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ABSTRACT We consider joint demand response and power procurement to optimize the average social
welfare of a smart power grid system with renewable sources. The renewable sources such as wind and solar
energy are intermittent and fluctuate rapidly. As a consequence, the demand response algorithm needs to be
executed in real time to ensure the stability of a smart grid system with renewable sources. We develop a
demand response algorithm that converges to the optimal solution with superlinear rates of convergence.
In the simulation studies, the proposed algorithm converges roughly thirty time faster than the traditional
subgradient algorithm. In addition, it is fully distributed and can be realized either synchronously or in
asynchronous manner, which eases practical deployment.

INDEX TERMS Demand response, Smart Grid, Renewable sources, Distributed Algorithm, Convergence
Analysis.

LOAD side management in the power grid is an active
research area with a large body of existing work, rang-

ing from traditional load control to real-time pricing [1], [9],
[12], [14], [15], [17], [17], [18], [23], [25], [28]. However,
as the penetration of renewable energy sources continues to
grow, traditional load side management becomes inadequate.
Demand response, on the other hand, can be employed to
shift the load for economic benefits. Demand response is
particular suitable for adapting elastic loads to renewable
generations such as wind and power, which are intermittent
and random [2], [7], [26], [27], [30]. Such demand response
needs to act fast according to the dynamics of the renewable
sources.

We consider a power system consists of multiple users.
A single load-serving entity (LSE) serve all these users. It
aggregates loads to ensure the efficiency of the whole sale
market.

Our main contributions are fourfold:
• Uncertainty: Renewable sources such as wind and solar

powers are considered , and thus the power supply is
intermittent and uncertain.

• Supply and demand: LSE’s supply decisions and the
users’ consumption decisions must be jointly optimized.

• Privacy-preserving: We assume the controller (e.g. a
utility company) has no direct access to users’ consump-
tion requirements, which preserves the consumption

data privacy.
• Two-timescale: We consider power procurement on

both day-ahead wholesale market and user consumption
adaption in real-time so that supply uncertainty of re-
newable energy can be mitigated.

• Fast convergence: Renewable energy supplies fluctuate
rapidly. Thus demand response algorithm needs to ad-
just according to the dynamics in real time.

Energy management without renewable generation has
been considered in [10]. However, the uncertainly in renew-
able generation requires real-time decision that can adjust
according to the random renewable generations. The real-
time consumption decision needs to be coordinated with day-
ahead procurement decisions so that the overall expected
welfare is maximized, which is the focus of this paper. Both
the problem formulation and the solution are completely
different from those in [10]. In addition, we believe the
requirements of user consumptions are different and private.
The algorithm presented in this paper is capable of achieving
optimality without direct access to users’ private information
[27].

Demand response has been receiving significant research
interest over the past decade. [4], [29] consider load control
in smart buildings. [8], [22], [24] investigate cooperated
scheduling among different appliances for residential load
control. In addition, [6], [13], [21] consider the scheduling
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problem of electric vehicle charging, [11] on the optimal
allocation of a supply deficit (rationing) among users using
their supply functions. Similar models have been discussed in
[7], [16]. These models consider both day-ahead and random
energy generation. However, the objectives and operations
considered in this paper are different from the aformenioned
work.

A. NOTATIONS
Let qia(t) denote the demands from appliance a of user i in
tth time period. In addition, we have qia := (qia(t), t ∈ T )
which represents the demand vector at different time in-
stances. qi(t) := (qia(t), a ∈ Ai) indicate the demand vector
of ith user for all appliances in the tth time period. Likewise,
we use qi := (qia, a ∈ Ai) and q := (qi,∀i) to denote
the demand vector of ith user and all users. For aggregate
demands we have Qi(t) =

∑
a∈Ai

qia(t), Qia :=
∑
t qia(t),

Qi, Q, etc. Script letters represent sets. Small letters indicate
individual quantities. Capital letters denote aggregate quanti-
ties. For clarity, we summarize the notations in the following
table.

Symbol Description
N a set of N users
T a set of T time points
qi(t), energy assumption of appliance i
q(t) energy consumption vector
Ui(qi(t); t) utility function for qi(t) at time t
Pd(t), cd(Pd(t)) day-ahead capacity and the cost
Po(t), co(Po(t)) day-ahead energy and its cost
Pr(t), cr(Pr(t)) renewable energy and the cost
Pb(t), cb(Pb(t)) purchased balance energy and the cost
Q(t), ∆Q(t) total demand and excess demand
X(t),Y(t) features from time 1, . . . , t

I. OPTIMIZATION MODEL AND FORMULATION

CONSIDER a set N of N users. We also assume these
users are served by a single load-serving entity (LSE).

A discrete-time model is considered, in which every day
is split into T periods, which are indexed by t ∈ T =
{1, 2, · · · , T}. The time duration for a period varis and can
be 5, 15, or 60 mins in our study, representing the time
resolution at which decisions including energy dispatch or
demand response are made.

A. OPTIMIZATION MODEL
For notational simplicity, we assume that the ith user i ∈ N
only operates a single appliance so we only need one sub-
script for indexing appliances. In addition, qi(t) represents
the energy consumption of ith user in time period t ∈ T .
qi denotes a vector (qi(t),∀t) for the energy consumption
over the whole day. The ith appliance can be characterized
as follows.
• a utility function given by Ui(qi(t); t) which quantifies

the utility that ith user obtains from using the ith appli-

cace and consuming qi(t) amount of energy in tth time
perdiod;

• constraintson energy consumptions:

q
i
(t) ≤ qi(t) ≤ qi(t),∀t (1)

Q
i
≤

∑
t

qi(t). (2)

The first constraint ensures that the consumption in each
time period is bounded in a certain range. The second
constraint indicates that the total consumption is lower
bounded by Q

i
. In addition, we define q

i
(t) = qi(t) =

0.if If the ith appliance cannot use electricity in tth time
period.

For instance, if (yi(t),∀t) is a desired consumption profile,
then ∑

t

Ui(qi(t); t) = −
∑
t

(qi(t)− yi(t))2

characterizes the utility of following (yi(t),∀t).
The LSE power procurement process in tth time period

consists of two steps. In the first step, the LSE procures “day-
ahead” power capacities Pd(t) for the tth time period and
pays the capacity costs in the amount of cd(Pd(t); t). This
means that LSE purchases up to Pd(t) amount of energy
in tth time period of the following day at a pre-determined
price. Let Po(t) denote the amount of the day-ahead energy
that the LSE actually uses in tth time period of the following
day and co(Po(t); t) denote its cost. The renewable energy
in the tth time period is a nonnegative random variable
Pr(t) and the associated cost is cr(Pr(t); t). For notational
simplicity, we assume cr(Pr; t) ≡ 0 for all Pr ≥ 0 and all t.
At the time instance t− (real time), the random variable Pr(t)
is realized to satisfy the demand. Then the LSE satisfies the
excess demand via using Po(t) from the day-ahead capacity.
If there is still excess demand, the LSE purchases the Pb(t)
from the real-time energy market at the cost in the amount
of cb(Pb(t); t). Therefore we have qi(t) ≥ 0 and also the
supplies (Pd(t), Pr(t), Po(t), Pb(t)) ≥ 0 should satisfy the
following constraints:∑

i

qi(t) ≤ Pr(t) + Po(t) + Pb(t)

Po(t) ≤ Pd(t)

The following assumptions are made for the optimization
model:

A1: For each time instance t, we assume the utility functions
Ui(qi) are increasing, strictly concave, and continuously
differentiable. In addition, the cost functions cd(·; t),
co(·; t) and cb(·; t) are also assumed to be increasing,
continuously differentiable, and convex with cd(0; t) =
co(0; t) = cb(0; t) = 0.

A2: For each time instance t, c′b(0; t) > c′o(Po; t),∀Po ≥ 0.
This indicates the marginal cost is strictly larger than the
marginal cost of day-ahead energy.

In addition, we assume that q
i
≥ 0 for all i and Q ≥ 0.
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The LST made the real-time decisions (Po(t), Pb(t)) in
order to minimize its total cost. Given the demand vector
q(t) := (qi(t),∀i), let Q(t) :=

∑
i qi(t) indicate the total

demand and ∆(Q(t)) := Q(t)−Pr(t) is the excess demand.
Therefore, the LSE’s decision in the tth time period is given
by:

P ∗o (t) = [∆(Q(t))]
Pd(t)
0

P ∗b (t) = [∆(Q(t))− Pd(t)]+

Please notice that for any real a, b, c, we have [a]+ :=
max{a, 0} and [a]cb := max{b,min{a, c}}.

Therefore, we can calcuate the total supply cost as follows:

c(Q(t), Pd(t);Pr(t), t) =

cd(Pd(t); t) + co

(
[∆(Q(t))]

Pd(t)
0 ; t

)
+

cb
(
[∆(Q(t))− Pd(t)]+ ; t

)
(3)

Please note that both the supply and user models can be
extended, as shown in our technical report [19]. In addition,
the algorithm we proposed can be employed to tackle more
general models, with or without time correlation.

B. PROBLEM FORMULATION

The social welfare can be simply calcuated as different
between standard user utility and supply cost, given by:

W (q, Pd;Pr) :=
T∑
t=1

(∑
i

Ui(qi(t); t)− c(Q(t), Pd(t);Pr(t), t)

)
(4)

where q := (q(t), ∀t), Q(t) :=
∑
i qi(t), Pd := (Pd(t), ∀t)

and Pr := (Pr(t),∀t). Therefore, LSE aims to maximize
the expected social welfare E[W (q, Pd;Pr)]. Please notice
that this maximization problem needs to consider the random
renewable generation Pr. Therefore, q(t) should be decided
after Pr(t) have been realized at times t− (i.e., real-time
demand response). However, Pd should be decided a day
ahead. Also, please notice that users’ utility structure as
well as the LSE’s cost structure are private information.
Therefore, ideally we should seek a solutions requiring no
private information exchange.

II. ENERGY PROCUREMENT AND DEMAND RESPONSE

AS mentioned above, we now focus on the case without
the constraint (2) that couples the consumption deci-

sions q(t) across time. For brevity, t is dropped from the
notation. In the tth time period, the welfare maximization
problem is give by:

max
Pd≥0

{
−cd(Pd) + E max

q∈[q,q]
W1(q;Pd, Pr)

}
(5)

where the real-time welfare is given by:

W1(q;Pd, Pr) :=∑
i

Ui(qi)− co
(

[∆(Q)]Pd
0

)
− cb ([∆(Q)− Pd]+) (6)

E in (5) is the expectation that is taken for Pr. Therefore the
optimization problem can be decomposed into two subprob-
lems:

1) Real-time demand response: optimize real-time wel-
fare W1 over consumptions q given Pd, Pr:

max
q∈[q,q]

W1(q;Pd, Pr) =
∑
i

Ui(qi)−

co

(
[∆(Q)]Pd

0

)
− cb ([∆(Q)− Pd]+) (7)

Let q(Pd, Pr) denote an optimizer.
2) Day-ahead capacity procurement: maximize expected

welfare over Pd:

max
Pd≥0

{ −cd(Pd) + EW1(q(Pd, Pr);Pd, Pr) } (8)

We next solve each subproblem progressively.

A. REAL-TIME DEMAND RESPONSE
In this subsection, we present a distributed algorithm for real-
time demand response based on “price” signal.

Note that problem (7) is equivalent to

W̃ (Pd;Pr) := max
q,yo,yb

{
∑
i

Ui(qi)− co(yo)− cb(yb)}

s.t. q
i
≤ qi ≤ q̄i,∀i

0 ≤ yo ≤ Pd, yb ≥ 0

Pr + yo + yb ≥
∑
i

qi, (9)

where yo and yb indicate the amount of day-ahead capacity
and real-time energy respectively.

In [20], we have proposed a distributed primal-dual algo-
rithm for (9). However, the convergence of that algorithm
relies on the proper selection of step sizes and it converges
very slowly. Since two-way communication between the LSE
and each user is required at every iteration, such slow con-
verge speed may incur significant delay in demand response,
especially for a large-scale power grid with many users.

Here we propose an algorithm based on combined secant
[5] and bisection method that does not require any step-
size selection and converges much faster than the primal-
dual algorithm. For problem (9), we associate a Lagrangian
multiplier λ ≥ 0 (i.e., the “price” of electricity) to the last
constraint, and obtain the dual function as

L(λ) := max
q,yo,yb

{
∑
i

Ui(qi)− co(yo)− cb(yb) +

λ(Pr + yo + yb −
∑
i

qi)}

s.t. q
i
≤ qi ≤ q̄i,∀i

0 ≤ yo ≤ Pd, yb ≥ 0. (10)
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Problem (10) can be decomposed into a set of individual
maximization problems for every user and two maximization
problems for the LSE involving yo and yb respectively, given
in the sequel,

Li(λ) := max
qi
{Ui(qi)− λqi}

s.t. q
i
≤ qi ≤ q̄i,∀i, (11)

Lyo(λ) := min
yo
{co(yo)− λyo}

s.t. 0 ≤ yo ≤ Pd, (12)

and

Lyb(λ) := min
yb
{cb(yb)− λyb}

s.t. yb ≥ 0. (13)

The master dual problem is,

min
λ

L(λ)

s.t. λ ≥ 0, (14)

where L(λ) =
∑
i Li(λ)− Lyo(λ)− Lyb(λ) + λPr.

The following proposition follows from standard convex
optimization theory.

Proposition 1. For given λ, assume qi(λ), yo(λ), and yb(λ)
are optimal solutions to (11), (12), and (13) respectively.
Then s(λ) = Pr+yo(λ)+yb(λ)−

∑
i qi(λ) is a subgradient

for the dual function L(λ).

Let ∂(L(λ)) denote the set of all subgradients of L(λ) at
λ, it follows from the definition of the subgradient that λ∗

minimize L(λ) if and only if 0 ∈ ∂(L(λ∗)).
This fact motivates us to propose a combined secant

and bisection algorithm that starts with an initial interval
[λ0min λ

0
max] and progressively reducing the searching range

to find an optima solution λ∗. Specifically, let [λkmin λ
k
max]

denote the searching range at the kth iteration. We use the
secant method in (17) to compute a new price λk+1 within
this range, and use it as one end of the next searching range.
The secant method typically converges rapidly, especially if
the initial guess i.e., λ0min or λ0max is close to the optimal so-
lution. However, for certain objective functions, this method
may exhibit slow convergence, e.g., when λk

max−λ
k
min

λk−1
max−λk−1

min

> 0.5.
If this situation occurs for two consecutive iterations before
the algorithm converges, we use the bisection updating rule
in Eq. (15) to compute the next price.

We assume that the LSE knows an upper bound of the total
demand, Pmax, which satisfies Pmax >

∑
i qi. The detailed

algorithm is given in Algorithm 1.
The convergence property of the proposed algorithm is as

follows.

Proposition 2. Algorithm 1 converges to the set of optimum
solutions of (14).

Proof. If s(λ0min) = s(0) ≥ 0, then the algorithm returns

Algorithm 1: Combined secant and bisection method
for real-time demand response

1 The LSE lets k = 0, λ−1 = λ0min = 0, and
λ0 = λ0max > c

′

b(Pmax). (Note that since
λ0 > c

′

b(Pmax), we have
yb(λ

0) ≥ Pmax >
∑
i qi ≥

∑
i qi(λ

0). Therefore
s(λ0) > 0.)

2 if s(λ−1) = s(0) ≥ 0 then
3 The price is determined as λ∗ = 0 else
4 repeat
5 if the algorithm has been converging

slowly in the last two iterations
6 (specifically, if k ≥ 2 and

λk
max−λ

k
min

λk−1
max−λk−1

min

> 0.5 and λk−1
max−λ

k−1
min

λk−2
max−λk−2

min

> 0.5)

then
7 The next price λk+1 is calculated

using the bisection updating rule as:

λk+1 =
λkmin + λkmax

2
(15)

else
8 λk+1 is calculated using the secant

method [5]:

λk+1 (16)

=
λkmins(λ

k
max)− λkmaxs(λkmin)

s(λkmax)− s(λkmin)
; (17)

9 end
10 end
11 if s(λk+1) > 0 then
12 The end-points of the bracket are set

as λk+1
min = λkmin and

λk+1
max = min(λk+1, λk+1

max)
13 else
14 if s(λk+1) < 0 then
15 The end-points are set as

λk+1
min = max(λk+1, λk+1

min)
and λk+1

max = λkmax.
16 end
17 end
18 end
19 k=k+1;
20 until

∑
i |qi(λk+1)− qi(λk)| < 1e− 5 or

s(λk+1) = 0;
21 λ∗ = λk+1

22 end
23 The consumption decisions are qi(λ∗),∀i.
24 end
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0, which is an optimum solution. (This is because by the
definition of subgradient, for any λ > 0, we have L(λ) ≥
L(0) + s(0)λ ≥ L(0).)

So we only need to consider the case when the initial
two end points are of different sign, i.e., s(λ0min) < 0 and
s(λ0max) > 0. Due to the definition of the subgradient,
we have that L(λ) > L(λ0min) for any λ < λ0min; and
L(λ) > L(λ0max) for any λ > λ0max. Therefore, λ∗ must
belong to the interval [λ0min, λ

0
max]. Also, at each iteration

of the above algorithm, unless the algorithm terminates after
finding s(λk+1) = 0 (in which case λk+1 is clearly a
solution), we always have s(λkmin) < 0 and s(λkmax) > 0.
Therefore λ∗ ∈ [λkmin, λ

k
max]. Due to the bisection updating

rule used in the proposed algorithm, the following inequality
always hold before convergence, i.e.,

λk+3
max − λk+3

min

λkmax − λkmin

(18)

=
λk+3
max − λk+3

min

λk+2
max − λk+2

min

∗ λ
k+2
max − λk+2

min

λk+1
max − λk+1

min

∗ λ
k+1
max − λk+1

min

λkmax − λkmin

(19)

≤ 1 ∗ 1 ∗ 0.5 = 0.5, (20)

which means the length of the searching interval will con-
verge to zero. Hence, the above algorithm must converge to
optimal solution.

Please note that if we replace (17) with (15), we obtain the
traditional bisection method. Also, the secant method is of
suplinear convergence rate while the bisection algorithm is
of linear convergence rate.

Proposition 3. Assume s(∗) is twice differentiable, s
′′
(λ∗)

is bounded and s′(λ∗) is not equal to zero, Algorithm 1
converges superlinearly.

Proof. The analysis of the convergence of Algorithm 1 is
based on analyzing the error sequence {e0, e1, e2, ...}, where
ek = λ∗ − λk. According to Algorithm 1,

λk+1 =
λkmins(λ

k
max)− λkmaxs(λkmin)

s(λkmax)− s(λkmin)
. (21)

And the corresponding sequence of error is given by:

ek+1 =
ek−1s(λk)− eks(λk+1)

s(λk)− s(λk−1)
, (22)

We have proved that the proposed algorithm converges,
thus we can use the following truncated Taylor expansions
to calculate s(λk), i.e.,

s(λk) = −s′(λ∗)ek +
1

2
s
′′
(λ∗)(ek)2 +O

(
|ek|3

)
(23)

Substitute the Taylor expansion into (22) we have

ek+1 =
O
(
|ek|4

)
+ 1

2s
′′
(λ∗)ekek−1

s′(λ∗ + 1
2s
′′(λ∗)(ek + ek−1)) +O (|ek|3)

(24)

Since we have proved the convergence of Algorithm 1, the
O
(
|ek|l

)
is dominated by O

(
|ek−1|l

)
for l = 3 and l = 4.

Therefore, asymptotically we have

ek+1 � s
′′
(λ∗)

2s′(λ∗)
ekek−1 (25)

Since s
′′
(λ∗) is bounded and s′(λ∗) does not equal to

zero, e
k+1

ek
is strictly smaller than 1/2 when k goes to infinity.

This means after a finite number of iterations, the bisection
updating rule will not be applied. Hence the convergence rate
is equal to the scant method which is superlinear.

Please note Algorithm 1 can be realized either in an
asynchronous manner or synchronously, which is implemen-
tation friendly. Also, please notice that the message exchange
required for Algorithm 1 to converge is much less than that
of the primal-dual subgradient algorithm.

In the simulation studies, we will demonstrate that Algo-
rithm 1 converges significantly faster than the primal-dual
algorithm in [20]. In this particular case, it requires only
fifteen iterations to converge to the optimal solution whereas
it takes the subgradient method 500 iterations to converge.
It is observed that the Algorithm 1 converges roughly thirty
times faster than the traditional subgradient algorithm.

In addition, the proposed algorithm is distributed and
scalable since each user only needs to solve a single opti-
mization problem as given in (11) regardless of the total num-
ber of users in the system. Hence it is particularly suitable for
large-scale system involves tens of thousands of users.

B. DAY-AHEAD CAPACITY PROCUREMENT
In this section, we present an algorithm for the LSE to
compute the optimum day-ahead capacity that maximizes the
expected social welfare. For this purpose, the LSE needs to
solve (5), which is equivalent to

min
Pd≥0
{−E[W̃ (Pd;Pr)] + cd(Pd)}, (26)

where W̃ (.) is defined in (9). Write the optimum dual vari-
able λ∗ as λ∗(Pd;Pr) to reflect its dependency on Pd and Pr.
The following result says that a subgradient of −W̃ (Pd;Pr)
is −[λ∗(Pd;Pr) − c

′

o(Pd)]+. Based on the definition of
stochastic subgradient, we can obtain the following propo-
sition.

Proposition 4. (i) W̃ (Pd;Pr) is concave in Pd.
(ii) For any P̃d, Pd ≥ 0, we have

W̃ (P̃d;Pr) ≤ W̃ (Pd;Pr)+[λ∗(Pd;Pr)−c
′

o(Pd)]+·(P̃d−Pd).
(27)

In particular, if W̃ (Pd;Pr) is differentiable at Pd, then

∂W̃ (Pd;Pr)/∂Pd = [λ∗(Pd;Pr)− c
′

o(Pd)]+.

Proof. Part (i): Since W̃ (Pd;Pr) is the optimal value of the
convex optimization problem (9), it is concave in Pd [3].
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Part (ii): To emphasize their dependency on Pd and/or Pr,
we write L(λ) in (10) as L(λ;Pd, Pr), and Lyo(λ) in (12) as
Lyo(λ;Pd). Then,

L(λ;Pd, Pr) =
∑
i

Li(λ)− Lyo(λ;Pd)− Lyb(λ) + λPr.

By strong duality, minλ≥0 L(λ;Pd, Pr) = W̃ (Pd;Pr). It
is not difficult to verify that for any P̃d, Pd ≥ 0

Lyo(λ; P̃d) ≤ Lyo(λ;Pd) + [λ− c
′

o(Pd)]+ · (P̃d − Pd).

So

L(λ∗(Pd;Pr); P̃d, Pr)− L(λ∗(Pd;Pr);Pd, Pr)

≤ [λ− c
′

o(Pd)]+ · (P̃d − Pd). (28)

Note that L(λ∗(Pd;Pr);Pd, Pr) = W̃ (Pd;Pr). Also,
since λ∗(P̃d;Pr) solves minλ≥0 L(λ; P̃d, Pr), we have

L(λ∗(Pd;Pr); P̃d, Pr) ≥ L(λ∗(P̃d;Pr); P̃d, Pr) = W̃ (P̃d;Pr).

Plugging these into (28), we obtain (27).

Using Prop. 4, a subgradient of the objective function in
(26) is −E([λ∗(Pd;Pr)− c

′

o(Pd)]+) + c
′

d(Pd). A stochastic
subgradient algorithm that simulates the system by drawing
samples of Pr and converges to the set of optimal Pd is as
follows.

Algorithm 2: Day-ahead capacity

1) Initially, let P 0
d = 0.

2) In step m = 0, 1, 2, . . . , independently generate a
sample of Pr (denoted by Pmr ), run Algorithm 1 and
obtain the optimum dual variable λ∗(Pmd ;Pmr ). Then,
compute

Pm+1
d ={
Pmd + αm{[λ∗(Pmd ;Pmr )− c

′

o(P
m
d )]+ − c

′

d(P
m
d )}

}Pmax

0

where αm = 1/(m+ 1) is the step size. The algorithm
terminates when a certain convergence criterion is met
(e.g., |Pm+1

d − Pmd | ≤ 1e− 4).

C. COMPARISON WITH DAY-AHEAD PLANNING

In our proposed algorithms above, the demand is decided
after the realization of the renewable energy Pr (i.e., real-
time demand response). Another possible scheme for load-
side participation is “day-ahead planning”, in which the con-
sumption q is planned one day ahead. The maximal expected
social welfare with day-ahead planning is

Wd := max
Pd≥0,q∈[q,q]

{−cd(Pd) + E[W1(q;Pd, Pr)]}. (29)

In this section, we compare the expected social welfare
achieved by real-time demand response and day-ahead plan-
ning through an example, and show how their difference
depends on the variance of Pr and the cost of real-time
energy.

Proposition 5. Assume that the utility function is Ui(qi) =
−(qi − z)2, i = 1, 2, . . . , N where z > 0 is the target
demand of user i (for simplicity, we assume that the target
is the same for all users). There is no upper-bound constraint
on qi ≥ 0. The cost functions are assumed to be cd(P ) =
β · P 2, co(P ) = 0 and cb(P ) = γ · P 2. Denote the variance
of Pr as σ2 = E[(Pr − P̄r)2] where P̄r = E(Pr). We also
make the technical assumption that

Pmaxr − P̄r <
β

βγN + β + γ
(Nz − P̄r) (30)

where Pmaxr is the upper bound of Pr.
Then, the expected social welfare with real-time demand

response is higher than with day-ahead planning, and the
difference is Nγ2

1+Nγσ
2.

Remark: Note that the difference increases with the vari-
ance of Pr. Also, the more expensive is the real-time balanc-
ing energy (i.e., the larger is γ), the larger is the difference.

Proof. First consider day-ahead planning. Since the con-
straint on q is q ≥ 0, (29) becomes

Wd := max
Pd≥0,q≥0

{−cd(Pd) + E[W1(q;Pd, Pr)]}. (31)

If the real-time energy
∑
i qi−Pd−Pr > 0 for any realization

of Pr, we have

E[W1(q, Pd;Pr)]

= E[
∑
i

Ui(qi)− γ(
∑
i

qi − Pd − Pr)2]

=
∑
i

Ui(qi)− γE{[
∑
i

qi − Pd − P̄r + (P̄r − Pr)]2}

=
∑
i

Ui(qi)− γ(
∑
i

qi − Pd − P̄r)2 − γσ2

= W1(q, Pd; P̄r)− γσ2. (32)

We first solve maxPd,q{−cd(Pd) +W1(q, Pd; P̄r)− γ · σ2}
without any constraint. The optimal solution is

P̃d =
γ(Nz − P̄r)
βγN + β + γ

,

q̃i =
z(β + γ) + βγP̄r
βγN + β + γ

,∀i.

Clearly, q̃i > 0. Since Pmaxr − P̄r ≥ 0, the assumption (30)
implies that Nz − P̄r > 0, which implies that P̃d > 0. Also,∑

i

q̃i − P̃d − Pr

=
∑
i

q̃i − P̃d − P̄r + (P̄r − Pr)

=
β

βγN + β + γ
(Nz − P̄r) + (P̄r − Pr)

> 0

where the last step follows from (30).
Therefore, the constraints Pd ≥ 0, q ≥ 0 are not active,

and the real-time energy
∑
i q̃i − P̃d − Pr is indeed always
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positive. So, P̃d and q̃ are the optimal solution of (31).
Consequently,

Wd = − βγ

βγN + β + γ
(N · z − P̄r)2 − γσ2.

Now we consider real-time demand response. Similarly,
we solve the problem (5) without considering the constraints,
and later show that the constraints are not active. We have

max
q
W1(q;Pd, Pr) = − γ

1 +N · γ
(Pd + Pr −N · z)2,

and the maximizer is

qi(Pd, Pr) =
z + γ(Pd + Pr)

1 + γN
,∀i.

Assuming that the real-time energy is positive (which will be
justified later), we have (similar to (32))

E[max
q
W1(q;Pd, Pr)] = − γ

1 +N · γ
(Pd+P̄r−N ·z)2−

γ

1 +N · γ
σ2.

To find the optimal day-ahead energy, we solve
maxPd

{−cd(Pd) + E[maxqW1(q;Pd, Pr)]}, and find that
the maximizer is

P ∗d =
γ(Nz − P̄r)
βγN + β + γ

.

Clearly, P ∗d > 0 sinceNz−P̄r > 0. Therefore, qi(Pd, Pr) >
0. Finally, we have∑

i

qi(P
∗
d , Pr)− P ∗d − Pr

=
β

βγN + β + γ
(Nz − P̄r) +

P̄r − Pr
1 + γN

> 0,

using (30). Therefore the real-time energy under P ∗d and
qi(P

∗
d , Pr) is always positive.

So, P ∗d and qi(P ∗d , Pr) are the optimal solution of (5), and
the optimal value is

W ∗ = − βγ

βγN + β + γ
(N · z − P̄r)2 −

γ

1 +N · γ
σ2.

Comparing W ∗ to Wd, we have

W ∗ −Wd =
Nγ2

1 +Nγ
σ2.

III. NUMERICAL EXAMPLES

NUMERICAL examples are provided in this section to
illustrate the performance of our algorithms. We con-

sider a time-slotted system with 24 hours, i.e., T = 24.
The first, second, and the third time period is 8-9am, 9-
10am, and so on. For the ith user, the following utility
function is considered, i.e., Ui(qi) =

∑T
t=1 Ui(qi(t); t) =

−
∑T
t=1[qi(t) − yi(t)]

2 where yi(t) is user i’s target con-
sumption in slot t. This quantify the deviation of the actual
demand profile {qi(t)} from the target. Fig. 1 illustrates the
target demand profiles of N = 4 users in our simulation. The
unit of energy is kWh. We assume that 0 ≤ qi(t) ≤ 20,∀i, t.
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FIGURE 1: Target demand profiles of the users
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FIGURE 2: Convergence of Pd(6)

Assume that Pr(t) is uniformly distributed between 0 and
2P̄r(t) > 0, so that its mean is E(Pr(t)) = P̄r(t). Also,
Pr(t)’s are independent across t. The values of (P̄r(t),∀t)
are (2, 3, 4, 5, 5, 6, 6, 7, 6, 5, 4, 3, 2, 2, 3, 4, 4, 4, 4, 3, 3, 2, 2,
2).

For each time period, assume that the cost functions are
cd(P ) = (P 2 + P )/2, co(P ) = P/2, and cb(P ) = P 2/2 +
5P .

Algorithm 2 is employed to determine the day-ahead
capacity. Fig. 2 shows that the computed value of Pd(6)
converges. Pd(t)’s converges in a similar .

In Fig. 4 to Fig. 6, we show the convergence trajectories
of a variety of algorithms for real-time demand response of
four users, including the conventional primal-dual method
(denoted by ‘primal-dual’), the bisection method (denoted by
‘bisection’), and the combined secant and bisection method
(denoted by ‘bisection + secant’). As we can see, the conver-
gence speed of both bisection algorithm and the combined
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FIGURE 3: Expected welfare in each time period

secant and bisection algorithm significantly outperform the
traditional primal-dual algorithm, since the formers at least
have a linear convergence rate while the latter only has a
sublinear convergence rate. Moreover, we observe that the
combined secant and bisection method provides a better con-
vergence performance than that of bisection method, since
the convergence speed of the latter relies on the tightness
of the initial guess interval that contains the optimal dual
solution, while the former mitigate this issue by using the
secant step. In Fig. 7, we present the average number of it-
erations required for convergence of Algorithm 1 at different
time steps. As we can see, ‘secant + bisection’ always yields
the fastest convergence speed.
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FIGURE 4: Convergence performance for real-time demand
response using primal-dual method

In Fig. 8, we demonstrate the impact of various implemen-
tations of Algorithm 1 (based on ‘primal-dual’, ‘bisection’,
and ‘secant + bisection’, respectively) on the convergence
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FIGURE 5: Convergence performance for real-time demand
response using bisection method
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FIGURE 6: Convergence performance for real-time demand
response using combined secant and bisection algorithm

performance of Algorithm 2 while computing the day-ahead
capacity at period 6, Pd(6). As we can see, different imple-
mentations of Algorithm 1 has less effect on the accuracy of
the solution of Algorithm 2. However, ‘bisection’ and ‘secant
+ bisection’ are the most efficient in computation. They also
yield the same convergence trajectory of Algorithm 2. This
is not surprising, since both of the methods converge fast
and solve the master dual problem (14) at the same level of
accuracy.

Finally, the expected social welfare under Algorithm 1
and 2, as given in Fig. 3, is significantly higher than the
case without demand response (where the users consume the
target demands and the LSE optimizes Pd(t).)
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FIGURE 7: Average number of iterations required for con-
vergence of Algorithm 1 for real-time demand response
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FIGURE 8: Convergence of day-ahead capacity Pd(6) under
different implementations of Algorithm 1.

IV. CONCLUSION
We have studied joint energy procurement and real-time
demand responses for a smart power grid system integrated
with renewable energy sources. In particular, a demand re-
sponse algorithm with fast convergence has been presented
and its performance has been both theoretically analyzed and
studied through simulation studies. It exhibits much faster
convergence speed than the traditional subgradient algorithm.

While we focused on one type of utility functions and
consumption constraints in this paper, the proposed frame-
work can be extended to other types of appliances as well.
A possible future research topic is to consider the case with
distributed renewable generation with users such as the case

in a microgrid system.
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