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Abstract 
 
We introduce DOSE - Dynamically Optimized Sequential Experimentation - and use it to 
estimate individual-level loss aversion in a representative sample of the U.S. population (N = 
2;000). DOSE elicitations are more accurate, more stable across time, and faster to administer 
than standard methods. We find that around 50% of the U.S. population is loss tolerant. This is 
counter to earlier findings, which mostly come from lab/student samples, that a strong majority 
of participants are loss averse. Loss attitudes are correlated with cognitive ability: loss aversion 
is more prevalent in people with high cognitive ability, and loss tolerance is more common in 
those with low cognitive ability. We also use DOSE to document facts about risk and time 
preferences, indicating a high potential for DOSE in future research. 
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1 Introduction

An important hypothesis in behavioral economics is that people treat losses and gains dif-

ferently, resulting in most being loss averse: even if they are risk neutral, they tend to shy

away from positive expected value gambles with negative payoffs (losses). Loss aversion is

used as an explanation for a number of important economic phenomena,1 and is an essen-

tial ingredient in theories of reference-dependent preferences (Kahneman and Tversky, 1979;

Kőszegi and Rabin, 2006; O’Donoghue and Sprenger, 2018).

Yet, most evidence of loss aversion comes from economics and psychology labs, usu-

ally with university student participants who may have different preferences (Snowberg

and Yariv, 2018; Walasek et al., in progress). The hypothesis of differential responses to

gains and losses would thus benefit from individual-level assessments in a representative

sample. However, as we detail below, current methodologies make such an assessment diffi-

cult. To overcome these difficulties, we introduce DOSE—Dynamically Optimized Sequential

Experimentation—which estimates preference parameters precisely and quickly by selecting

a personalized sequence of simple choices for each participant.

Using DOSE, we find that around 50% of people in the U.S. are loss tolerant: even if

they are risk neutral, they embrace gambles with negative expected values. Loss aversion

is more prevalent in people with high cognitive ability, and loss tolerance is more common

in those with low cognitive ability. Moreover, we find that risk aversion over gains and loss

attitudes are equally stable (and more stable than previously appreciated), suggesting that

both are equally important in understanding risk preferences.

It is important to emphasize that, although surprising, the prevalence of loss tolerance

is not evidence against the hypothesis of gain-loss differences. Rather, it is evidence of

substantial heterogeneity in the asymmetry, with potentially important consequences. In

1Examples include the equity premium puzzle (Mehra and Prescott, 1985; Benartzi and Thaler, 1995),
asymmetric consumer price elasticities (Hardie et al., 1993), downward sloping labor supply (Dunn, 1996;
Camerer et al., 1997; Goette et al., 2004), tax avoidance (Rees-Jones, 2017), opposition to free trade (Tovar,
2009), performance in athletic contests (Pope and Simonsohn, 2011; Allen et al., 2016), and more.
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particular, loss aversion can, in theory, reduce the propensity to use financial products that

exploit common characteristics like overoptimism and skew-love (Kahneman and Lovallo,

1993; Åstebro et al., 2015). Loss tolerance, on the other hand, makes people more sus-

ceptible to exploitation of these characteristics. Moreover, our evidence suggests that loss

tolerance is particularly prevalent in precisely the people who might benefit from additional

reservations about problematic financial products: those with low income, education, and

cognitive ability, and the aged (Kornotis and Kumar, 2010; Chang, 2016).

A new technique is needed to measure loss aversion (and other preferences) in representa-

tive populations. In the three studies that elicit loss aversion in a representative population,

two lose more than 70% of participants due to non-response and inconsistent choice (Booij

and Van de Kuilen, 2009; Booij et al., 2010). A third only recovers population distributions

of loss aversion, and is very sensitive to estimation choices. Depending on those choices, it

produces population estimates that vary from a large majority being extremely loss averse, to

almost everyone being loss tolerant (appendix of von Gaudecker et al., 2011). Individual-level

estimates are necessary to study the correlates of heterogeneity of preferences (Harrison et

al., 2002), or to calibrate personalized contracts (Andreoni et al., 2016). Moreover, standard

techniques for measuring other economic preferences produce unstable estimates (Meier and

Sprenger, 2015), and may unintentionally introduce reference points (Sprenger, 2015). DOSE

produces accurate (Section 3.2), stable (Section 4.4), and fast (Section 5.2) individual-level

estimates of preference parameters that are robust to alternative specifications (Section 5.1).

Using DOSE to study risk and time preferences produces similar—often less noisy—results

to prior studies using standard elicitation techniques (Section 4.2 and Appendix B).

DOSE takes the challenges of eliciting loss aversion—the need for multiple choices, and

usually a parametric model—and designs around them.2 DOSE uses the parametric struc-

2Estimating an individual index of loss aversion without a parametric structure attributes all differences
in the curvature of utility functions over gains and over losses to loss aversion. In principle, a non-parametric
approach allows a classification of people into loss averse/neutral/tolerant, but in practice many cannot be
classified. For example, using a non-parametric method, Abdellaoui et al. (2007) find that between 29% and
88% of participants cannot be classified, depending on which definition of loss aversion is used.
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ture, and rapid computation of Bayesian updating, to dynamically select a personalized

sequence from a set of simple choices, as described in Section 2. That is, DOSE starts with

a prior over parameters and/or models and, based on that prior, selects a question that

will maximize information. DOSE then uses a participant’s choice to dynamically update

its priors about that participant, and selects the next question in the personalized sequence

based on the new distribution over parameters and/or models. The sequence continues this

way until either the participant has been asked pre-set number of questions, or the precision

of the estimates for that participant is greater than some pre-specified criterion.

We use DOSE to estimate loss aversion using an incentivized, representative survey of

the U.S. population (N = 2,000), also described in Section 2. This incentivized survey has

several useful features. It is comprehensive, using a wide range of elicitations to measure

different preferences. Moreover, it is repeated, meaning the same participants are asked the

same questions twice, six months apart. These features allow us to establish a number of

facts about loss aversion, as well as evaluate DOSE, in an important practical setting.

Before examining data from the incentivized survey, we first examine, in Section 3, sim-

ulations indicating that DOSE is more than twice as accurate as two standard methods for

eliciting loss and risk aversion: the multiple price list (MPL; see Andersen et al., 2006, for a

review), and the Lottery Menu (Eckel and Grossman, 2002). We show this in two sets of sim-

ulations. The first uses the choices from lab/student samples (N = 120; from Sokol-Hessner

et al. 2009 and Frydman et al. 2011) in 140 questions similar to those we use in DOSE. We

use DOSE to simulate question orderings for these participants, and show that with only 20

(personalized) questions, DOSE captures most of the information from all 140 choices. We

then use the distribution of parameters among the 120 laboratory participants to produce

10,000 simulated participants. By generating the choices of the simulated participants in

different types of elicitations, we show that DOSE produces estimates that are at least twice

as close to the true parameter values as these other methods.

There is a much higher level of loss tolerance in the U.S. population than indicated by
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prior samples. The loss aversion parameter in Prospect Theory, λ, indicates loss aversion

when λ > 1, and loss tolerance when λ < 1. In Section 4 we find that 53% of the U.S.

population is loss tolerant. This is higher than 13–30% (weighted average 22%, N = 1,023)

in the eight studies we are aware of that investigate heterogeneity in loss aversion (all in lab

samples).3 Moreover, the median level of loss aversion in our study is 0.98, versus 1.5–2.5

in other samples. We show that this difference is not due to DOSE: among 439 lab/student

participants in prior studies using DOSE—drawing on the working paper version of this

manuscript (Wang et al., 2010)—10% are loss tolerant, with a median value of λ = 1.99.

Moreover, those with greater education and cognitive ability, and lower age, are more likely

to be loss averse in our representative sample.4 These attributes describe the student samples

usually used in studies of loss aversion. Indeed, in our data, 23% of those under 35 with a

college education (N = 101) were loss tolerant, with a median value of λ = 1.75. Altogether,

this suggests that the prevalence of findings of loss aversion, rather than loss tolerance, may

be the result of inadvertently selecting highly loss-averse samples.

An important feature of DOSE is that it dynamically estimates, and adjusts for, an in-

dividual’s level of choice consistency. This produces two more substantive results. First,

although we find a correlation between higher cognitive ability and less risk aversion using

DOSE, we do not find a statistically significant relationship with an MPL-based measure of

risk aversion. However, if we examine only those participants DOSE tells us make consistent

choices, we recover a similar relationship using the MPL measure, suggesting that choice

inconsistency and resultant measurement error may lead to the mixed results on the rela-

tionship between cognitive ability and risk aversion (Dohmen et al., 2018). Second, we show

that DOSE estimates of risk and time preferences are more stable across time than MPL-

3These studies are Schmidt and Traub (2002); Brooks and Zank (2005); Abdellaoui et al. (2007, 2008);
Sokol-Hessner et al. (2009); Abdellaoui et al. (2011); Sprenger (2015); Goette et al. (2018). The figure for
Sprenger (2015) is reported in Goette et al. (2018), Footnote 8.

4Most studies of the relationship between cognitive ability and risk preferences have focused on lotteries
over gains (see Andersson et al., 2016b, Table E1 for a summary). The few studies with questions involving
losses have found that lower cognitive ability is associated with fewer expected value maximizing choices
on those lotteries—consistent with our results—although differences in design and data reporting make it
difficult to ascertain the degree of agreement.
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based measures. DOSE estimates are equally stable regardless of choice consistency, while

MPL-based estimates are less stable for less consistent participants, suggesting measurement

error in current methodologies is responsible for low levels of estimated preference stability

(Gillen et al., Forthcoming). Additionally, loss aversion is nearly as stable as risk aversion,

indicating that both are similarly important in describing a participant’s risk preferences.

Our results from DOSE are robust to a number of factors, such as misspecification and

removing participants most likely to not be paying attention, as shown in Section 5. Allowing

for different specifications of the utility function still results in much lower estimates of loss

aversion, and much higher estimates of loss tolerance, than prior studies on student/lab

populations. Moreover, we show that DOSE is equally fast to complete for people of all

cognitive ability levels. In contrast, MPLs take longer for everyone, but especially for those

with lower cognitive abilities. Removing participants that may be “rushing through” DOSE,

or our entire study, has minimal effects on the distribution of DOSE-estimated parameters.

Additional robustness checks are conducted in Appendices D, E, F, and G.

The paper concludes with a discussion, in Section 6, of the potential for DOSE to be

used more widely, and of research settings in which the procedure is likely to be particularly

valuable. Of particular interest are further questions about loss aversion that were not

covered by our design. We finish with a description of how our results fit with the broader

work in psychology and neuroscience on the processes underlying the gain-loss hypothesis.

1.1 Related Literature

Our work is related to three broad literatures: optimal experimental design, measuring

economic preferences and their correlates in broad populations, and loss aversion. We review

these literatures here: relationships between specific factual findings in this paper and others

are included when we discuss those specific findings, and in Appendix B.

There is a large literature on optimal experimental design in computer science and statis-
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tics, but there is surprisingly little development of applications for economics.5 Those few

studies that exist focus on static, rather than dynamic, experiments (El-Gamal et al., 1993;

El-Gamal and Palfrey, 1996). DOSE extends these ideas by implementing a dynamic design,

in which questions are selected sequentially based on a participant’s answers. This allows

for the identification of models and parameters at the individual level, in contrast to prior

designs which could only discriminate between models, or measure the distribution param-

eters, at a population level. Taking advantage of recent advances in computing power, we

are also able to account for a much larger range of parameters in designing an experiment.

Two papers have examined dynamic experimental procedures, drawing on an earlier

working paper version of this manuscript (Wang et al., 2010). Toubia et al. (2013) use

a very similar method to study risk and time preferences. Imai and Camerer (2018) use

DOSE to evaluate time preferences, but focus on model selection.6 The latter paper uses a

different information criterion—EC2 rather than the Kullback-Leibler divergence we use—

and a different model of inconsistencies in decision-making. The Kullback-Leibler criterion

is particularly well suited to efficient parameter estimation (Ryan et al., 2016) but may not

be as efficient in model selection. Thus, the main contribution of that paper is to illustrate

how the novel criterion EC2 is used, and apply it to distinguish different models of time

preferences (in participants recruited from MTurk) more rapidly and precisely than earlier

research. In contrast, the primary contributions here are to establish general performance

characteristics of the DOSE method, compare them to extant methods, and document new

facts about loss aversion in a representative population.

5The idea of optimal experimental design appears to originate most clearly in Peirce (1879), who described
an “economic” theory of experimentation and applied it to the study of gravity. The idea of dynamic
designs begins with Wald (1950). Chaloner and Verdinelli (1995) provides a useful review of applications
in statistics. Although little used in economics, optimal designs have been used in many applied fields
including in neurophysiology (Lewi et al., 2009), psychophysics (Kujala and Lukka, 2006; Lesmes et al.,
2006), marketing (Toubia et al., 2004; Abernethy et al., 2008), and medicine (Müller et al., 2007). See also
Aigner (1979) for an early survey in economics, and Moffatt (2007) for a discussion of potential applications
of optimal design to parameter estimation, including the elicitation of risk preferences.

6 Cavagnaro et al. (2010, 2013a,b, 2016) independently develop an adaptive framework for model discrim-
ination. Their implementations use many more questions than DOSE—for example, 80 in Cavagnaro et al.
(2016), 101 in Cavagnaro et al. (2013a)—making it difficult to use with a representative sample.
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Our paper also contributes to the recent literature studying the correlates of economic

preferences in broad populations. Many of these studies focus on the role of cognitive ability

in economic preferences, generally concluding that higher cognitive ability is associated with

greater normative rationality (Frederick, 2005; Burks et al., 2009; Oechssler et al., 2009;

Dohmen et al., 2010; Benjamin et al., 2013). We add to this literature in two ways. First, we

examine the relationship between loss aversion and cognitive ability, and find that both low

and high cognitive ability people tend to depart from normative rationality, but in different

ways. Second, we show that the mixed results on the relationship between risk aversion and

cognitive ability (Dohmen et al., 2018) are likely due to measurement error and imprecision

in the elicitation techniques used in prior studies.

Finally, our paper relates to a larger literature interested in understanding loss aversion.

Most studies focus on lab/student populations.7 von Gaudecker et al. (2011) is the most

similar to our work. As noted above, they focus on population distributions, and their esti-

mates are sensitive to estimation choices. Depending on those choices, they report estimates

of the median λ ranging from 0.12 to 4.47 (in their appendix).8 As we show in Section 5.1

and Appendix F, our results are relatively stable with respect to different specifications. It

is worth noting, however, that their results are not inconsistent with ours: the shape of the

loss aversion distribution we find (in Figure 4) is very similar to theirs. Moreover, some of

their specifications produce results much closer to ours than the prior literature.

2 The DOSE Procedure

This section introduces the DOSE procedure and our incentivized survey. We start with an

abstract overview of DOSE, focusing on the choices experimenters can make to tune it to

7See Table 1 of Booij et al. (2010) and Table S4 of Sokol-Hessner et al. (2009) for estimates from lab
studies. We are aware of four field studies that measure loss aversion in non-representative populations, but
only report first moments. These studies feature samples of customers at a car manufacturer (Gächter et al.,
2007), Vietnamese villagers (Tanaka et al., 2010), Mechanical Turk workers (Toubia et al., 2013), and U.S.
mortgage holders (Atlas et al., 2017). Reported first moments of loss aversion are similar to lab studies.

8Their estimation strategy also does not allow them to use the S-shaped utility function suggested by
Prospect Theory (Kahneman and Tversky, 1979).
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their application, before describing the specific design choices we made to estimate risk and

time preferences in a representative sample of the U.S. population.

2.1 DOSE in the Abstract

DOSE asks each participant a personalized set of questions. Questions are selected sequen-

tially, using a participant’s previous answers to identify the most informative question at that

point in time. When selecting each successive question, DOSE accounts for the possibility

that the participant may have made mistakes in his or her previous choices. Altogether this

leads to accurate parameter estimates after only a few questions.

The procedure starts with a prior over a set of parameter values, and then optimally

(according to some pre-defined criterion) selects questions to pinpoint a participant’s prefer-

ences. The experimenter can choose a different prior, based on observables, for each partici-

pant. DOSE selects the optimal question given the prior and the optimality criterion. After

a participant answers the first question, DOSE updates beliefs using Bayes’s law, optimally

selects the next question, and so on. The process continues for as many questions as the

experimenter wants, or until posterior beliefs are more precise than some pre-set criterion.

DOSE can elicit more accurate parameter estimates than other common dynamic exper-

imental designs because it allows for the possibility that participants make mistakes, as we

illustrate by comparing DOSE with a simple partitioning method, in Figure 1. Partitioning

techniques include the iterative MPL (see, for example, Andersen et al., 2006; von Gaudecker

et al., 2011) and the staircase method (Falk et al., 2018).9 In the example in Figure 1, both

methods start with a uniform prior and offer participants a binary choice. In the first round,

each participant faces the same question (Q1 or q1). Beliefs are then updated depending on

the answer they provide, and the next question is picked optimally given the new beliefs.

The key difference between the two procedures is that a partitioning method successively

9The iterative MPL presents participants with an initial MPL, and then offers them a refined set of options
in another MPL. For example, if the choice on the first MPL implied a participant’s certainty equivalent for
a lottery lay between $X and $Y, the next MPL would have options in [$X,$Y].
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eliminates ranges of parameter values after each question. DOSE, in contrast, allows for the

possibility that any choice may have been a mistake, and hence places a positive probability

on all parameter values regardless of previous answers.

In a partitioning method, a single incorrect choice causes considerable inaccuracy. Con-

sider a participant with true parameter θ0, displayed in the bottom panel of Figure 1. This

participant should choose B in both questions of a partition method. If, however, he or

she incorrectly chooses A in the first question, his or her estimated parameter value is con-

strained to be less than the median value—regardless of the number of rounds of questions.

Errors early in the procedure thus lead to considerable measurement error. Any error makes

it particularly hard to identify parameter values at the extremes of the distribution.

DOSE, in contrast, can elicit accurate parameter values even after a participant makes a

mistake. Even after an initial incorrect choice of a, the posterior distribution places a positive

probability on the true parameter value θ0. As a result, with enough correct answers in future

rounds, an accurate parameter estimate will still be obtained. Further, the procedure keeps

track of the extent of inconsistent choice, which, as we demonstrate empirically in Section

4.3, provides a valuable measure of participant behavior.

The precise way in which DOSE selects questions, or accounts for possible mistakes,

can easily be adapted to meet the needs of a particular research question. Researchers can

modify the optimality criterion used to pick the personalized question sequence, and can

choose any parametric model to capture the way in which participants make mistakes. We

explain the design choices we use in this paper in the following subsection.

2.2 DOSE Procedure to Estimate Risk and Loss Aversion

DOSE can be customized for particular research questions. The main objects of choice for

a researcher are the parametric specification(s), the prior distribution over parameters or

models, the set of choices to present to participants, how parameters map to choices—that

is, the structure of possible mistakes—and the information criterion used to select the next

9
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question based on current beliefs. This subsection details the choices we made to elicit loss

aversion from a representative population.

2.2.1 Utility Function and Priors over Parameters

We elicit risk and loss aversion using a Prospect Theory utility function with power utility

(Kahneman and Tversky, 1979). This utility function assumes that participants value pay-

ments relative to a reference point, which we assume is zero. The standard S-shaped utility

function in Prospect Theory implies that, for common parameter values, participants are

risk averse over positive payments (gains), and risk loving over negative payments (losses).

A kink in the utility function at zero represents loss aversion. Formally:

v(x, ρi, λi) =


xρi for x ≥ 0

−λi(−x)ρi for x < 0,

(1)

in which λi parameterizes loss aversion, ρi parameterizes risk aversion, and x ∈ R is a mon-

etary outcome relative to the reference point. If λi > 1, then the participant is loss averse.

If λi < 1, then the participant is loss tolerant. An individual with ρi < 1 demonstrates risk

aversion over gains and risk love over losses. So that higher numbers indicate greater risk

aversion, we use the coefficient of relative risk aversion: 1− ρi, in tables and figures.

The specification in (1) focuses on accurately estimating loss aversion with as few ques-

tions as possible. It does not allow for other common features of Prospect Theory: probability

weighting or differential curvature of the utility function over losses and gains. The lotteries

in our questions are further designed to minimize probability distortions, as all have 50/50

probabilities of two outcomes. Moreover, as most studies have found limited difference in

curvature across the two domains (see Booij et al., 2010, Table 1), we impose the same

utility curvature for both gains and losses.10 This improves the accuracy of the estimates

10Assuming the same curvature across gains and losses also avoids an issue with power utility: different
curvatures mean that estimates of loss aversion depend on scaling (Köbberling and Wakker, 2005). More-
over, there will always be an amount x s.t. U(x) > U(−x) (Wakker, 2010). Our results are similar using
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of λi as questions are not selected to separately identify the curvature in the loss and gain

domain. However, it is quite simple to allow for different curvatures even after conducting

the experiment—in Section 5.1 we show our results are robust to estimating this alternative

specification, and that the assumption of equal curvature is supported by the data.

Time discounting is modeled with a standard monthly discount factor and the power util-

ity function in (1).11 Utility from the perspective of the survey date is given by u(xt, ρi, δi) =

δtix
ρi
t , where δi is a discount factor and ρi captures the curvature of the utility function from

(1), t is the time from the survey date in months, and xt is a payment at time t.

While researchers must choose a parametric specification and prior distribution for data

collection, an alternative prior or specification can be used to calculate parameter values ex

post. The experimenter’s initial choices are used only to generate the personalized question

sequence: once participant choices are recorded, any other prior distribution or parametric

specification can be used to derive new estimates from the data. We use a joint uniform prior

over preference parameters to both select questions and estimate parameters. The range of

the prior distribution is chosen to cover the individual estimates obtained in Section 3.1.12

As shown in Section 3.1 this results in near-optimal question selection.

Re-analyzing the choices obtained using questions selected by DOSE with a different prior

or parametric specification allows researchers to obtain accurate parameter estimates even

when the initial choices are misspecified, as shown in Sections 3.1 and 5.1. Despite initial

misspecification, the questions asked still home in on a participant’s preferences, even though

the question sequence is not optimal in the sense defined by the question selection criterion.

As a result, DOSE still provides a great deal of information about individual preferences,

and precise estimates can be recovered ex post even with some initial misspecification.

the exponential (CARA) utility function Köbberling and Wakker (2005) suggest to avoid these issues (see
Section 5.1).

11The specification used for question selection in the time preference module also allowed for present bias.
In practice, however, we found very little evidence of present bias either in the DOSE module or the time
MPLs—possibly due to the fact that payment was, in general, not instantly convertible into consumption.
As such, the specification used to obtain estimates did not include a present bias parameter.

12In particular, the prior ranges are λ ∈ [0, 4.6], ρ ∈ [0.2, 1.7], µ ∈ [0, 8], and δ ∈ [0.2, 1].
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2.2.2 Mistakes and Choice Consistency

As described above, an important advantage of DOSE is that, when selecting the personalized

sequence of questions, it takes into account the possibility that participants make mistakes.

The process by which mistakes are made must be parametrically modeled for DOSE to

account for it. We model the mapping between utility and choices using the logit function,

which has been widely used in both economics and psychophysics due to its connection with

the random utility model.13 For any choice between options o1 and o2 with V (o1) > V (o2):

Prob[o1] =
1

1 + e−µi(V (o1)−V (o2))
. (2)

The logit function depends both on the utility difference between options o1 and o2 and

the choice consistency parameter µi ∈ R+. The probability of making a mistake—that is,

not choosing the value-maxmizing option—is 1 − Prob[o1]. This is decreasing in the value

difference between o1 and o2. This decrease is more rapid when µi is larger, so higher values

of this parameter represent greater consistency in choices.

The set of questions can be designed to reduce the likelihood of mistakes. Our options

were constructed to make expected value comparisons as simple as possible. All of our

questions include only two options, with only one of these being a non-degenerate lottery.

Each lottery has only two possible prizes. One of three payoffs (the sure payoff, and the two

lottery payoffs) is always zero. Choices are thus between either a lottery with a zero payoff

and some gain, versus some (possibly negative) sure amount; or between a lottery with a

gain and loss, versus a sure amount of zero. In the former case, the expected value can be

found by dividing by two. In the latter, one can ascertain if the expected value of the lottery

is greater or less than zero by comparing the size of the positive and negative payoffs.

We believe these questions are also unlikely to produce inadvertent reference points, as

13Specifically, choice probabilities will be logit if the errors in the random utility model have an Extreme
Value Type I distribution. See McFadden (2001) for a broader discussion of the history of the logit specifi-
cation and its properties. DOSE can easily be implemented with multi-answer question using a multinomial
logit or alternative probabilistic choice function.
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MPLs have been shown to do (Sprenger, 2015; Chapman et al., 2017). However, this is

also a testable prediction: we can try to fit specifications with alternative reference points,

such as incorporating the endowment of points given at the beginning of the DOSE module.

As shown in Appendix F.2, this model produces a much worse fit: it only predicts 48% of

choices correctly, whereas our main specification predicts 88% correctly.

2.2.3 Information Criterion

In our implementation, DOSE selects each question to maximize the expected Kullback-

Leibler (KL) divergence between the prior and possible posteriors associated with each an-

swer. That is, the question that is picked at each point is the one with the highest expected

information gain given the initial prior and previous answers. The KL criterion has been

used widely in the optimal design literature in statistics due to its conceptual simplicity

and grounding in information theory (see Ryan et al., 2016, for a discussion and examples).

Further, the information maximization approach leads to consistent and efficient parameter

estimates under weak modeling conditions (Paninski, 2005). However, DOSE is easily mod-

ified to incorporate alternative information criteria—for example, Imai and Camerer (2018)

use DOSE with the EC2 criterion to discriminate between models of time preferences.

Formally, consider a finite set of possible parameter vectors θk for k = 1, ..., K, where each

θk = (ρk, λk, δk, µk) is a combination of possible values of the parameters of interest.14 Each

θk has an associated probability pk of being the correct parameters. In the first question,

these probabilities are the priors chosen by the experimenter; they are then updated in each

round according to the participant’s answers. The expected Kullback-Leibler divergence

between the prior and the posterior when asking question Qj is:

KL(Qj) =
∑
k≤K

∑
a∈A

log

(
lk(a;Qj)∑

j∈K pjlj(a;Qj)

)
pklk(a;Qj) (3)

14We assume a finite space of parameters for computational ease. The KL divergence here is slightly
different from that in El-Gamal and Palfrey (1996). Their variant maximizes the distance between posteriors
(information) obtained under different models, whereas ours maximizes the information about parameters.
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where a ∈ A are the possible answers to the question, and lk(a;Qj) is the likelihood of answer

a given θk—in our implementation this is determined by the logit funciton in (2). DOSE

selects the question that maximizes KL(Q), the participant answers it, model posteriors are

updated, the question Qj that now maximizes KL(Q) is selected, and so on.15

2.3 DOSE in a Representative Survey

We now turn to the practical details of implementing DOSE in two waves of a large, rep-

resentative, incentivized survey of the U.S. population. The survey includes two DOSE

modules—one relating to risk and one to time preferences—as well as other behavioral elic-

itations, and cognitive and sociodemographic questions.16

2.3.1 Survey Implementation

The two waves of the incentivized survey used the same questions and the same people, about

six months apart. The first wave of the survey collected responses from 2,000 U.S. adults

and was conducted online by YouGov between March 27 and April 3, 2015. A second wave

recontacted the same population and received 1,465 responses between September 21 and

November 23, 2015. We use data from the first wave for most analyses. Results are similar

when using the second wave data, as shown in Appendix D.3.

Participants in the survey were drawn from a panel of respondents maintained by YouGov.

YouGov continually recruits new people to the panel, especially from hard-to-reach and low-

socioeconomic-status groups. To generate a representative sample, it randomly draws people

from various Census Bureau products, and matches them on observables to members of

their panel. Differential response rates lead to the over- and under-representation of certain

populations and so YouGov provides sample weights to recover estimates that would be

15We restricted the procedure to only consider questions that had not yet been asked of that participant.
In order to improve the estimate of µ, the procedure would eventually ask the same question multiple times.

16For specific details of the implementation of these, and other, questions see Appendix C and Chapman
et al. (2017), or screenshots and design documents at hss.caltech.edu/∼snowberg/wep.html.
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obtained from a fully representative sample. We use these weights throughout the paper.17

The behavioral measures in this paper were all incentivized: at the end of the survey,

two survey modules were selected for payment at random.18 All outcomes were expressed

in YouGov points, an internal YouGov currency used to pay panel members, which can be

converted to U.S. dollars using the approximate rate of $0.001 per point.19 To enhance the

credibility of these incentives, we took advantage of YouGov’s relationship with its panel,

and restricted the sample to those who had already been paid (in cash or prizes) for their

participation in surveys. The average payment to respondents (including the show-up fee)

was $9 (9,000 points), which is approximately three times the average for YouGov surveys.

For comparability, we convert points to dollars, using the exchange rate, in our analyses.

2.3.2 DOSE Modules

All respondents were asked two, ten-question, DOSE modules.

Risk Preferences: The first DOSE module elicited risk and loss aversion. Participants

were given 10,000 points and offered a sequence of ten binary choices between a 50:50 lottery

and a sure amount. Two types of lottery were used. The first had a 50% chance of 0 points,

and a 50% chance of winning a (varying) positive amount of points (of up to 10,000). The

17The attrition rate of ≈25% is lower than most online surveys. This is due, in part, to YouGov’s panel
management, and in part to the large incentives we offered. According to Pew Research, YouGov’s sampling
and weighting procedure yields better representative samples than traditional probability sampling methods
with non-uniform response rates, including Pew’s own probability sample (Pew Research Center, 2016,
YouGov is Sample I).

18We chose to pay two randomly selected questions to increase the stakes while making fewer participants
upset about their payoffs. Paying for two questions instead of one may theoretically induce some wealth
effects, but these are known to be negligible, especially in an experiment such as ours (Charness et al., 2016).
Paying for randomly selected questions is incentive compatible under Expected Utility, but not necessarily
under more general risk preferences, where it is known that no such mechanism may exist (Karni and Safra,
1987; Azrieli et al., 2018). An old and still growing literature suggests this theoretical concern may not be
empirically important (Beattie and Loomes, 1997; Cubitt et al., 1998; Hey and Lee, 2005; Kurata et al.,
2009), but there are some exceptions (Freeman et al., 2015). Dynamic designs are generally not incentive
compatible, however in practice this is of little concern—see Appendix A.

19The conversion from points to awards can only be done at specific point values, which leads to a slightly
convex payoff schedule. This is of little concern here as these cash-out amounts are further apart than the
maximum payoff from the survey.

16



second had a 50% chance of winning an amount up to 10,000 points, and a 50% chance of a

loss of up to 10,000 points. In the latter case, the sure amount was always 0 points.

Time Preferences: The second module elicited discount factors and refined estimates of

the curvature of the utility function. Participants were offered a sequence of ten binary

choices between a lower amount of points at an earlier date (either the day of the survey,

or in the future) or a higher amount at a later date (up to 90 days in the future). The

maximum payment in each question was 10,000 points.

2.3.3 Additional Measures

The survey also contained more standard ways of eliciting risk and time preferences. These

serve as a useful comparison for DOSE.

Risk Aversion MPLs: Two MPLs asked participants to choose between a fixed 50/50

lottery and a series of ascending sure amounts. The row in which the participant first chose

the sure amount identified a range of possible certainty equivalents for the lottery—we use

the midpoint of this range. There were two MPLs of this type: the first had a 50/50 lottery

over 0 and 10,000 points, the second, a 50/50 lottery over 2,000 and 8,000 points.20

Time Preference MPLs: In addition to the DOSE module, the survey included two

MPLs to elicit time preferences. The first time MPL elicited the amount of points that the

participant valued the same as 6,000 points 45 days later. The second MPL elicited the

amount of points in 45 days that the participant valued the same as 6,000 points in 90 days.

This measure is used primarily in Section 4.4.

20See Appendix D.1 for more details on these measures, and additional analyses using them.
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3 Performance of DOSE versus Current Methods

We first demonstrate that DOSE works in simulated environments, before turning to our

results on loss aversion in a representative sample in the next section. We do so in two ways.

First, we simulate DOSE question selection using the choices of participants in two laboratory

experiments that used questions similar to those in our DOSE implementation. We show

that a 20-question DOSE procedure obtains parameter estimates that are close to (within

15% of) parameter estimates after 140 questions. Second, we use simulated participants to

show that, in the presence of mistakes or inconsistency, DOSE recovers estimates that are

at least twice as accurate as standard elicitations used to measure risk and loss aversion.

3.1 Simulating DOSE with Laboratory Data

The first simulation exercise demonstrates the benefits of DOSE’s personalized question

sequence. We use data from 120 student participants in two prior laboratory experiments.21

In each experiment, participants were asked the same set of 140 binary choices from the same

two types of questions described in the prior section. The order of these questions in the

experiments was somewhat random. In our simulation, we optimally order these question

for each participant using DOSE. After DOSE selects a question, we provide it with the

answer the participant gave in the experiment. The procedure then updates the probability

distribution over parameters, selects the next question, and so on. This allows us to compare,

question by question, the inaccuracy—the absolute distance from the true parameter value

as a percentage of the true value—of DOSE’s estimates with those elicited by a random

question ordering. As we do not have access to true parameter values, we substitute the

values one would obtain using the choices in all 140 questions.

A 20-question DOSE sequence provides a similar amount of information as about 50

2190 participants come from Frydman et al. (2011) and 30 from Sokol-Hessner et al. (2009). We attempted
to compare the performance of DOSE using Maximum Likelihood Estimation (MLE), the method in Sokol-
Hessner et al. (2009) and Frydman et al. (2011). However, as reported in Appendix G, we were unable to
obtain MLE estimates for a large portion of the sample. The MLE estimates that were obtained were less
accurate—relative to the estimate after 140 questions—than those obtained from Bayesian estimation.
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Figure 2: Optimal question selection rapidly leads to accurate estimates.
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Notes: Based on data from Sokol-Hessner et al. (2009) and Frydman et al. (2011). Each line shows the
inaccuracy of Bayesian estimates (with uniform initial prior) obtained after each question, starting at question
10, under different orders. “Optimal Prior” and “Uniform Prior” refer to DOSE question selection using
corresponding priors. “Random” orders questions randomly, averaging over 100 different random orderings.

randomly ordered questions, as shown in Figure 2.22 The DOSE estimates of both risk and

loss aversion are consistently closer to the final parameter estimate, indicating—under the

assumption that the final estimate closely approximates an individual’s true parameters—

that the procedure provides accurate estimates considerably faster than selecting questions

at random.23 After 20 questions, the DOSE estimates are almost twice as close to the final

estimate as those under a random question ordering (12% vs. 21–22%). The DOSE estimates

are also more highly correlated with the final estimates (shown in Appendix Figure G.1),

an important feature when seeking to identify correlations between preferences and other

population characteristics.24

22For loss aversion, 45 randomly-ordered questions are needed to be as close to the final estimate as 20
DOSE questions. For risk aversion, 55 questions are required.

23Supporting this assumption, the next subsection finds that DOSE achieves similar levels of accuracy in
a simulation where we know the true parameter values.

24Further, the average benefits we estimate are not limited to the particular distribution of preferences
we observe in the laboratory. As we show in Appendix G, the DOSE estimates converge rapidly to the final
estimate for the entire range of λ and ρ.
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These simulations also show that using the uniform prior is close to optimal for question

selection. To do so, we compare the performance of DOSE question selection using a uniform

prior to that using an optimal prior constructed from the distribution of the estimates after

140 questions. To focus on the question selection impacts of the prior, we estimate the

parameter values using a uniform prior in both cases. As shown in Figure 2, the accuracy is

similar whether using the optimal or uniform prior.

3.2 Parameter Recovery Study

When participants make mistakes DOSE produces estimates that are about twice as accurate

as traditional risk and loss aversion elicitation mechanisms. We demonstrate this with a

parameter recovery study (or Monte Carlo simulation). This is conducted with an entirely

simulated dataset that allows us to both know and control the true parameters governing

(simulated) participant behavior. Appendix E provides full details.

We evaluate the relative (in)accuracy of DOSE, and two other common risk elicitation

procedures, using 10,000 simulated participants with power utility given in (1), who make

binary choices probabilistically according to (2). For each of these participants, a set of

parameter values (ρi, λi, and µi) are drawn from the posterior distribution obtained from

the 120 laboratory participants in the previous subsection. We obtain DOSE estimates by

running 10- and 20-question DOSE procedures for each simulated participant, determining

the answer to each question according to her parameters.

As a benchmark for DOSE, we also allow our simulated participants to make choices

in two other common risk elicitation methods: the Lottery Menu (Eckel and Grossman,

2002), and a double MPL (Andersen et al., 2008a; Andreoni and Sprenger, 2012b). In the

Lottery Menu, participants choose from a list of six 50/50 lotteries over gains. In the double

MPL, participants complete two MPLs, each offering a choice between a fixed 50/50 lottery

and a series of ascending sure amounts. The first—which identifies risk aversion—offers a

lottery over gains ($0 and $10), while the second—identifying loss aversion—offers a lottery

20



Table 1: DOSE produces more accurate estimates.

Spearman Rank
Average Correlation with

Inaccuracy True Value

Loss Aversion
DOSE 10 question 21% 0.86

DOSE 20 question 15% 0.91

Multiple Price List 36% 0.65

Risk Aversion
DOSE 10 question 21% 0.66

DOSE 20 question 15% 0.79

Multiple Price List 37% 0.45

Lottery Menu 35% 0.28

Notes: Inaccuracy is the absolute distance from the true parameter value as a percentage
of the true value.

between a gain and a loss, both of $10. In both cases, we define a probability distribution

over the possible choices using sequential pairwise comparison of the options with the same

logit choice function in (2). This probability distribution is used to calculate the expected

inaccuracy of the parameter estimate for each simulated participant.

The estimates of risk and loss aversion from DOSE are approximately twice as accurate

as those from the other elicitation procedures, as shown in Table 1. After 20 questions,

DOSE obtains estimates of risk and loss aversion that are, on average, within 15% of the

true parameter value. The average inaccuracy of the MPL and Lottery Menu procedures, in

contrast, is at least 35%—much higher than even a 10-question DOSE procedure.25

DOSE produces more accurate estimates than both other procedures regardless of par-

ticipants’ level of choice consistency (µ), as shown in Figure 3. This figure repeats the

parameter recovery analysis above, but assigns all simulated participants the same level of

choice consistency, µ. We then vary µ across percentiles of the population distribution. The

20-question DOSE procedure always provides the most accurate estimates. Even the 10-

25The improvement in accuracy from DOSE is similar when the utility function used in the question
selection procedure is misspecified—see Section 5.1 and Appendix F.
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Figure 3: DOSE is more accurate than other methods at all levels of choice consistency.

0%

20%

40%

60%

80%
In

ac
cu

ra
cy

 (
%

 t
ru

e 
p

ar
am

et
er

 v
al

u
e)

0 25 50 75 100

Loss Aversion

0%

20%

40%

60%

80%

In
ac

cu
ra

cy
 (

%
 t

ru
e 

p
ar

am
et

er
 v

al
u

e)

0 25 50 75 100

Risk Aversion

Choice Consistency (percentile)

DOSE 10 Question DOSE 20 Question

MPL Lottery Menu

Notes: Estimates obtained using simulation procedure described in Appendix E, with all simulated partici-
pants at a point in the graph having the same value of µ.

question procedure performs better than either the MPL or Lottery Menu, except amongst

extremely inconsistent participants.26

The high accuracy of the DOSE estimates also leads to higher correlations with the true

parameter values than the other two procedures (column 2 of Table 1). Thus, DOSE is less

likely to miss associations between economic preferences and other characteristics through

attenuation bias. The correlation between the true risk aversion parameter and the DOSE

estimate is 0.79, compared to 0.45 with the MPL estimates and 0.28 for the Lottery Menu.

For loss aversion, the DOSE procedure produces correlations above 0.85 with the true values,

even after a 10-question procedure. This is reflected in our survey results, see Section 4.3.

Unlike the MPL, DOSE is able to elicit loss aversion estimates even when participants’

choices violate First Order Stochastic Dominance (FOSD), although this is not an important

factor in the simulation results of Table 1. Because DOSE accounts for the possibility that

26Although the Lottery Menu procedure appears to perform better than the MPL for inconsistent par-
ticipants, this advantage is not robust to alternative simulation assumptions, which can drive the average
inaccuracy for low consistency participants as high as 139%. See Appendix E.1 for further details.
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a participant’s choice is a mistake, the procedure can always recover parameter estimates.

In the double MPL, on the other hand, participants may erroneously make choices on the

second MPL (used to elicit loss aversion) that are First Order Stochastically Dominated given

their choices on the first MPL (used to elicit risk aversion). This prevents estimation of the

loss aversion parameter. In our simulation, the MPL could not recover estimates for 11% of

participants—increasing to more than 50% of participants with low choice consistency.

In practice, the double MPL procedure is unable to elicit loss aversion for a significant

proportion of the population, which may lead to biased conclusions about loss aversion. In

particular, the double MPL used by Chapman et al. (2018) is unable to recover estimates for

37% of their participants, as measurement error and other factors lead to these participants

appearing to make FOSD choices. The prevalence of these choice patterns was not random:

loss aversion could only be computed for 50% of participants in the bottom quartile of

cognitive ability, compared to 70% in the upper quartile. The results in this paper (see

Section 4.2) indicate that high cognitive ability is associated with more loss aversion. This

pattern of missing observations may thus lead to a biased over-estimate of loss aversion.27

In practice, choice data in the MPL is likely noisier than our simulations assume. To

estimate the relative amount of noise in the survey, we compare simulated and real responses

for three additional MPLs—the double MPL procedure (but with different payoffs), and a

second risk aversion MPL as implemented in Chapman et al. (2018).28 The proportion of

FOSD responses in the loss aversion MPL is much lower in this simulation than the real

data: 20% rather than 37%. Further, the correlation between the certainty equivalents in

the risk aversion MPLs—which is higher in the presence of less measurement error (Gillen

et al., Forthcoming)—is higher in the simulation: 0.73 vs. 0.69.29

27The survey in Chapman et al. (2018) is similar to the one in this paper, although it did not utilize DOSE.
Note this pattern of responses is consistent with results in the next section, as loss-tolerant individuals will
wish to make choices that are close to violating FOSD, and measurement error can push them over the
threshold. Low cognitive ability participants are more loss tolerant and make more FOSD choices.

28These MPLs have a different structure from those used in the results in Table 1 and Figure 3, but the
simulation methodology is the same. Full details of the simulations are reported in Appendix E.

29It appears that our simulations underestimate the measurement error in the survey MPLs because we
do not account for participants’ use of rules-of-thumb. Compared to our simulation, participants in the
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4 Economic Preferences in a Representative Sample

The U.S. population is more loss tolerant than those in lab-based samples. Consistent with

this finding, higher cognitive ability participants are more loss averse. This contrasts with the

prior literature that suggests that those with higher cognitive ability are more “rational,” or,

as it applies here, more likely to make expected value maximizing choices. DOSE estimates

of risk aversion, discounting, and choice consistency, are in-line with this perspective: higher

cognitive ability participants are less risk averse and more patient. The literature, however,

has found mixed results about the relationship between risk aversion and cognitive ability.

We use DOSE estimates of choice consistency (µ) to show that these results may be driven

by inconsistent choice. In particular, we show that if we examine those with above-median

choice consistency we recover a correlation between MPL-based measures of risk aversion

and cognitive ability that is obscured when examining all participants.

Further, prior estimates of the cross-time stability of economic preferences may be un-

derstated. Cross-time consistency of DOSE estimates of risk aversion and discounting are

higher than both MPLs and prior studies. The cross-time stability of loss aversion, which

has not been previously measured, is comparable to that of risk aversion and discounting,

suggesting that loss attitudes are at least as stable a descriptor of preferences as these other,

more common, measured preferences.

The results in this section are presented under the assumption, driven by the results in

Section 3, that DOSE is capturing useful information about economic preferences. Although

some of the analyses in this section provide further support for this assumption, we do not

examine it in detail until the next section. There, we show that our results are robust to ad-

justing for a number of possible issues that may be unique to DOSE, such as misspecification

of the utility function used to select questions and analyze the resulting choices.

survey were more likely to switch in rows of the MPL that are especially salient—such as the first or last
rows, or those referring to the midpoint of the lottery. These choices may be capturing framing effects or
heuristics in the face of the large amount of information in an MPL. DOSE avoids these issues by using
simple binary choices that are likely simpler to understand—a claim supported by evidence in Section 5.2.
Thus, our simulations may actually underestimate the relative advantages of DOSE.
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4.1 Loss Aversion in the U.S. Population

We find far more loss tolerant participants, and thus a lower average level of loss aversion,

in the general population than in lab-based samples that have used DOSE, as displayed

in Figure 4. While the distribution of parameter estimates from DOSE are largely the

same across both waves of our incentivized survey, those produced by lab-based samples are

markedly different. This is also true for risk aversion: lab-based populations are less risk

averse than the general population, in-line with prior research (see Snowberg and Yariv,

2018, and references therein).30 We compare estimates of risk aversion in this study and

prior studies when examining robustness in Appendix B.

The median estimate of the loss aversion parameter, λ = 0.98, in the U.S. population is

much lower than the “standard” estimate of 2 (Fehr-Duda and Epper, 2012). However, in-

line with prior studies, DOSE in the lab (N = 439) produces a median estimate of λ = 1.99.

Our lab results come from studies using DOSE in much the same way we do here, based on

our original working paper. For details on three of these studies, see Clay et al. (2017, in

progress) and Krajbich et al. (2017). The fourth study is unpublished, and ran the DOSE

procedure on 207 students at UCLA.31 We use the individual choices from these studies to

calculate parameter estimates as described in Section 2.

The proportion of loss-tolerant participants in the U.S. population—53%—is higher than

in the eight studies, referenced in the Introduction, that have investigated heterogeneity in

loss aversion (all in lab samples). In those experiments, between 13% and 30% (weighted av-

erage: 22%, N = 1,023) of participants in laboratory experiments are loss tolerant. However,

as noted above, the methodologies used in several of these studies make classifying many

participants impossible. Our representative sample also produces different results than other

30The median CRRA coefficient (1-ρ) in the general population is 0.31 vs. 0.05 in the student/lab sample.
We do not have DOSE estimates of the discount rate in the lab. However, the median monthly discount factor
here (0.90) is in the lowest quartile of the results of three recent laboratory studies using the Convex Time
Budget method of Andreoni and Sprenger, (2012a; see Appendix Table D1 in Imai and Camerer 2018). The
distribution of both the discounting and choice consistency measures are displayed in Appendix Figure D.1.

31The data was generously provided to us by Alec Smith.
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Figure 4: Distribution of Economic Preferences within the U.S. population
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Notes: The top panel displays the kernel density of each parameter, plotted using Epanechnikov kernel with
bandwidth chosen by rule-of-thumb estimator. The bottom panel displays the Nadaraya-Watson (local mean
smoothing) estimator (bandwidth 0.6) with Epanechnikov kernel and without sample weights.

field studies, discussed in the literature review. Two of those studies obtain estimates for less

than 30% of their participants (Booij and Van de Kuilen, 2009; Booij et al., 2010). A third

produces estimates of the median level of loss aversion between 0.12 and 4.47 depending on

the specification (von Gaudecker et al., 2011). As we show in Section 5.1 and Appendix F,

our results are much more stable under different estimation specifications.

Choice patterns clearly illustrate the source of DOSE estimates, as shown in the bottom

panel of Figure 4. The x-axis is the difference between the expected value of a lottery and
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the sure amount in a given choice. Loss-tolerant participants (λ < 1) are clearly more likely

to choose lotteries with losses than those who are loss averse (λ > 1), with loss-tolerant

participants choosing lotteries nearly 100% of the time when the expected difference is zero.

Note, however, that the flat parts of both lines in the left-hand side of the bottom-left panel

are due to the fact that DOSE only exposes those who have already revealed loss tolerance

through prior choices of lotteries with large negative expected values. Similar patterns exist

for those who are risk averse versus those who are risk loving: the latter are more likely

to choose gambles with gains at every expected value difference. For all four groups of

participants, the probability of choosing the lottery increases with the difference between

the expected value of the lottery and the sure amount.

4.2 Economic Preferences and Cognitive Ability

Our comprehensive survey allows us to document new facts about the correlates of loss

aversion and choice consistency in the U.S. population. An examination of the simple cor-

relations between economic preferences, socioeconomic characteristics, and cognitive ability

shows that cognitive ability is the most important correlate of loss aversion, and the other

three DOSE-estimated parameters. High cognitive ability participants are more loss averse,

while those of lower cognitive ability are more loss tolerant, on average. This correlation

reflects clear differences in the choices participants made during the survey: high cognitive

ability participants were consistently less likely to choose lotteries involving losses. Higher

cognitive ability participants are more patient (and consistent), in-line with previous studies.

Higher cognitive ability participants are also less risk averse. Examining this result in further

detail in the following subsection allows us to demonstrate that the mixed evidence on the

relationship between risk aversion and cognitive ability in previous studies may be explained

by inconsistent choice (Andersson et al., 2016b; Dohmen et al., 2018).

Cognitive ability was measured using a set of nine questions. Six questions were from

the International Cognitive Ability Resource (ICAR, Condon and Revelle, 2014): three were
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Table 2: DOSE preference parameters are correlated with individual characteristics.

Loss Risk
Patience

Choice
Aversion Aversion Consistency

(λ) (1− ρ) (δ) (µ)

Cognitive Ability 0.21∗∗∗ −0.21∗∗∗ 0.18∗∗∗ 0.15∗∗∗

(.030) (.028) (.029) (.026)

Income 0.15∗∗∗ −0.15∗∗∗ 0.12∗∗∗ 0.06∗

(.032) (.034) (.034) (.033)

Education 0.13∗∗∗ −0.10∗∗∗ 0.17∗∗∗ 0.11∗∗∗

(.032) (.033) (.037) (.032)

Male 0.08∗∗ −0.10∗∗∗ −0.02 0.01
(.033) (.032) (.035) (.033)

Age −0.10∗∗∗ 0.02 0.18∗∗∗ 0.05
(.033) (.032) (.036) (.036)

Stock Investor 0.06∗∗ −0.11∗∗∗ 0.10∗∗∗ -0.02
(.031) (.029) (.031) (.032)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors, in
parenthesis, come from a standardized regression. Each cell corresponds to a single regression.

similar to Raven’s Matrices, and the other three involved rotating a shape in space. We also

administered the Cognitive Reflection Test (CRT; Frederick, 2005): three arithmetically

straightforward questions with an instinctive, but incorrect, answer. Our cognitive ability

score was the sum of correct answers to these questions.

The relationships in Table 2 are consistent with the analyses in the prior subsection

showing that the general population is more risk averse and less loss averse than lab/student

populations. In particular, more educated, higher income, and more cognitively able indi-

viduals tend to be more loss averse and less risk averse; and lab populations have higher

cognitive ability than the general population (Snowberg and Yariv, 2018). Men and younger

people tend to be more loss averse, and those that own stock are less loss averse.32

The strong correlations between cognitive ability and economic preferences are robust

32Appendix Table D.2 presents additional correlations with Church Attendance, Ethnicity, and Home
Ownership, and shows that the correlations with the two components of cognitive ability (CRT and IQ) are
similar to the correlations in Table 2.
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Figure 5: Low cognitive ability participants chose more lotteries with losses.
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to controlling for the other individual characteristics in Table 2—see Appendix Table D.3.

In fact, differences in cognitive ability appear to explain most of the relationship between

education and economic preferences.

The choices participants make differ by cognitive ability, as shown in Figure 5.33 Across

the range of expected value differences, high and low cognitive ability participants exhibit

different patterns of choice. In the first panel, which focuses only on lotteries with a loss,

low cognitive ability participants are significantly more likely to choose the lottery than high

cognitive ability participants. The u-shape of the curve for both ability terciles is driven by

the fact that DOSE only presents very negative expected value difference choices to those

who have already expressed significant loss tolerance. In contrast, in the second panel,

which focuses on lotteries that only contain a zero payoff and a gain, low cognitive ability

participants are significantly less likely to choose the lottery.

In summary, the patterns of correlation between cognitive ability and risk and loss aver-

33Appendix Figure D.1 presents the results in Figure 4 by cognitive ability tercile.
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sion in Table 2 are clearly driven by underlying choices. Low cognitive ability participants

are especially willing to accept lotteries with losses, even when those result in an expected

value loss. However, low cognitive ability participants are also less willing to choose a lottery

over gains, even when that results in an expected value gain.

Very few participants consistently make expected value maximizing choices, regardless of

cognitive ability. Fewer than 2% of participants made all EV-maximizing choices, and fewer

than 5% made more than 8 such choices (out of ten). Further, in contrast to some previous

studies (for example, Burks et al., 2009; Benjamin et al., 2013), we find the proportion

of choices that maximize expected value is only slightly higher for high cognitive ability

participants: those in the highest tercile of cognitive ability made 57% EV-maximizing

choices compared to 52% for participants in the lowest tercile.

4.3 Choice Consistency and Estimate Accuracy

Accounting for inconsistent choice can explain the mixed evidence about the relationship

between risk aversion and cognitive ability in previous studies (Dohmen et al., 2018). The

simulations in Section 3.2 show that, in the presence of inconsistent choice, MPLs measure

risk aversion with considerable error. It is well known that error will attenuate, and po-

tentially bias, any estimated relationship between these measures and other factors. In this

subsection, we show that inconsistent choice is related to attenuation bias in our survey. The

MPL measure of risk aversion on our incentivized survey is weakly associated with cognitive

ability, in contrast to the DOSE measure. However when we focus only on participants that

make (more) consistent choices, the MPL and DOSE measures exhibit similar correlations.

The MPL-based risk aversion measure is more weakly correlated with other characteristics

than the DOSE measure, as shown in the first panel of Figure 6. For example, the correlation

with cognitive ability is−0.04 (s.e. = .028), compared to−0.21 (.028) for DOSE. This pattern

is consistent with our simulation results, which showed more error in MPLs than DOSE.

Inconsistent choice is related to the attenuation of correlations. Once we use the DOSE
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Figure 6: DOSE measure of risk aversion is more highly correlated with individual charac-
teristics before choice consistency is accounted for.
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Notes: Figure displays correlations between the DOSE and MPL measures of risk aversion and individual
characteristics. The left-hand panel includes all participants, the middle contains those with above median
choice consistency, and the right-hand panel contains those with below median choice consistency. The
survey contained two MPL measures of risk preference. Correlations are estimated by stacking the two and
clustering standard errors by participant.

consistency measure to exclude inconsistent participants, there is a strong negative relation-

ship between cognitive ability and the MPL risk aversion measure—see the middle panel

of Figure 6, which contains only those with above median choice consistency parameters

µ.34 The magnitude of the correlations is consistently higher for both risk aversion mea-

sures; however the contrast is particularly striking for the MPL measure, where a number

of relationships—including with cognitive ability—are now statistically significant. This is

despite the fact that standard errors are increased by only using half the sample. As shown

in the right-hand panel of the figure, DOSE estimates exhibit similar correlations even for

very inconsistent participants, while correlations with MPL estimates are almost zero. This

is also in-line with our simulation results.

The patterns in Figure 6 also demonstrate that the choice consistency parameter can

34As we discuss in Section 5.2, DOSE estimates may also contain less measurement error because the
binary choice questions are easier to understand than MPLs.
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identify individuals that make more mistakes even outside of the DOSE module, and thus

help researchers address survey noise. This information is difficult to obtain through other

easily available measures. For example, as we demonstrate in Appendix D.2, the correlations

in Figure 6 cannot be recovered by truncating the sample based on response time rather

than consistency. In fact, the consistency measure helps distinguish whether fast responses

reflect a lack of attention: restricting the sample to high-consistency participants recovers

correlations even among the subgroup of participants with particularly fast response times.

The value of the choice consistency measure is particularly striking when we consider that

our DOSE design did not focus primarily on eliciting this measure. Simple design tweaks—

such as allowing the procedure to ask questions multiple times—could allow the variable to

be measured more accurately, and hence provide even more information to researchers.

4.4 Within-person Stability of Loss Aversion

The within-person stability of the DOSE estimates of risk and time preference is higher than

other behavioral elicitations, both in our survey and in most previous studies. That is, they

are more highly correlated within-person across time, consistent with the fact that DOSE

reduces measurement error in parameter estimates. The correlation of DOSE estimates

across survey waves was 0.40 (s.e. = .04) for loss aversion (λ), 0.45 (.04) for risk aversion (ρ),

and 0.47 (.05) for discounting (δ). In comparison, the inter-temporal correlation between

choices in the two risk MPLs were 0.29 and 0.26 (.04 for both), and for choices in a risky

project measure (Gneezy and Potters, 1997) the correlation was 0.33 (.04). The stability

in the two time preference MPLs was 0.28 and 0.20 (.06 for both).35 These findings are

consistent with higher measurement error in the MPL measures, as suggested by both the

simulation results (Section 3.2) and the survey results discussed in the previous subsection.

Interestingly, there is no clear relationship between the stability of the DOSE estimates of

35The stability of the consistency parameter (µ) was 0.22 (S.E.=.05); lower than the other DOSE measures
but similar to the MPLs discussed above. Part of the explanation for this relatively low correlation is that
our DOSE implementation was designed to update more on other parameters: the relatively small number
of questions made it harder to identify inconsistent choices.
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preference parameters and choice consistency (µ), suggesting that by accounting for mistakes

DOSE blunts the impacts of them. For participants with above-median choice consistency

the over time correlations are 0.41 for loss aversion, 0.43 for risk aversion, and 0.47 for dis-

counting. For participants with below-median choice consistency correlations are 0.38, 0.47,

and 0.46, respectively. This is consistent with evidence in the prior subsection and section

that the accuracy of DOSE estimates is relatively constant across much of the observed range

of choice consistency—except for the most inconsistent.

The over-time correlations of DOSE estimates also compare favorably with methods in

prior studies. The only study we are aware of that measures stability of risk attitudes in the

loss domain is Levin et al. (2007), who report over-time correlations for 62 participants of

0.29 for a risk measure over gains, and 0.20 for a measure of differential risk-taking between

the gain and loss domain.36 Two further studies use incentivized methods to investigate

the stability of risk aversion (over gains) over lengthy periods, both finding lower over-time

correlations than the DOSE estimates. Gillen et al. (Forthcoming) find an inter-temporal

correlation of 0.32 for both of two risk MPLs and 0.36 and 0.47 for two risky project questions.

Lönnqvist et al. (2015) report a within-subject correlation of 0.21 for an MPL measure across

a year.37 There is a similar pattern when comparing the stability of the DOSE-measured

time preferences to the prior literature, although differences in methodology and samples

make it harder to compare (see discussion in Appendix B). Thus, DOSE is an answer to

Meier and Sprenger’s (2015, p. 286) challenge to develop, “A more precise experimental

technique for eliciting time preferences...to make further study of stability.”

Notably, the DOSE estimates are more stable, despite these previous studies occurring

in the laboratory or with high-IQ college populations (or both)—suggesting that DOSE can

obtain levels of measurement error similar to a laboratory environment in an online survey.

Economists have often shied away from using incentivized measures in large samples because

36Levin et al. (2007) report correlations for 62 pairs of parents and children. The figures above are from
the adults, for comparability. For the children, over-time correlations are 0.38 and 0.30 respectively.

37Andersen et al. (2008b) elicit risk aversion over time, however, they do not report over-time correlations.
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of high measurement error and the prohibitive cost of implementing multiple elicitations

(Schildberg-Hörisch, 2018). DOSE overcomes this constraint and, as we show in Section 5.2,

the procedure is faster to complete than an MPL module.

5 Robustness

In this section we use our data to demonstrate the robustness of DOSE parameter estimates,

providing further evidence for our finding that a significant proportion of the U.S. population

is loss tolerant. DOSE obtains accurate parameter estimates even if the utility function used

in the question selection procedure is misspecified. Consequently, it is straightforward to test

robustness to different utility specifications: our survey conclusions are unchanged assuming

either exponential (CARA) utility or allowing curvature to vary across gains and losses.

Further tests suggest that our results are not driven by inattention or misunderstanding.

5.1 Robustness to Misspecification

DOSE is largely robust to misspecification of the parametric form used to select questions

because the choice data itself can be used to estimate the parameters of different functional

forms. This re-estimation can be done in response to new information, or simply as a

robustness check. In this subsection, we focus on the latter application, and assess the

robustness of our loss aversion results to different forms of the utility function over gains and

losses. Our estimates are largely robust. This should be unsurprising based on the patterns

of choice described in Sections 4.1 and 4.2.

Simulations indicate that using a misspecified utility function produces little change in our

results. In Appendix F.1, we run the DOSE question selection procedure with a exponential

(CARA) utility function for the simulated participants used in Section 3.2. As the simulated

participants make choices using a power (CRRA) utility function, this means that the utility

function used to select questions is misspecified. The Spearman rank correlation between the
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(misspecified) CARA risk aversion parameter estimates and the (true) CRRA parameters is

almost exactly the same as when using the correct utility function–0.75 (versus 0.79) for risk

aversion and 0.90 (versus 0.90) for loss aversion. Moreover, we are able to recover equally

accurate CRRA parameter estimates using the choice data. Even when misspecified in this

way, DOSE outperforms other measures by similar margins to those shown in Table 1.

Applying this procedure to our survey data, in Figure 7, shows that our conclusions

regarding loss aversion are similar using different utility functions. In addition to the CRRA

utility function used in (1), we add a CARA utility function, and a CRRA utility function

with different curvature parameters over losses and gains (Tversky and Kahneman, 1992).

The latter specification produces the biggest difference. However, the finding that a large

portion of the population are loss tolerant is unchanged: the proportion of participants

with estimated λ < 1 ranges from 46% to 53% across the three models. The variation in

the median value of the loss aversion parameter λ is very narrow across the three models,

ranging from 0.98 to 1.12.38 The second panel of Figure 7 breaks down both the one- and two-

parameter CRRA utility parameters by cognitive ability. Again, there is the same pattern

as in the prior section: those with higher cognitive ability are more loss averse, and those

with lower cognitive ability are more loss tolerant.

The CRRA model we used in prior sections fits the data best: it predicts 89% of choices

correctly, compared to less than 85% for the other two functions. Moreover, we estimate that

most (68%) participants are risk averse over gains and risk loving over losses, in-line with prior

experiments and Prospect Theory (Kahneman and Tversky, 1979). The average difference

in the curvature between the domains is close to zero, offering support for specification (1),

although there is considerable individual heterogeneity—see Appendix F.

The individual choice data demonstrate widespread loss tolerance without making any

parametric assumptions. A loss-averse participant should never accept a lottery with neg-

38The correlation between the loss aversion parameters under different utility functions is greater than 0.8.
Risk aversion over gains is also highly correlated across the different specifications (Spearman correlations
of 0.98 or above).
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Figure 7: Results on loss aversion are robust to different parametric specifications.
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ative expected value in our implementation, as they could always choose a certain amount

of $0 instead. Yet, many participants do, as shown in Figure 4. Accepting a lottery with a

negative expected value implies that the magnitude of the negative value for a loss is less

than that for an equally-sized gain—implying loss tolerance. The fact that a large proportion

of the population is loss tolerant is thus apparent without any parametric assumptions.

The results in this subsection clearly demonstrate that the DOSE estimates reflect partic-

ipants’ choices. However, they cannot speak to the extent to which those choices accurately

reflect individual preferences or, specifically, whether participants comprehended or paid at-

tention during the DOSE module. Thus, in the next subsection, we address concerns that

our results are driven by a lack of understanding or care in completing the survey.

5.2 Response Times

36



The questions we used in DOSE appear to be easy to understand. First, respondents across

the cognitive ability spectrum complete DOSE questions in similar amounts of time, as op-

posed to more complicated methods, which take lower cognitive ability participants longer.

Second, the speed of response is not evidence of participants “giving up,” or misunderstand-

ing the questions. Removing participants that complete DOSE more quickly has no effect

on estimates of the distributions of parameters.

Earlier results provide some evidence that participants did, in fact, find DOSE relatively

simple. The higher correlation of DOSE elicitations across time (compared to MPL elicita-

tions) suggests that it was easier to maintain similar response patterns even more than six

months later. Moreover, the fact that correlations between DOSE estimates of risk aversion,

discounting, and sociodemographic characteristics largely mirror the existing literature, and

are stronger than the correlations with MPL measures, also suggests that they more reliably

extract information on preferences. However, the fact that lab and general population results

differ could be interpreted as evidence of possible confusion in the representative sample.

As a reminder, we designed our questions in order to make expected value comparisons

as simple as possible, as discussed in Section 2.2.2. In particular, all questions contained

only one 50/50 lottery, and at least one of the three payoffs (the sure payoff, and the two

lottery payoffs) was zero. This implies that computing the expected value of a gain lottery

only required dividing the lottery by two. Comparing a gain/loss lottery to a sure payoff of

zero required only comparing the magnitude of the gain and the loss.

A way to assess the complexity of a question is the amount of time participants take to

answer: if participants struggle to understand a question they will usually take longer to

answer it (or much shorter if they give up). The DOSE module (including instructions),

was, however, fast to complete. The median time on the risk-loss DOSE module was 115

seconds, and on the time-discounting module was 107 seconds. In comparison, the median

time taken to complete the MPL instructions and first elicitation was 259 seconds.39

39The first MPL measured time preferences. The DOSE modules always appeared prior to this MPL.
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Figure 8: Low cognitive ability participants take longer on MPL questions, but not on DOSE.

200

250

300

350
R

es
p
o
n
se

 T
im

e 
(s

ec
o
n
d
s)

1 2 3 4

Quartile of Cognitive Ability

DOSE Risk and Time Modules

200

250

300

350

R
es

p
o
n
se

 T
im

e 
(s

ec
o
n
d
s)

1 2 3 4

Quartile of Cognitive Ability

MPL Module (Time)

Notes: DOSE module includes 20 questions addressing both risk and time preferences. MPL module includes
two MPLs assessing time preferences, which was the first MPL module on the survey. Respondents with
response times greater than 15 minutes for either module are excluded. Both panels include time taken for
questions and explanatory text.

Additional evidence that DOSE was simple to understand is that low cognitive ability

participants took the same amount of time as high cognitive ability participants to complete

the DOSE module, in contrast to the MPL—see Figure 8. Participants in the top cognitive

ability quartile took, on average, 34 seconds less in the MPL module than those in the bottom

quartile. For DOSE, in contrast, high cognitive ability participants took 3 seconds longer on

average (p-value=0.68). Moreover, the variance of time taken was relatively constant across

quartiles, as indicated by the confidence intervals in the figure. Together, these facts suggests

that DOSE was equally easy for participants all along the cognitive ability spectrum.

However, just because participants, in general, seem to have found DOSE easier to un-

derstand than the MPL doesn’t mean there were no participants confused by DOSE, or that

all were paying attention. We examine this possibility next by re-analyzing our data while

leaving out those who were most likely to have given up and rushed through the survey.

The same results hold, implying that neither confusion nor inattentiveness, nor giving up, is

likely to explain many of the choices we see.

Our results are largely unchanged when removing the fastest responses. As shown in
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Figure 9: Distributions are similar when removing participants with short response times.

D
en

si
ty

0 1 2 3 4
Loss Aversion (λ)

D
en

si
ty

−0.5 0 0.5 1
Risk Aversion (1−ρ)

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
Patience (δ)

Response Time on Entire Survey
D

en
si

ty

0 1 2 3 4
Loss Aversion (λ)

D
en

si
ty

−0.5 0 0.5 1
Risk Aversion (1−ρ)

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
Patience (δ)

Response Time on DOSE

All participants Slowest 80% Slowest 60%

Slowest 40% Slowest 20%

Notes: Plotted using Epanechnikov kernel, with bandwidth chosen by rule-of-thumb estimator.

Figure 9, the distribution of economic preferences is similar when restricting the sample by

removing participants according to the quintile of response time. That is, we first look at

the slowest 80% of respondents, then the slowest 60%, and so on. The distributions overlap

almost entirely—and the median loss aversion parameter consistently remains very similar

in the whole sample (1.02 or below): fast response or inattention cannot be said to be the

explanation for loss tolerance. Moreover, correlations with other characteristics are also

similar when removing the fastest respondents—see Appendix Table D.9.

A final manifestation of inattention might be choosing the same option in each question:

either the lottery (always listed first), or the sure amount (always listed second). However,

there is little evidence of this pattern of inattention in our results: fewer than 6% participants
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chose the same option in all ten question rounds. While we cannot rule out that some

participants rapidly clicked through the DOSE module, such behavior does not appear to

affect our results.

6 Discussion

In this paper, we introduce DOSE—Dynamically Optimized Sequential Experimentation—

and use it to study loss aversion and other economic preferences in a representative sample of

the U.S. population. Our results are summarized in Table 3. A few are worth highlighting.

First, we find that around 50% of the U.S. population is loss tolerant over small stakes,

differing from prior studies that have found a strong majority of loss averse participants,

usually in lab/student samples. Second, those with greater cognitive ability, education, and

income are more likely to be loss averse, and those with lower cognitive ability are more likely

to be loss tolerant. This, along with the fact that DOSE in lab/student samples produces

similar results to prior studies, suggests that differences in samples are likely the source of

the difference between our results and prior studies. Third, using DOSE’s choice consistency

parameter we show that those with high consistency exhibit a correlation on MPL-based

measures between higher cognitive ability and less risk aversion. This suggests that the

mixed results about this relationship in the literature (Dohmen et al., 2018) may be due

to measurement error (Gillen et al., Forthcoming). Fourth, across a range of evaluations,

DOSE produces better measures: more accurate, more stable, faster, and so on.

Our findings about loss aversion diverge significantly from conventional wisdom, raising

the possibility that the literature may have been influenced by factors beyond the inad-

vertent sample selection mentioned above. Hints can be found in Fehr-Duda and Epper

(2012, p. 576), who observe, “Since the publication of Tversky and Kahneman (1992), any

estimates of loss aversion that deviate significantly from the value of two have been eyed

with great suspicion, notwithstanding the fact that the original estimate was based on 25
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Table 3: Comparison of DOSE with Other Elicitation Methods

DOSE MPL

Risky
Project /
Lottery

Menu (†)

S
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st
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ve



Loss Attitudes

Percent Loss Tolerant 53% n.a. n.a.

Median Loss Aversion Parameter 0.98 n.a. n.a.

Correlations w/Cognitive Ability

Risk Aversion -0.21 ≈ 0 -0.07

Loss Aversion 0.40 n.a. n.a.

Patience 0.18 0.17 n.a.

Correlations w/ Demographics

Risk Aversion X ≈ 0 X

Loss Aversion X n.a. n.a.

Patience X X n.a.
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Representative Survey

Speed 115 secs 259 secs 33 secs

Stability: Risk Aversion 0.45 0.28 0.33

Stability: Loss Aversion 0.40 n.a. n.a.

Stability: Patience 0.47 0.24 n.a.

Parameter Recovery Analysis

Inaccuracy: Risk Aversion 15% 37% 35%†

Inaccuracy: Loss Aversion 15% 36% n.a.†

Correlation: Risk Aversion 0.79 0.45 0.28†

Correlation: Loss Aversion 0.91 0.65 n.a.†

Notes: “Inaccuracy” is the average absolute percentage difference between the estimated and true pa-
rameter values. “Correlation” is the correlation between the estimated and true parameter values.
“Stability” is the correlation across survey waves. X indicates that a pattern of statistically significant
correlations were identified. Observations denoted with a † are from the Lottery Menu elicitation—which
was included in our simulations, but not our survey—rather than the Risky Project—which was included
in our survey, but not our simulations.
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subjects, hypothetical decisions over relatively large stakes, and that no standard errors were

reported.” Relatedly, the one study that examines loss aversion in a representative sample,

von Gaudecker et al. (2011), report a median estimate of λ = 2.38, although specifications

in the appendix have medians ranging from 0.12 to 4.47. More directly, Walasek et al. (in

progress) analyze 19 studies of loss aversion in lab/student populations, and find evidence

of publication bias, and Yechiam (2018, p. 1) notes in a review of the loss aversion literature

that, “[T]he findings of some of these studies have been systematically misrepresented to

reflect loss aversion, though they did not find it.”

Our DOSE implementation provides estimates of risk aversion and time preferences that

also appear to dominate MPL-based elicitations. DOSE risk aversion measures show stronger

correlations with cognitive ability and other characteristics than MPL-based measures, as

shown in Table 3. Further, DOSE-based measures of risk and time preferences show greater

stability than MPL-based measures. These facts indicate, in-line with our simulations, that

DOSE produces estimates with lower measurement error in these domains as well.

A common concern about DOSE is that, like most dynamic methods, they are not incen-

tive compatible. For example, participants could misleadingly say they prefer a lottery to a

sure amount in the first question in order to increase the magnitude of the sure amounts of-

fered in the future. However, this is possible with any sequence of questions that participants

believe are dynamic—and few experiments explicitly rule out this possibility (our survey did

not explicitly mention the dynamic nature of our 20 questions). However, in practice this

is of little concern: Ray et al. (2012) find minimal possible benefits of manipulation, and

little evidence that even very sophisticated participants engage in this behavior even when

explicitly informing participants that the question sequence is manipulable. For more on

this concern, see Appendix A.

The accuracy, speed, and simplicity of DOSE potentially expands the range of research

settings in which incentivized preference elicitation is viable. The procedure may be partic-

ularly valuable in field experiments, where it is difficult to provide participants with detailed
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instructions. Similarly, it may also be easier to implement than more complex or time

consuming designs when conducting experiments with low literacy participants, children,

patients with medical disorders, or even animals. DOSE performs better with low cognitive

ability, low-education, and low-income participants, suggesting that it could be particu-

larly useful in development environments, where current elicitation methods can be plagued

by inconsistent choice (Jacobson and Petrie, 2009; Charness and Viceisza, 2012) and new

techniques are particularly needed (Berry et al., 2015). DOSE can also be used to discrimi-

nate between models on an individual level in real time—an application developed for time

preferences in Imai and Camerer (2018), based on an earlier working paper version of this

manuscript (Wang et al., 2010).

There is more to be learned about loss aversion with DOSE simply by broadening the

types of questions participants are asked. Offering participants lotteries with prizes only in

the loss domain would allow better identification of differences in the curvature of the utility

function in the gain and loss domain. Further, the degree of loss aversion may be affected

by stake size and “zero avoidance” (Ert and Erev, 2013). The questions used in this paper

involved only small stakes and always contained a prize of zero payoff—the sure amount

in questions involving a lottery with a loss, and one of the lottery prizes in the questions

only involving gains. These design choices could straightforwardly be varied to obtain a

richer view of the factors affecting loss aversion, and something like “zero aversion” could be

modeled directly and relevant parameters estimated.

Even with these questions outstanding, our findings relate to current psychological and

neuroscientific work on gain-loss differences. The fact that loss aversion depends on cogni-

tive skill suggests it may have some basis in effortful cognitive processes. Recent evidence

indicates aversion or tolerance to loss is associated with mental information accumulation

(Clay et al., 2017) and attention paid to losses and gains (Bhatia and Golman, 2015; Yechiam

and Hochman, 2013). The clearest evidence for the role of attention is that visual attention

to losses correlates modestly (0.31) with the loss aversion parameter inferred from choices
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(Pachur et al., 2018). In addition, exogenously manipulating attention by visually present-

ing it for an extra 0.6 seconds increased estimated loss-aversion by about 10%. It would be

useful to know whether people with lower cognitive ability pay less attention to losses.

A small amount of neuroscientific evidence indicates stronger encoding in the amygdala

in response to loss (Yacubian et al. 2006; De Martino et al. (2010); though not in Tom

et al. 2007). The anti-anxiety drug Propranalol lowers loss aversion by about 15% (in

low-BMI subjects; Sokol-Hessner et al., 2015). Given the role of the amygdala in rapid

“vigilance” threat processing, these results suggest lower cognitive ability participants may

simply feel less fear or anxiety about losses. Experiments have shown that differences in

the distributions that are faced can influence choices—losses are more tolerated when many

choices include possible losses, due to a general cognitive process called “adaptive coding”

(Walasek and Stewart, 2015). Thus, it is possible that people with lower cognitive ability

are more routinely exposed to everyday gain and loss distributions, which create a tolerance

for loss.

Obviously, our incentivized survey data cannot test any of these mechanistic hypotheses.

Given the striking behavioral association between loss tolerance and cognitive skill, how-

ever, it would be useful to further explore the roles of attention, anxiety, and distributional

experience with low and high cognitive ability groups.
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Online Appendix—Not Intended for Publication

A Potential for Manipulation

In practice, the theoretical possibility that DOSE could be strategically manipulated—like

most dynamic designs—is unlikely to be an important concern. The adaptive nature of

the DOSE question selection procedure means that individuals could have an incentive to

misrepresent their true preferences in early questions to obtain more generous offers in future

questions. For example, participants could misleadingly say they prefer a lottery to a sure

amount in the first question in order to increase the magnitude of the sure amounts offered in

the future. However, such behavior is unlikely as the incentives for manipulation are small,

and it requires that participants understand both the adaptive nature of the procedure, which

is not explained to them, and how to manipulate the question sequence. The short question

sequence and general population sample in our survey means that neither of these conditions

are likely to be met. Further, DOSE could easily be adapted to combat manipulation in other

settings where there is greater likelihood of strategic behavior.

The incentive for participants to game adaptive procedures is small, and there is little

evidence of such behavior in practice. Ray et al. (2012) find that with a 10 question adaptive

sequence the excess earnings of a risk neutral clairvoyant agent are only 8% higher than a

myopic one who maximizes earnings in each choice. Further, they report that informing

participants in a laboratory experiment that the question sequence is manipulable did not

increase average earnings, and most participants stated that they did not try and manipulate

the system. There is also little evidence of manipulation—identified by behavior changing

significantly between early and later question rounds—in their data.

Strategic behavior is particularly unlikely in our survey, given that we ask only a short

question sequence and participants are unlikely to have previous experience of economic

experiments. The short question sequence means that there is little opportunity for learning

Online Appendix–1



about the adaptive nature of the question selection criteria, particularly as the type of choices.

In addition, we draw from a general population sample who—unlike the subject pools used

in laboratory experiments—are unlikely to have received formal training in economics or to

have participated in previous incentivized studies. There is no reason, therefore, to believe

that they would recognize the opportunity to manipulate the question selection procedure.

DOSE can easily be adapted to address concerns about manipulation in settings where

“gaming” is seen as particularly likely—for example, in the presence of large stakes. We

suggest two possible remedies, but others are possible.1 First, the actual question chosen for

payment can be randomly selected from all possible questions after the personalized question

sequence is completed. If that question has already been answered, the answer determines the

payment. If not, the participant answers it, and this answer determines payoff. In the second

remedy, the answers the participant provides to the DOSE questions determine parameter

estimates, which are used to construct the choice to one of the unanswered questions, which

is used for payment. Both designs mean that truthful response is incentive compatible—if

the model of preferences used is correct. The latter, in the presence of risk aversion, should

even increase incentives for consistent choices. However, both may reduce the strength of

participant incentives as each question has a lower probability of influencing the final payoff.

An final approach would involve using DOSE to assess the extent of strategic manipu-

lation among respondents. In particular, the possibility of manipulation could be built into

DOSE as a separate theory of behavior with associated prior beliefs. The DOSE questions

would then be selected in order to identify whether there is strategizing or not (as well as

the other parameters of interest).

B Risk and Time Preferences and the Literature

Our findings regarding risk aversion and discounting are broadly similar to those of pre-

vious studies in representative populations; the few differences appear to be explained by

1The first remedy was suggested by Kate Johnson, and the second by Ian Krajbich.
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our elicitation method. Risk aversion and discounting are widespread amongst our sur-

vey participants, but the median level of risk aversion is lower than found in the previous

literature—a difference explained by our use of binary choice questions rather than MPLs.

As discussed in Section 4.3, our elicitation method also explains the one major difference

with previous studies of the correlates of these two preferences: by accounting for variation

in choice consistency, we identify a strong negative relationship between risk aversion and

cognitive ability.

Differences in elicitation method appear to explain the lower level of risk aversion esti-

mated by DOSE than found in previous studies of representative samples. The mean and

median Coefficient of Relative Risk Aversion (1-ρ) are 0.25 and 0.31 respectively, compared

to previous findings ranging from approximately 0.4 (Dohmen et al., 2010) to 0.7 (Harrison

et al., 2007; Andersen et al., 2008a). This pattern is consistent with laboratory studies find-

ing lower levels of risk aversion using binary choice questions: the average coefficient using

DOSE is 0.05 in the lab, which is similar to the value of 0.12 found by Sokol-Hessner et al.

(2009) using binary questions, but much lower than the range of 0.3–0.5 found by Holt and

Laury (2002). Moreover, the median coefficient on the MPLs on our survey (0.4 and 2.1)

are more in line with previous studies.

The patterns of correlation between risk aversion and discounting and sociodemographic

characteristics we find (see Table 2), largely match the literature. The relationship between

cognitive ability and patience, unlike risk aversion, is well-established in both economics and

psychology (for example, Shamosh and Gray, 2008; Burks et al., 2009; Dohmen et al., 2010;

Benjamin et al., 2013). Patient individuals have also been found to have higher income,

greater savings, and more education (see DellaVigna and Paserman, 2005; Falk et al., 2018;

Urminsky and Zauberman, 2016). In the laboratory most studies have documented that

women are more risk averse than men (Eckel and Grossman, 2008), as have Falk et al. (2018)

in a representative sample. There is also some evidence of a negative relationship between

risk aversion and income, although results have been mixed (see, for instance Dohmen et
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al., 2010; Barsky et al., 1997). The most important difference from the literature is the

relationship between risk aversion and cognitive ability, where we find a strong negative

correlation, whereas results in the previous literature are mixed between somewhat smaller

negative correlations, no correlations and, occasionally positive correlations (for a summary

see Andersson et al., 2016b, Figure 1). As discussed in Section 4.3, it appears this difference

is explained by the fact DOSE accounts for inconsistent choice.

Measurement error may also explain the lack of consistent patterns emerging from the few

other studies that have examined the correlates of loss aversion in representative samples.2

Only one of those studies examined the association with cognitive ability, finding no evidence

of a relationship (Andersson et al., 2016a). The findings for both education and income have

been very mixed, with correlations sometimes negative, sometimes zero and—for income—

sometimes positive. The most consistent pattern emerging from other studies, but not

reflected in our results, is that women have been found to be more loss averse—whereas we

find no relationship with sex after controlling for other sociodemographic variables.

As noted in Section 4.4, the over-time correlation of the DOSE time preference measure

is larger than estimates in most previous studies, but direct comparisons are complicated

by differences in the sample used. In the most comparable study, Meier and Sprenger

(2015) report correlations of 0.36 for present bias and 0.25 for discounting parameters among

250 low- to middle-income Americans. In another field study, Kirby et al. (2002) reports

correlations of 0.09–0.23 over a six month period among Bolivian Amerindians. The only

study (Kirby, 2009) that finds a higher correlation than DOSE (between 0.63 and 0.71)

took place in a more controlled (laboratory) environment than our survey. The variety of

the samples makes comparisons difficult—it is not clear, for instance, how to compare our

representative online survey to the in-person, low-income sample in Meier and Sprenger

(2015). However, the results are, at least, consistent with the DOSE estimates being more

2As discussed in Section 1, those studies include Booij and Van de Kuilen (2009); Booij et al. (2010); von
Gaudecker et al. (2011) and Andersson et al. (2016a)
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stable over time due to reduced measurement error.3

C Additional Details of Survey Implementation

This subsection presents further details of the implementation of DOSE in the online survey,

including both the question selection procedure and the estimation of the DOSE parameters

presented in the main text. As discussed in Section 2.3, the survey included two DOSE survey

modules. The first module focused on risk preferences, and consisted of 10 binary choices

between a sure amount and a lottery.4 The second module focused on time preferences and

consisted of a further 10 binary choices between differing amounts at two different dates.5

Conceptually, the question selection differed from the outline presented in Section 2.3 in

two ways. First, after each question round the joint posterior was used to construct marginal

distributions for each of the parameters. These updated marginal distributions were then

used to construct the new probability distribution used for question selection in the following

question round under the assumption that the distributions were independent. Second, the

survey questions were selected using the Kullback-Leibler information criterion suggested by

El-Gamal and Palfrey (1996). The KL criterion they suggest captures the distance between

the parameter vector k and all other vectors if k is the correct parameter vector. That is, it

is:

KL(Qi) =
∑
k∈K

∑
a∈A

log

(
(1− pk)lk(a;Qi)∑K

j 6=kpjlj(a;Qi)

)
pklk(a;Qi) (4)

This formula is very similar to (3). The main difference is that the likelihood of model k is

3Chuang and Schechter (2015) provide a detailed review of previous studies of stability of risk or time
preferences. They document two additional studies that reported correlations from incentivized measures
over short periods of time. Dean and Sautmann (2014) find correlations of up to 0.67 over a one week
period in Mali. Wölbert and Riedl (2013) report correlations of between 0.36 and 0.68 for 20 risk MPLs,
and between 0.61 and 0.68 for three measures of discount rates over a 5–10 week period.

4The set of potential questions used for the risk module included gains between $1 and $10 in increments
of $0.50, and sure amounts and losses varying ranging from $0.50 to $10 in increments of $0.10. Questions
were excluded if one choice was first order stochastically dominated for all values of the prior distribution.

5The questions for the time module were drawn from a question set consisting of monetary amounts
between $1 and $10, in $1 increments, and time periods of 0, 1, 3, 5, 7, 9, 10, 12, 16, 21, 28, 35, 42, 49, 56,
60, 70, 80, 90 days.
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not included in the denominator—reflecting the fact that the El-Gamal and Palfrey (1996)

KL criterion measures the divergence between model k and the other models.

In addition, some practical constraints were placed on the question procedure to account

for the survey environment and to ensure that the questions asked provided information

about all the parameters of interest. In the risk module, the first four questions were re-

stricted to be lotteries over gains in order to focus the procedure on obtaining a precise

estimate of ρ before moving onto estimates of λ. To make it harder for respondents to ma-

nipulate the procedure, the maximum prize was restricted to be no more than $7 in each

even numbered round. Questions were also selected as if monetary amounts were 3 times the

actual amounts offered in the lottery to improve discrimination of the risk and loss aversion

parameters rather than the consistency parameter µ. In the time module, the first five ques-

tions were restricted to the choice between payment on two dates in the future. In addition,

when considering two options in the future (that is, t1 > 0 and t2 > 0), individuals were

assumed to choose as if they have a fixed value of the present bias parameter (β=0.64, based

on the estimates from Tanaka et al. (2010)).

After receiving the survey responses, the individual-level estimates presented in the paper

were obtained by performing the Bayesian updating procedure on the answers to the ques-

tions selected by the procedure above. This re-estimation allowed us to use a more refined

prior, and also to use more of the information obtained during the risk module in estimating

individual discount factors. The re-estimation used a discrete uniform prior, consisting of

100 points. The range of the prior was constructed based on previous participant estimates

obtained by Sokol-Hessner et al. (2009) and Frydman et al. (2011). We allow for values of

ρ between 0.2 and 1.7, for λ between 0 and 4.6, for δ (and β) between 0.2 and 1.0 and for

µ between 0 and 8.0. There was little evidence of present bias in the survey—possibly due

to the fact that points were, in general, not instantly convertible into consumption—and so

time preferences were re-estimated allowing for discounting only. In practice, however, we

found very little evidence of present bias either in the DOSE module or in the time MPLs.
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As such, the prior used to obtain estimates did not include a present bias parameter.

Implementing the survey through YouGov’s online platform precluded using DOSE to

choose questions in real time. Instead, simulated responses were used to map out all possible

sets of binary choices in advance. That tree was then used to route respondents through the

survey. Mapping such a tree with the 100 point discretized prior was infeasible given both

computational constraints and the limitations of YouGov’s interface (since mapping such a

tree over 20 questions would involve over 500,000 routes through the survey).

Given these constraints, question selection was implemented separately for the risk and

time modules, and used a coarser prior.6 To utilize the information about the curvature

of the utility function from the risk-loss module, respondents were assigned to one of ten

prior distributions over ρ, based on their estimated ρ from the risk-loss module. These ten

distributions focus on the mass points of the prior used in the risk preference module.

D Robustness Checks

This section presents extended survey results and robustness tests.

D.1 Robustness of Correlations with Economic Preferences

In this subsection we present extended versions of the correlation tables in Section 4, includ-

ing a wider range of individual characteristics and comparisons with alternative measures of

risk and time preferences.

The distribution of preferences for high cognitive ability participants differs significantly

from the rest of the population, as shown in Figure D.1. For each of the three economic

preferences, the low and medium cognitive ability participants appear quite similar—but

there is a first order stochastic dominance relation with high cognitive ability participants.

Further, as discussed in Section 4.2, there is no evidence that the correlations between

6The prior included 12 mass points for ρ, 20 for λ and 4 for µ.
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Figure D.1: Economic preferences among low and high cognitive ability participants are
clearly different.
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cognitive ability and preferences are driven by high cognitive ability individuals clustering

at values near risk- or loss-neutrality.

In Table D.1 we compare the correlations when using the DOSE measure of risk aversion

(column 1) and time preference (column 5) with the other risk and time measures in our

survey. For risk aversion these alternative measures included two MPL modules, one relating

to Willingness-to-Pay for a lottery (which we use in the main paper), and one relating to

Willingness-to-Accept, as well as a risky project measure (Gneezy and Potters, 1997). For
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time preferences, as discussed in Section 2, we included two MPLs as well as the DOSE

module.

The pattern of correlations is much stronger when using the DOSE measure than either

MPL measure. As discussed in Section 4.3, the weak correlations with the MPL (WTP)

measure are consistent with attenuation bias due to higher measurement error in the MPL.

The weak pattern of correlations with the MPL (WTA) measure could also be explained

by attenuation bias or could result from the WTA measure capturing a different dimension

of risk preferences to the other risk measures in our survey (see Chapman et al., 2017).

The risky project measure, which may suffer from less attenuation bias than the MPLs

due to its simplicity, identifies a similar pattern of correlations to the DOSE risk aversion

measure. The correlations between the risky project measure and individual characteristics

consistently have the same sign, degree of statistical significance and magnitude as those

with the DOSE estimates. The main exception are the correlations with cognitive ability,

where DOSE identifies much stronger correlations than the project measure.

Loss aversion is also correlated with other individual characteristics not presented in the

main text, as shown in Table D.2. More loss averse individuals are more likely to attend

church, less likely to be white, and more likely to own a home. Further, the two component

parts of our cognitive ability measure have similar correlations with each of the economic

preference variables, demonstrating that it is appropriate to combine the two.

The correlations with cognitive ability are robust to the inclusion of the other sociode-

mographic controls in Table 2—see Table D.3 and Table D.4. For each of the four preference

parameters, the first specification includes only the attributes—age and sex—that are not

potentially endogenous to cognitive ability. The second specification then includes the re-

maining variables including, of most interest, education and income. In the specifications in

Table D.3 all variables are included as continuous measures (except stock investor and male).

The coefficients are standardized, and so are comparable to the correlations in Table 2. In all

specifications the coefficient for cognitive ability is still strongly statistically significant and,
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Table D.1: Comparison of correlations between different risk and time measures and indi-
vidual characteristics

Risk Aversion Patience

DOSE MPL MPL Risky DOSE MPL

(WTP) (WTA) Project

Cognitive Ability -0.21∗∗∗ -0.04 0.01 -0.07∗∗∗ 0.18∗∗∗ 0.19∗∗∗

(.028) (.028) (.028) (.029) (.029) (.027)

IQ -0.18∗∗∗ -0.05 0.00 -0.07∗∗ 0.14∗∗∗ 0.17∗∗∗

(.029) (.028) (.029) (.030) (.032) (.029)

CRT -0.18∗∗∗ -0.02 0.02 -0.05∗ 0.18∗∗∗ 0.15∗∗∗

(.030) (.027) (.025) (.029) (.036) (.025)

Income -0.15∗∗∗ -0.06∗ 0.00 -0.13∗∗∗ 0.12∗∗∗ 0.08∗∗∗

(.034) (.034) (.031) (.035) (.034) (.032)

Education -0.10∗∗∗ -0.02 0.03 -0.09∗∗∗ 0.17∗∗∗ 0.11∗∗∗

(.033) (.034) (.028) (.032) (.037) (.033)

Male -0.10∗∗∗ -0.06∗∗ 0.01 -0.12∗∗∗ -0.02 0.02

(.032) (.030) (.030) (.032) (.035) (.034)

Age 0.02 0.05 -0.04 -0.02 0.18∗∗∗ 0.15∗∗∗

(.032) (.031) (.028) (.032) (.036) (.034)

Stock Investor -0.11∗∗∗ -0.06∗∗ -0.00 -0.12∗∗∗ 0.10∗∗∗ 0.09∗∗∗

(.029) (.029) (.026) (.030) (.031) (.030)

Non-white -0.07∗∗ 0.02 -0.04 -0.08∗∗∗ 0.13∗∗∗ 0.12∗∗∗

(.032) (.030) (.030) (.032) (.035) (.034)

Own home 0.10∗∗∗ -0.01 0.01 -0.06∗ -0.18∗∗∗ -0.16∗∗∗

(.033) (.032) (.032) (.034) (.037) (.038)

Employed -0.04 -0.04 0.01 -0.09∗∗∗ 0.03 0.03

(.031) (.029) (.029) (.031) (.035) (.034)

Church Attendance 0.09∗∗∗ -0.02 0.04 -0.04 0.01 -0.03

(.032) (.029) (.030) (.031) (.034) (.035)

Marital Status -0.03 -0.02 -0.02 -0.01 -0.12∗∗∗ -0.09∗∗∗

(.033) (.031) (.031) (.032) (.037) (.036)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are calculated by
regressing the (standardized) preference parameter on each (standardized) individual characteristic, and are pre-
sented in parentheses.

compared to the other controls, large—although slightly lower than the simple correlations.

The results are similar when including all characteristics as categorical variables, as shown

in Table D.4. These specifications allow for potential non-monotonic relationships, as well
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Table D.2: Additional correlations between estimated DOSE parameters and individual
characteristics

Loss Risk Patience Choice

Aversion Aversion Consistency

(λ) (1− ρ) (δ) (µ)

Cognitive Ability 0.21∗∗∗ -0.21∗∗∗ 0.18∗∗∗ 0.15∗∗∗

(.030) (.028) (.029) (.026)

IQ 0.18∗∗∗ -0.18∗∗∗ 0.14∗∗∗ 0.12∗∗∗

(.033) (.029) (.032) (.028)

CRT 0.19∗∗∗ -0.18∗∗∗ 0.18∗∗∗ 0.14∗∗∗

(.029) (.030) (.036) (.025)

Income 0.15∗∗∗ -0.15∗∗∗ 0.12∗∗∗ 0.06∗

(.032) (.034) (.034) (.033)

Education 0.13∗∗∗ -0.10∗∗∗ 0.17∗∗∗ 0.11∗∗∗

(.032) (.033) (.037) (.032)

Male 0.08∗∗ -0.10∗∗∗ -0.02 0.01

(.033) (.032) (.035) (.033)

Age -0.10∗∗∗ 0.02 0.18∗∗∗ 0.05

(.033) (.032) (.036) (.036)

Stock Investor 0.06∗∗ -0.11∗∗∗ 0.10∗∗∗ -0.02

(.031) (.029) (.031) (.032)

Non-white -0.14∗∗∗ 0.10∗∗∗ -0.18∗∗∗ -0.05

(.033) (.033) (.037) (.038)

Own Home 0.06∗ -0.07∗∗ 0.13∗∗∗ 0.01

(.033) (.032) (.035) (.033)

Employed 0.06∗ -0.04 0.03 0.04

(.032) (.031) (.035) (.031)

Church Attendance -0.06∗ 0.09∗∗∗ 0.01 -0.02

(.033) (.032) (.034) (.032)

Marital Status 0.04 -0.03 -0.12∗∗∗ -0.07∗∗

(.035) (.033) (.037) (.033)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are calcu-
lated by regressing the (standardized) preference parameter on each (standardized) individual character-
istic, and are presented in parentheses.

as having the added advantage of allowing us to include participants that did not report

their income. The relationship with cognitive ability appears to be monotonic although,

interestingly, the association with loss aversion seems limited to the top tercile of ability.
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Table D.3: The correlations between cognitive ability and economic preferences are robust
to the inclusion of demographic controls.

Loss Aversion Risk Aversion Patience Choice Consistency

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive Ability 0.20*** 0.15*** -0.19*** -0.17*** 0.21*** 0.17*** 0.16*** 0.14***

(0.031) (0.034) (0.028) (0.033) (0.028) (0.031) (0.028) (0.029)

Male 0.05 0.07 -0.12** -0.15** -0.12* -0.14* -0.05 -0.04

(0.067) (0.066) (0.063) (0.067) (0.067) (0.073) (0.068) (0.065)

Age -0.09*** -0.09** -0.00 0.00 0.19*** 0.18*** 0.06* 0.03

(0.032) (0.037) (0.031) (0.036) (0.035) (0.041) (0.035) (0.040)

Education 0.06 -0.00 0.10** 0.05

(0.038) (0.036) (0.044) (0.033)

Income 0.08** -0.09** 0.04 0.05

(0.036) (0.036) (0.037) (0.038)

Stock Investor 0.05 -0.08 -0.07 -0.20**

(0.081) (0.074) (0.079) (0.097)

Obs. 2000 1740 2000 1740 2000 1740 2000 1740

Adj. R2 0.05 0.07 0.05 0.06 0.07 0.07 0.03 0.03

Note: Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. All contin-
uous variables are standardized. Robust standard errors are displayed in parentheses. Missing
observations are due to unreported incomes.

The results in Table D.3 and Table D.4 suggest that much of the correlation between

education and both risk and loss aversion is explained by cognitive ability. To test that

it is cognitive ability, and not one of the other controls, that weakens the association we

carry out additional specifications adding the variables one at a time—see Table D.5. For

each preference parameter, we start by adding education and income separately, then both

together and, finally, add cognitive ability. It is only when cognitive ability is added that

the magnitude of the coefficient with education diminishes significantly—suggesting that

cognitive ability jointly determines educational outcomes and these two preferences.
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Table D.4: Participants in top tercile of cognitive ability are more loss averse.

Loss Aversion Risk Aversion Patience Choice Consistency

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive Ability:

Middle Tercile -0.02 -0.03 -0.18** -0.17** 0.18** 0.17** 0.25*** 0.24***

(.082) (.080) (.078) (.077) (.082) (.080) (.086) (.083)

Top Tercile 0.35*** 0.27*** -0.48*** -0.41*** 0.48*** 0.38*** 0.38*** 0.35***

(0.083) (.085) (.071) (.076) (.080) (.083) (.078) (.076)

Age:

36–50 -0.23** -0.23** 0.04 0.06 0.15 0.14 0.08 0.05

(0.106) (0.103) (0.095) (0.094) (0.110) (0.109) (0.098) (0.096)

51–64 -0.32*** -0.35*** 0.07 0.12 0.34*** 0.32*** 0.19** 0.20**

(0.092) (0.093) (0.093) (0.092) (0.098) (0.099) (0.095) (0.099)

65+ -0.26*** -0.28*** 0.02 0.04 0.46*** 0.50*** 0.11 0.13

(0.095) (0.099) (0.094) (0.096) (0.098) (0.101) (0.100) (0.106)

Male 0.08 0.08 -0.13** -0.12* -0.11* -0.10 -0.05 -0.04

(0.067) (0.065) (0.062) (0.062) (0.066) (0.064) (0.067) (0.065)

Education:

Some College -0.02 -0.08 0.30*** 0.03

(0.077) (0.075) (0.085) (0.076)

4-year College 0.15* -0.06 0.26*** 0.16**

(0.085) (0.079) (0.087) (0.077)

Income:

2nd Quartile -0.03 0.08 -0.12 0.12

(0.089) (0.094) (0.102) (0.096)

3rd Quartile 0.20** 0.03 -0.09 0.07

(0.092) (0.090) (0.109) (0.091)

4th Quartile 0.22** -0.21** 0.14 0.05

(0.100) (0.096) (0.093) (0.099)

Unreported 0.34*** -0.07 0.00 -0.25**

(0.119) (0.113) (0.108) (0.121)

Stock Investor 0.06 -0.12* -0.01 -0.19**

(0.074) (0.068) (0.071) (0.088)

Obs. 2000 2000 2000 2000 2000 2000 2000 2000

Adj. R2 0.05 0.07 0.05 0.06 0.06 0.08 0.03 0.04

Note: All dependent variables are standardized. Robust standard errors are displayed in paren-
theses.
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Table D.6: Correlations with individual characteristics are similar when removing fastest
50% of respondents on entire survey.

Loss Risk Patience Choice

Aversion Aversion Consistency

(λ) (1− ρ) (δ) (µ)

Cognitive Ability 0.22∗∗∗ -0.21∗∗∗ 0.16∗∗∗ 0.17∗∗∗

(0.039) (0.039) (0.043) (0.035)

IQ 0.20∗∗∗ -0.18∗∗∗ 0.09∗ 0.15∗∗∗

(0.039) (0.040) (0.050) (0.036)

CRT 0.18∗∗∗ -0.18∗∗∗ 0.23∗∗∗ 0.14∗∗∗

(0.045) (0.044) (0.040) (0.035)

Income 0.11∗∗∗ -0.14∗∗∗ 0.10∗∗ 0.11∗∗∗

(0.045) (0.047) (0.045) (0.039)

Education 0.07 -0.14∗∗∗ 0.15∗∗∗ 0.10∗∗∗

(0.042) (0.044) (0.043) (0.039)

Male 0.08∗ -0.12∗∗∗ -0.04 0.02

(0.043) (0.045) (0.051) (0.043)

Age -0.08∗ 0.04 0.18∗∗∗ -0.01

(0.047) (0.047) (0.057) (0.045)

Stock Investor 0.13∗∗∗ -0.13∗∗∗ 0.08∗ -0.02

(0.043) (0.042) (0.046) (0.042)

Non-white -0.16∗∗∗ 0.09∗ -0.18∗∗∗ -0.00

(0.045) (0.048) (0.055) (0.047)

Own Home 0.07∗ -0.08∗ 0.11∗∗ 0.05

(0.044) (0.044) (0.052) (0.045)

Employed 0.08∗∗ -0.04 -0.01 0.07∗

(0.043) (0.043) (0.051) (0.039)

Church Attendance 0.00 0.08∗ -0.01 0.06

(0.044) (0.045) (0.050) (0.045)

Marital Status 0.02 -0.00 -0.14∗∗∗ -0.05

(0.048) (0.046) (0.059) (0.043)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are calcu-
lated by regressing the (standardized) preference parameter on each (standardized) individual character-
istic, and are presented in parentheses.

The next four tables show that the correlations between DOSE and the other character-

istics are also robust to removing the fastest 50% of participants on the survey (Tables D.6

and D.7) or on the DOSE module (Tables D.8 and D.9).
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Table D.7: Correlations with individual characteristics are similar when removing fastest
50% of respondents on entire survey and including controls.

Loss Aversion Risk Aversion Patience Choice Consistency

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive Ability 0.21*** 0.18*** -0.19*** -0.12** 0.20*** 0.18*** 0.17*** 0.14***

(0.039) (0.047) (0.041) (0.048) (0.042) (0.046) (0.037) (0.041)

Male 0.07 0.11 -0.16* -0.22** -0.15 -0.20* -0.03 -0.10

(0.085) (0.093) (0.087) (0.092) (0.097) (0.105) (0.087) (0.089)

Age -0.05 -0.09* 0.01 0.02 0.20*** 0.20*** 0.01 -0.05

(0.045) (0.055) (0.047) (0.052) (0.057) (0.066) (0.045) (0.048)

Education -0.02 -0.03 0.11** 0.06

(0.046) (0.052) (0.051) (0.042)

Income 0.03 -0.06 0.03 0.09**

(0.051) (0.050) (0.051) (0.043)

Stock Investor 0.21* -0.12 -0.11 -0.21**

(0.109) (0.096) (0.107) (0.101)

Obs. 993 861 993 861 993 861 993 861

Adj. R2 0.05 0.07 0.05 0.05 0.07 0.08 0.03 0.04

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. All dependent
variables are standardized. Robust standard errors are displayed in parentheses.

The relationship between expected value maximizing choices and cognitive ability dis-

cussed in Section 4.2 is robust to controlling for other socio-demographic characteristics, as

showin in Table D.10. Each observation in these regressions is an individual choice, with the

(binary) dependent variable indicating whether a participant chose an option that maximized

expected value. Specifications (1)–(4) relate to lotteries with losses, while specifications (5)–

(8) relate to those with only gains. The omitted category for cognitive ability is low cognitive

ability individuals.

The results of the regressions clearly reflect the pattern of choices presented in Figure 5.

High cognitive ability participants are consistently more likely to choose an option with the

highest expected value if that option involves accepting a lottery over gains or rejecting a

lottery over losses. However, they are less likely to do so when the EV-maximizing option

involves either accepting lottery over losses (that is, one with negative expected value) or

accepting a sure amount over gains. This finding is robust to including controls for individual

characteristics (specifications (2) and (6)), and question characteristics (specifications (3) and

(7)). Finally, in the last specification, we allow for the relationship between education and
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Table D.8: Correlations with individual characteristics are similar when removing fastest
50% of respondents on DOSE module.

Loss Risk Patience Choice

Aversion Aversion Consistency

(λ) (1− ρ) (δ) (µ)

Cognitive Ability 0.26∗∗∗ -0.21∗∗∗ 0.18∗∗∗ 0.15∗∗∗

(0.037) (0.039) (0.041) (0.036)

IQ 0.25∗∗∗ -0.20∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(0.037) (0.040) (0.049) (0.036)

CRT 0.19∗∗∗ -0.16∗∗∗ 0.22∗∗∗ 0.14∗∗∗

(0.044) (0.045) (0.040) (0.036)

Income 0.11∗∗∗ -0.12∗∗∗ 0.10∗∗ 0.08∗

(0.044) (0.046) (0.046) (0.041)

Education 0.13∗∗∗ -0.14∗∗∗ 0.16∗∗∗ 0.09∗

(0.041) (0.039) (0.045) (0.047)

Male 0.08∗ -0.11∗∗∗ -0.04 -0.01

(0.042) (0.044) (0.050) (0.047)

Age -0.05 0.07 0.19∗∗∗ 0.03

(0.047) (0.046) (0.056) (0.057)

Stock Investor 0.12∗∗∗ -0.09∗∗∗ 0.15∗∗∗ -0.03

(0.039) (0.037) (0.037) (0.040)

Non-white -0.18∗∗∗ 0.12∗∗∗ -0.19∗∗∗ 0.00

(0.044) (0.047) (0.056) (0.053)

Own Home 0.08∗ -0.11∗∗∗ 0.13∗∗∗ 0.00

(0.043) (0.043) (0.051) (0.048)

Employed 0.12∗∗∗ -0.03 0.02 0.04

(0.042) (0.041) (0.049) (0.043)

Church Attendance -0.03 0.05 0.03 -0.03

(0.043) (0.045) (0.049) (0.046)

Marital Status -0.02 0.00 -0.18∗∗∗ -0.06

(0.047) (0.046) (0.056) (0.049)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are calcu-
lated by regressing the (standardized) preference parameter on each (standardized) individual character-
istic, and are presented in parentheses.

making an EV-maximizing choice to vary according to whether that choice is a lottery or

not. Again, the relationship with cognitive ability is largely unchanged.
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Table D.9: Correlations with individual characteristics are similar when removing fastest
50% of respondents on DOSE module and including controls.

Loss Aversion Risk Aversion Patience Choice Consistency

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive Ability 0.26*** 0.20*** -0.19*** -0.16*** 0.23*** 0.19*** 0.16*** 0.11***

(0.038) (0.043) (0.039) (0.049) (0.040) (0.043) (0.043) (0.035)

Male 0.05 0.14 -0.13 -0.14 -0.16* -0.20** -0.07 -0.10

(0.083) (0.091) (0.084) (0.092) (0.091) (0.102) (0.098) (0.089)

Age -0.01 -0.06 0.04 0.01 0.22*** 0.18*** 0.05 -0.05

(0.045) (0.054) (0.046) (0.053) (0.055) (0.065) (0.058) (0.052)

Education 0.05 -0.08* 0.09* 0.04

(0.045) (0.048) (0.053) (0.042)

Income 0.01 -0.03 0.01 0.07*

(0.048) (0.050) (0.049) (0.039)

Stock Investor 0.12 -0.02 0.03 -0.18**

(0.097) (0.080) (0.083) (0.087)

Obs. 1012 875 1012 875 1012 875 1012 875

Adj. R2 0.07 0.08 0.05 0.05 0.09 0.08 0.02 0.03

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. All dependent
variables are standardized. Robust standard errors are displayed in parentheses.

D.2 Choice Consistency and Response Time

We now show that that controlling for choice consistency helps identify a pattern of corre-

lations even when restricting the sample to those answering very fast—and so who might

be thought to be paying little attention. In the left hand panel of Figure D.2 we show the

pattern of correlations restricting the sample to first those answering the risk MPL mod-

ule quickly and in the right hand panel we present the correlations for those answering the

whole survey quickly (quickly being defined as below the respective median). In both cases

we compare the correlations for all participants to those in the high consistency group.

In both panels there is more evidence of correlations after restricting the sample to high

consistency participants. The magnitude of the correlations in frequently higher, and several

emerge as statistically significant once only high consistency participants are considered. The

magnitude of the correlations is, in fact, similar to those in Figure 6, although the standard

errors are larger (explained by the fact the sample is half as large). The choice consistency

measure appears, then, to be distinguishing participants that answer accurately but rapidly—
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Table D.10: High cognitive ability participants make fewer EV-maximizing decisions for
lotteries with negative expected value.

DV = Made Expected-Value-Maximizing Choice

Lotteries with Losses Lotteries with Only Gains

(1) (2) (3) (4) (5) (6) (7) (8)

EV≤Sure Amount

x Medium Cognitive Ability 0.062*** 0.064*** 0.041** 0.040** -0.065** -0.073** -0.075** -0.074**

(0.023) (0.023) (0.020) (0.020) (0.032) (0.032) (0.031) (0.031)

x High Cognitive Ability 0.171*** 0.168*** 0.114*** 0.104*** -0.044 -0.063** -0.070** -0.066**

(0.025) (0.025) (0.023) (0.023) (0.031) (0.031) (0.030) (0.031)

EV>Sure Amount 0.264*** 0.269*** 0.152*** 0.159*** -0.289*** -0.292*** -0.244*** -0.267***

(0.023) (0.022) (0.023) (0.026) (0.025) (0.025) (0.029) (0.033)

x Medium Cognitive Ability 0.013 0.013 -0.010 -0.009 0.040** 0.036** 0.027 0.026

(0.020) (0.020) (0.019) (0.019) (0.018) (0.018) (0.017) (0.017)

x High Cognitive Ability -0.088*** -0.087*** -0.107*** -0.101*** 0.120*** 0.104*** 0.087*** 0.084***

(0.018) (0.019) (0.018) (0.018) (0.017) (0.018) (0.018) (0.018)

Some College 0.007 0.010 -0.001 -0.000 0.001 -0.042

(0.014) (0.012) (0.020) (0.016) (0.015) (0.030)

x EV>Sure Amount 0.018 0.066*

(0.029) (0.035)

4-year College 0.015 0.022 0.066*** 0.020 0.026 0.017

(0.015) (0.014) (0.024) (0.017) (0.016) (0.032)

x EV≤Sure Amount -0.069** 0.014

(0.031) (0.037)

Age (Standardized) 0.035*** -0.002 -0.002 0.003 -0.012* -0.012*

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Male 0.012 0.010 0.010 0.004 0.003 0.004

(0.011) (0.010) (0.010) (0.013) (0.013) (0.013)

Income: 2nd Quartile 0.032** 0.031** 0.031** 0.058*** 0.057*** 0.057***

(0.016) (0.015) (0.015) (0.019) (0.018) (0.018)

Income: 3rd Quartile -0.003 0.000 -0.001 0.033* 0.035* 0.036*

(0.016) (0.015) (0.015) (0.019) (0.019) (0.019)

Income: 4th Quartile -0.011 -0.005 -0.005 0.067*** 0.068*** 0.067***

(0.017) (0.016) (0.016) (0.021) (0.020) (0.020)

Income: Unstated -0.006 -0.010 -0.010 0.022 0.020 0.020

(0.020) (0.018) (0.018) (0.022) (0.021) (0.021)

Lottery Prize ($) 0.031*** 0.031*** -0.004 -0.004

(0.002) (0.002) (0.004) (0.004)

|EV - Sure Amount| ($) -0.021*** -0.020*** -0.023*** -0.023***

(0.004) (0.004) (0.007) (0.007)

Response Time: Quartile 2 0.144*** 0.143*** 0.061*** 0.062***

(0.013) (0.013) (0.020) (0.020)

Response Time: Quartile 3 0.220*** 0.221*** 0.082*** 0.084***

(0.014) (0.014) (0.019) (0.019)

Response Time: Quartile 4 0.216*** 0.217*** 0.130*** 0.131***

(0.015) (0.015) (0.020) (0.020)

Obs. 11154 11154 11154 11154 8846 8846 8846 8846

Adj. R2 0.04 0.04 0.10 0.11 0.04 0.05 0.06 0.06

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are clustered by
participant and displayed in parentheses.
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Figure D.2: Accounting for choice consistency leads to a clearer pattern of correlations even
after removing very fast responses.
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Notes: The left panel includes only participants below the median response time on the risk MPL module.
The right panel includes only participants below the median response time on the entire survey. “High
Consistency” refers to those with choice consistency above the median. The survey contained two MPL
measures of risk preference. Correlations are estimated by stacking the two and clustering standard errors
by participant.

whose responses include meaningful information—from those that answer quickly due to a

lack of care or attention.

Finally, note that the relationship between cognitive ability and response times for both

MPL and DOSE is similar when analyzing by cognitive ability tercile (see Figure D.3), as

when we do so by quartile (see Figure 8).
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Figure D.3: Participants in bottom cognitive ability tercile take longer for MPL questions,
but not DOSE.
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Notes: DOSE module includes 20 questions addressing both risk and time preferences. MPL module includes
two MPLs assessing time preferences, which was the first MPL module on the survey. Respondents with
response times of over 15 minutes for either module are excluded.

D.3 Results using Wave 2 Survey Sample

The survey results are similar when using data from the second wave of the survey. As

shown in Tables D.11 and D.12, the correlations with other sociodemographic variables

are of similar magnitude and direction to those in the first wave. Similarly, the pattern of

choices of low and high cognitive ability participants follow a similar pattern (Figure D.4

and Table D.13.

The only notable exception is that restricting the Wave 2 sample to high consistency

participants does not recover a statistically significant correlation between the risk aversion

MPL measure and cognitive ability (see Figure D.5)—a difference that is probably explained

by differential attrition. The first and third panels of the figure are very similar to those

in Figure 6: the DOSE risk aversion estimates are consistently correlated with individual

characteristics, and the MPL measure is not. The middle panel shows that there is still a

pattern of higher correlations between the MPL measure and other individual characteristics

after removing inconsistent participants; however the correlation with cognitive ability (and
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Figure D.4: Pattern of individual choices is the similar in the Wave 2 data.
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Notes: Figure displays the Nadaraya-Watson estimator (local mean smoothing) estimator (bandwidth 1)
with Epanechnikov kernel. Grey dotted lines represent 95% confidence intervals, constructed with 10,000
clustered bootstrap replications. “Lotteries with losses” identifies questions where participants chose between
$0 for sure and a 50:50 lottery between a gain and a loss (both amounts varying). “Lotteries with only gains”
identifies questions where participants chose between a varying, strictly positive, sure amount and a 50:50
lottery between a varying gain and $0. Participants were asked a personalized question sequence, and so the
set of possible choices varied across individuals. High and low cognitive ability refer to the top and bottom
terciles respectively.

also stock ownership) is not distinguishable from zero at conventional levels. The reason

appears to be that lower cognitive ability is associated with higher drop out rates between

survey waves. In contrast, none of the DOSE measures—or education where we do see a

higher correlation—is correlated with attrition. The reduced variability in the sample then

reduces the ability to identify a genuine correlation.

D.4 Classification of Participants by DOSE

The DOSE estimates clearly capture participants’ choices, providing evidence that our results

are not an artefact of functional form—see Table D.14. Here participants are classified

according to their estimated parameter values—for instance, a participant is “loss averse,

risk averse” if they have both λ > 1 and ρ < 1—and we examine how the frequency of
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Table D.11: Correlations between estimated DOSE parameters and individual characteristics
in Wave 2 data are similar to those in Wave 1.

Loss Risk Patience Choice

Aversion Aversion Consistency

(λ) (1− ρ) (δ) (µ)

Cognitive Ability 0.26∗∗∗ -0.24∗∗∗ 0.25∗∗∗ 0.18∗∗∗

(0.033) (0.032) (0.031) (0.034)

IQ 0.22∗∗∗ -0.20∗∗∗ 0.21∗∗∗ 0.15∗∗∗

(0.033) (0.035) (0.031) (0.035)

CRT 0.23∗∗∗ -0.21∗∗∗ 0.23∗∗∗ 0.16∗∗∗

(0.035) (0.033) (0.032) (0.034)

Income 0.12∗∗∗ -0.19∗∗∗ 0.20∗∗∗ 0.15∗∗∗

(0.039) (0.041) (0.048) (0.040)

Education 0.14∗∗∗ -0.15∗∗∗ 0.21∗∗∗ 0.17∗∗∗

(0.034) (0.035) (0.040) (0.036)

Male 0.06 -0.04 0.01 0.01

(0.040) (0.040) (0.043) (0.042)

Age -0.11∗∗∗ 0.00 0.08∗ 0.08∗

(0.042) (0.040) (0.047) (0.043)

Stock Investor 0.04 -0.16∗∗∗ 0.16∗∗∗ 0.08∗∗

(0.035) (0.038) (0.038) (0.037)

Non-white -0.13∗∗∗ 0.11∗∗∗ -0.22∗∗∗ -0.16∗∗∗

(0.044) (0.041) (0.049) (0.048)

Own Home 0.00 -0.10∗∗∗ 0.13∗∗∗ 0.05

(0.041) (0.040) (0.044) (0.043)

Employed -0.01 -0.06 0.11∗∗∗ 0.06

(0.040) (0.040) (0.041) (0.041)

Church Attendance 0.00 0.04 -0.03 0.01

(0.040) (0.040) (0.039) (0.039)

Marital Status 0.09∗∗ -0.03 -0.06 -0.12∗∗∗

(0.042) (0.042) (0.043) (0.043)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are calcu-
lated by regressing the (standardized) preference parameter on each (standardized) individual character-
istic, and are presented in parentheses.

lotteries accepted varies according to the expected value (relative to a sure amount) and

whether the lottery involved a loss. The pattern of behavior is as would be expected. Loss

tolerant participants nearly always choose lotteries with losses, and risk loving participants
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Table D.12: Correlations between cognitive ability and economic preferences in Wave 2 are
similar after including demographic controls.

Loss Aversion Risk Aversion Patience Choice Consistency

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive Ability 0.25*** 0.22*** -0.24*** -0.18*** 0.26*** 0.19*** 0.19*** 0.15***

(0.035) (0.042) (0.033) (0.035) (0.034) (0.035) (0.037) (0.037)

Male 0.04 0.10 -0.02 -0.04 -0.04 -0.02 -0.04 -0.11

(0.079) (0.082) (0.078) (0.077) (0.083) (0.084) (0.085) (0.089)

Age -0.09** -0.05 -0.02 0.02 0.11** 0.04 0.09** 0.09**

(0.040) (0.042) (0.038) (0.042) (0.046) (0.052) (0.042) (0.045)

Education 0.08* -0.03 0.08* 0.09**

(0.040) (0.043) (0.043) (0.039)

Income 0.04 -0.09** 0.08* 0.07*

(0.041) (0.043) (0.049) (0.043)

Stock Investor -0.06 -0.21** 0.11 -0.05

(0.080) (0.096) (0.098) (0.092)

Obs. 1465 1271 1465 1271 1465 1271 1465 1271

Adj. R2 0.07 0.08 0.06 0.08 0.07 0.09 0.04 0.06

Note: Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. All
continuous variables are standardized. Robust standard errors are displayed in parentheses.
Missing observations are due to unreported incomes.

Figure D.5: Correlations with MPL and DOSE risk aversion measures using Wave 2 data.

Cognitive
Ability

Income

Education

Male

Age

Stock
Investor

−0.3 −0.2 −0.1 0 0.1

All Participants

−0.3 −0.2 −0.1 0 0.1

High Consistency

−0.3 −0.2 −0.1 0 0.1

Low Consistency

Correlation

DOSE MPL

Notes: Figure displays correlations between the DOSE and MPL measures of risk aversion and individual
characteristics. The left hand panel includes all participants in the Wave 2 survey, while the middle (right)
panel restricts the sample to those above (below) the median in the choice consistency variable. The survey
contained two MPL measures of risk preference. Correlations are estimated by stacking the two and clustering
standard errors by participant.

nearly always choose lotteries over gains. Loss averse and risk averse participants, in contrast,

are much less likely to accept such lotteries.
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Table D.13: High cognitive ability participants make fewer EV-maximizing decisions for
lotteries with negative expected value using Wave 2 data.

DV = Made Expected-Value-Maximizing Choice

Lotteries with Losses Lotteries with Only Gains

(1) (2) (3) (4) (5) (6) (7) (8)

EV≤Sure Amount

x Medium Cognitive Ability 0.056** 0.058** 0.049** 0.047** -0.032 -0.036 -0.037 -0.033

(0.026) (0.026) (0.024) (0.024) (0.038) (0.038) (0.037) (0.037)

x High Cognitive Ability 0.172*** 0.171*** 0.127*** 0.120*** 0.018 0.008 0.002 0.011

(0.031) (0.032) (0.029) (0.030) (0.040) (0.041) (0.040) (0.041)

EV>Sure Amount 0.260*** 0.261*** 0.151*** 0.156*** -0.272*** -0.273*** -0.230*** -0.246***

(0.027) (0.027) (0.027) (0.031) (0.032) (0.032) (0.037) (0.042)

x Medium Cognitive Ability -0.035 -0.032 -0.037* -0.036 0.036* 0.032 0.031 0.029

(0.023) (0.023) (0.022) (0.022) (0.020) (0.020) (0.019) (0.019)

x High Cognitive Ability -0.115*** -0.109*** -0.124*** -0.120*** 0.138*** 0.127*** 0.115*** 0.110***

(0.023) (0.023) (0.022) (0.023) (0.022) (0.023) (0.022) (0.022)

Some College 0.023 0.020 0.015 0.025 0.022 0.005

(0.017) (0.016) (0.025) (0.019) (0.018) (0.037)

x EV>Sure Amount 0.008 0.025

(0.036) (0.042)

4-year College -0.018 -0.016 0.011 0.013 0.012 -0.018

(0.018) (0.017) (0.028) (0.021) (0.020) (0.040)

x EV≤Sure Amount -0.040 0.045

(0.037) (0.044)

Age (Standardized) 0.034*** -0.005 -0.005 0.003 -0.008 -0.008

(0.007) (0.007) (0.007) (0.008) (0.009) (0.009)

Male 0.004 -0.000 -0.001 -0.003 -0.004 -0.004

(0.013) (0.012) (0.012) (0.016) (0.015) (0.015)

Income: 2nd Quartile 0.009 0.008 0.009 -0.013 -0.013 -0.013

(0.020) (0.019) (0.019) (0.023) (0.022) (0.022)

Income: 3rd Quartile 0.003 0.008 0.008 0.002 0.001 0.001

(0.020) (0.018) (0.018) (0.022) (0.022) (0.022)

Income: 4th Quartile 0.045** 0.048*** 0.048** 0.045* 0.043* 0.043*

(0.020) (0.019) (0.019) (0.025) (0.024) (0.024)

Income: Unstated 0.009 0.003 0.003 -0.003 -0.004 -0.003

(0.023) (0.022) (0.022) (0.025) (0.025) (0.025)

Lottery Prize ($) 0.030*** 0.030*** -0.002 -0.002

(0.003) (0.003) (0.005) (0.005)

|EV - Sure Amount| ($) -0.018*** -0.018*** -0.026*** -0.026***

(0.004) (0.004) (0.008) (0.008)

Response Time: Quartile 2 0.136*** 0.136*** 0.049** 0.048**

(0.015) (0.015) (0.023) (0.023)

Response Time: Quartile 3 0.207*** 0.208*** 0.095*** 0.096***

(0.016) (0.016) (0.023) (0.023)

Response Time: Quartile 4 0.198*** 0.199*** 0.082*** 0.082***

(0.018) (0.018) (0.025) (0.025)

Obs. 8151 8151 8151 8151 6499 6499 6499 6499

Adj. R2 0.03 0.04 0.09 0.09 0.05 0.05 0.06 0.06

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Standard errors are clustered by
participant and displayed in parentheses.
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Table D.14: DOSE classification reflects clear pattern of choices.

% Lotteries Accepted

Lotteries with Losses Lotteries with Only Gains

EV≤Sure EV>Sure EV≤Sure EV>Sure

Classification by DOSE

Loss Averse, Risk Averse 12% 48% 4% 42%

Loss Averse, Risk Loving 2% 51% 53% 96%

Loss Tolerant, Risk Averse 80% 98% 4% 43%

Loss Tolerant, Risk Loving 81% 100% 75% 97%

Notes: The table displays the unweighted percentage of lotteries accepted, categorizing participants ac-
cording to their estimated DOSE parameters. “EV”=Expected Value of lottery and “Sure”= the sure
amount offered in each lottery.

E Parameter Recovery Procedure

This section provides full details of our simulation procedure, and shows that the results in

Section 3.2 may underestimate the benefits of DOSE relative to other elicitation methods.

The first subsection provides a detailed explanation of the procedure used to simulate DOSE,

the double MPL, and Lottery Menu methods. To understand whether our assumptions about

the level of noise in the survey are reasonable, we then compare simulated choices to real

survey data. The simulation appears to underestimate the level of noise in the survey MPL.

E.1 Simulation Procedure

Simulation Dataset A dataset of 10,000 simulated individuals was generated as follows.

First, we estimated the 140 question DOSE procedure on the 120 participants from Sokol-

Hessner et al. (2009) and Frydman et al. (2011). We then aggregated the 120 individual

posterior distributions to form a joint probability distribution over the three parameters ρ,

λ and µ. The 10,000 participants were then drawn from the resulting distribution.
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Table E.1: Choices in Simulation of Lottery Menu Procedure

Low High CRRA Estimated

Prize Prize Range ρ

Lottery 1 4.00 4.00 ρ < −2.46 0.20

Lottery 2 3.43 5.14 −2.46 < ρ < −0.16 0.20

Lottery 3 2.86 6.29 −0.16 < ρ < 0.29 0.20

Lottery 4 2.29 7.43 0.29 < ρ < 0.50 0.40

Lottery 5 1.71 8.57 0.50 < ρ < 1.00 0.75

Lottery 6 0.29 10.00 1 < ρ 1.00

Notes: Lottery menu choices taken from Dave et al. (2010), adjusted so that maximum prize is $10. “CRRA
range” is the implied range of CRRA coeffcients implied by the choice of each lottery. “Estimated ρ” is the
estimated value of the CRRA coefficient associated with the choice of each lottery used in the calculation
of expected inaccuracy.

DOSE Simulation We simulate a 20 question DOSE procedure for each individual, with

each binary choice made probabilistically according to the logit probability (2). The possible

question space included 760 questions, allowing for gains in $0.25 increments up to $10, and

losses in $0.5 increments up to $10.

Lottery Menu In the lottery menu procedure, developed by Eckel and Grossman (2002),

participants are offered a choice between multiple lotteries over gains. We calculate the

expected measurement error for the menu of six 50:50 lotteries presented in Table E.1. This

implementation is based on the menu used by Dave et al. (2010), adjusted so that the largest

prize is $10 (for comparability with the other elicitation procedures). The first lottery is a

safe option (it has zero variance), while the subsequent lotteries increase in both expected

value and variance.

The choice of lottery implies a range of possible CRRA coefficients, as shown in the

penultimate column of Table E.1. For lotteries 2-5 we estimate the estimated CRRA coef-

ficient ρ̂ as the midpoint of this range. Since the midpoint is undefined for lotteries 1 and

6, for these lotteries we use the end-point of the range. To ensure comparability with the

DOSE estimates, we then truncate the estimated parameters to the range defined by the

Sokol-Hessner-Frydman distribution.
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The procedure for the simulation was as follows. Consider a menu over a set of lotteries

l1, l2, ..., lL. We define a probability distribution over the set of lotteries by assuming that

individuals make a series of binary choices in which they compare the set of lotteries in

order. That is, they first compare lottery 1 with lottery 2, making a choice according to the

logit probability. They then compare the winner of that choice with lottery 3, and then the

winner of the latter choice with lottery 4. The procedure is repeated until lottery L.

We define a probability distribution over the full lottery menu for each participant i as

follows. For two lotteries l, k let qil,k be the probability that i chooses l when faced with a

binary choice between l and k. This probability is defined by the logit function (2), and as

such depends on the participant’s value of ρ and µ; for simplicity we do not display these

parameters or the i index in the following. Define the probability that lottery l is chosen

after L choices as pLl . Then p11 = q1,2 and for all other l, L:

pLl =
l−1∑
k=1

ql,kp
l−1
k ×

L∏
m=l+1

ql,m

The probability distribution over the choice from the set of lotteries is then {pL1 , pL2 , ..., pLL}.

Defining ρ̂l as the estimated CRRA coefficient associated with a choice of lottery l, the

expected inaccuracy is given by:

E[|ρ̂− ρ|] =
L∑
l=1

pLl × |ρ̂l − ρ|

We also implemented an alternative simulation procedure for the Lottery Menu. Under

this alternative, choice occurred according to to a multinomial logit probability distribution.

That is, for each possible choice k = 1, ..., 6:

Prob(Choice = k) =
exp(EUk)

µ∑6
l=1 exp(EUl)

µ

where EUk is the expected utility of lottery k.
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Table E.2: Hypothetical MPL 1 used to estimate ρ

Left Hand Right Hand CRRA Estimated

Choice Choice Range ρ

50% of $0, 50% of $10 $0 n.a. n.a.

50% of $0, 50% of $10 $1 ρ < 0.30 0.23
...

... 0.30 < ρ < 0.43 0.37
...

... 0.43 < ρ < 0.58 0.50
...

... 0.58 < ρ < 0.76 0.66
...

... 0.76 < ρ < 1.00 1.57
...

... 1.00 < ρ < 1.36 1.16
...

... 1.36 < ρ < 1.94 1.61
...

... 1.94 < ρ < 3.11 1.66

50% of $0, 50% of $10 $9 3.11 < ρ < 6.58 1.66

50% of $0, 50% of $10 $10 6.58 < ρ 1.66

Notes: “CRRA range” is the implied range of CRRA coeffcients implied by the choice of each lottery. “Estimated
ρ” is the estimated value of the CRRA coefficient associated with the choice of each lottery used in the calculation
of expected inaccuracy. Neither value is defined in the first row because the design does not allow the right hand
side to be selected.

The estimated inaccuracy of the Lottery Menu procedure is significantly higher under

this alternative procedure. Drawing the consistency parameter at random (as in Table 1),

the average inaccuracy for the risk aversion parameter is 94%, compared to 35% under the

previous procedure. Further, with this alternative procedure the Lottery Menu estimates

are inaccurate for the very inconsistent participants too—at the lowest consistency ventile,

the average inaccuracy is 139% (for the highest ventile, it is 59%).

Double Multiple Price List (MPL)

We calculate the expected inaccuracy for the double MPL method using two hypothetical

MPLs. MPL 1 offers participants a choice between a fixed 50:50 lottery between $0 and $10

and a series of fixed amounts. This MPL is used to elicit the estimate of the CRRA coefficient

ρ. MPL 2 offers participants a choice between a 50:50 lottery between a loss of $10 and a

gain of $10 and a series of fixed amounts. This second MPL is used to obtain the estimate

of the loss aversion parameter λ. In both MPLs we enforce (in-line with the implementation
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Table E.3: Hypothetical MPL 2 used to estimate λ

Left hand Right hand

choice choice

50% of -$10, 50% of $10 -$10

50% of -$10, 50% of $10 -$9
...

...
...

...

50% of -$10, 50% of $10 $9

50% of -$10, 50% of $10 $10

in the surveys) that individuals could only switch once, and that individuals do not choose

dominated options: the left hand side of MPL (the lottery) is chosen in the first row and the

right hand side (the fixed amount) is chosen in the last row.

The row in which a participant first chooses the fixed amount (the right hand side) in

MPL 1 implies a range of certainty equivalents and CRRA coefficients, as shown in Table E.2.

We use the certainty equivalent at the midpoint of this range and the associated CRRA

coefficient.

Similarly, the row in which a participant first chooses the fixed amount (the right hand

side) of MPL 2 implies a range of certainty equivalents, as shown in Table E.3. We use the

certainty equivalent at the midpoint of this range and use the estimated CRRA coefficient ρ̂

estimated in MPL 1 to obtain the estimated loss aversion parameter, λ̂. For comparability

with the DOSE estimates, we truncate the range of λ̂ and ρ̂ to match the range of the prior

used in the DOSE procedure.

The procedure for simulating behavior on these two MPLs was as follows. For each row

r, the probability that a simulated individual defined by the parameter vector (ρ, λ, µ) first

chooses the right hand side of the MPL in row r is calculated. This probability is defined by

the logit probability (see (2)) comparing the lottery to the fixed amount offered in row r. To

translate these binary choices into a probability distribution over the set of rows in the MPL

we assume that individuals work either sequentially down or up an MPL, each with 50%
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probability. Suppose they work down the MPL. Then they first consider the choice between

the lottery and the fixed amount in the first row in which they can choose the fixed amount

(row 2 in our implementation). If they choose the fixed amount, they will always prefer the

fixed amount lower in the MPL: thus this row is the “switching row”. If, on the other hand,

they prefer the lottery then they will move to the next row and consider the next binary

choice. Alternatively, individuals may choose to work up the MPL by first considering the

bottom row of the MPL, then the second-bottom, etc.

Now consider a MPL with R rows in which an individual can switch. Define the proba-

bility that the lottery is chosen in row r by individual i as qir. This probability is defined by

ρ, µ and, when losses are involved, λ. For simplicity we suppress the i indices. Define the

probability row r is the switching row working down the MPL as pDr , and working up the

MPL as pUr . Then these probabilities are given by:

pDr = (1− qr)
r−1∏
s=1

qs and

pUr = (qr−1)
R∏
s=r

(1− qs)

The expected inaccuracy for any parameter θ is then given by:

E[|θ̂r − θ|] =
R∑
r=1

(
0.5pDr + 0.5pUr

)
|θ̂r − θ|

where θ̂r is the estimated parameter associated with switching in row r. As discussed above,

for ρ this is implied by the midpoint of the certainty equivalents defined by the switching

row. For λ the value is defined both by the midpoint of the certainty equivalent and the

estimated ρ̂ from MPL 1.

E.2 Comparison of MPL Simulation to Survey Data
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Our simulations appear to underestimate the amount of error in the MPL. To understand

how this pattern compares to actual behavior we compare estimates from a previous survey

to the pattern of behavior generated by simulating choices using the procedure above. By

doing so we can identify whether our simulations are providing a reasonable approximation

to the level of measurement error in the survey. In particular, we use the results of three

MPLs collected in a separate representative U.S. survey (Chapman et al., 2018). The first

two of these MPLs offered participants a choice between fixed amounts and 50:50 lotteries

over gains: a lottery over $0 and $5 and a lottery between $1 and $4 respectively. The third

MPL offered participants a choice between fixed amounts and a 50:50 lottery between a loss

of $5 and a gain of $5.

Participants in the survey were much more likely to be attracted to particularly salient

rows of the MPL than our simulation would suggest, as shown in Figure E.1. A high

proportion of survey participants switched in rows near the ends of the MPL (despite the

fact that these values correspond to extreme parameter values).7 This pattern suggests that

the framing of the MPL affects choices and, as we did not account for framing effects in the

simulation, that the simulations may miss an important source of error in the MPL.

In fact, the simulations suggest that the level of measurement error in our simulation was

lower than that in the survey. In the survey, the correlation was 0.69; in the simulation it

is slightly higher (0.73). Further, a significant degree of the correlation in the survey data is

explained by participants repeatedly switching at the extremes at the end of MPL: choices

which are consistent, but unlikely to be accurate given the extreme parameter values they

imply. Excluding such participants the correlation between the two MPLs falls to 0.50 in

the survey, compared to 0.61 in the simulated data.

Further evidence that the survey contained more measurement error is that there are also

considerably fewer first order stochastically dominated choices in the simulated loss aversion

7Amounts with zero choices in these histograms reflect the fact that, unlike the hypothetical MPLs in the
previous section, the fixed amounts in these MPLs were not at regular intervals meaning that some values
could not be chosen by the participants.
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Figure E.1: MPL endpoints are chosen more frequently in real data.
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Notes: The figure displays the real and simulated responses to the two risk aversion MPLs in Chapman et
al. (2018).

MPL than in observed in reality. In our simulated data, 20% of participants have missing

data. In the survey data, in comparison, we were unable to elicit loss aversion parameters for

37% of participants. Again, it appears the simulation procedure underestimates the degree

of noise in the MPL method in practice.

F Robustness to Misspecification
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In this section we provide detailed evidence supporting the analysis in Section 5.1. Additional

simulations show that misspecifying the utility function used does not reduce the accuracy

of the DOSE parameter estimates. Accurate estimates can still be obtained by using the

correct utility function after the fact and, even without re-estimating the results, the DOSE

estimates are highly correlated with the true parameter values. Further, DOSE still performs

well when estimating a utility function with differential curvature across gains and losses,

despite the absence of questions just with losses in our dataset. Finally, re-estimating our

survey data with alternative utility functions supports the use of the utility function in (1):

on average curvature over gains and losses is very similar, and the function fits the choice

data better than alternative specifications.

F.1 Additional Simulation Results

To illustrate both the flexibility and robustness of DOSE, we present the results of two addi-

tional parameter recovery exercises. The first shows that misspecifying the utility function

used in the question selection procedure does not lead to inaccurate parameter estimates.

The second demonstrates that DOSE is able to capture meaningful information about pref-

erences when extending the utility function to allow for risk aversion to vary across gains

and losses.

F.1.1 Misspecification of the Utility Function

To test the robustness of the DOSE estimates to misspecification, we run DOSE on the same

set of simulated subjects—each of whom has CRRA utility—but assuming a CARA utility

function in the question selection procedure. We then compare the correlation between the

risk aversion and loss aversion parameters under the different procedures, and demonstrate

how—even though the question selection procedure is misspecified—the data collected can

be re-estimated to elicit accurate CRRA utility parameters.

Specifically we run DOSE assuming the following exponential (CARA) utility function,
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as suggested by Köbberling and Wakker (2005):

u(x, γi, λi) =


1−e−γix

γi
for x ≥ 0

λi

(
eγix−1
γi

)
for x < 0

(5)

where λ represents loss aversion and γ captures risk aversion.

As with the main simulations, we start by constructing a simulated dataset by estimating

the procedure on the data from the 120 participants in Sokol-Hessner et al. (2009) and

Frydman et al. (2011).8 The joint posterior from that procedure is then used to draw

simulated participants, and a 20 question DOSE procedure is simulated for each participant.

Misspecifying the utility function does not lead to a loss of accuracy, as shown in Ta-

ble F.1. For loss aversion, very similar estimates are obtained even when the CARA function

is incorrectly used (see the bottom panel of the table). For risk aversion, we can recover the

same estimates by using the correct utility function after the data collection process. Fur-

ther, even without re-estimating, the Spearman correlation between the estimated CARA

parameters and the true (CRRA) parameter values is very high—and notably higher than

the correlations for either the MPL (0.45) or the Lottery Menu (0.28) procedures reported

earlier in the paper. As such, the assumptions over parametric form are unlikely to be critical

if researchers are interested in identifying correlations rather than the level of the risk and

loss aversion estimates.

F.1.2 Allowing for Differential Risk Aversion over Gains and Losses

In this subsection we show that DOSE can obtain reasonably accurate estimates for a utility

function with differential utility curvature between gains and losses, even if no questions

solely involving losses are asked.

In particular, we simulate the DOSE procedure using the same procedure as outlined in

8As in the main text, we implement a discretized uniform prior. For λ and µ we use the same parameter
range as in the main estimation procedure. For γ we construct the range of the prior based on calculating
the Coefficient of Absolute Risk Aversion for the prior range for ρ for a prize of $1.
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Table F.1: DOSE estimates are robust to utility function misspecification.

Average inaccuracy Correlation with true value

10 question 20 question 10 question 20 question

Loss Aversion

CRRA (Not misspecified) 21% 14% 0.84 0.89

CARA (Misspecified) 23% 16% 0.84 0.90

CARA re-estimated as CRRA 21% 15% 0.85 0.91

Risk Aversion

CRRA (Not misspecified) 21% 16% 0.66 0.79

CARA (Misspecified) n.a. n.a. 0.58 0.75

CARA re-estimated as CRRA 21% 15% 0.67 0.77

Notes: Inaccuracy is defined as the absolute distance from the true parameter value displayed as a percent-
age of the true value. “Correlation with true value” displays the Spearman correlation coefficient between
the true parameter and the estimated parameters.

Section 3.2, but assuming a utility function with different power exponents in the gain and

loss domain, as suggested by Prospect Theory (Kahneman and Tversky, 1979):

u(x, ρ+i , ρ
−
i , λi) =


u(x) = xρ

+
i for x ≥ 0

u(x) = −λi(−x)ρ
−
i for x < 0

(6)

As with the main simulations, we start by constructing a simulated dataset by estimating

the procedure on the data from the 120 participants in Sokol-Hessner et al. (2009) and

Frydman et al. (2011).9 The joint posterior from that procedure is then used to draw

simulated participants, and a 20 question DOSE procedure is simulated for each participant.

DOSE extracts meaningful information about all four parameters, although with less

9As in the main text, we implement a discretized uniform prior, using the same prior range for both risk
aversion parameters as we use for ρ.
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Table F.2: DOSE estimates of the 4 parameter model are less accurate.

CRRA CRRA with ρ+ and ρ−

Average Correlation Average Correlation

inaccuracy w/true value inaccuracy w/true value

Loss Aversion

DOSE 10 question 21% 0.84 85% 0.61

DOSE 20 question 14% 0.89 63% 0.73

Risk Aversion over Losses

DOSE 10 question n.a. n.a. 38% 0.31

DOSE 20 question n.a. n.a. 31% 0.51

Risk Aversion over Gains

DOSE 10 question 21% 0.66 21% 0.60

DOSE 20 question 16% 0.79 16% 0.73

Notes: Inaccuracy is defined as the absolute distance from the true parameter value displayed as a percent-
age of the true value. “Correlation with true value” displays the Spearman correlation coefficient between
the true parameter and the estimated parameters.

precision than in the three parameter model, as shown in Table F.2. For risk aversion over

gains the accuracy of the estimates are similar to those for the 3 parameter model. For

the two parameters regarding choices over losses, however, the estimates are noisier. The

inaccuracy and correlation with true estimates for the curvature over losses are comparable to

those for the Multiple Price List in the three parameter model. The loss aversion parameter

has higher correlations. Further, although the average inaccuracy is very high, this is largely

an artefact of the fact that there a number of very small values of λ in the simulation.

Excluding the smallest 10% of values of λ (corresponding to values of less than 0.5), the

estimated inaccuracy is 36%.

Online Appendix–37



F.2 Risk Aversion Over Gains and Losses and Model Fit

The re-estimated survey data provides some support for our assumption of a CRRA utility

with the same curvature over gains and losses in (1). On average the curvature of the risk

aversion parameter is similar across the two domains. Further, our model correctly predicts

more actual choices than the alternative utility functions, or assuming that participants

incorporated their $10 endowment into their utility function.

Re-estimating the survey data as per (6) indicates that overall the power utility coeffi-

cients are similar in the gain and loss domains, as shown in Figure F.1. In particular the

mean difference in the two parameters (ρ+ − ρ− < 1) is -0.04, and the median difference is

-0.11. These results are consistent with previous findings that utility over losses is closer to

linearity (Booij et al., 2010). However, it is clear from the figure that there is considerable

individual heterogeneity that is not captured by these average estimates.

Figure F.1: On average the risk aversion parameter is similar in the loss and gain domains.

D
en

si
ty

−1 0 1
Difference in Risk Aversion Parameters (ρ+

 − ρ−
 )

Notes: The figure displays the density of the difference in the risk aversion parameters over gains and losses
(ρ+ − ρ−) from (6).
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The CRRA model in (1) fits our data better than either of the two alternative utility

functions, providing further evidence that the specification is appropriate. In particular, our

main parameter estimates predict 88% of participants’ choices correctly. The CARA model

(see (5)) and the CRRA allowing for differential curvature (see (6)), in contrast, both predict

less than 85% correctly. Although we should not read too much into these differences—given

that they are relatively small and that the questions were selected under the assumption of

a CRRA utility function—they provide some reassurance that our model is not significantly

misspecified.

A similar model fitting exercise shows that participants were not incorporating the $10

initial endowment (that applied only if a choice in the DOSE module was selected for payoff)

in their calculations. If participants did so, every payoff—even those that were negative (with

respect to the endowments)—would appear to be a gain with respect to the amount they

began the survey with (that is, zero). Thus, the only difference between questions with

gains and losses (relative to the endowment) would be the size of the prizes, with those

featuring losses being slightly lower, but positive (with respect to zero). To test whether

such behavior could explain the choices we observe, we re-estimated our model adding $10 to

each payoff, and found that this produced a much worse fit. In particular, the re-estimated

parameters predict only 48% of the choices made by participants—a large decrease from

the 88% predicted using our main parameter estimates. For loss tolerant participants the

performance is no better: the re-estimated parameters explain 49% of choices, the main

estimates explain 91%. Thus, not incorporating the initial endowment and using the loss

aversion parameter significantly improves the explanatory power of the parametric model.

G Additional Analysis of Lab Data Simulations

This Appendix contains additional results from the DOSE simulations using previous labora-

tory data. First we plot the correlations between the DOSE estimates and the final (post-140
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question) parameter estimates, and then present scatter plots displaying the evolution of the

individual-level estimates as more questions are asked. The second subsection then includes

the results from attempts to use Maximum Likelihood Estimation to obtain individual level

estimates using the same data.

G.1 Additional Results from Bayesian Analysis

The DOSE estimates are highly correlated with the final parameter values after just a few

questions, providing further evidence that the procedure elicits considerable information

about preferences very quickly. As shown in Figure G.2, the correlation with the final esti-

mate is above 0.8 for both parameters after a 20 question DOSE sequence. This correlation

is much higher than obtained under the random ordering—particularly in the case of the loss

aversion parameter. Further, a comparison with the correlations obtained using the “optimal

prior” demonstrates again the effectiveness of using a uniform prior for question selection.

DOSE provides relatively accurate estimates of the choice consistency parameter as well

as risk and loss aversion, as shown in Figure G.2. Compared to the random ordering,

the DOSE estimates are closer to and more highly correlated with the post-140 question

estimate, and are more highly correlated with the final estimate throughout the question

sequence. Again, these benefits are similar regardless of whether we use the uniform prior or

the “optimal prior” (see discussion in Section 3.1). It is notable, however, that the estimated

inaccuracy is significantly higher after 20 questions than for either risk or loss aversion. This

difference is likely to reflect the fact that inconsistency could not be accurately identified

until the procedure had asked several similar questions.

DOSE elicits information rapidly for all sets of parameter values in our simulation, as

shown in Figures G.3, G.4 and G.5. These figures demonstrate the progression of the es-

timated value of each of the three parameters towards the final estimate after 10, 20, 50

and 100 questions. After just 10 questions, the estimates for both risk and loss aversion

are clustered around the 45 degree line, reflecting a high degree of correlation with the final
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Figure G.1: Optimal question selection elicits estimates highly correlated with final values.
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Notes: Based on data from Sokol-Hessner et al. (2009) and Frydman et al. (2011). Left hand panel shows
Right hand panel shows the correlation between the Bayesian estimates (with uniform initial prior) obtained
after each question and the final estimate, starting at question 10, under different question orders. “Optimal
prior” and “Uniform prior” refer DOSE question selection using corresponding priors. “Random” orders
questions randomly, averaging over 100 different random orderings.

estimates. The consistency estimates take longer to converge—as discussed previously, this

is likely to be a result of the fact that several similar questions have to be asked in order

for the parameter to be pinned down precisely. However, there is no evidence for any of

the parameters that the procedure converges faster for particular parameter values—DOSE

performs well at the individual-level as well as on average.

G.2 Maximum Likelihood Estimation

We also attempted to obtain individual parameter estimates using Maximum Likelihood

Estimation (MLE), however we were frequently unable to estimate parameters for several

participants.10 As shown in Figure G.6, when using fewer than 40 questions (using the

10The MLE procedure was implemented using STATA’s modified Newton-Raphson algorithm. Similar
results were obtained using alternative algorithms. For each participant estimation was attempted three times
(each with up to 16,000 iterations), allowing for alternative initial conditions, different stepping procedures
in non-concave regions and relaxing convergence requirements on the gradient vector.
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Figure G.2: DOSE elicits accurate estimates for the choice consistency parameter faster than
the random ordering.
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shows the inaccuracy (correlation with final estimate) of Bayesian estimates (with uniform initial prior)
obtained after each question, under different orders. “Optimal Prior” and “Uniform Prior” refer to DOSE
question selection using corresponding priors. “Random” orders questions randomly, averaging over 100
different random orderings.

original order reported in the original datasets), we could not estimate parameter values

for one quarter of the sample, and we could not obtain estimates for all participants even

when using the full set of 140 questions. This failure is particularly striking given that, for

this purpose, we do not exclude any unrealistic values (such as negative parameters) and

that, in a final attempt to obtain an estimate, we initiated the search algorithm with the

final Bayesian estimate of each individual’s parameters. As such these numbers are an over-

estimate of the proportion of participants for whom meaningful estimates could be recovered

in reality; Frydman et al. (2011) in their initial study obtained estimates for only 64 of 83

participants (7 were excluded for other reasons), whereas we report estimates for 82 out of

the 90 participants.

Further, the estimates that were obtained by MLE with a small number of questions

appear much more inaccurate than those from the Bayesian procedure, as shown by the

Online Appendix–42



Figure G.3: Correlations between final estimates of the risk aversion parameter and the
estimates after selected rounds.
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Notes: The figure is based on authors’ analysis of data from Sokol-Hessner et al. (2009) and Frydman et
al. (2011). Each panel plots the DOSE estimate (using a uniform prior) of the exponent from the utility
function (1) against the Bayesian estimate after 140 questions.

line plots in Figure G.6. After 140 rounds, the estimates from the different procedures

are, as expected, very similar: the correlation between the final MLE and final Bayesian

estimates was 0.85 for risk aversion, and 0.95 for loss aversion, while the median distance

between the two estimates was less than 2% (of the Bayesian estimate) for both parameters.

However, the Bayesian estimates are much closer to these final values after many fewer

questions.11 In addition, the Bayesian estimates are generally more accurate than the MLE

estimates that do exist even where no MLE estimate can be obtained at all.12 Not only can

the Bayesian procedure obtain an estimate in those circumstances, those estimates contain

11To ensure comparability between the two sets of estimates, when calculating the distance from the final
estimate we constrain the MLE estimates to the bounds of the prior used for the Bayesian estimates.

12Note that the “jerky” nature of the line relating to the inaccuracy when no MLE estimate is available
is explained by the fact that—particularly after question 40—few participants do not have MLE estimates,
with the precise number varying from round to round. The large spike at round 61, for example, is explained
by all but two participants having MLE estimates available.
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Figure G.4: Correlations between final estimates of the loss aversion parameter and the
estimates after selected rounds.
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valuable information.
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Figure G.5: Correlations between final estimates of the consistency parameter and the esti-
mates after selected rounds.
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(2011). Each panel plots the DOSE estimate (using a uniform prior) of the choice consistency parameter in
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Online Appendix–45



Figure G.6: With a small number of questions the Bayesian procedure provides more accurate
estimates than Maximum Likelihood Estimation.
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