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Supplementary Figure 1
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Supplementary Figure 1. Two-phonon scattering rates with all phonon modes included. The 2ph scattering rates

Fﬁfh) in GaAs at 300 K, computed using only the LO mode (curve labelled “2ph polar”) and with all phonon modes included
(curve labelled “2ph all modes”).
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Supplementary Figure 2. Mobility calculation in BaSnOs3. Electron mobility in BaSnO3 computed using the same methods
as in Fig. 7 of the main text. It is seen that the iterative BTE with only 1ph scattering overestimates the mobility, while
including 2ph scattering improves the agreement with experiment, similar to GaAs. Experimental data are shown with markers
at room temperature and dashed lines at lower temperatures. The experimental data are from Figs. 4 and 5 in Ref. [1]. We
used the single crystal mobility data for a 0.5 — 1.5 x 10%° ¢cm ™2 carrier concentration range. Our calculation used a 0.8 x 10%°
cm ™3 carrier concentration.
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Supplementary Figure 3. Mobility results with experimental effective mass. Comparison of mobility results calculated
from our DFT band structure with effective mass of 0.055m¢ (left panel) and a band structure with the experimental effective
mass of 0.067mo (right panel) obtained by manually rescaling the DFT eigenvalues by a factor of 0.067/0.055. Here, mg is the

bare electron mass.

Supplementary Note 1: Analytic Derivation of the Scattering Rates of Two-Phonon Processes

In this section, we calculate the contributions to the electron-phonon (e-ph) scattering rates from the next-to-
leading-order self-energy diagrams. We use the Matsubara technique to calculate the two-loop self-energy, whose
imaginary part is related to the total scattering rates via the optical theorem (see Supplementary Figure 4). We focus
on the scattering processes with two external phonons.

The Feynmann rules, which have been derived in Mahan [2], will be adapted here to our context. The starting

point is the e-ph Hamiltonian

H= ankalkank + Z hwyqg (blqbyq + ;) + \/% Z Z Gmnv (K, q) (bl,q + bl,q) ajnkJrqank,
nk vq Q2 mnk vq
where a,k and b,q are the annihilation operators for electrons and phonons with energies €,k and hw,q, respectively,
gmnv (K, q) is the e-ph coupling constant, and Ngq is the number of unit cells in the crystal. Comparing with Eqgs.
(2.67) and (3.200) in Ref. [2], we have introduced the dependence on electron crystal momentum k for the e-ph
couplings and the electron band indices m and n. Also note that for the Hamiltonian to be Hermitian, the e-ph

couplings must satisfy ¢, (k,q) = gnm.(k +q, —q).
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Supplementary Figure 4. Schematic of the scattering rate series. The first equality is the optical theorem that relates
the imaginary part of the self-energy to the total scattering rates. Here and below, solid and dashed lines represent electron
and phonon propagators, respectively. The three processes in the last row are the two-phonon processes on which we will be

focusing.

Feynmann Rules

The rules for constructing diagrams are listed in Sec. 3.4 of Ref. [2]. We slightly modify them here:

1. With each internal electron line, associate the propagator G() (k,iky) = 1/(ikx — Enk), where &k = ek — p and
1 is the chemical potential.



2. With each internal phonon line, associate the propagator D) (q, iw,) = —2w,q/(w? + wZy)- Note that we set
h =1 for convenience here and below; it can easily be restored by dimensional analysis.

3. With each vertex, associate the e-ph coupling constant g,nn. (k,q). Beware of the direction of q.
4. Conserve momentum and complex frequency at each vertex and sum over the internal degrees of freedom.

5. Multiply the expression by
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where F' is the number of closed Fermion loops. The (254 1) factor is a summation over spin degrees of freedom,

and 25 + 1 = 2 for electrons. The integer L is the number of loops, and 8 = 1/kgT, where T is temperature.
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Electron Self-Energy

We cousider below the 1-loop diagram that gives the lowest-order (one-phonon) self-energy and the three relevant
two-loop diagrams for the electron self-energy. Diagram Ilc will not contribute to the two-phonon processes and thus
will not be considered in the following.

One-Loop Diagram I
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As a warm up exercise, we first derive the one-loop self-energy diagram, labelled as I in figure above. Since L =1
and F' = 0, the Feynman rules give
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where f(z) is defined as
2wy, 1
fz) = 5
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To apply the Matsubara frequency summation method, we define the bosonic weighting function as in [2]:

1

np(2) = —g—,

whose poles are at iw, = 127/, with residues 1/3 and integer « values. The weighting function for fermions is

1

) =

whose poles are at iky = (2X + 1)7/, with residues —1/8 and integer A values.
For this diagram, we will do the contour integral for f(z)np(z) at the complex infinity. Since f(z)ng(z) decays
faster than 1/z, we can apply the Cachy residue theorem, which gives (here and below, 2z’ are the relevant poles):

0= lim %ﬁf(z)ng(z)

|z| =00 2m

Y. Res{f(z)ns(z)}

z' of fnp

> w5+ 3 Resl ()

W z' of f

Using this result, we get:

=0 — = Y lgmm k@)l 3 Res(f()}na().

mrq z'of f
The poles of f(z) are at 21 = wyq, 22 = —Wyq and 23 = —ikx + {mktq. Their residues are
Res{f(z),21} = !
. Wyq + Zk)\ - gmk—&-q
1
Res{f(z),z} = — -
{f( ) 2} —Wyq + Zk}\ - fmk-i—q
2w 1 1
Res{f(z2),z3} = - ¥ = - - - .
{f( ) 3} (_'Lk)\ + gkarq)Q - w?/q —Wyq + Zk)\ - 5mk+q Wyq + Zk)\ - 5mk+q
We also know that ng(z1) = np(wuq) = Nug, nB(22) = np(—wuq) = —Nug—1 and np(z3) = —nr(nk+q) = — frnk+as

where N and f are the thermal occupation numbers for phonons and electrons, respectively. We also used the fact
that tkyx = i(2\ + 1)7/8. Substituting this result in the self-energy expression, we get
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Employing the analytic continuation ik)y — E + in, we obtain the off-shell lowest-order e-ph self-energy:
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We will be mainly interested in the scattering rate at the electron energy &,k and therefore we will set E = &, to
obtain the on-shell self-energy for the state with band n and crystal momentum k. Using the identity

1 1
— = P— —ind(x)
x +n T

and Eq. (7.304) in Ref. [2], which states that the scattering rate I" is obtained as I' = —(2/h)ImX, we get
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Sl)c - Z |gm7w k q [(leq + fmk+q)5(§nk + hqu - fmk-&-q) + {(1 + Nuq - fmk-&-q)(s(fnk - hqu - gmk+q)} s
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with A placed back into the expression. This is the well-known lowest-order scattering rate commonly used in first-
principles calculations.

Two-Loop Diagram Ila

Now we compute the first two-loop diagram, which is shown in the figure below. Since L = 2 and F' = 0, the
Feynman rules give
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where f(iwy,iw,) is defined as
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where in A,, we collect all terms independent of iw,. Let us sum over iw, first. Performing the contour integral for
flicor, 2)np(2) gives

Zf(z’w,{,iwa) =-4 Z Res{ f(iwx, 2 )np(z")}.

TWe z'of f
Note that f(iwy, z) has three poles, whose residues and bosonic weight factors are computed as:
z1 = _ik/\ — Wy + gngk—&-q—&-p

Res{f(iwg,z1)} = Ax ( 1 B 2 _lwup)
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where we defined two functions, A=) (iw,) and h(*) (iw,), as the first and second terms in the expression above.
We then sum over iw,, using again

Zh(i)(iwn) =-0 Z Res{h®) (2 \np()}.

W z' of h(¥)

A subtle point is that the cases with n3 # n; and ng = ny have different pole structures, and need to be discussed
separately (see the figure above for diagram IIa; ng and ny label two intermediate electronic states in the self-energy
diagram). Luckily, the two cases give the same expression for the two-phonon scattering processes, as we show
explicitly below. Before carrying out the calculation, let us introduce some useful abbreviations. We will use in the

following Snik+a = §15 niktp = Sips fn2k+q+p = fo, Wyq = Wq, €te.

Case with ng # ni

Let us focus on k(™) for the case ng # ny first. In this case, h(=) is defined as

1 1 —2wq 1+ Np—fo

) (z) = .
(2) z+iky — & 2+ iky — &3 22—w(2lz+ik>\—§2—wp

It has five poles, which are given here together with their residues and bosonic weight factors:

z1 — 7Z‘k)\+§1
~ 1 14N, fo 1 1
Res{h() = p _
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np(z3) = Ng

24 — —Wq
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nB(24) = —Nq -1
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The terms related to the two-phonon processes are those containing 1/(ik — &2 £ wp £ wq). After repeating this
procedure for h(*) collecting terms and ignoring terms that are irrelevant to the two-phonon processes, we get

1 o 1 1+ Ny — fo Ny Nofo 1
?%%f@wmzwa) :ik,\—§2—wp+wq [ik,\—§1+wq ik,\—§3+wq §2—£1+wp 52—§3+wp}
., 1 (14 Np—fo 14Ny N 1]
thy — & —wp —wq | thy — &1 —wq thy — &3 —wq S —& +wp &2 — & +wp |
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N 1 [ Np+ fo 1+Ng  fo(1+Np) 1 ]
thy —§+wp —wq [ thy — &1 —wq thy —§—wqg S —& —wp {2 — &3 —wp |

The rates of the two-phonon processes emerge after analytically continuing ik to E + in and taking the imaginary
part of 1/(E — & £wp twq+in). We also use the delta functions to set E = s Fwp Fwq in some of the denominators.
After carrying out these calculations, we obtain

1 . . 1 1
Im{w%;%;f(zwmzwg)} = _ZW5(E_52_WP+Wq)§2_€1+wp 52_53_1_%)[(1+Np_f2)Nq+pr2]
. 1 1
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1 1
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—im6(E — & + wp — wq) [ (Np + f2)(1+ Ng) — fa(1+ Np) |
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Case with nz = ny
In this case, h(7) is defined as
R (2) = (

The function h(z)np(z) has a pole of order 2 at z; = —iky + &;. By employing

1 P wg 1+ Np—fo
24 iky — & fowaerik)\ffgpr'
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where n is the order of the pole, we get

4 1+ N, — 2 1+ N, —
21Wgq + Np — f2 n(z1) + 20Jq + Np — f2

. - ne(z
(2§ —w2)? 21+ iky — & — wp 27 —w? (21 +iky — & —wp)? 5(21)

Res{h7)np,z1} =



720Jq 1+prf2
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After substituting z1 = —ikx + &1, np(z1) = —f1 and n’z(z1) = Bf1(1 — f1), we get

ng(21).

) _ N1+ N — /o) —2wq Bl — f1)(A+ Np — f) —2wq
Res{h e 21} = (678 o) Ghr €2 a2 €& — & —wp (ikx — €)% — w3
_ il + Np — fa) [ 1 _ 1 }

§1—&—wp (k=& +wq)?  (ikx— & —wq)? ]|

The other three poles are simple poles and can be treated in the usual way. Repeating this procedure for h(*) and
adding all the contributions, we get

ﬁQ ZZ]‘ (iwy,y twe ) =

Wy We

f1 PG Y

(ikx —&1)? —wd {(fl §2—wp)? &1—&—wp

2wq(Np + f2) [ bit N ﬁfl(l—fl)] N 2wq(1 + Np — fa)
(ikx —&1)? w2 [(&1—&a+wp)? & —&+wp

C 2wefa(14 Ny) ( 1 >2 2q f2Np ( 1 >2
(ikx — &+ wp)? —wZ \ &1 — &2 +wp (ik/\_§2_wp) —wZ \& — & —wp

+ (Np + f2) (
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2
Ng
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TN f2)<m—£1—wq {51—52—% N Sp——
= 1 |:Nq(1+Np_f2)+ pr2 ]
iy — & —wp +wq | (Tkr — &1 +wq)? (2 —& +wp)?
n 1 [+ Ng)(A+Np—fo)  Npfo }
iky —&o —wp —wq | (ikx — & —wq)? (&2 — &1 +wp)?
N 1 [ Ng(Np + f2) N f2 (14 Np) ]
ik}\ - 62 + Wp + Wq | (Zk)\ - Sl + wq)z (52 - 61 - Wp)2
. 1 [(L+ N (Np + f2)  fo (1+Np) ]
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We perform the analytic continuation iky — E + in, take the imaginary part of 1/(E — & + wp £ wq + i), and get

. 1
Im{,@2zsz”’wa } = *”T‘s(E*g?*prrwq)m[(1+Np*f2)Nq+pr2]
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o
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Two-Loop Diagram IIb

The second two-loop diagram, called here IIb, is shown in the figure below. Since this diagram also has L = 2 and
F =0, the Feynman rules give

IIb vq, ik
- -~ -~
P ~
/ \\ n3k-|._p’
T o |kA+i(L)c -
> > T > —
nk, nik+q, | n2k+q+p, , Nk,
ikn ik Fiok \i\k)\+i(1);<+i(.00,/ ikx
S ——
IJp,i(Do

1 * * . .
E(Hb) = ﬂ2Ng22 Z Z Z Ininv (ka q)gngngu(k + | o q)gngnl,u(k + qQ, p)gnsnp(kv p) Z Z f(’w‘)lm Z(.dg),

minazng vq pp Wy We

where f(iwy,iw,) is defined as

. . . 1 1 1 2wq 2wp
Flito,,itwy) = —— L _ e b
thy +iw, — & thy Fiw, +iw, — & thy +iw, — E3p —wE — Wg —Ws —wp
. 1 1 2wp

Tiky +iw, +iw, — Ea Tk +iw, — E3p —w2 — wl
Using a notation we introduced above, A, collects all terms independent of w,, and we use again abbreviations

introduced in the previous section, such as £3p = & k4p, €tc. Summing over iw, first, we get

Ly 1 ! !
P ) s ) 5) = An. - - — - .
B fin, 1o5) = fo iwr — &2+ &3p (ZkA tiwe =& —wp  ihy +iwy — & + wP)

TWe

4 A 1 ( 1 B 1 )
P Hiwn - 52 + €3p iky — £3p + wp iky — §3p — Wp
1 1 1 1
K - - + (Np + 1)A
tky +iw, — & +wp tky — &3p +wp

+NA K~ B . .
P ikx +iw, — & — wp iky — &3p — Wp

We then sum over iw,, and collect the relevant terms for two-phonon scattering processes, which are given below:

% Z Zf(iw,{, iwe) =

1 [ —f2 1 JaNp P Ny
Z'k/\_§2_""'p+wq 52_§1+wp Z'k/‘)\_&%p_‘up1_f‘2"l‘]vp ik/\_fl'i'wq §3p_€2+wq

14N, 1 2Ny 14N, Ny
§2_€1 + wp Z.k')\_f?)p_wp 1_f2+Np ik,\—§1+wq ik/\_g3p_wp
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n 1 |: fo 1 fQNp fo 1+Nq
ik/\_£2_°~)p_wq 52_§1+Wp ik}\_g?)p_wp]-_fQ""Np ik}\_fl_wq §3p_£2_wq

1N 1 JaNp 1+ Np 14 Ngq }
62_€1+Wp ik}\_gi%p_wp 1_f2+Np ik’)\_gl_wq ik/\_§3p_wp

1 { fa 1 f2(1+ Np) f2 Nqg
3

+- - —
ikx — &2 + wp + wq 2 —& —wp thy—&p+wp  fo+ Np ik — &1 Fwq E3p — &2 +wg

i Np 1 fo(1+ Np) Np Nq }
fg*élpr Z‘k)\*fgp+wp f2+Np ik,\f§1+wq Z‘k)\*fgp+wp

1 |: —f2 1 f2(1+Np) _ fo 1+Nq
ik}\_£2+wp_wq 52_51_wp ik}\_£3p+wp f2+Np ik}\_gl_wq £3p_£2_wq

_|_

—Np 1 J2(1+ Np) Np 14 Ngq }
52_§l_wp ik}\_é-Sp""wp f2+Np ik}\_gl_wq ikk_§3p+wp

After performing the analytic continuation and taking the imaginary part, we get

m {;ZZﬂm,M} _

Wy We

1 1
_md(E—§2—wp+wq)§2_§l+wp 52—§3p—wq[Nq+Nqu+pr2_qu2]
. 1 1
*Zﬁé(E*&*wp*Wq)&_gl_‘_wp fz_fgp_i_wq[(1+Np)(1+Nq)*f2(1+Np+Nq”
1 1
_iwé(E—§2+wp+wq)§2_£l_wp 62_§3p_wq[Nqu+qu2+pr2+f2]
1 1

—imé(E — & + wp — wq) [Np+Nqu+qu2_pr2]

o — &1 —wp & —&3p +wq
+...

Two-Phonon Scattering Rates

Collecting the contributions from diagrams ITa and IIb, using I' = —(2//)ImY, and setting E to the band energy
&nk, the scattering rate of the two-phonon processes becomes

2 1 : .
L = h N2 >0 [7(1)5(€nk — & — wp + wq) + 7V (Eu — & — wp — wq)
Q

ninz2n3 qp vy
+’7(iii)5(£nk - 52 + Wp + wq) + V(iV)é(gnk - 52 + Wp — wq) ’
where we introduce the process amplitudes

Y = (Ng + NqNp + Np fo — Nofa) x

Gninv (K Q) gnon,u(k + 9, P) (g;';w(k, DInyns K+ AP)  Gnongw (K +P,a) 5,0, (K, p)>
& —& +wp & — &+ wp & — &3p — wq

Y0 = [(1+ No)(1 + Np — fo) — Npfo]
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gnlnu(ka q)gngnlu(k +q, p) (g':;gnu (k’ q)g’:;gnglt(k +q, p) g’;’;gngl/(k + P, q)g:mnu (k7 p) )
o —& +wp §o— &3+ wp &2 — &3p +wq

AU = [Ny (Np + fa) + (1 + Np) fa] x

Gninw (K, @) Gnon, u(k + aQ, P) <g;‘13nu(k, DIons K+ AP)  Gnongw (K +P,a) G50, (K, p))
& —& —wp & —& —wp & — &3p — Wy

’Y(iV) = (Np + NgNp + Ngf2 — Np f2) X

Inynw (K, Q) Gnon, (kK + 9, P) <9;';W(k, DInons K+ AP)  Gnongw (kK +P,a) 5,0, (K, p)>
& —& —wp & —&—wp & — &3p + wq ’

Now we restore the infinitesimal 7 for the intermediate propagators. A useful sanity check is that our finite temper-
ature results should reduce to the zero temperature results in the 7" — 0 limit, from which we check that the pole
structure of the finite and zero temperature expressions are consistent with each other. At zero temperature, we can
directly compute the scattering amplitude M. The zero temperature Feynman rules {see Egs. (2.124) to (2.127) in
Ref. [2]} give

99

Mo~ ————.
E—-¢&+in

The scattering rate is proportional to the absolute square of the scattering amplitude:

gg
IN 2N _—

Therefore, we will insert the infinitesimals in a way that allows us to express the scattering rates in an absolute square
form. To achieve this, first note that quantities such as q, p, v and p are dummy variables that are summed over or
integrated, so we can rename them at will. Let us denote (vq <+ pup) the term with its dummy variables swapped in
the way indicated by the arrows, v <+ u, q <> p, etc. Let us consider the processes with one phonon absorption and
one phonon emission first, that is, the sum of terms (i) and (iv):

Z [V(i)d(gnk - 52 — Wup + qu) + V(iV)(s(gnk - 62 + Wup — wuq):|

ninsg
= > 1006k — & — wup + ) + 7 (v © 1P)I(Enk — &2 + wip — wra) (va ¢+ 1p)]
ning
= ,y(lela) 5(§nk - 62 - Wp,p + wuq)v
where
yOe1® =3 [v“) +7M(vg up)}
ning

Ininw (K @) noni (K +9,P) | Inynp (K P)gnon, v (K + P, q))

= (Ngq + NgNp + Npf2 — Nq f2) Z( §o— &1 +wp £ = &ip ~ wa

ny

> Z (gngnlj k q gn2n3u(k + q? ) + g':;gngy(k + p) q)gjlgnu(k7 p))
§2— & +wp €2 — {3p —wq

2
z : ninv ll) 2N [ 1: 9 p Q 1nu 117 p 971,2 1V l: p7 q

52_€1+wp+i”7 52_§1p_wq+i77

ni
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Since the expression is already in square form, we have inserted the in terms in a way that makes the expression
become an absolute square. Using a similar approach for the process in which the electron emits two phonons,

A2 = $ 40

nins

Wn) i v“i)}

I
g

nins

[v(“) +79 (vq up)}

I
i\

N =

[(1 + ]\/vq)(1 + Np - f2) - pr2}

)

2
Z (gnlmj (ka q)gnznlu(k + q, p) + gnlnp, (ka p)gnznly(k + P, q>>
52*§1+wp+i7l 52*§1p+wq+in

ni
and for the process in which the electron absorbs two phonons,

4(22) Z D)

nins

=2

nins

[,Y(iii) i ,Y(iii)}

DN | =

1 iii iii
= > 5 P+ wa o up)
nins
2
1 dn nu(k»Q)gnn (k+Qap) Inin (k,P)gnnu(k‘Fp,Q)
= — [Ngq(Np, + + (1 + N, 1 2M1p . 4 Jmnp 2M1 ‘
L Ng(p + £2) + (1+ Np) o] Z( Lo (et T

We thus get:

27T 1 ela (&) a
Ffl?h) = fﬁ Z ZZ [7(1 ! )5(§nk — & — wp + Wq) + 7(2 )5(§nk — &y — Wp — wq) + 7(2 )5(§nk — &+ wp + wq)} .
Q ny gp vp

Resonance

The last expression is very close to the final result given in Egs. (1)—(4) of the main text. The last problem we
need to solve is that the sum giving 1"5?1? ) in the expression above diverges when the intermediate electron state is on
shell, in which case the denominator in the «y terms given above vanishes, resulting in a divergent scattering rate. This
phenomenon is called resonance. The problem is that the intermediate state will eventually transition into a different
state, but using free propagators 1/(E — £ + in) for the on shell intermediate states implies an infinite intermediate
state lifetime. The common practice in this situation, which also arises in other quantum field theories, is to consider
the full electron propagator 1/(E — £ +in— X) as shown in the figure below, which introduces a finite lifetime for the
intermediate electronic state. Diagramatically, this approach is equivalent to performing a resummation of diagrams
to all orders, as is done in the well-known GW self-energy {see Eq. (5.54) in Ref. [2]}. For our 2ph scattering rate
expression, we simply add the intermediate state self-energy in the denominators of all the v terms above, which

removes the divergences.
I —— —@— + _@-@_ + o



13

Summary

We rewrite the expression in more compact form. Defining the momentum of the final electronic state as k'
k + q + p, and using the following constants

aélela) = 1, al()2e) =1, aga) =1, Oéglela) =1, 045126) =1, OéSlQa) =1,

we can write
(2ph) _ 2m 1 T(lela) | T5(2 =2
Lo —“{NgE:E:EZ[ﬂe)+F“”+ﬂa)a
ny vq pp

where
H = ,y(i) 8(Enke — Engler — Ofg)wup _ aS)WV‘l)'

The square amplitudes 7 for the different processes, i = lela, 2e and 2a, are defined as

2

) (1)

’Y(i) — A(l) Z <£ gnlnu(ka q)gnznlu(k + q, P) + gnlnu(kv p)gnznlu(k + P, q) )
’I'sz/

- fmk-i-q + O‘I(;)Wup +in— Zn1k+q gnzk’ - £n1k+p + O“(:ll)wlfq +in — 2Tl1k+P

ni

where we have taken into account the resonance by adding the intermediate state self-energy in the denominators.
The factors of A® contain the thermal occupation numbers of electrons and phonons, and are defined as

A(lela) — Nyq + NVCINHP + Np,pfnzk' — Nyqfnng
o 1
A(2):5[(1+Nyq)(1+Npp_fn2k/)_N,upfnzk’]7 (2)

1
AP = 9 [Noa(Nup + froxr) + (1 + Nyp) frowe] -

These are our final expressions for the two-phonon scattering rates, which are given in Egs. (1)—(4) of the main text.

Supplementary Note 2: Temperature Dependence of the Two-Phonon Scattering Rates

Supplementary Figure 5 below shows the temperature dependence of the ratios of the 2ph scattering rate and the
leading order scattering rate, T'(2Ph) /T(IPh) | Results are given for three electronic states, one in each of the regions I, IT

(a) Region I (b) Region II (c) Region III
10? p—r——— 10— W7
o 0% 1 1w0'F {1 10'F 3
S L 1 O g 10° E‘Ei:!:‘:é
= I 4 10tEF  ——d——r——4 107F R G a—
~~ 107%F 4 w72 ., . 4 107%F 3
£ 10°} {4 w0 T T 10t
S 10—y, . . 1 10° 1 110*E .
= 0ok U BT S 2 { 10} 3
of A?ph tcl>tal lllelaI ¢ 2e[ 2a of A|2ph tcl)tal Illelal ¢ 2eI 2a7 sf A[2ph tc[)tal lllelaI ¢ 2eI 2a7

1
200 250 300 350 400 450 500 200 250 300 350 400 450 500 200 250 300 350 400 450 500
Temperature (K) Temperature (K) Temperature (K)

Supplementary Figure 5. Temperature dependence of the 2ph scattering rates. Temperature dependence of the ratios
of the 2ph scattering processes to the leading order e-ph scattering rate. From left to right, the panels are for electronic states
with energies of 20, 45 and 90 meV above the conduction band minimum, and thus respectively in region I, II and III defined
in the main text.
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and IIT defined in the main text. The ratios are give for both the total 2ph scattering rate and (for completeness) for
the individual 2ph processes, lela, 2e and 2a. In the 200—500 K temperature range considered in this work, the ratio
of the total 2ph scattering rate to the 1ph scattering rate is nearly temperature independent in all three energy regions.

Supplementary Note 3: Boltzmann Transport Equation with Two-Phonon Contributions

Let us briefly summarize the formulation of the linearized Boltzmann transport equation (BTE) incorporating
the 2ph scattering processes. A more extensive explanation of its formulation and derivation will be presented in a
separate work. Defining the total e-ph scattering rate as

Ik = Fglllfh) 2ph = No Z Z NSIthq Z Z Z nQIfhgq, up
nz vq pp

the linearized BTE can be expressed as

Foc = Fl + 7ok Z Z ka+q~q(1115h3q T N2 Z Z Z Froiel n2kpht/q, up | (3)

n2 vq pp

where the relaxation time 7, is the inverse of the total scattering rate, namely 7, = 1/T',x, and the first and second
terms in brackets are due to the lowest-order (1ph) and 2ph scattering processes, respectively. The function F,x is the
unknown in the equation, and ng = TnkVnk, With v, the band velocity. After solving the equation, the electrical
mobility in direction ¢ can be obtained using

i: 266 ank fnk nk

C

where V. is the unit cell volume and n. the charge carrier concentration.

A common approach to computing F, is the relaxation time approximation (RTA), which neglects the second term
on the right hand side of Eq. (3) and approximates F, to F(,)Lk. A more accurate solution can be obtained through
an iterative approach (ITA) [3], in which, starting from the RTA solution F,; = F2,, one iteratively substitutes F,
in the right hand side of Eq. (3) to obtain an updated F,, until a converged F, is reached.

Our work presents calculations, both within the RTA and ITA, in which the 2ph processes are either included or
neglected; when only 1ph processes are included, 7,k is set to the inverse of Filllf h), and the second term in brackets
in Eq. (3) is neglected. The ITA with 2ph contributions included is the most accurate level of theory, and the one
that agrees best with experiment, while the ITA with only 1ph processes overestimates the experimental result. Note
that interference between 2ph processes is neglected in the mobility calculation. This is a good approximation if for
most of the (q, p) pairs there is only one process in Eq. (3) in the main text dominates, as in the case of GaAs that
we have verified.
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