) and a theoretical clouds structure

is considered, the calculated albedo, while it matches
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with Jupiter in its bulk part, cannot sufficiently account

for the methane weak bands. This suggests that further

effects need to be taken into account (Hu 2019). This

may also explain why the concentration of methane has

been underestimated by our model. However, we would

like to point out that even though these simplification

have been adopted, our recovered free parameters values

agree with the literature works within the 3σ confidence.

Bayesian samplers are designed to explore the param-

eters space to find the solution that best approximates

the data. The result of this process will closely reflect

the reality only if most of the effects, that take place in

the process under study, are taken into account. In this

sense, hazes, other absorbers, and cloud species may be

required for future studies.

6.3. Water vs ammonia clouds

In Sec. 2.1 we described the step required for the

atmospheric structure to be constructed. We differen-

tiated water clouds from ammonia clouds by consid-

ering different volume mixing ratio vertical profile for

the two molecules and different particle size (as we used

the mean molecular mass for the calculation). Also the

opacities of the two molecules are different and this cre-

ates a further distinction between the two cloud species

when the single scattering albedo is calculated.

In Sec. 3.5 we synthesized three different scenarios to

try to distinguish between water and ammonia clouds.

However, whether or not we are able to distinguish be-

tween the two species with this algorithm, will depend

on a case by case. By combining information from the

Bayesian factor, the expected temperature of the planet

and the use of the self consistent model, we might be

able to discriminate between the two cloud species. The

results of the Bayesian sampling could indeed be com-

pared with a self consistent model and see if the two

outcomes agree with each other.

6.4. Implication of constraining the molecular VMR

below the clouds

Direct quantification of molecular abundances below

the cloud deck has been a difficult task. Most of the

models in the literature, that interpret atmospheric

spectra, do not quantify parameters below Pτ=1 by de-

sign. In our work, we tried to link the presence of

condensates to the variation of molecular concentration.

This gave us the freedom to fit the concentration value

below the clouds. Essentially, we are assuming that for

a certain condensate to be present (defined by density,

particle size, and extension, see Sec. 3.4) a particu-

lar non-constant volume mixing ratio vertical profile is

required. This assumption may have an important im-

plication: in the cold gaseous planets scenario, it could

help in improving atmospheric modeling and detect the

presence of water and ammonia unseen in direct mea-

surements. This behavior is also embedded in our algo-

rithm as the VMR of such molecules on top of the clouds

drops drastically making them almost undetectable.

6.5. Spectral noise realization

In this work, we showed a novel approach on modeling

and retrieving chemical abundance and cloud informa-

tion from cool gaseous giant planet spectra. For this

reason, we focused on the description and performances

of the model without stressing the aspect of the spectral

noise. In the retrieval exercises presented in this work

(Sec. 4 and 5), we added the error-bars to the spec-

tral data point by calculating the average albedo across

the wavelength range and scaling it by the chosen S/N.

This may led to underestimate the retrieval error and

to introduce biases. Previous works (Lupu et al. 2016;

Feng et al. 2018) have shown that accounting for a ran-

dom noise increases the uncertainty of the retrieved val-

ues significantly as the data points are extracted from

a Gaussian distribution that changes the value of each

measurement away from a simple model mean. In this

context, the results presented in this work are optimistic,

and including a random noise to the data points would

weaken the constraint on retrieved values at high S/N

(20 or 15) and completely fade out any quantitative de-

tection at lower S/N (10 or 5).

7. CONCLUSION

In this work, we presented ExoReL< , our novel

Bayesian inverse retrieval algorithm for exoplanetary re-

flected light spectra. The gas giants’ albedo (key ingre-

dient of reflection spectroscopy) in the visible and near-

infrared wavelength is mostly affected by cloud scatter-

ing and molecular absorption from H2O, NH3, and CH4.

We used a non-uniform VMR vertical profile of water

and ammonia to construct water and ammonia clouds.

Compared to previous retrieval models of reflected light

spectra, ExoReL< enforces the causal relationship be-

tween the gas abundance and the corresponding cloud

density. Since ExoReL< calculates the single scattering

albedo, the asymmetry factor and the optical depth con-

sistently, it employs a set of free parameters that define

the non-uniform VMR of water and ammonia, e.g., the

cloud depth (Dcld) and the VMR below the clouds (see

Fig. 1). We presented the performances of our model

with two exoplanetary test cases: υ And e and 47 Uma

b which are candidates to be observed and characterized

by the upcoming WFIRST mission. Finally, we have run

our algorithm on a realistic case by trying to analyze the

Jupiter albedo.
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The key results of our work comprise: the evidence

of cloud presence and position estimation, physical

characterization of clouds (cloud density and particle

size profiles), possibility to determine cloud chemical

constituent (distinction between water and ammonia

clouds), quantification of methane concentration and

possible indirect quantification of the VMR of condens-

able molecules below the cloud.

The retrieval exercises presented in this paper show

that the reflected light spectra expected to be recorded

by future space missions should be sufficient to put

meaningful constraints on the presence of clouds and the

abundance of methane. This conclusion is validated by

the Solar System test case, where we fit a relatively sim-

ple model to the Jupiter planetary atmosphere known to

be complex. If the S/N is high enough, reflected light

spectroscopy may help us quantify the cloud extension,

which reflects the position of the clouds, as well as the

below-cloud concentration of the gas responsible for the

presence of the cloud itself.

For this initial instance some approximations have

been made (e.g., log-linear condensation of water and

ammonia, and absence of hazes). In this work, we have

focused on the possibility of retrieving parameters about

the atmospheric characteristics of cold gaseous planets.

In a future work this algorithm will be further developed

to also include temperate/cold rocky planet scenarios

with H2- and non H2-dominated atmospheres.
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APPENDIX

A. POSTERIOR DISTRIBUTIONS

A.1. υ And e - water cloud
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Figure 13. Posterior distribution of the free parameters of the model for the υ And e scenario. The red lines indicate the
ground truths of the synthesized model. The numbers reported on top of the 1-D distributions are relative to the median and
1σ values of the distributions. The correlation between the CH4 and Ptop is weak. In this example the correlation between
the VMRH2O and both VMRCH4 and Dcld,H2O can be seen, however, the relative 2-D distributions are quite localized. No
multi-modal solutions have been found.
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A.2. 47 uma b - water cloud
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Figure 14. Posterior distribution of the free parameters of the water model for the 47 Uma b science case. The numbers
reported on top of the 1-D distributions are relative to the median and 1σ values of the distributions. The solid red lines refers
to the input parameters (ground truths) used to synthesize the data.
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A.3. Jupiter ( Å) - 2-clouds model
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Figure 15. Posterior distribution of the free parameters of the 2-clouds model for the Jupiter scenario. The numbers reported
on top of the 1-D distributions are relative to the median and 1σ values of the distributions.
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A.4. Jupiter ( Å) - ammonia cloud
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Figure 16. Posterior distribution of the free parameters of the ammonia cloud model for the Jupiter science case. The numbers
reported on top of the 1-D distributions are relative to the median and 1σ values of the distributions.


