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UNIQUENESS OF STATIONARY STATES FOR SINGULAR

KELLER-SEGEL TYPE MODELS

VINCENT CALVEZ, JOSÉ ANTONIO CARRILLO, FRANCA HOFFMANN

Abstract. We consider a generalised Keller-Segel model with non-linear porous medium
type diffusion and non-local attractive power law interaction, focusing on potentials that
are more singular than Newtonian interaction. We show uniqueness of stationary states
(if they exist) in any dimension both in the diffusion-dominated regime and in the fair-
competition regime when attraction and repulsion are in balance. As stationary states are
radially symmetric decreasing, the question of uniqueness reduces to the radial setting. Our
key result is a sharp generalised Hardy-Littlewood-Sobolev type functional inequality in the
radial setting.

Keywords: uniqueness, Hardy-Littlewood-Sobolev inequality, aggregation-diffusion equation, Keller-Segel
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1. Introduction

We consider a family of partial differential equations modelling self-attracting diffusive par-
ticles at the macroscopic scale,

(1.1)

{

∂tρ = ∆ρm +∇ · (ρ∇S) , t > 0 , x ∈ R
N ,

ρ(t = 0, x) = ρ0(x) ,

where the diffusion exponent m > 1 is of porous medium type [27]. Since equation (1.1) is
positivity preserving, conserves mass, and is invariant by translation, we impose

ρ0(x) ≥ 0 ,

∫

RN

ρ0(x) dx =M ,

∫

RN

xρ0(x) dx = 0

for some fixed mass M > 0, and it follows that the same holds true for the solution ρ(t, x).
The mean-field potential S(x) := W (x) ∗ ρ(x) depends non-locally on the solution ρ(t, x)
through convolution with the interaction potential W (x). Depending on the context and the
application, different choices of repulsive or attractive potentials are used to model pair-wise
interactions between particles, see for instance [3, 18, 12, 14] and the references therein. Here,
we focus on attractive singular power-law potentials W (x) =Wk(x),

Wk(x) :=
|x|k
k

, k < 0 .

ForWk ∈ L1
loc(R

N ), we require k > −N . Whilst for k > 1−N , the gradient ∇Sk := ∇ (Wk ∗ ρ)
is well defined, it becomes a singular integral in the range −N < k ≤ 1 − N , and we thus
define it via a Cauchy principal value. Hence, the mean-field potential gradient in equation
(1.1) is given by

(1.2) ∇Sk(x) :=











∇Wk ∗ ρ , if k > 1−N ,
∫

RN

∇Wk(x− y) (ρ(y)− ρ(x)) dy , if −N < k ≤ 1−N .
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Writing k = 2s − N with s ∈
(

0, N2
)

, the convolution term Sk is governed by a fractional
diffusion process,

cN,s(−∆)sSk = ρ , cN,s = (2s−N)
Γ
(

N
2 − s

)

πN/24sΓ(s)
=

kΓ (−k/2)
πN/22k+NΓ

(

k+N
2

) ,

and so the system (1.1) can be interpreted as
{

∂tρ = ∆ρm +∇ ·
(

ρ∇ (−∆)−s ρ
)

, t > 0 , x ∈ R
N ,

ρ(t = 0, x) = ρ0(x) .

Models with this type of non-local interaction have been considered in [8, 7] in the repulsive
case. Since the non-linear diffusion acts as a repulsive force between particles, one expects com-
peting effects between the diffusion term and the non-local attractive forces, which motivates
the study of equilibria of the system. For certain choices of parameters m and k, diffusion may
overcome attraction, and no stationary states for (1.1) exist. In this case, we seek self-similar
profiles instead as they are the natural candidates characterizing the long-time behaviour of
the system. Self-similar profiles of equation (1.1) are stationary states of a suitably rescaled
aggregation-diffusion equation with an additional confining potential. Combining both the
original and rescaled system, we write

(1.3) ∂tρ = ∆ρm +∇ · (ρ∇Sk) + µresc∇ · (xρ) , t > 0 , x ∈ R
N ,

with µresc = 0 for original variables, and µresc = 1 for rescaled variables. For details on the
change of variables transforming (1.1) into (1.3), see [11].

The competing effects of attractive and repulsive forces can also be observed on the level of
the energy functional corresponding to equation (1.3):

F [ρ] =
1

m− 1

∫

ρm +
1

2

∫∫

Wk(x− y)ρ(x)ρ(y) dxdy +
µresc
2

∫

|x|2ρ(x) dx .

More precisely, we can write equation (1.3) as

∂tρ = ∇ ·
(

ρ∇δF
δρ

)

where the first variation of F is given by

δF
δρ

[ρ](x) =
m

m− 1
ρm−1 +Wk ∗ ρ+ µresc

|x|2
2
,

and so solutions to (1.3) are gradient flows in the 2-Wasserstein metric with respect to the
energy F , see [2, 28]. One simple way to observe the competition between the diffusion and
aggregation term in original variables µresc = 0 is to consider mass-preserving dilations

ρλ(x) := λNρ(λx) .

Substituting ρλ into F with µresc = 0, we see that the two contributions to the energy are
homogeneous with different powers,

F [ρλ] =
λN(m−1)

m− 1

∫

ρm +
λ−k

2

∫∫

Wk(x− y)ρ(x)ρ(y) dxdy ,

and one observes different types of behaviour depending on the relation between the parameters
N , m and k. The energy functional is homogeneous if attraction and repulsion are in balance,
so that the two terms of the energy scale with the same power, that is, if m = mc for

mc := 1− k

N
.

This motivates the definition of three different regimes: the diffusion-dominated regime m >
mc, the fair-competition regime m = mc, and the attraction-dominated regime 0 < m < mc.
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We will here concentrate on the diffusion-dominated and fair-competition regimes, m ≥ mc in
the more singular range −N < k ≤ 2 − N . For a detailed overview of the different regimes
and recent results, see [11].

Let us start by summarising the properties of system (1.3) that are known in the literature.
We begin by making precise our notion of stationary states.

Definition 1. Given ρ̄ ∈ L1
+(R

N ) ∩ L∞(RN ) we call it a stationary state for the evolution

problem (1.3) if ρ̄m ∈ H1
loc(R

N ), ∇S̄k ∈ L1
loc(R

N ) is as in (1.2) for S̄k := Wk ∗ ρ̄, and it
satisfies

∇ρ̄m = −ρ̄∇S̄k − µrescxρ̄ .

In the case of the fair-competition regime m = mc in original variables µresc = 0, a similar
critical mass phenomenon occurs as for the classical Keller-Segel model [6, 4, 10] with loga-
rithmic interaction and linear diffusion. More precisely, it was shown in [5] that there exists
a critical mass Mc in the case of Newtonian interaction k = 2 −N for which infinitely many
stationary states exist. For sub-critical masses 0 < M < Mc, no stationary states exist as
diffusion overcomes attraction, but solutions exist globally in time and decay in a self-similar
fashion. For super-critical masses M > Mc, attraction overcomes diffusion, and solutions
cease to exist in finite time. As shown in [11, 12], this dichotomy holds in fact in the full range
−N < k < 0 in the fair competition regime m = mc.

In the case of the fair-competition regime m = mc in rescaled variables µresc = 1 and
for subcritical masses 0 < M < Mc , we have existence of a stationary solution ρ̄M with
mass

∫

ρ̄M = M by [11, Theorem 2.9], which corresponds to a self-similar profile for equa-
tion (1.3) in original variables with µresc = 0. Uniqueness of this stationary state is known
in one-dimension, as well as convergence in 2-Wasserstein distance of solutions under certain
assumptions on the transport map between the solution and the stationary state, see [12].
In higher dimensions, uniqueness and convergence results were shown in [29] for the special
case of the Newtonian interaction kernel k = 2 − N , but the questions of convergence and
uniqueness have previously not been answered for more general k.

As soon as m > mc, we expect regularising effects from the dominating diffusive term. For
the diffusion-dominated regime m > mc in original variables µresc = 0, uniform L∞-bounds
were obtained in [26, 9] for any initial mass M > 0 in the case of Newtonian interactions k =
2−N . Recently, further results on the existence, boundedness and regularity of solutions have
been obtained in [30]. Moreover, the existence of global minimisers for the energy functional F
for any mass M > 0 was shown in [13, 17] for Newtonian interactions k = 2−N and for more
general interaction kernels −N < k < 0 in [16]. Minimisers of the energy functional F are
stationary states of equation (1.3) thanks to the gradient flow structure, as long as they are
regular enough. As a direct consequence, we obtain existence of stationary states in the above
cases. The uniqueness of the stationary state for m > mc was shown in one dimension in [16]
using optimal transport techniques, and in the Newtonian case k = 2 − N in any dimension
N ≥ 3 in [22] by a dynamical argument. The general case however has not been answered yet
up to now.

Finally, we point out that existence and uniqueness of stationary solutions have also been
obtained for m = 2 under suitable assumptions in the case of integrable attractive interaction
potentials in [21].

Our goal here is to extend the results on the uniqueness of stationary states of system (1.3)
to more singular k, higher dimensions N and any m ≥ mc by building on the techniques
employed in [12].

An important point to make is that due to the results in [15, 16], any stationary solution in
the sense of Definition 1 in all the cases form,W and µresc discussed in the previous paragraphs
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are radially symmetric decreasing about their centre of mass and compactly supported. This
means that the question of uniqueness for stationary states is reduced to the radial setting.
To this end, we rewrite (1.3) in radial variables,

∂t
(

rN−1ρ
)

= ∂r
(

rN−1∂rρ
m
)

+ ∂r
(

rN−1ρ∂r (Wk ∗ ρ(r))
)

+ µresc∂r
(

rNρ
)

,(1.4)

and work completely in the radial setting from now on. Let

YM :=

{

ρ ∈ L1
+

(

R
N
)

∩ Lm
(

R
N
)

: ||ρ||1 =M ,

∫

xρ(x) dx = 0 , µresc

∫

|x|2ρ(x) dx <∞
}

.

and its radial subset

Y∗

M =: {ρ ∈ YM : ρ∗ = ρ} ,
where ρ∗ denotes the symmetric decreasing rearrangement of ρ.

Theorem 2 (Sharp Functional Inequality). Let N ≥ 2, k ∈ (−N, 2 − N ] and m ≥ mc. If
(1.4) admits a radial stationary density ρ̄ in Y∗

M , then

F [ρ] ≥ F [ρ̄] , ∀ ρ ∈ Y∗

M ,

with the equality cases given by ρ̄, and by its dilations if m = mc and µresc = 0.

From the above, we can deduce the following uniqueness result.

Corollary 3 (Uniqueness). Let N ≥ 3 and −N < k ≤ 2−N .

(i) If m > mc and µresc = 0, then there is at most one stationary state of (1.3) for any
mass M > 0 and any centre of mass. Moreover, it coincides with the global minimiser
for F in Y∗

M for any M > 0 (up to translations), as long as mc < m < m∗, where

m∗ :=

{

2−k−N
1−k−N , if −N < k < 1−N ,

+∞ if 1−N ≤ k ≤ 2−N .

(ii) If m = mc and µresc = 1, then there exists at most one stationary state to (1.3) for
any 0 < M < Mc and with zero centre of mass. Moreover, it coincides with the global
minimiser for F in Y∗

M .
(iii) If m = mc and µresc = 0, then there exists at most one stationary state (up to dilations

and translations) to (1.3) for the critical mass M = Mc. Moreover, it coincides with
the global minimiser for F in Y∗

Mc
.

The strategy of the proof for our main result Corollary 3 is to show that all radially symmet-
ric stationary states are in fact global minimisers of F as stated in Theorem 2. The existence
of the global minimiser in the above ranges has been proven in [11, 16].

In Section 2, we set up the necessary notation and take advantage of the radial symmetry
to derive an explicit formula for the mean-field interaction potential in terms of hypergeomtric
functions. Relevant results about hypergeometric functions are summarised in Appendix A. In
Section 3, we prove a characterisation of radially symmetric stationary states that allows us to
show the functional inequality in Theorem 2 using optimal transport tools. The key ingredient
for the proof is a convexity estimate on the radial interaction potential, see Lemma 7. The proof
of the convexity estimate is more involved, and postponed to Appendix B for the convenience
of the reader. This crucial lemma is the reason we are restricted to the upper bound 2−N in
k with this approach of reasoning. We conclude with the proof of Corollary 3, which follows
directly from the statement of Theorem 2.
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2. Potentials of radial functions

For any radial function ρ : RN → R, still denoting by ρ the radial profile of ρ,
∫

RN

ρ(x) dx =

∫

∞

0

∫ 2π

0
ρ(r)rN−1 sinN−2(θ) dθdr = σN

∫

∞

0
ρ(r)rN−1 dr ,

where σN = 2π(N/2)/Γ(N/2) denotes the surface area of the N -dimensional unit ball. Further,
if δ ≥ 1, then (·)δ is convex on the interval [a, b], and by Jensen’s inequality

(2.1)

(
∫ b

a
ρ(r)

NrN−1 dr

bN − aN

)δ

≤
∫ b

a
ρ(r)δ

NrN−1 dr

bN − aN

with equality if and only if ρ is constant on [a, b].
In what follows, we rewrite the interaction term using polar coordinates.

Lemma 4. For N ≥ 2 and a given radial function ρ : RN → R, we have for |x| = r

|x|k ∗ ρ(x) = 2N−2σN−1

∫

∞

0
(r + η)kH

(

a, b; c;
4rη

(r + η)2

)

ρ(η) dη

where H(a, b; c; ·) is given in terms of hypergeometric functions as defined in (A.2) with

a = −k
2
, b =

N − 1

2
, c = N − 1 .

Proof. We compute as in [25, Theorem 5], see also [3], [19] or [20, §1.3],

|x|k ∗ ρ(x) = σN−1

∫

∞

0

(
∫ π

0

(

|x|2 + η2 − 2|x|η cos θ
)k/2

sinN−2θ dθ

)

ρ(η)ηN−1 dη .

Let us define

Θk,N(r, η) := σN−1

∫ π

0

(

r2 + η2 − 2rη cos(θ)
)k/2

sinN−2(θ) dθ =

{

rkϑk,N (η/r) , η < r ,

ηkϑk,N (r/η) , r < η ,

where, for u ∈ [0, 1),

ϑk,N(u) := σN−1

∫ π

0

(

1 + u2 − 2u cos(θ)
)k/2

sinN−2(θ) dθ

= σN−1 (1 + u)k
∫ π

0

(

1− 4
u

(1 + u)2
cos2

(

θ

2

))k/2

sinN−2(θ) dθ .

Using the change of variables t = cos2
(

θ
2

)

, we get from the integral formulation of hypergeo-
metric functions (A.2) ,

ϑk,N(u) = 2N−2σN−1 (1 + u)k
∫ 1

0

(

1− 4u

(1 + u)2
t

)k/2

t
N−3

2 (1− t)
N−3

2 dt

= 2N−2σN−1 (1 + u)kH (a, b; c; z)

with z = 4u/(1 + u)2. �

Our goal is to extend the techniques in [12] to higher dimensions in the case of more singular
interaction kernels −N < k ≤ 2−N . For this purpose we rewrite the interaction functional in
radial coordinates. We will make use of the formulation in terms of hypergeometric functions
as introduced in Lemma 4.
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Lemma 5. Let N ≥ 2 and k > −N . The attractive mean-field potential rewrites as follows
under radial symmetry for |x| = r:

(2.2) |x|k ∗ ρ(x) = rk
∫ r

η=0
ϑk,N

(η

r

)

ρ(η)ηN−1 dη +

∫

∞

η=r
ηkϑk,N

(

r

η

)

ρ(η)ηN−1 dη ,

where

(2.3) ϑk,N(s) = dN F

(

−k
2
, 1− k +N

2
;
N

2
; s2
)

, dN := 2N−2σN−1
Γ(b)Γ(c− b)

Γ(c)
.

Proof. As in the proof of Lemma 4,

|x|k ∗ ρ(x) =
∫

∞

0
Θk,N(r, η)ρ(η)ηN−1 dη

=

∫ r

0
rkϑk,N

(η

r

)

ρ(η)ηN−1 dη +

∫

∞

r
ηkϑk,N

(

r

η

)

ρ(η)ηN−1 dη ,

and by (A.2), ϑk,N can be written as

ϑk,N(s) = dN (1 + s)k F (a, b; c; z) , dN := 2N−2σN−1
Γ(b)Γ(c− b)

Γ(c)
,

with

a = −k
2
, b =

N − 1

2
, c = N − 1 , z =

4s

(1 + s)2
.

Using the quadratic transformation (A.4), we have for s ∈ (0, 1)

F

(

−k
2
,
N − 1

2
;N − 1;

4s

(1 + s)2

)

= (1 + s)−k F

(

−k
2
, 1− k +N

2
;
N

2
; s2
)

,

and so (2.2)-(2.3) follow. �

As a consequence, equation (1.4) rewrites as

∂t
(

rN−1ρ
)

= ∂r
(

rN−1∂rρ
m
)

+ ∂r

(

rN−1ρ∂r

(

rk

k

∫ r

s=0
ϑk,N

(s

r

)

ρ(s)sN−1 ds+

∫

∞

s=r

sk

k
ϑk,N

(r

s

)

ρ(s)sN−1 ds

))

(2.4)

+ µresc∂r(r
Nρ) .

Similarly, using (2.2), the free energy becomes

F [ρ] =
σN
m− 1

∫

∞

r=0
ρ(r)mrN−1 dr +

σN
2

∫

∞

r=0
ρ(r)(Wk ∗ ρ)(r)rN−1 dr

+ µresc
σN
2

∫

∞

r=0
r2ρ(r)rN−1 dr

=
σN
m− 1

∫

∞

r=0
ρ(r)mrN−1 dr +

σN
2

∫

∞

r=0

∫ r

s=0

rk

k
ϑk,N

(s

r

)

ρ(r)ρ(s)rN−1sN−1 dsdr

+
σN
2

∫

∞

r=0

∫

∞

s=r

sk

k
ϑk,N

(r

s

)

ρ(r)ρ(s)rN−1sN−1 dsdr

+ µresc
σN
2

∫

∞

r=0
r2ρ(r)rN−1 dr

=
σN
m− 1

∫

∞

r=0
ρ(r)mrN−1 dr + σN

∫

∞

r=0

∫ r

s=0

rk

k
ϑk,N

(s

r

)

ρ(r)ρ(s)rN−1sN−1 dsdr(2.5)

+ µresc
σN
2

∫

∞

r=0
r2ρ(r)rN−1 dr ,
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where we swapped the order of integration in the second last line.

In the Newtonian case k = 2 − N , we can simplify further. We denote by Mρ(·) the
cumulative mass of ρ inside balls,

Mρ(r) = σN

∫ r

s=0
ρ(s)sN−1 ds .

Recall that by Newton’s Shell theorem [24],

∂r

(

r2−N

2−N
∗ ρ
)

(r) = r1−NMρ(r) .

Then for the harmonic case k = 2−N , equation (1.1) writes in radial coordinates as

∂t
(

rN−1ρ
)

= ∂r
(

rN−1∂rρ
m
)

+ ∂r (ρMρ) + µresc∂r(r
Nρ) .

We have (cf. the Newton’s Theorem, [24, Theorem 9.7]):

σN−1

∫ π

θ=0

∣

∣r2 + η2 − 2rη cos(θ)
∣

∣

(2−N)/2
sin(θ)N−2 dθ = σN (r ∧ η)2−N , r ∧ η = max(r, η).

Therefore, the interaction term of the energy simplifies and we obtain
∫∫

RN
×RN

|x− y|2−Nρ(x)ρ(y) dxdy = σN

∫

∞

r=0

(
∫

∞

η=0
σN (r ∧ η)2−Nρ(η)ηN−1 dη

)

ρ(r)rN−1 dr

= σN

∫

∞

r=0

(

σNr
2−N

∫ r

η=0
ρ(η)ηN−1 dη + σN

∫

∞

η=r
ρ(η)η dη

)

ρ(r)rN−1 dr

= 2σN

∫

∞

r=0
ρ(r)Mρ(r)r dr

by changing the domain of integration in the second term. As a consequence the expression
for the energy functional F in radial coordinates in the case k = 2−N is
(2.6)

F [ρ] =
σN
m− 1

∫

∞

r=0
ρ(r)m rN−1dr +

σN
2−N

∫

∞

r=0
ρ(r)Mρ(r)r dr + µresc

σN
2

∫

∞

r=0
r2ρ(r)rN−1 dr .

3. Functional Inequality

In the sequel we drop the indices in the notation ϑk,N for simplicity, and we write

dr̄ := ρ̄(r)rN−1 dr .

Lemma 6 (Characterisation of steady states). Let N ≥ 2 and k > −N . Then any stationary
state ρ̄ of the radial system (2.4) can be written in the form

ρ̄(r)m =

∫

∞

s=r

∫ s

t=0

(

sk−Nϑ

(

t

s

)

− sk−1−N

k
tϑ′
(

t

s

))

dt̄ds̄

+

∫

∞

s=r

∫

∞

t=s
s1−N t

k−1

k
ϑ′
(s

t

)

dt̄ds̄+ µresc

∫

∞

s=r
s2−N ds̄ .(3.1)

In the case k = 2−N , the above simplifies to

(3.2) ρ̄m(r) =

∫

∞

s=r
Mρ̄(s)s

2−2N ds̄+ µresc

∫

∞

s=r
s2−N ds̄ .
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Figure 1. Numerical illustration of Lemma 7 forN = 3, and (left) k = −2.5 or
(right) k = −0.5 for tangents c = 0.2, 0.4, 0.6, 0.8 (dotted lines). For k < 2−N
where convexity holds all tangents lie below the curve ϑk,N(s)/k (black line)
as shown in Lemma 7, which does not hold for k > 2−N .

Proof. By Definition 1, any stationary state ρ̄ satisfies

−rN−1 d

dr
ρ̄(r)m = ρ̄(r)rN−1 d

dr
(Wk ∗ ρ̄) (r) + µrescr

N ρ̄(r) .

We deduce that

ρ̄(r)m =

∫

∞

s=r
ρ̄(s)

d

ds
(Wk ∗ ρ̄) (s) ds+ µresc

∫

∞

s=r
s2−N ρ̄(s)sN−1 ds .

It remains to examine the term (d/ds)(Wk ∗ ρ̄)(s). We differentiate the expression (2.2) to
obtain

d

ds
(Wk ∗ ρ̄) (s) =

∫ s

t=0

(

sk−1ϑ

(

t

s

)

− sk−2

k
tϑ′
(

t

s

))

ρ̄(t)tN−1 dt+

∫

∞

t=s

tk−1

k
ϑ′
(s

t

)

ρ̄(t)tN−1 dt .

This yields the claimed characterisation. For k = 2 − N , the result follows directly from
Newton’s Shell Theorem, see the end of Section 2. �

It follows from the above characterisation that for any function g : [0,∞) → R, a stationary
state of (1.4) satisfies
∫

∞

a=0
g(a)ρ̄m(a)aN−1 da =

∫

∞

a=0

∫

∞

b=a

∫ b

s=0
g(a)aN−1

[

bk−Nϑ
(s

b

)

− bk−1−N

k
sϑ′
(s

b

)

]

ds̄db̄da

+

∫

∞

a=0

∫

∞

b=a

∫

∞

s=b
g(a)aN−1b1−N s

k−1

k
ϑ′
(

b

s

)

ds̄db̄da(3.3)

+ µresc

∫

∞

a=0

∫

∞

b=a
g(a)aN−1b2−N db̄da .

This expression will be useful for proving the functional inequality in Theorem 2. Moreover,
in order to prove Theorem 2, we seek an inequality of the following type:

ϑk,N(s)

k
≥ α+ β(1− sN )k/N .

The constants α and β are chosen so that the above inequality is an equality at zero and first
order for a convenient choice of s (to be chosen later). This writes into the following lemma:
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Lemma 7. Assume N ≥ 2 and k ∈ (−N, 2−N). The following inequality holds true for any
(s, c) ∈ (0, 1)2:

(3.4)
ϑk,N (s)

k
≥ α(c) + β(c)

(

1− sN
)k/N

.

with the two factors given by

α(c) :=
ϑk,N(c)

k
+

1

k2
c1−N

(

1− cN
)

ϑ′k,N(c) ≤ 0 ,

and

β(c) := − 1

k2
c1−N

(

1− cN
)1−k/N

ϑ′k,N(c) ≤ 0 .

Note that this crucial lemma is the reason we are restricted to the upper bound 2 − N in
k, see Figure 1. The proof is postponed to the Appendix B due to technicality.

Proof of Theorem 2. We begin with the more complicated case k ∈ (−N, 2 − N) as the har-
monic case k = 2−N will follow in a similar manner. The energy of the stationary state ρ̄ is
given by

1

NσN
F [ρ̄] =

1

N(m− 1)

∫

∞

a=0
ρ̄(a)m aN−1da+

1

Nk

∫

∞

a=0

∫ a

b=0
akϑ

(

b

a

)

db̄dā+
µresc
2N

∫

∞

a=0
a2 dā .

Choosing g = id in (3.3) and rewriting the domain of integration, we obtain
∫

∞

a=0
ρ̄(a)maN−1 da

=

∫

∞

a=0

∫

∞

b=a

∫ b

s=0

[

bk−Nϑ
(s

b

)

− bk−1−N

k
sϑ′
(s

b

)

]

aN−1 ds̄db̄da

+
1

k

∫

∞

a=0

∫

∞

b=a

∫

∞

s=b
b1−Nsk−1ϑ′

(

b

s

)

aN−1 ds̄db̄da+ µresc

∫

∞

a=0

∫

∞

b=a
aN−1b2−N db̄da

=

∫

∞

b=0

∫ b

s=0

(
∫ b

a=0
aN−1 da

)[

bk−Nϑ
(s

b

)

− bk−1−N

k
sϑ′
(s

b

)

]

ds̄db̄

+
1

k

∫

∞

b=0

∫

∞

s=b

(
∫ b

a=0
aN−1 da

)

b1−Nsk−1ϑ′
(

b

s

)

ds̄db̄+ µresc

∫

∞

b=0

(
∫ b

a=0
aN−1 da

)

b2−N db̄

=
1

N

(
∫

∞

b=0

∫ b

s=0
bkϑ

(s

b

)

ds̄db̄+ µresc

∫

∞

b=0
b2 db̄

)

.

Hence,

1

Nk

∫

∞

a=0

∫ a

b=0
akϑ

(

b

a

)

db̄dā =
1

k

∫

∞

a=0
ρ̄(a)maN−1 da− µresc

kN

∫

∞

a=0
a2 dā ,

and so we conclude

1

NσN
F [ρ̄] =

∫

∞

a=0

(

1

N(m− 1)
+

1

k

)

ρ̄(a)m aN−1da+
µresc
N

(

1

2
− 1

k

)
∫

∞

a=0
a2 dā .(3.5)

Next, we write the energy F [ρ] in terms of ρ̄ and our goal is to find suitable estimates from
below. For a given stationary state ρ̄ ∈ Y∗

M and solution ρ ∈ Y∗

M of (2.4), we denote by ψ the
radial profile of the convex function whose gradient pushes forward the measure ρ̄(a)aN−1da
onto ρ(r)rN−1dr:

ψ′#
(

ρ̄(a)aN−1da
)

= ρ(r)rN−1dr .

Changing variables r = ψ′(a), we have

ρ(r)rN−1 dr = ρ̄(a)aN−1 da =: dā
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and

ρ(r) =
aN−1ρ̄(a)

ψ′(a)N−1ψ′′(a)
=
ρ̄(a)

ϕ(a)
, for ϕ(a) :=

1

NaN−1

d

da

(

ψ′
)N

(a) .

Then the repulsive term of the functional F [ρ] rewrites

σN
m− 1

∫

∞

r=0
ρ(r)m rN−1dr =

σN
m− 1

∫

∞

a=0
ϕ(a)1−mρ̄(a)maN−1 da ,

and following (2.5), the interaction term becomes

σN

∫

∞

r=0

∫ r

s=0

rk

k
ϑ
(s

r

)

ρ(r)ρ(s)rN−1sN−1 dsdr =
σN
k

∫

∞

a=0

∫ a

b=0
(ψ′(a))kϑ

(

ψ′(b)

ψ′(a)

)

db̄dā .

We therefore have

1

NσN
F [ρ] =

1

N(m− 1)

∫

∞

a=0
ϕ(a)1−mρ̄(a)maN−1 da(3.6)

+
1

Nk

∫

∞

a=0

∫ a

b=0
(ψ′(a))kϑ

(

ψ′(b)

ψ′(a)

)

db̄dā+
µresc
2N

∫

∞

a=0
(ψ′(a))2 dā .

By Jensen’s inequality (2.1), we estimate

(ψ′(a))k = ak
(

ψ′(a)N

aN

)k/N

= ak
(
∫ a

s=0
ϕ(s)

NsN−1

aN
ds

)k/N

(3.7)

≤ Nak−N

∫ a

s=0
ϕ(s)k/NsN−1 ds ,

(

ψ′(a)N − ψ′(b)N
)k/N

=

(

ψ′(a)N − ψ′(b)N

aN − bN

)k/N

(aN − bN )k/N(3.8)

= (aN − bN )k/N
(
∫ a

s=b
ϕ(s)

NsN−1

(aN − bN )
ds

)k/N

≤ N(aN − bN )k/N−1

∫ a

s=b
ϕ(s)k/NsN−1 ds .

Using first the comparison equation (3.4) in Lemma 7 with c = b/a and then (3.7)–(3.8), we
obtain the estimate

1

Nk

∫

∞

a=0

∫ a

b=0
(ψ′(a))kϑ

(

ψ′(b)

ψ′(a)

)

db̄dā

≥ 1

N

∫

∞

a=0

∫ a

b=0
(ψ′(a))kα

(

b

a

)

db̄dā+
1

N

∫

∞

a=0

∫ a

b=0
β

(

b

a

)

(

(ψ′(a))N − (ψ′(b))N
)k/N

db̄dā

≥
∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1α

(

b

a

)

dsdb̄dā

+

∫

∞

a=0

∫ a

b=0

∫ a

s=b
(aN − bN )k/N−1ϕ(s)k/NsN−1β

(

b

a

)

dsdb̄dā

=
1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1

(

ϑ

(

b

a

)

+
1

k

(

b

a

)1−N
(

1−
(

b

a

)N
)

ϑ′
(

b

a

)

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=b
(aN − bN )k/N−1ϕ(s)k/NsN−1

(

b

a

)1−N
(

1−
(

b

a

)N
)1−k/N

ϑ′
(

b

a

)

dsdb̄dā
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=
1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1ϑ

(

b

a

)

dsdb̄dā

+
1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1

(

b

a

)1−N
(

1−
(

b

a

)N
)

ϑ′
(

b

a

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=b
(aN − bN )k/N−1ϕ(s)k/NsN−1

(

b

a

)1−N
(

1−
(

b

a

)N
)1−k/N

ϑ′
(

b

a

)

dsdb̄dā .

Note that the signs in (3.7)–(3.8) flip since α
(

b
a

)

and β
(

b
a

)

are non-positive.
The above simplifies to

1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1ϑ

(

b

a

)

dsdb̄dā

+
1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ϕ(s)k/NsN−1ak−N−1b1−N

(

aN − bN
)

ϑ′
(

b

a

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=b
ϕ(s)k/NsN−1b1−Nak−1ϑ′

(

b

a

)

dsdb̄dā

=
1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1ϑ

(

b

a

)

dsdb̄dā

+
1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ϕ(s)k/NsN−1ak−1b1−Nϑ′

(

b

a

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ϕ(s)k/NsN−1ak−N−1bϑ′

(

b

a

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=b
ϕ(s)k/NsN−1ak−1b1−Nϑ′

(

b

a

)

dsdb̄dā

=
1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ak−Nϕ(s)k/NsN−1ϑ

(

b

a

)

dsdb̄dā

+
1

k2

∫

∞

a=0

∫ a

b=0

∫ b

s=0
ϕ(s)k/NsN−1ak−1b1−Nϑ′

(

b

a

)

dsdb̄dā

− 1

k2

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ϕ(s)k/NsN−1ak−N−1bϑ′

(

b

a

)

dsdb̄dā

=
1

k

∫

∞

a=0

∫ a

b=0

∫ a

s=0
ϕ(s)k/NsN−1

[

ak−Nϑ

(

b

a

)

− ak−N−1

k
bϑ′
(

b

a

)]

dsdb̄dā

+
1

k2

∫

∞

a=0

∫ a

b=0

∫ b

s=0
ϕ(s)k/NsN−1ak−1b1−Nϑ′

(

b

a

)

dsdb̄dā .

Next, we make use of the characterisation (3.3) of stationary states for g(a) = ϕ(a)k/N , then
writing

∫

∞

a=0

∫

∞

s=a =
∫

∞

s=0

∫ s
a=0 and exchanging a and s, we have

∫

∞

a=0
ϕ(a)1−mc ρ̄(a)maN−1 da

=

∫

∞

a=0

∫

∞

s=a

∫ s

b=0
ϕ(a)k/NaN−1

[

sk−Nϑ

(

b

s

)

− sk−N−1

k
bϑ′
(

b

s

)]

dadb̄ds̄

+

∫

∞

a=0

∫

∞

s=a

∫

∞

b=s
ϕ(a)k/NaN−1 b

k−1

k
s1−Nϑ′

(s

b

)

dadb̄ds̄+ µresc

∫

∞

a=0

∫

∞

s=a
ϕ(a)k/NaN−1s2−N dads̄
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=

∫

∞

a=0

∫ a

s=0

∫ a

b=0
ϕ(s)k/NsN−1

[

ak−Nϑ

(

b

a

)

− ak−N−1

k
bϑ′
(

b

a

)]

dsdb̄dā

+

∫

∞

a=0

∫ a

s=0

∫

∞

b=a
ϕ(s)k/NsN−1 b

k−1

k
a1−Nϑ′

(a

b

)

dsdb̄dā+ µresc

∫

∞

a=0

∫ a

s=0
ϕ(s)k/NsN−1a2−N dsdā .

Writing
∫

∞

a=0

∫

∞

b=a =
∫

∞

b=0

∫ b
a=0 in the second term only and exchanging a and b, we conclude

∫

∞

a=0

∫ a

s=0

∫ a

b=0
ϕ(s)k/NsN−1

[

ak−Nϑ

(

b

a

)

− ak−N−1

k
bϑ′
(

b

a

)]

dsdb̄dā

+

∫

∞

a=0

∫ a

s=0

∫ a

b=0
ϕ(s)k/NsN−1a

k−1

k
b1−Nϑ′

(

b

a

)

dsdb̄dā

=

∫

∞

a=0
ϕ(a)1−mc ρ̄(a)maN−1 da− µresc

∫

∞

a=0

∫ a

s=0
ϕ(s)k/NsN−1a2−N dsdā .

Combining with our above estimate, we obtain the following lower bound on the interaction
term:

1

Nk

∫

∞

a=0

∫ a

b=0
(ψ′(a))kϑ

(

ψ′(b)

ψ′(a)

)

db̄dā

≥ 1

k

∫

∞

a=0
ϕ(a)1−mc ρ̄(a)maN−1 da− µresc

k

∫

∞

a=0

∫ a

s=0
ϕ(s)k/NsN−1a2−N dsdā .

Next, we estimate the confinement term using Jensen’s inequality (2.1) as in (3.7),

(ψ′(a))2 = a2
(

ψ′(a)N

aN

)2/N

= a2
(
∫ a

s=0
ϕ(s)

NsN−1

aN
ds

)2/N

≥ Na2−N

∫ a

s=0
ϕ(s)2/NsN−1 ds .(3.9)

Substituting these estimates into (3.6), we obtain

1

NσN
F [ρ] ≥ 1

N

∫

∞

a=0

(

ϕ(a)1−m

m− 1
− ϕ(a)1−mc

mc − 1

)

ρ̄(a)maN−1 da

+ µresc

∫

∞

a=0

∫ a

s=0

(

ϕ(s)2/N

2
− ϕ(s)k/N

k

)

sN−1a2−N dsdā .

Finally, we make use of the inequalities

z1−m

m− 1
− z1−mc

mc − 1
≥ 1

m− 1
− 1

mc − 1
z ≥ 0 , m ≥ mc ,(3.10)

z2/N

2
− zk/N

k
≥ 1

2
− 1

k
z ≥ 0 , k < 0 .(3.11)

From the formulation (3.5), we conclude

1

NσN
F [ρ] ≥ 1

NσN
F [ρ̄] .

Equality in Jensen’s inequality (2.1) arises if and only if the derivative of the transport map,
ψ′′, is a constant function, i.e. when ρ is a dilation of ρ̄. In agreement with this, equality
in (3.10)–(3.11) is realised if and only if z = 1, that is, ρ = ρ̄. We conclude that equality in
the functional inequality in Theorem 2 is realised if and only if ρ = ρ̄, unless m = mc and
µresc = 0, in which case the equality cases correspond to dilations of ρ̄.
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For the harmonic case k = 2 − N , the above estimates corresponding to the interaction
term of the energy simplify. First of all, the interaction energy of the stationary state can be
rewritten as follows using the characterisation (3.2) provided in Lemma 6:

σN
2−N

∫

∞

a=0
ρ̄(a)Mρ̄(a)a da

=
NσN
2−N

∫

∞

a=0

(
∫ a

b=0
bN−1 db

)

a1−N ρ̄(a)Mρ̄(a) da

=
NσN
2−N

∫

∞

b=0

(
∫

∞

a=b
a1−N ρ̄(a)Mρ̄(a) da

)

bN−1 db

=
NσN
2−N

∫

∞

b=0
ρ̄(b)mbN−1 db− µresc

NσN
2−N

∫

∞

b=0

(
∫

∞

a=b
a2−N dā

)

bN−1 db

=
NσN
2−N

∫

∞

a=0
ρ̄(a)maN−1 da− µresc

NσN
2−N

∫

∞

a=0

(
∫ a

b=0
bN−1 db

)

a2−N dā

=
NσN
2−N

∫

∞

a=0
ρ̄(a)maN−1 da− µresc

σN
2−N

∫

∞

a=0
a2 dā .

Substituting into (2.6), we obtain the following expression for the free energy of the stationary
states:

1

NσN
F [ρ̄] =

(

1

N(m− 1)
+

1

2−N

)
∫

∞

a=0
ρ̄(a)maN−1 da+

µresc
N

(

1

2
− 1

2−N

)
∫

∞

a=0
a2 dā .

Next, we estimate the interaction term of the free energy for ρ using (3.7) for k = 2−N ,
∫

∞

r=0
ρ(r)Mρ(r)r dr =

∫

∞

a=0
Mρ̄(a)

(

ψ′(a)
)2−N

dā

≤N
∫

∞

a=0

∫ a

b=0
Mρ̄(a)ϕ(b)

(2−N)/N bN−1a2−2N dbdā

=N

∫

∞

b=0
ϕ(b)(2−N)/N

{
∫

∞

a=b
Mρ̄(a)a

2−2N dā

}

bN−1 db .

Therefore, we have
∫

∞

r=0
ρ(r)Mρ(r)r dr =N

∫

∞

b=0
ϕ(b)(2−N)/N ρ̄(b)mbN−1 db

−Nµresc

∫

∞

b=0
ϕ(b)(2−N)/N

{
∫

∞

a=b
a2−N dā

}

bN−1 db

sinceMρ(r) =Mρ̄(a) and where we used the characterisation (3.2) of stationary states provided
in Lemma 6. Estimating the confinement term as in (3.9), we obtain the following estimate
on the free energy as given in (2.6):

1

NσN
F [ρ] ≥

∫

∞

a=0

(

ϕ(a)1−m

N(m− 1)
+
ϕ(a)(2−N)/N

2−N

)

ρ̄(a)maN−1 da

+ µresc

∫

∞

a=0

∫ a

b=0

(

ϕ(b)2/N

2
− ϕ(b)(2−N)/N

2−N

)

a2−NbN−1 dbdā .

We conclude as before using (3.10)–(3.11). �

Theorem 2 directly implies Corollary 3:
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Proof of Corollary 3. Assume there are two radial stationary states to equation (1.4) with the
same mass M : ρ̄1, ρ̄2 ∈ Y∗

M . Then Theorem 2 implies that F [ρ̄1] = F [ρ̄2], and so ρ̄1 = ρ̄2 (up
to dilations if m = mc, µresc = 0 and M =Mc). �

Appendix A. Properties of Hypergeometric Functions

In this work, we are making frequent use of the fact that the Riesz potential of a radial
function can be expressend in terms of the Gauss Hypergeometric Function,

(A.1) F (a, b; c; z) :=

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!

which we define for z ∈ (−1, 1), with parameters a, b, c being positive. Here (q)n denotes the
Pochhammer symbol,

(q)n := q(q + 1) · · · (q + n− 1) if n > 0 and (q)n = 1 if n = 0 .

In our context, the following analytical continuation allows to establish the link with the Riesz
potential,

F (a, b; c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
(1− zt)−a(1− t)c−b−1tb−1 dt,

Notice that F (a, b, c, 0) = 1 and F is increasing with respect to z ∈ (−1, 1). Moreover, if
c > 1, b > 1 and c > a+ b, the limit as z ↑ 1 is finite and it takes the value

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c − b)
,

see [23, §9.3]. To simplify notation, let us define

(A.2) H(a, b; c; z) :=
Γ(b)Γ(c− b)

Γ(c)
F (a, b; c; z) =

∫ 1

0
(1− zt)−a(1− t)c−b−1tb−1 dt .

We will also make use of some elementary relations. Firstly, the derivative of F in z is given
by [1, 15.2.1]

(A.3)
d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1, c + 1, z) .

Further, the following quadratic transformation holds true for hypergemetric functions [1,
Formula 15.3.17]:

(A.4) F (a, b; 2b; z) =

(

1

2
+

1

2

√
1− z

)

−2a

F

(

a, a− b+
1

2
; b+

1

2
;

(

1−
√
1− z

1 +
√
1− z

)2
)

.

Finally, we will make use of the following two identities [1, 15.2.18 and 15.2.17],

(A.5) (c− a− b)F (a, b; c; z) − (c− a)F (a− 1, b; c; z) + b(1− z)F (a, b+ 1; c; z) = 0 ,

and

(A.6) (c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z) − (c− 1)F (a, b; c − 1; z) = 0 .
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Appendix B. Proof of Lemma 7

In this appendix we give a complete proof of Lemma 7. The case N = 2 will be treated
separately, and we present here two different proofs. The first one is in the same spirit as for
higher dimensions and uses the integral representation (A.2) to motivate inequality (3.4), a
simple consequence of Jensen’s inequality. The second proof is much shorter and follows from
a simple convexity argument, however, it cannot be generalised to higher dimensions up to
our knowledge.

Proof 1 of Lemma 7 in dimension N = 2. We have d2 = 2π, and so

ϑk,2(t) = 2πF

(

−k
2
,−k

2
, 1, t2

)

= ΓkH

(

−k
2
,−k

2
, 1, t2

)

(B.1)

= Γk

∫ 1

u=0
u−k/2−1(1− u)k/2

(

1− t2u
)k/2

du ,

where

Γk :=
2π

Γ(−k/2)Γ(1 + k/2)
.

We aim at decoupling t and u, which is a crucial step in the forthcoming estimates. By
convexity of (·)k/2,

[

1− u+
(

1− t2
)

u
]k/2

=

[

α
1− u

α
+ (1− α)

(

1− t2
)

u

(1− α)

]k/2

≤ α

[

1− u

α

]k/2

+ (1− α)

[

(

1− t2
)

u

(1− α)

]k/2

,

where the coefficient α is chosen such that equality arises for t = c:

1− u

α
=

(

1− c2
)

u

(1− α)
, α =

1− u

1− c2u
, 1− α =

(

1− c2
)

u

1− c2u
.

Therefore we have:
∫ 1

u=0
u−k/2−1(1− u)k/2

(

1− t2u
)k/2

du

≤
∫ 1

u=0
u−k/2−1(1− u)k/2

{

(1− u)(1 − c2u)k/2−1 + (1− c2)1−k/2u(1− c2u)k/2−1(1− t2)k/2
}

du

≤
∫ 1

u=0
u−k/2−1(1− u)k/2+1(1− c2u)k/2−1 du

+ (1− c2)1−k/2(1− t2)k/2
∫ 1

u=0
u−k/2(1− u)k/2(1− c2u)k/2−1 du

= H

(

−k
2
+ 1,−k

2
, 2, c2

)

+ (1− c2)1−k/2(1− t2)k/2H

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

.

To rewrite H in terms of the hypergeometric function F , recall that Γ(z+1)/Γ(z) = z for any
z ∈ C that is not an integer less or equal to zero, and so we have Γ

(

−k
2 + 1

)

/Γ
(

−k
2

)

= −k
2 ,

and for k 6= −2n, n ∈ N>0,

Γ
(

2 + k
2

)

Γ
(

1 + k
2

) = 1 +
k

2
.
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It follows that whenever k 6= −2n, n ∈ N>0,

ϑk,2(t) ≤ ΓkH

(

−k
2
+ 1,−k

2
, 2, c2

)

+ (1− c2)1−k/2(1− t2)k/2ΓkH

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

= 2π

(

1 +
k

2

)

F

(

−k
2
+ 1,−k

2
, 2, c2

)

− πk(1 − c2)1−k/2(1− t2)k/2F

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

.(B.2)

We have on the one hand from (A.3),

(B.3) ϑ′k,2(c) = πck2F

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

.

On the other hand, we deduce from (A.5) and (A.6),

(1 + k)F

(

−k
2
+ 1,−k

2
, 2, c2

)

=
k

2
(1− c2)F

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

+

(

1 +
k

2

)

F

(

−k
2
,−k

2
, 2, c2

)

,

(

1 +
k

2

)

F

(

−k
2
,−k

2
, 2, c2

)

=
k

2
F

(

−k
2
+ 1,−k

2
, 2, c2

)

+ F

(

−k
2
,−k

2
, 1, c2

)

,

that
(

1 +
k

2

)

F

(

−k
2
+ 1,−k

2
, 2, c2

)

=
k

2
(1−c2)F

(

−k
2
+ 1,−k

2
+ 1, 2, c2

)

+F

(

−k
2
,−k

2
, 1, c2

)

.

Combining the above and (B.1), the last identity rewrites as

(B.4)

(

1 +
k

2

)

F

(

−k
2
+ 1,−k

2
, 2, c2

)

=
(1 − c2)

2πck
ϑ′k,2(c) +

1

2π
ϑk,2(c) .

The two relations (B.3) and (B.4) applied to (B.2) complete the proof of (3.4) in dimension
N = 2. �

Alternatively, the special case N = 2, c = b/a and t = ψ′(b)/ψ′(a) for b < a can be shown
by a simple convexity argument:

Proof 2 of Lemma 7 in dimension N = 2. Since (·)k/2 is convex, we have directly from the
definition of a convex function

(

ψ′(a)2 − ψ′(b)2u
)k/2

=

(

(1− u)a2
ψ′(a)2

a2
+ u(a2 − b2)

(

ψ′(a)2 − ψ′(b)2

a2 − b2

))k/2

≤(1− u)a2(a2 − b2u)k/2−1

(

ψ′(a)2

a2

)k/2

+ (a2 − b2)u(a2 − b2u)k/2−1

(

ψ′(a)2 − ψ′(b)2

a2 − b2

)k/2

(B.5)
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Writing ϑk,2(T ) for T = ψ′(b)/ψ′(a) explicitly in terms of the hypergeometric function F , we
have from (B.1) and (B.5):

ϑk,2(T ) = Γkψ
′(a)−k

∫ 1

0
u−k/2−1(1− u)k/2

(

ψ′(a)2 − ψ′(b)2u
)k/2

du

≤ Γk

∫ 1

0
u−k/2−1(1− u)k/2+1

(

1− b2

a2
u

)k/2−1

du

+ Γkψ
′(a)−k

∫ 1

0
u−k/2(1− u)k/2(a2 − b2)1−k/2ak−2

(

1− b2

a2
u

)k/2−1
(

ψ′(a)2 − ψ′(b)2
)k/2

du

= Γk

∫ 1

0
u−k/2−1(1− u)k/2

(

1− b2

a2
u

)k/2−1

du

− Γk

∫ 1

0
u−k/2(1− u)k/2

(

1− b2

a2
u

)k/2−1

du

+ (a2 − b2)1−k/2ak−2

(

Γk

∫ 1

0
u−k/2(1− u)k/2

(

1− b2

a2
u

)k/2−1

du

)

(

1− T 2
)k/2

.

Note that

ϑk,2

(

b

a

)

= Γk

∫ 1

0
u−k/2−1(1− u)k/2

(

1− b2

a2
u

)k/2

du,

ϑ′k,2

(

b

a

)

= −bk
a

(

Γk

∫ 1

0
u−k/2(1− u)k/2

(

1− b2

a2
u

)k/2−1

du

)

,

ϑk,2

(

b

a

)

− b

ak
ϑ′k,2

(

b

a

)

= Γk

∫ 1

0
u−k/2−1(1− u)k/2

(

1− b2

a2
u

)k/2−1

du,

and so the result is immediate. �

In higher dimension N ≥ 3 the proof becomes more involved. As we are not aware of any
suitable inequality involving hypergeometric functions, we argue directly from the representa-
tion using series (A.1). Further, we will make use of relative convexity properties defined as
follows:

Definition 8 (Relative convexity). Let g and ϕ be C2 functions defined on some interval
I ⊂ R. We say that g is convex relatively to ϕ if and only if the following convexity-like
inequality holds true:

∀(t, c) ∈ I2 g(t) ≥ α+ βϕ(t) ,

where α and β are chosen in order to fulfill zeroth and first-order approximation at t = c:

α = g(c) − g′(c)

ϕ′(c)
ϕ(c) ,

β =
g′(c)

ϕ′(c)
.

In other words, the function g ◦ ϕ−1 is convex.

A straightforward computation shows that g ◦ ϕ−1 is convex if and only if the following
criterion is valid:

∀t ∈ (0, 1) g′′(t) ≥ ϕ′′(t)

ϕ′(t)
g′(t) .
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Proof of Lemma 7 in dimension N ≥ 3. By Definition 8, Lemma 7 states that the function
ϑ(t)/k with ϑ(·) = ϑk,N(·) as defined in (2.3) is convex relatively to (1− tN )k/N . Or alterna-
tively, the function g(z) defined by

g(z) :=
dN
k
F
(

ā, b̄; c̄; z
)

=
dN
k

∞
∑

n=0

(ā)n(b̄)n
(c̄)n

zn

n!

with

ā := −k
2
, b̄ := 1− k +N

2
, c̄ :=

N

2
is convex relatively to (1− zN/2)k/N . This statement is equivalent to the following inequality:

(B.6) zg′′(z) ≥
(

k

2
− 1 +

N − k

2

1

1− zN/2

)

g′(z) .

Note that here b̄ > 0 since k < 2 − N , and so all parameters ā, b̄, c̄ are strictly positive. We
now use the two following properties:

(i) the function g is strictly decreasing when k ∈ (−N, 2−N),
(ii) we have the following sharp inequality for t ∈ (0, 1):

N

1− tN
≥ 2

1− t2
+
N − 2

2
.

The first item (i) is obtained from identity (A.3):

g′(z) =
dN
k

āb̄

c̄
F (ā+ 1, b̄ + 1, c̄ + 1, z) = dN

(

k +N − 2

2N

)

F (ā+ 1, b̄+ 1, c̄+ 1, z) .

To obtain the second item (ii), we need to show that u(t) ≥ 0 for all t ∈ (0, 1), where we define

u(t) := N(1− t2)− 2(1 − tN )−
(

N−2
2

)

(1− t2)(1 − tN ) .

Note that u(0) = (N − 2)/2 and u(1) = 0. It is therefore enough to show that u′(t) ≤ 0 on
(0, 1). Differentiating, we have

u′(t) = −2Nt+ 2NtN−1 +
(

N−2
2

) [

2t(1− tN ) +NtN−1(1− t2)
]

= −(N + 2)
(

t− N
2 t

N−1 +
(

N−2
2

)

tN+1
)

.

By Young’s inequality,

tN−1 ≤ 2
N t

θN/2 +
(

N−2
N

)

tνN/(N−2) , θ =
2

N
, ν =

(N − 2)(N + 1)

N
.

and so u′(t) ≤ 0 follows. This concludes the prove of (ii).
Hence, in order to show inequality (B.6) it is enough to prove

zg′′(z) ≥
(

k

2
− 1 +

N − k

N

1

1− z
+

(N − k)(N − 2)

4N

)

g′(z)

thanks to identity (ii). This is equivalent to the inequality

(1− z)zg′′(z) ≥
(

(N + k)(N − 2)

4N
+

4N − 2Nk −N2 + (k + 2)N − 2k

4N
z

)

g′(z) .

Dividing by z and using that z ≤ 1, it is enough to prove that

(1− z)g′′(z) ≥
(

(N + k)(N − 2)

4N
+

4N − 2Nk −N2 + (k + 2)N − 2k

4N

)

g′(z) ,

which simplifies to

(1− z)g′′(z) ≥
(

1− k

N

)

g′(z) .(B.7)
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We conclude that (B.7) directly implies Lemma 7. We now examine inequality (B.7) term by
term using the representation by series. To establish a relation between g′ and g′′, we make
use of the following identities for the Pochhammer symbol:

(q + 1)n =
q + n

q
(q)n , (q)n+1 = (q + n)(q)n .

We can then write the left hand side of (B.7) as

(1− z)g′′(z)

= (1− z)dN

(

k +N − 2

2N

)

(ā+ 1)(b̄ + 1)

(c̄+ 1)

∞
∑

n=0

(ā+ 2)n(b̄+ 2)n
(c̄+ 2)n

zn

n!

= dN

(

k +N − 2

2N

)

(ā+ 1)(b̄+ 1)

(c̄+ 1)

∞
∑

n=0

(ā+ 2)n(b̄+ 2)n
(c̄+ 2)n

(

zn − zn+1
)

n!

= dN

(

k +N − 2

2N

)

(ā+ 1)(b̄+ 1)

(c̄+ 1)

∞
∑

n=0

(

(ā+ 1 + n)(b̄+ 1 + n)− n(c̄+ 1 + n)

(ā+ 1 + n)(b̄+ 1 + n)

)

(ā+ 2)n(b̄+ 2)n
(c̄+ 2)n

zn

n!

= dN

(

k +N − 2

2N

) ∞
∑

n=0

(

(ā+ 1 + n)(b̄+ 1 + n)

(c̄+ 1 + n)
− n

)(

(ā+ 1)n(b̄+ 1)n
(c̄+ 1)n

)

zn

n!
.

Comparing this expression term by term to the right hand side of (B.7),

(

1− k

N

)

g′(z) =

(

1− k

N

)

dN

(

k +N − 2

2N

) ∞
∑

n=0

(

(ā+ 1)n(b̄+ 1)n
(c̄+ 1)n

)

zn

n!
,

we need to show that for all n ≥ 0,

(ā+ 1 + n)(b̄+ 1 + n) ≤
(

1− k

N
+ n

)

(c̄+ 1 + n)

(note that the sign has changed due to division by k + N − 2 < 0). Expanding with respect
to n, this is equivalent to

(

ā+ b̄− c̄+
k

N

)

n+ (ā+ 1)(b̄+ 1)− (c̄+ 1)

(

1− k

N

)

≤ 0 .

We claim that the latter holds true, since we have both

ā+ b̄− c̄+
k

N
= −k + 1−N +

k

N
=

(N + k)(1−N)

N
< 0 ,

and

(ā+ 1)(b̄ + 1)− (c̄+ 1)

(

1− k

N

)

=
k(N + k)

4
+ 1− k −N +

k

N

= (N + k)

(

k

4
+

1

N
− 1

)

< 0 .

Finally, the fact that β(c) ≤ 0 follows directly from ϑ′k,N(c) ≥ 0. The sign of α(c) is a
consequence of the convexity inequality that we showed above. More precisely, as remarked
above, inequality (3.4) is equivalent to

g′′(c) ≥ ϕ′′(c)

ϕ′(c)
g′(c) ∀c ∈ (0, 1) .
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Therefore, differentiating α = g(c) − g′(c)

ϕ′(c)
ϕ(c) with respect to c, we have

α′(c) =
ϕ(c)

ϕ′(c)2
(

−g′′(c)ϕ′(c) + g′(c)ϕ′′(c)
)

≤ 0 .

Together with

α(c) → ϑk,N(0)

k
=

2N−2σN−1

k

Γ
(

N−1
2

)2

Γ(N − 1)
< 0 as c→ 0+ ,

we conclude that α(c) ≤ 0 for all c ∈ (0, 1). This completes the proof of Lemma 7. �
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