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This paper studies the relationship between height, volume and stress distribution in a
superpressure pumpkin balloon with the differential pressure applied to the balloon. Two
different approaches are presented. A simple two-dimensional solution based on previous
work and a novel, detailed finite element simulation that provides three-dimensional solu-
tions are investigated. It is found that the finite element solution provides a much better
agreement with experimental results for the case of a flat facet ULDB balloon. It is also
found that a region of tensile hoop stress remains in the crown region of the balloon until
the bottom pressure becomes negative. This region prevents the formation of clefts in the
balloon and keeps its shape axisymmetric.

I. Introduction

Large balloons have an important role in atmospheric research, astrophysics, astronomy, etc. NASA’s
development of a large payload, high altitude and long duration balloon, the so called Ultra Long Duration
Balloon, or ULDB,! centers on a pumpkin shaped superpressure design. The idea behind the pumpkin
balloon, first proposed by J. Nott? is to use a light film as a gas barrier together with reinforced tendons to
which much of the film stress is transferred. However, several pumpkin balloons have been unable to take up
the desired, cyclically symmetrical equilibrium configuration; instead, they settle into a distorted anomalous
shape. Thus, the successful design of pumpkin balloons requires a thorough understanding of multiple stable
equilibria and the prediction of the evolution of the balloon shape.

The aim of this research is to study how the geometry (shape, height, volume) and mechanical parame-
ters (strain and stress distribution) of a pumpkin balloon vary as the balloon rises in the atmosphere. Two
different simulation methods are investigated in this paper: a finite-difference solution of the differential
equation for an axi-symmetric balloon that carries stress purely in the meridional direction and a fully three-
dimensional finite-element solution that incorporates wrinkling and frictionless contact. In both cases the
loading on the balloon is a non-uniform differential pressure with constant gradient along the height. Com-
parisons between these two solutions and experimentally observed shapes, from the test shown in Figure 1,
will be made.

The paper is organized as follows. Section II presents a brief review of the literature on the shape of
partially inflated balloons. Section III describes the test balloon. Section IV presents the axisymmetric
formulation and solution scheme. Section V introduces the finite-element solution and presents an extensive
set of results for the test balloon, that provide detailed insights into the behavior of partially inflated balloons.
Section VI concludes the paper.

II. Background

Pioneering studies of the structural mechanics of balloons were carried out by Smalley,? who proposed a
direct equilibrium approach (similar to that adopted in Section IV), and Nishimura, Ohai and Ogita,* who
proposed a variational formulation.
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fProfessor of Aeronautics and Civil Engineering, Graduate Aeronautical Laboratories, 1200 East California Boulevard, Mail
Code 301-46. e-mail sergiop@caltech.edu. Fellow of ATAA.
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Figure 1. Partially-inflated shape of 27 m diameter balloon (courtesy of NASA BPO).

The equilibrium equations for an axisymmetric balloon with so-called natural shape (i.e. a balloon that
carries the pressure load purely in the meridional direction) can be cast in terms of a first-order nonlinear
differential equation. Two numerical solutions to this equation were discussed by Rand.® The first is a
“shooting” method solution, where certain variables are assumed at the start of the integration and a check
of the final radius and angle is made at the end. If the check is not satisfied, the assumed starting values
are changed and the process repeated. The difficulty of the technique is that the equations may become
numerically unstable in the “rope” section at the bottom of the balloon. The alternative approach starts
from the observation that, regardless of altitude, the apex of the balloon is always fully inflated. Hence the
integration starts with an assumed pressure at the apex. As the integration proceeds down the balloon,
the circumferential load required to satisfy the equilibrium equations is monitored. This force will become
negative when excess material is available. At this point the force is set to zero and the calculation proceeds
to generate the “natural shape” with no circumferential stress. Due to the delicate balance between the
applied forces and the extent of the integration, the numerical procedure selected was a modified Runge-
Kutta technique. Figure 2 shows a sequence of results obtained by Rand. Archimedes’ principle states that
for equilibrium, the balloon must displace an amount of air equal to its weight, hence W, = Lift = bV
where V' is the volume of the balloon, W, is the total weight, and b = g(pout — pin) is the specific buoyancy
of the lifting gas. The subscript d indicates a quantity related to the design shape. At float b = by and
V = V4. When V < V4, equilibrium requires that bV = bsVy. Thus b is adjusted so that b = b;V;/V and
hence this parameter describes the ascent shape.

Baginski®® solved the problem of determining the equilibrium shape of a strained balloon using the
principle of minimum total potential energy. The total potential energy ¢ of a strained, inflated balloon in
a configuration ¢ is given by

e(p) =ep+ef+ei+ewop+ S + 57 (1)

where ep is the hydrostatic pressure potential of the lifting gas, ¢ the gravitational potential energy of the
film, €, the gravitational potential energy of the load tendons, €, the gravitational potential energy of the
apex fitting, S; the relaxed strain energy of the tendons, and S} the relaxed strain energy of film. Then,
the following problem is defined

min £(p) where ¢ € Cj (2)

where Cs denotes the class of feasible balloon shapes. Any boundary conditions or symmetry conditions that
are to be imposed on the particular shapes of interest can be built into Cs. S(V,n,r,) denotes a balloon with
volume V', n lobes and ry gores per lobe. The total number of gores, ny, can be expressed as ngy = ryn. As an
example of the shapes computed by Baginski, a partially inflated balloon with periodic lobes 5(0.4V3, 9, 3)
is shown in Figure 3.
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Figure 3. 27-gore pumpkin balloon S(0.4V,9,3): (a) 3-gore lobe from S (b) Balloon configuration S.8
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II1. Test Balloon

A “flat lobe” ULDB balloon with Sy = 35.93 m and consisting of 200 identical lobes was recently
tested indoors by the ULDB team. The balloon was initially filled with 18.3 kg of helium at atmospheric
pressure and then fully inflated by adding air. The fully inflated volume was approximately 7000 m® and the
corresponding differential density between the mixed helium and air inside the balloon and the air outside
was —0.162 kg/m®. The gas inside the balloon was slowly pumped out from an orifice in the bottom plate
and the shape of the balloon was observed during the ensuing deflation process.

A simple description of this test balloon can be obtained by placing the tendons on the surface of an
isotensoid (i.e. the equilibrium shape of a balloon that carries uniform pressure only through meridional
stress® 1) and by designing the cutting pattern such that the lobes span across the tendons. The following
relationships!? exist between the equatorial radius of the isotensoid, Tequ, and its height, 25, volume, V, and
meridional arc length, Sp:

zp =2 % 0.5991 X 7eqy (3)
V =2.7T458 x 3, (4)
So = 2.6221 X Tequ (5)

The values of these parameters in the case of the test balloon are presented in Table 1. The cutting
pattern for the lobes is thus obtained by noting that the subtended angle between adjacent meridians is
0 =2r/n = 3260000 = 1.8°. The width of the flat cutting pattern is obtained by considering the distance
between corresponding points on the two meridians. For example, we have z4 = 7¢qy, sin g. Finally the lobe
is copied and rotated n — 1 times to form a periodically symmetric surface, see Figure 4. The test balloon
was made of linear low density polyethylene (LLDPE) for the film and braided PBO for the tendons. The

material properties are given in Table 2.

20

flat lobe o

Figure 4. Definition of lobe cutting pattern

Table 1. Geometry of test balloon

Diameter (m), 2 X reqy 27.41

Height (m), zp 16.42

Gore Length (m), So 35.93

Volume (m?), V 7060

Radius of apex plate (m) 0.406
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Table 2. Material properties for test balloon

LLDPE film
Thickness of film, (mm) 0.013
Young’s Modulus, (N/mm?) 138.7
Poisson’s ratio, v 0.56
Density, p (kg/m?) 920
PBO tendons
Area, (mm?) 40
Young’s Modulus, (N/mm?) 4250
Density, p (kg/m3) 300

IV. Axisymmetric Solution

This section briefly reviews the analytical formulation for an axisymmetric balloon with zero hoop stress.

Its surface is defined by the meridional profile, 7(z), Figure 5. The radius of principal curvature in the

meridional direction is 71 and the second radius of principal curvature is r9; s represents the arc length in

the meridional direction, measured from the apex. The angle ¢ measures the colatitude, while the angle 6
measures the longitude. From Figure 5(a)

7 =r98in¢ (6)

and the meridional curvature has the standard expression

1_ drjd? (7)
o [+ (dr/dz)?)3

(b)
(a)

Figure 5. (a) Geometry of axisymmetric balloon; (b) equilibrium of infinitesimal element.

The meridional and hoop tensions per unit length are denoted by Ny and Ny respectively, the normal
pressure is denoted by Ap, and there is no shear for symmetry, see Figure 5(b). In general, they are related
by the three equations of equilibrium!3

6(7"2 sin (],5N¢)

9 —r1co8pNg =0 (8)
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in the meridional direction,

ONy
— =0 9
"5 (9)
in the hoop direction, and
N, N,
ey 0 Ap (10)
1 T2

along the normal.
Since it has been assumed that the film has no hoop tension

Ny =0 (11)
Hence, Equation 9 is satisfied and Equation 10 becomes
Ny = Aprq (12)

Substituting Equation 6, Equation 11 and Equation 12 into Equation 8 we get

3(21;%) _0 (13)
and solving this partial differential equation gives
Ny =C(0)/r (14)
For symmetry, Ny has to be independent of 6 and hence
Ny =C/r (15)

where C is called the stress constant. It can be seen that there is a singular point at the crown of the balloon,
where the above equation gives an infinite Ny.
Substituting Equation 12 into Equation 15, and then Equation 7 for r; and rearranging gives the differ-
ential equation governing the profile of the axisymmetric balloon with zero hoop stress
d*r

Ap
@ + ?T[l + (dT‘/dZ)z]

3
2

=0 (16)

This is an initial value problem because we know in advance only the boundary conditions at the crown,

which can be expressed as
dr

r(0) =0, (dz>0 = 0 (17)

A. Computation of Meridional Profile

The total meridional arc length Sy is assumed to be given and to remain constant. Hence throughout the
analysis the envelope arc length Se,, should also be equal to Sy, Figure 6. We postulate that the internal
gas density remains constant when the pressure at the bottom, Apg is decreased (this assumption would
not be acceptable in the general case of a helium-filled balloon rising in the atmosphere but is acceptable to
model the indoor experiments that have been carried out by the ULDB team). The differential pressure is
then given by

Ap = —Apg(z — z1,) + Apo (18)

where zj is the height of the balloon and Ap = pout — pin- Since the boundary conditions are known only
at the top, the integration of the differential equation should go from the top to the bottom.
Given the bottom differential pressure, Apg, the integration algorithm is as follows:

1 Guess the height of the balloon z;; and then find the distribution of pressure difference Ap from
Equation 18;

2 Guess the stress constant C'*;
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Figure 6. Assumed differential pressure distributions (a) fully inflated; (b) partially inflated.

3 Find trial envelope heights z,, and envelope arc length Se,, by solving Equation 16 by finite differ-
ences;

4 If Seny = Sp, then the solution continues to the next step; otherwise it returns to step 2;
5 If zeny = 2z, then the solution is completed; otherwise it returns to step 1.

If the balloon is fully inflated and pressurized, the bottom differential pressure Apg is positive and the
difference between top and bottom pressures is small. Hence the zero pressure point is at z > zeny, See
Figure 6(a). The process of deflation reaches a critical point when the bottom differential pressure turns
negative and the difference between top and bottom pressures becomes significant. From this point on, the
zero pressure point lies within the envelope of the balloon and the bottom part of the balloon is subjected
to negative pressure, see Figure 6(b).

B. Predictions for Test Balloon

We have used the above algorithm to compute the key geometric parameters of the test balloon at different
differential pressures. The results are presented in Table 3, and a selection of the corresponding shapes is
shown in Figure 7. Note that the top set of results corresponds to the isotensoid shape, as the pressure
gradient has been set to zero for this particular analysis.

(@) (b) ©

Figure 7. Shapes of axisymmetric balloons with zero hoop stress: (a) no. 1; (b) no. 2; (c) no. 8 (the numbering
corresponds to the rows in Table 3)
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Table 3. Axisymmetric predictions for test balloon

No. Bottom pressure | Pressure gradient | Volume | Max radius | Height
Apg (Pa) Ap (Pa/m) V (m?) Tmaz (M) | 2z (m)

1 10 0 7044.9 13.686 16.424

2 7 0.162 6217.03 12.157 22.131

3 4 0.162 6114.40 12.024 22.588

4 1 0.162 5959.07 11.843 23.026

5 0 0.162 5931.90 11.800 23.197

6 -0.5 0.162 5885.98 11.755 23.264

7 -1 0.162 5851.23 11.724 23.370

8 -1.5 0.162 5789.70 11.668 23.440

9 -2 0.162 5725.924 11.609 23.485

10 -2.5 0.162 5662.100 11.553 23.553

V. ABAQUS/Explicit Simulations

We have used ABAQUS/Explicit (version 6.7) to simulate the behaviour of the test balloon as it is
deflated. In general, ABAQUS/Explicit will compute the dynamic response of a structure subject to time-
varying loads or boundary conditions. However, by ensuring that the loading rate is sufficiently slow, the
dynamic response of the structure is sufficiently small that the response becomes effectively quasi-static. The
results presented in this section were obtained by carrying out the quickest possible quasi-static simulations
while ensuring that the kinetic energy is only a small fraction of the strain energy.

A. Simulation Details

The test balloon was modelled using the reduced integration three-dimensional, four-node elements M3D4R
for the balloon film and three-dimensional, two-node pin-jointed bars T3D2 for the tendons. Each tendon
was divided into 70 elements and each lobe was modeled with a mesh of 140 elements. Hence the complete
model consisted of 28,000 elements and approximately 14,000 nodes.

The three translational degrees of freedom of the node at the bottom of the balloon were fixed. The
two in-plane translational degrees of freedom of the node at the crown of balloon were also fixed. All other
degrees of freedom were left unrestrained.

To define the lobe geometry, the initial geometry of the lobe was mapped onto the flat cutting pattern of
the lobe (in the reference coordinate system) using the command: “Initial conditions, Type=Ref Coordinate”.
This command sets up a one-to-one correspondence between elements in the two coordinate systems, see
Figure 8. The initial stresses and strains in the initial configuration are computed automatically.

A user-defined subroutine (Vumat) was used to model wrinkling in the film and thus avoid compressive
stresses. A mixed wrinkling criterion based on the variable Poisson’s ratio method'4 1% was adopted. Denot-
ing the constitutive model for the membrane by {o} = [D]{¢}, and the major and minor principal stresses
by o1, 02, this subroutine recursively modifies the matrix D according to the state (wrinkled, taut or slack)
of each element, as follows.

e 05 > (0: the membrane is taut, hence

E

1.2

Dy

0 0 (1-v)/2

e 05 <0 and &1 > 0: the membrane is wrinkled, hence
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Q Q 1

where P = (¢, —€,)/(e1 — €2) and Q = 7., /(€1 — €2)

e 1 <0 and o9 < 0: the membrane is slack and hence Dy =0

It is also essential to model contact, to prevent the penetration of different parts of the membrane through
other parts. General contact was defined for the surface of the balloon interacting with itself, using the option
“*Contact Inclusions”.

During the simulation the rate of variation of any loads has to be sufficiently slow that the kinetic energy
in the whole structure is negligibly small; also, the time-step increment has to be sufficiently small to avoid
spurious effects due to stress waves. ABAQUS/Explicit will automatically calculate these increments, but
linear bulk viscosity, defined by linear viscosity coefficient, is introduced to dampen any oscillations. This
enhances stability but requires smaller time increments.

B. Results

Starting from a fully-inflated balloon with a uniform pressure of 10 Pa, a constant pressure gradient of
0.162 Pa/m was imposed and then the bottom differential pressure was decreased in steps of decreasing size
down to —2.5 Pa. The results are presented in Table 4.

The linear viscosity coefficient should always be kept as small as possible to avoid affecting the equilibrium
shape of the structure, however its value had to be increased when the bottom pressure became negative to
avoid that the computation stops due to large distortion of the elements. The energy variation throughout
the simulation is plotted in Figure 9. Note that the artificial energy, used to control hourglassing in the
reduced integration membrane elements, decreases once the deflated shape of the balloon has developed.
Also note that the amount of viscous energy that is required to keep the simulation going gradually increases
as the balloon becomes more unstable with more and more clefts.

Figure 10 shows a series of snapshots of the deflated balloon, with details provided in Table 5, and
Figures 11 and 12 show the corresponding distributions of meridional and hoop stress in the membrane. An
interesting observation from these figures is that the balloon was still essentially axisymmetric at Step 5,
i.e. when the bottom pressure had become zero. Also note that, although much of the balloon is wrinkled,
as the hoop stress has vanished, there is still a region of hoop tension near the crown of the balloon. Loss
of symmetry and the onset of clefting occur when the hoop stress in this upper region becomes zero, which
happens at a bottom pressure of around —1 Pa.
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Table 4. ABAQUS/Explicit simulation steps

Bottom pressure | Pressure gradient | Loading time . ' '
Step No. Apo (Pa) Ap (Pa/m) (s) Viscosity coefficient
1 10 0 20 0.05
2 7 0.162 20 0.05
3 4 0.162 20 0.03
4 1 0.162 20 0.02
5 0 0.162 10+5 0.02
6 -0.5 0.162 15+57 0.02
7 -1 0.162 15+5¢ 0.08
8 -1.5 0.162 10 0.12
9 -2.0 0.162 10 0.25
10 -2.5 0.162 10 0.80

%The additional 5 seconds are at constant pressure, to test the stability of the result.

Artificial Energy

— Kinetic Energy
Strain Energy

- - Viscous Dissipation
Work of External Forces

100
~ Step 1 Step 3 Step 5 Step 7 Step (9
80 -
= L
3 60 ,
) L -
c ,'
L 40 L b ,
20 ; .
- ’- -|sm==== I = e = ————
0 LLassssshannnnna o o AAAMAMNNAANNA Nt
0 20 40 60 80 100 120 140 160
Time (s)

Figure 9. Energy variation during ABAQUS/Explicit simulation.
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Table 5. ABAQUS/Explicit predictions of key parameters of test balloon

9.21e+05

Volume | Max radius to membrane | Max radius to tendons | Height
Step No. 5
vV (m?) (m) (m) 2z (m)
1 7078.5 13.611 13.581 16.763
2 6966.2 13.214 13.156 18.845
3 6841.7 12.983 12.837 19.729
4 6379.7 12.344 12.256 21.718
5 5877.1 11.753 11.656 23.160
6 5507.1 11.372 11.266 23.981
7 5048.0 10.940 10.860 24.832
8 4279.7 10.163 10.100 26.111
9 3436.2 9.346 9.313 27.139
10 2387.5 8.374 8.421 28.364
+5.69e+05 7.34e+05
5988 e
e e
+3.22e+05 +3.04e+05
B i508e103
e e
1288288 158588

(c) Step 5

(a) Step 1

+1.43e+06
+5.00e+05

+5.000+04
+0.00e+00

(b) Step 3

3.01e+06

(d) Step 7

Figure 11. Distribution of meridional stress.
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Figure 12. Distribution of hoop stress.

13 of 18

American Institute of Aeronautics and Astronautics



Figures 13 and 14 show more details on some particular shapes that have been obtained from the sim-
ulation. We use a series of cross sections at different heights to show how the spare material in a heavily
clefted balloon distributes itself in a non-symmetric way, forming inward pointing fins in regions of positive
pressure. In Figure 14 it is noteworthy that outward pointing fins have formed in the bottom region, due to
the negative pressure to which it is subjected.

26.11m
02482m ————————~

@2091TMr————————

®1646mr—

261TmM @1254mr————————— \\
®993 mr——————————- "

® 549 mr————————————— -

Om

®

Figure 13. Shape and cross sections of balloon at Step 8

A visual comparison between these results and the test observations!® is shown in Figure 15. During
deflation the test balloon showed clefts soon after the photo in Figure 15(a) was taken (at a bottom pressure
of 1 Pa) and here it is compared with the simulation results at the end of Step 4; all of the tendons lie in
uniformly distributed planes. Figure 15(b) compares the simulation results at the end of Step 10, to the
corresponding shape that was seen during the test.

VI. Discussion and Conclusion

The objective of this study was to investigate the shape of partially inflated superpressure balloons. The
relationships between height, volume, stress distribution and differential pressure distribution have allowed
us to explore the formation of clefts in these balloons.

Two different approaches have been presented. A simple two-dimensional solution based on previous
work and a novel finite element simulation that provides three-dimensional solutions. In the two-dimensional
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Figure 14. Shape and cross sections of balloon at Step 10.
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(a) Initial deployed shape

(b) Clefted shape

Figure 15. Shape comparison: (a) initial deployed shape and (b) clefted shape.
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model, an axi-symmetric balloon with no hoop stress is assumed and a finite difference method is applied to
solve the resulting differential equation. For a given distribution of differential pressure, an iterative algorithm
is implemented to compute its profile. The three-dimensional solutions are obtained with ABAQUS/Explicit,
with a user-defined material subroutine that implements a mixed stress-strain wrinkling criterion. Frictionless
contact is defined for the surface of balloon to prevent the penetration of the balloon through itself. The
initial geometry of the lobes is mapped onto their (flat) cutting pattern, and this allows us to compute the
initial stresses and strains with ease.

A study of the shapes taken up by a flat facet ULDB balloon has shown that a region of tensile hoop
stress remains in the crown region until the bottom pressure is negative. This region prevents the formation
of clefts. Conversely, the formation of clefts requires the disappearance of this stabilizing “tension ring” at
the top of the balloon.

It is important to note that none of this is predicted by the two-dimensional, axisymmetric solution. A
more detailed comparison between the two solution techniques and the experimental results is presented in
Figure 16. The results from ABAQUS/Explicit agree quite well with the Experiment, but there are large
differences with the results from the two-dimensional theory.

27 13.5 < 3
a----
261 ] —e— 2D theory 13 a--""
~ 9251 = @& - ABAQUS ’g P
S « Experiment = PRs
= 24} o 125} -
= \ 2 « F
ko] /
.% 23 | N g 12 | ’
T 22} Y | =
S o e 115¢(
Q 21 5 < ~ ; 4
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17 ‘ ‘ ‘ ‘ ‘ 017 ‘ ‘ ‘ ‘
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(b)
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Figure 16. Shape comparison: (a) bottom differential pressure vs. height relationship and (b) bottom differ-
ential pressure vs. maximum radius (to membrane) relationship.

Lastly, it is noted that the present results were obtained for a flat-lobe design; the case of more lobed
balloon designs should also be investigated.
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