Synergistic Photoenzymatic Hydrogenation of Heteroaromatic Olefins by 'Ene'Reductases

Yuji Nakano, Michael J. Black, Andrew J. Meichan, Braddock A. Sandoval, Megan M. Chung, Kyle F. Biegasiewicz, Tianyu Zhu, Todd K. Hyster* *Corresponding Author Email: thyster@princeton.edu

TABLE OF CONTENTS
GENERAL PROCEDURES 3
SEQUENCE INFORMATION 6
SUPPLEMENTARY TABLES 22
SUPPLEMENTARY FIGURES 26
SUPPLEMENTARY TABLES 22
SUBSTRATE SYNTHESIS PROCEDURES 38
GENERAL PROCEDURES FOR VINYL PYRIDINE REDUCTIONS 66
RADICAL CLOCK EXPERIMENTS 91
CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT 92
DFT CALCULATIONS 95
FREE FMN COMPETITION EXPERIMENT RAW DATA 104
HPLC TRACES 105

Experimental Procedures

General. Unless otherwise noted, all chemicals and reagents for chemical reactions were obtained from commercial suppliers and used as received (Sigma-Aldrich, Oakwood Chemical, Combi-Blocks, Chem-Impex, and Acros Chemicals). GDH-105 was purchased from Codexis as cell free lysate and used as received. Silica gel chromatography purifications were carried out using AMD Silica Gel 60. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - NMR spectra were recorded on a Bruker UltraShield Plus (500 and 125 MHz , respectively) instrument, and are internally referenced to residual proton signals in CDCl_{3} (7.26 ppm). Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, brs = broad singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, ~ m=$ multiplet, $d d=$ doublet of doublet, $d t$ $=$ doublet of triplet, ddd = doublet of doublet of doublet), coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift relative to CDCl_{3} (77 ppm). High- resolution mass spectra were obtained on an Agilent 6220 LC/MS with an electrospray ionization time-of-flight (ESI-TOF) detector. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and peaks are reported in terms of frequency of absorption (cm^{-1})

Chromatography. Analytical high-performance liquid chromatography (HPLC) was carried out using an Agilent 1260 Infinity LCMS System. Analytical chiral HPLC was conducted using an Agilent 1260 Infinity Chiral HPLC system with isopropanol and hexanes as the mobile phase. Chiral IA, IB, IC, ID, and OJ-H columns were used to separate enantiomers ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). For samples requiring chiral SFC: chiral SFC screening and optimization was carried out using a Waters Acquity UPC2 system (Waters Corp, Milford, MA, USA). This system contained a photodiode array detector, column managers to allow six orthogonal columns to be run in series, a sample manager, and a fluid delivery module (liquid CO_{2} pump as well as a modifier pump). The system was controlled by MassLynx software.

Cyclic Voltammetry. Electrochemical studies were carried out in a 25 mL three-necked flask at the given concentrations. All potentials were measured using a CH Instruments Electrochemical Workstation potentiostat, and were measured against a saturated calomel reference electrode (SCE). Before each measurement, the glassy-carbon working electrode was polished with 50 nm alumina powder and rinsed with deionized water. The platinum wire counter electrode was flame activated until red-hot three times prior to measurement.

CD Spectroscopy. CD spectra were acquired with an Applied Photophysics Chirascan instrument using a $200 \mu \mathrm{~L}$ cuvette with $200 \mu \mathrm{~L}$ of relevant protein solution at a concentration of $0.1 \mathrm{mg} / \mathrm{mL}$.

Cloning. pET22b(+) was used as a cloning and expression vector for all enzymes described in this study. Codon optimized genes for 'ene' reductase enzymes were purchased as gBlocks from IDT and cloned using Gibson Cloning (i). All genes were cloned between the Ndel and Xhol restriction sites and contained an N-terminal (GluER) or C-terminal (OYE1, OYE2, OYE3, MorB, PETN, OPR1, NostocER, LacER) 6xHis tag. Cloning for each construct was carried out using DH5 α E. coli.

Protein Expression and Purification. Enzymes used in purified protein experiments were expressed in BL21(DE3) E. coli cultures transformed with plasmid encoding ERED variants. Transformed glycerol stocks were used to initiate 25 mL overnight cultures (37 ${ }^{\circ} \mathrm{C}, 250 \mathrm{rpm}$). Expression cultures (500 mL of TB with ampicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$ final concentration) in a 2 L flask) were inoculated with $1-2 \mathrm{ml}$ of the overnight culture and grown to $\mathrm{OD}_{600}=0.6\left(37^{\circ} \mathrm{C}, 250 \mathrm{rpm}\right)$. Once the cell cultures reached an OD of 0.6 they were chilled on ice for 15 minutes prior to the addition of IPTG. For GluER, expression was induced with 0.5 mM IPTG ($20 \mathrm{~h} 25^{\circ} \mathrm{C} 250 \mathrm{rpm}$). For OYE1, expression was induced with 0.1 mM IPTG ($24 \mathrm{~h} 18{ }^{\circ} \mathrm{C} 250 \mathrm{rpm}$). For MorB Y72F, expression was induced with 0.5 mM IPTG ($24 \mathrm{~h} 18^{\circ} \mathrm{C} 250 \mathrm{rpm}$). For LacER, expression was induced with $0.1 \mathrm{mM}(24$ $\left.\mathrm{h} 25^{\circ} \mathrm{C} 250 \mathrm{rpm}\right)$. For NostocER, expression was induced 0.1 mM IPTG ($24 \mathrm{~h} 25^{\circ} \mathrm{C} 250$ rpm). Following expression, cells were pelleted and frozen at $-80^{\circ} \mathrm{C}$ for storage. For purification, frozen cells were thawed in ice-cold water and resuspended in buffer A (for GluER: 50 mM TEOA 25 mM imidazole pH 7.0 , for all other proteins reported herein: 20 $\mathrm{mM} \mathrm{KPi}, 300 \mathrm{mM} \mathrm{NaCl}, 30 \mathrm{mM}$ imidazole, pH 7.0). Lysozyme ($1 \mathrm{mg} / \mathrm{mL}$), DNAsel (0.1 $\mathrm{mg} / \mathrm{mL})$, FMN ($1 \mathrm{mg} / \mathrm{mL}$), and PMSF ($1 \mathrm{mg} / \mathrm{mL}$, added as a $35 \mathrm{mg} / \mathrm{mL}$ solution in absolute ethanol) were added to the resuspended cells, followed by shaking at room temperature for 30 minutes. The resuspended cells were disrupted by sonication ($2 \times 4 \mathrm{~min}$, output control $5,35 \%$ duty cycle; Sonicator QSonica Q500 Ultra Sonicator). To pellet insoluble material, lysates were centrifuged at $14,000 \times \mathrm{g}$ for 1.5 h at $4^{\circ} \mathrm{C}$. Proteins were purified using a nickel NTA column (5 mL HisTrap HP, GE Healthcare, Piscataway, NJ) using an AKTAStart purifier FPLC system (GE healthcare). ERED enzymes were eluted with 100% buffer B (for GluER: 50 mM TEOA 250 mM imidazole pH 7.0 , for all other proteins reported herein: $20 \mathrm{mM} \mathrm{KPi}, 300 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole pH 7.0) over 5 column volumes. Fractions containing enzyme were pooled, concentrated, and subjected to three exchanges with no-imidazole buffer (for GluER: 50 mM triethanolamine (TEOA), 10% glycerol, $\mathrm{pH}=7.0$, for all other EREDs reported: $20 \mathrm{mM} \mathrm{KPi}, 300 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$) to remove excess salt and imidazole. Concentrated ($1.0-1.5 \mathrm{mM}$) proteins were
aliquoted, flash-frozen in liquid N_{2}, and stored at $-80{ }^{\circ} \mathrm{C}$ until later use. Protein concentration was determined by A_{465} with calculated extinction coefficients. All proteins other than GluER were used as aliquots pre-expressed and purified according to the procedures detailed in previously published work from the Hyster lab (27).

Determination of Extinction Coefficients. Extinction Coefficients for ERED enzymes were calculated based on the extinction coefficient ($12.2 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 464 nm) for free FMN released after protein denaturation (i). Extinction coefficient for GluER: $\varepsilon_{464}=11.4$ $\times 10^{-3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, OYE1: $\varepsilon_{465}=10.8 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}(465 \mathrm{~nm})$, MorB Y72F: $\varepsilon_{463}=10.7 \times 10^{-3}$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$, LacER: $\varepsilon_{463}=11.6 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, NostocER: $\varepsilon_{461}=10.6 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

Sequence Information
Ene-reductase 1 from Nostoc sp. PCC7120 (NostocER1)
NCBI Reference Sequence: WP_010996029.1
Protein sequence:
MSDEAERQRGNNLYKNSPLLPVSISQVSTSQLRETEIMSTNINLFSSYQLGELELPNRIVMAP LTRQRAGEGNVPHQLNAIYYGQRASAGLIIAEATQVTPQGQGYPHTPGIHSPEQVAGWKL VTDTVHQQGGRIFLQLWHVGRISHPDLQPDGGLPVAPSAIAPKGEVLTYEGKKPYVVTPRAL DTSEIPAIVEQYRQGAANALAAGFDGVEIHAANGYLIDQFLRDGTNORTDEYGGAIENRAR LLLEVTEAITSVWDSQRVGVRLSPSGTFNDIRDSHPLETFGYVAQALNRFNLSYLHIFEAIDAD IRHGGTVVPTSHLRDRFTGTLIVNGGYTREKGDTVIANKAADLVAFGTLFISNPDLPERLEVN APLNOADPTTFYGGGEKGYTDYPFLAVANKLEHHHHHH

DNA Sequence:
ATGAGTGATGAAGCGGAGCGCCAACGTGGAAATAATCTTTACAAAAATTCGCCCCT TCTGCCTGTCTCTATAAGTCAGGTATCTACAAGCCAGTTGCGGGAGACCGAAATAAT GAGTACCAATATAAACTTGTTCAGCAGTTACCAATTGGGTGAGTTAGAATTACCCAA TCGCATAGTGATGGCACCTCTGACTCGCCAACGGGCTGGAGAGGGTAATGTGCCC CACCAATTAAACGCGATATATTACGGCCAACGCGCCTCTGCCGGTCTGATCATAGC CGAAGCAACTCAAGTGACTCCTCAAGGACAAGGTTACCCTCATACTCCCGGCATAC ATTCTCCAGAGCAAGTAGCAGGTTGGAAACTGGTAACTGATACAGTTCATCAACAA GGAGGTCGCATTTTCCTTCAACTGTGGCACGTGGGACGGATAAGCCACCCAGACTT ACAACCAGACGGTGGACTGCCAGTAGCCCCCAGTGCCATAGCTCCCAAGGGGGAA GTTTTGACCTACGAGGGTAAAAAGCCATACGTAACACCTAGAGCCTTGGACACCTC GGAGATCCCGGCCATAGTGGAACAGTATCGGCAAGGGGCCGCAAACGCCTTGGCC GCGGGGTTCGACGGTGTCGAAATACACGCCGCTAACGGGTACCTTATAGACCAATT TCTTCGCGACGGAACGAACCAAAGAACGGACGAATACGGCGGAGCCATCGAAAAT CGCGCCCGGTTATTGTTAGAGGTCACAGAGGCTATTACTTCTGTATGGGATTCTCAA CGCGTAGGGGTGAGACTGTCTCCAAGTGGCACATTCAACGACATCCGGGATAGTCA TCCTTTAGAGACCTTTGGTTACGTAGCACAGGCTTTGAATCGTTTTAACTTAAGTTAT CTTCATATCTTCGAAGCAATTGATGCAGATATTCGGCACGGGGGTACGGTGGTCCC AACATCTCACTTACGTGATCGGTTCACCGGCACCTTGATTGTTAATGGGGGTTACAC TCGGGAGAAAGGGGACACAGTAATCGCCAACAAAGCCGCTGACCTTGTTGCTTTCG GAACCTTATTTATATCGAACCCGGACCTGCCTGAACGTTTGGAGGTAAATGCTCCGT TAAATCAAGCAGACCCGACTACGTTTTATGGGGGCGGGGAGAAGGGCTACACAGA TTATCCTTTTCTTGCTGTAGCAAATAAGCTCGAGCACCACCATCACCACCACTGA

Gluconobacter Oxydans Ene-Reductase (GluER)
GenBank Accession Code: WP_011252080.1
Protein Sequence:
HHHHHHMPTLFDPIDFGPIHAKNRIVMSPLTRGRADKEAVPTPIMAEYYAQRASAGLIITEAT GISREGLGWPFAPGIWSDAQVEAWKPIVAGVHAKGGKIVCOLWHMGRMVHSSVTGTQPV SSSATTAPGEVHTYEGKKPFEQARAIDAADISRILNDYENAARNAIRAGFDGVQIHAANGYL IDEFLRNGTNHRTDEYGGVPENRIRFLKEVTERVIAAIGADRTGVRLSPNGDTOGCIDSAPET VFVPAAKLLODLGVAWLELREPGPNGTFGKTDOPKLSPQIRKVFLRPLVLNODYTFEAAQT ALAEGKADAIAFGRKFISNPDLPERFARGIALQPDDMKTWYSQGPEGYTDYPSATSGPN

DNA Sequence:
CACCACCACCACCACCACATGCCGACCCTTTTCGACCCCATCGATTTCGGACCTATC CACGCCAAGAATCGTATCGTCATGTCCCCCCTGACTCGCGGTCGCGCTGACAAAGA GGCGGTTCCAACCCCCATTATGGCTGAATACTACGCCCAACGCGCTTCGGCGGGTT TAATTATCACTGAAGCGACGGGGATTTCACGCGAAGGCTTAGGTTGGCCGTTTGCG CCGGGAATTTGGTCCGATGCACAGGTTGAGGCGTGGAAACCTATCGTCGCGGGTG TCCATGCAAAGGGCGGCAAGATCGTATGTCAGCTTTGGCATATGGGCCGTATGGTA CATTCTTCAGTTACAGGGACGCAGCCCGTAAGCAGTTCCGCCACTACTGCTCCAGG TGAGGTTCACACCTATGAGGGCAAGAAGCCCTTCGAACAAGCGCGTGCAATCGAT GCTGCAGACATCTCCCGCATCCTTAACGATTACGAAAATGCAGCACGTAATGCAATC CGCGCGGGTTTCGATGGAGTGCAGATCCACGCAGCCAATGGCTACCTTATCGATGA GTTTTTGCGTAACGGAACCAATCATCGCACCGATGAGTATGGGGGGGTGCCGGAG AACCGTATTCGTTTCTTGAAAGAGGTAACAGAACGCGTCATCGCGGCGATTGGCGC TGACCGTACGGGTGTGCGTCTGAGTCCAAACGGTGACACACAGGGTTGTATCGACA GTGCTCCCGAAACCGTTTTTGTTCCTGCCGCAAAGCTTTTGCAAGATTTAGGGGTAG CGTGGCTTGAGCTGCGTGAACCTGGTCCGAATGGTACGTTTGGAAAGACGGATCAA CCAAAATTATCTCCACAAATCCGTAAGGTATTCCTTCGTCCATTGGTCTTAAATCAAG ACTATACTTTTGAGGCGGCACAGACGGCCCTGGCTGAGGGCAAGGCGGACGCTAT TGCGTTTGGCCGTAAGTTCATTTCAAATCCAGACTTGCCTGAGCGCTTTGCCCGTGG CATCGCACTGCAACCAGACGATATGAAAACATGGTACTCCCAAGGCCCAGAGGGTT ACACAGACTATCCATCCGCAACTTCTGGGCCGAAC

Old Yellow Enzyme 1 (OYE1)
UniProtKB - Q02899 (OYE1_SACPS)
Protein Sequence:
MSFVKDFKPPALGDTNLFKPIKIGNNELLHRAVIPPLTRMRALHPGNIPNRDWAVEYYTQRA QRPGTMIITEGAFISPQAGGYDNAPGVWSEEQMVEWTKIFNAIHEKKSFVWVOLWVLGW AAFPDNLARDGLRYDSASDNVFMDAEQEAKAKKANNPQHSLTKDEIKQYIKEYVOAAKNS IAAGADGVEIHSANGYLLNOFLDPHSNTRTDEYGGSIENRARFTLEVVDALVEAIGHEKVGL RLSPYGVFNSMSGGAETGIVAQYAYVAGELEKRAKAGKRLAFVHLVEPRVTNPFLTEGEGEY EGGSNDFVYSIWKGPVIRAGNFALHPEVVREEVKDKRTLIGYGRFFISNPDLVDRLEKGLPLN KYDRDTFYQMSAHGYIDYPTYEEALKLGWDKK

DNA Sequence:
ATGAGCTTTGTCAAGGACTTCAAGCCACAAGCACTTGGTGATACAAACCTTTTTAAA CCAATTAAGATTGGCAACAACGAACTGTTACATCGTGCAGTTATTCCCCCTCTTACA CGTATGCGTGCTTTGCACCCAGGTAATATTCCCAACCGTGATTGGGCGGTAGAATA CTATACTCAACGCGCCCAGCGCCCGGGCACGATGATCATTACGGAAGGGGCATTTA TCAGCCCCCAAGCTGGCGGGTATGATAACGCACCCGGTGTTTGGTCCGAAGAACA GATGGTGGAGTGGACGAAAATTTTCAATGCAATCCACGAAAAAAAATCGTTTGTCTG GGTACAGTTATGGGTCCTGGGTTGGGCGGCATTTCCTGACAATTTGGCCCGCGACG GGTTACGCTACGATAGCGCATCTGACAACGTCTTTATGGATGCCGAGCAAGAGGCT AAGGCGAAGAAAGCCAACAACCCTCAGCACTCCTTGACAAAAGATGAAATTAAACA GTACATTAAGGAGTACGTGCAGGCTGCAAAAAACAGCATTGCTGCAGGTGCAGAC GGTGTAGAGATTCACTCGGCTAATGGGTACCTGCTTAATCAATTTTTAGATCCTCACT CGAACACACGTACCGACGAATATGGGGGATCTATTGAGAATCGCGCTCGTTTTACG TTGGAAGTGGTAGATGCATTGGTCGAGGCGATCGGGCACGAAAAAGTCGGATTAC GTTTATCTCCTTATGGCGTGTTTAATTCAATGTCAGGCGGAGCGGAGACTGGAATTG TCGCACAGTACGCTTACGTGGCGGGAGAGCTGGAAAAACGTGCAAAGGCTGGAAA ACGCCTGGCATTTGTACATTTAGTGGAACCGCGTGTGACGAATCCTTTTCTTACTGA GGGGGAGGGCGAGTACGAAGGAGGGAGCAATGATTTCGTGTATAGTATTTGGAAG GGTCCTGTTATTCGCGCTGGCAATTTCGCATTGCACCCAGAGGTGGTGCGTGAAGA AGTGAAAGATAAACGCACGTTGATCGGCTACGGCCGTTTCTTTATTAGTAACCCAGA CTTGGTGGACCGTTTAGAGAAAGGTCTTCCCTTGAACAAATATGATCGTGACACCTT TTATCAGATGTCGGCGCACGGATACATTGATTACCCGACCTATGAAGAGGCTTTAAA ACTTGGTTGGGATAAGAAG

Old yellow enzyme 2 (OYE2)
UniProtKB - Q03558 (OYE2_YEAST)
Protein Sequence:
MPFVKDFKPQALGDTNLFKPIKIGNNELLHRAVIPPLTRMRAQHPGNIPNRDWAVEYYAQR AQRPGTLIITEGTFPSPQSGGYDNAPGIWSEEQIKEWTKIFKAIHENKSFAWVOLWVLGWA AFPDTLARDGLRYDSASDNVYMNAEQEEKAKKANNPOHSITKDEIKOYVKEYVOAAKNSI AAGADGVEIHSANGYLLNOFLDPHSNNRTDEYGGSIENRARFTLEVVDAVVDAIGPEKVGL RLSPYGVFNSMSGGAETGIVAQYAYVLGELERRAKAGKRLAFVHLVEPRVTNPFLTEGEGEY NGGSNKFAYSIWKGPIIRAGNFALHPEVVREEVKDPRTLIGYGRFFISNPDLVDRLEKGLPLN KYDRDTFYKMSAEGYIDYPTYEEALKLGWDKNHHHHHH

DNA Sequence:
ATGCCCTTCGTGAAAGACTTCAAACCTCAAGCCCTGGGCGATACTAATTTATTTAAG CCAATTAAAATTGGAAACAATGAGTTGTTACACCGCGCTGTAATTCCACCCTTAACC CGCATGCGCGCCCAACATCCAGGGAACATCCCTAATCGCGATTGGGCAGTCGAGT ACTATGCTCAGCGTGCTCAGCGTCCGGGTACCCTTATCATCACGGAAGGAACGTTT CCGTCGCCGCAATCGGGAGGGTATGACAACGCTCCCGGTATCTGGTCGGAAGAAC AGATTAAAGAATGGACCAAAATCTTTAAAGCAATTCATGAGAATAAATCTTTCGCCTG GGTCCAACTTTGGGTCCTGGGCTGGGCAGCCTTCCCTGACACATTGGCGCGTGAC GGGCTTCGTTATGATAGTGCTTCGGATAACGTGTATATGAATGCTGAACAAGAAGAA AAGGCAAAAAAAGCAAACAATCCACAGCATTCGATTACTAAAGACGAGATTAAGCA GTATGTTAAGGAATACGTACAAGCAGCAAAGAATTCTATTGCCGCAGGGGCGGACG GGGTAGAAATCCACTCTGCTAATGGGTACTTGCTTAACCAGTTCCTGGACCCGCATT CAAACAACCGCACTGATGAGTACGGAGGGTCCATCGAAAATCGTGCACGTTTTACT TTAGAGGTCGTAGATGCTGTAGTCGACGCGATTGGCCCTGAGAAGGTAGGTTTGCG TTTAAGTCCTTATGGCGTGTTCAATTCAATGTCAGGGGGCGCTGAAACAGGTATCGT CGCGCAGTACGCATACGTCTTGGGAGAGCTGGAGCGTCGTGCTAAGGCTGGCAAG CGTTTAGCTTTTGTGCATTTAGTTGAACCGCGCGTGACAAACCCCTTCTTGACGGAA GGCGAAGGAGAGTATAACGGAGGATCGAATAAATTTGCGTATTCCATTGGAAGGGC CCGATCATTCGTGCCGGTAACTTTGCCTTACATCCCGAAGTTGTTCGCGAGGAAGTA AAAGACCCACGTACCTTGATCGGGTATGGCCGTTTCTTTATTTCAAACCCCGACTTG GTGGATCGCCTTGAAAAAGGTCTTCCCTTGAATAAGTATGACCGTGATACGTTCTAC AAAATGTCAGCCGAAGGTTACATCGACTACCCCACCTACGAAGAGGCTTTGAAACT TGGTTGGGACAAGAACCACCACCATCACCACCACTGA

P41816 (OYE3_YEAST)
Protein Sequence:
MPFVKGFEPISLRDTNLFEPIKIGNTOLAHRAVMPPLTRMRATHPGNIPNKEWAAVYYGQR AQRPGTMIITEGTFISPQAGGYDNAPGIWSDEQVAEWKNIFLAIHDCQSFAWVOLWSLGW ASFPDVLARDGLRYDCASDRVYMNATLQEKAKDANNLEHSLTKDDIKOYIKDYIHAAKNSI AAGADGVEIHSANGYLLNOFLDPHSNKRTDEYGGTIENRARFTLEVVDALIETIGPERVGLRL SPYGTFNSMSGGAEPGIIAOYSYVLGELEKRAKAGKRLAFVHLVEPRVTDPSLVEGEGEYSE GTNDFAYSIWKGPIIRAGNYALHPEVVREOVKDPRTLIGYGRFFISNPDLVYRLEEGLPLNKYD RSTFYTMSAEGYTDYPTYEEAVDLGWNKNHHHHHH

DNA Sequence:
ATGCCTTTCGTGAAGGGGTTCGAGCCGATCTCTCTGCGCGATACAAACTTGTTCGAA CCTATCAAGATCGGTAATACCCAATTAGCGCACCGTGCTGTAATGCCCCCATTGACC CGTATGCGCGCGACGCACCCCGGTAATATTCCCAATAAAGAGTGGGCGGCGGTCT ACTATGGACAACGTGCGCAACGTCCTGGGACGATGATTATTACTGAAGGTACTTTTA TTTCACCCCAAGCCGGCGGGTATGATAACGCACCTGGAATCTGGAGTGATGAGCAA GTGGCTGAGTGGAAAAACATCTTCCTTGCAATCCATGACTGCCAATCTTTTGCTTGG GTTCAGCTGTGGAGCTTAGGATGGGCATCATTTCCAGATGTATTAGCCCGTGACGG TCTTCGTTATGATTGTGCTTCAGACCGCGTGTATATGAACGCAACATTACAAGAAAA AGCCAAAGACGCAAACAACCTTGAGCACTCGCTGACTAAAGACGACATTAAGCAAT ACATTAAGGACTATATTCATGCAGCGAAGAATAGTATCGCTGCCGGAGCCGATGGC GTGGAAATTCACAGCGCTAATGGCTACCTGCTGAACCAATTCTTAGACCCCCATTCT AATAAACGCACTGATGAGTACGGGGGAACGATTGAGAACCGTGCTCGTTTCACATT AGAGGTAGTCGATGCTTTGATTGAGACGATCGGCCCGGAGCGCGTAGGCCTGCGT TTGTCCCCCTATGGGACCTTCAACAGTATGAGTGGAGGGGCAGAGCCTGGAATCAT TGCACAGTATAGCTATGTCCTGGGTGAATTGGAAAAGCGTGCAAAAGCGGGCAAAC GTCTTGCCTTCGTTCATCTGGTGGAGCCGCGTGTTACCGACCCCTCCTTAGTTGAGG GAGAGGGAGAGTACAGTGAGGGTACGAATGACTTCGCCTACAGCATCTGGAAGGG GCCCATCATTCGCGCTGGCAATTACGCCTTGCACCCAGAAGTCGTCCGCGAGCAG GTAAAGGATCCACGTACACTGATCGGCTATGGGCGCTTCTTCATTTCAAATCCAGAC TTGGTCTACCGTCTGGAAGAGGGATTACCATTAAATAAATATGACCGCTCCACATTTT ATACCATGTCGGCTGAGGGGTATACAGACTACCCCACCTATGAGGAAGCAGTGGAT CTTGGTTGGAACAAGAATCACCACCATCACCACCACTGA

Thermophilic Old Yellow Enzyme (TOYE)
NCBI Reference Sequence: WP_012268805.1
Protein Sequence:
MSILHMPLKIKDITIKNRIMMSPMCMYSASTDGMPNDWHIVHYATRAIGGVGLIMOEATAV ESRGRITDHDLGIWNDEQVKELKKIVDICKANGAVMGIQLAHAGRKCNISYEDVVGPSPIKA GDRYKLPRELSVEEIKSIVKAFGEAAKRANLAGYDVVEIHAAHGYLIHEFLSPLSNKRKDEYGN SIENRARFLIEVIDEVRKNWPENKPIFVRVSADDYMEGGINIDMMVEYINMIKDKVDLIDVSS GGLLNVDINLYPGYQVKYAETIKKRCNIKTSAVGLITTQELAEEILSNERADLVALGRELLRNP YWVLHTYTSKEDWPKOYERAFKK

DNA sequence

ATGTCAATCCTTCATATGCCTCTTAAAATCAAGGATATTACAATCAAAAACCGCATCA TGATGTCTCCGATGTGCATGTATAGCGCCTCCACAGACGGGATGCCAAACGACTGG CACATCGTGCACTATGCGACCCGCGCTATCGGGGGTGTCGGTTTAATTATGCAAGA AGCAACAGCTGTCGAAAGTCGTGGGCGTATTACGGATCACGACTTAGGTATCTGGA ACGATGAACAAGTCAAGGAGTTAAAAAAAATCGTCGACATCTGTAAGGCGAATGGC GCGGTAATGGGGATTCAACTGGCCCATGCGGGACGCAAGTGTAATATCAGTTATGA GGATGTTGTAGGCCCATCACCTATTAAGGCAGGAGACCGTTATAAATTGCCCCGCG AACTTTCAGTTGAAGAAATTAAATCTATCGTAAAAGCGTTTGGTGAAGCAGCTAAAC GTGCAAATTTGGCAGGATACGACGTTGTGGAGATCCACGCTGCCCATGGTTATCTTA TTCACGAGTTTTTGAGTCCGTTAAGTAATAAACGCAAGGATGAGTACGGAAATTCGA TCGAGAATCGTGCTCGCTTCCTGATCGAAGTCATCGATGAGGTACGTAAGAATTGG CCCGAAAACAAACCCATTTTCGTCCGCGTTTCAGCTGACGATTATATGGAAGGTGG GATTAATATCGACATGATGGTAGAGTATATTAATATGATTAAGGATAAAGTGGATTTA ATCGATGTAAGTTCAGGAGGATTACTTAACGTAGATATCAACTTGTACCCTGGGTAC CAGGTTAAGTATGCCGAAACTATCAAAAAGCGCTGCAACATTAAGACTTCAGCGGTT GGACTTATCACGACACAGGAGCTGGCTGAAGAAATTCTTTCGAACGAACGTGCAGA TTTAGTTGCTCTTGGTCGTGAGTTACTTCGCAATCCATATTGGGTGCTGCACACATAC ACCAGCAAGGAAGACTGGCCGAAGCAATACGAGCGTGCTTTTAAAAAG

Morphinone reductase (MorB)
UniProtKB - Q51990 (Q51990_PSEPU)
Protein Sequence:
MPDTSFSNPGLFTPLQLGSLSLPNRVIMAPLTRSRTPDSVPGRLQQIYYGQRASAGLIISEATN ISPTARGYVYTPGIWTDAQEAGWKGVVEAVHAKGGRIALQLWHVGRVSHELVQPDGQQP VAPSALKAEGAECFVEFEDGTAGLHPTSTPRALETDEIPGIVEDYRQAAQRAKRAGFDMVE VHAANACLPNOFLATGTNRRTDOYGGSIENRARFPLEVVDAVAEVFGPERVGIRLTPFLELF GLTDDEPEAMAFYLAGELDRRGLAYLHFNEPDWIGGDITYPEGFREQMRQRFKGGLIYCG NYDAGRAQARLDDNTADAVAFGRPFIANPDLPERFRLGAALNEPDPSTFYGGAEVGYTDY PFLDNGHDRLGHHHHHH

DNA Sequence:
ATGCCCGACACTTCTTTTTCGAATCCAGGACTTTTTACTCCTCTTCAGTTGGGTAGTC TGTCTCTTCCAAATCGTGTCATAATGGCACCTTTAACCCGCTCACGCACGCCAGATT CTGTACCTGGACGCCTTCAACAGATATACTATGGTCAACGCGCCAGCGCCGGGTTA ATCATCTCCGAAGCGACAAATATCAGTCCCACCGCTCGGGGATACGTATACACGCC AGGCATTTGGACTGACGCTCAGGAGGCCGGTTGGAAAGGTGTGGTCGAAGCTGTC CATGCTAAAGGGGGTCGTATAGCGTTGCAGTTATGGCATGTCGGCCGGGTCTCTCA TGAGCTGGTGCAGCCAGACGGCCAACAACCCGTGGCACCATCCGCCTTAAAAGCC GAAGGGGCCGAGTGCTTTGTCGAATTCGAGGATGGGACTGCTGGCCTGCACCCTA CGTCAACTCCCAGAGCCCTGGAGACAGATGAGATACCCGGTATTGTTGAAGATTAC AGACAGGCCGCGCAGCGTGCGAAGCGGGCCGGATTCGATATGGTAGAGGTCCAC GCGGCAAATGCTTGTCTTCCTAATCAGTTCTTGGCGACAGGAACCAATCGTCGCAC AGACCAGTACGGTGGATCAATTGAGAACCGGGCTAGATTCCCATTAGAGGTTGTCG ATGCTGTAGCCGAGGTATTCGGGCCCGAAAGAGTGGGGATACGGCTGACTCCTTTC CTGGAGTTATTTGGATTAACGGATGATGAACCCGAGGCAATGGCTTTTTACCTTGCG GGAGAATTAGACCGGCGTGGTTTAGCGTATTTACACTTTAATGAACCCGATTGGATA GGTGGGGACATCACGTACCCGGAAGGGTTTCGTGAGCAAATGCGTCAACGGTTCA AGGGGGGGCTTATATATTGTGGAAACTACGACGCAGGTCGGGCCCAAGCCCGGCT TGACGACAATACAGCAGATGCAGTGGCGTTTGGGCGTCCATTTATTGCCAACCCCG ACTTGCCAGAACGTTTCCGCTTAGGAGCAGCGCTGAACGAACCTGACCCCTCTACT TTTTACGGCGGGGCAGAGGTGGGGTACACAGACTACCCGTTCCTGGACAACGGTC ATGACCGCCTGGGACTCGAGCACCACCATCACCACCACTGA

Pentaerythritol tetranitrate reductase (PETNr)
UniProtKB - P71278 (P71278_ENTCL)
Protein Sequence:
MSAEKLFTPLKVGAVTAPNRVFMAPLTRLRSIEPGDIPTPLMGEYYRQRASAGLIISEATQISA QAKGYAGAPGLHSPEQIAAWKKITAGVHAEDGRIAVQLWHTGRISHSSIQPGGQAPVSAS ALNANTRTSLRDENGNAIRVDTTTPRALELDEIPGIVNDFRQAVANAREAGFDLVELHSAHG YLLHQFLSPSSNQRTDQYGGSVENRARLVLEVVDAVCNEWSADRIGIRVSPIGTFONVDNG PNEEADALYLIEELAKRGIAYLHMSETDLAGGKPYSEAFRQKVRERFHGVIIGAGAYTAEKAE DLIGKGLIDAVAFGRDYIANPDLVARLQKKAELNPQRPESFYGGGAEGYTDYPSLHHHHHH

DNA Sequence:
ATGTCGGCCGAGAAGTTGTTCACGCCCTTAAAGGTCGGTGCGGTGACCGCTCCTAA CCGCGTATTCATGGCTCCACTGACCCGCTTGCGTTCAATCGAGCCGGGCGACATCC CAACGCCGCTTATGGGTGAATACTACCGCCAACGTGCCTCCGCTGGATTGATTATCT CGGAAGCGACACAAATCTCTGCGCAGGCGAAAGGCTACGCCGGTGCGCCCGGGTT GCATTCACCCGAACAAATCGCCGCCTGGAAGAAAATTACCGCAGGAGTTCATGCCG AGGACGGCCGTATTGCGGTACAACTGTGGCATACCGGACGCATCTCCCATTCGAGT ATTCAGCCCGGCGGTCAGGCGCCAGTAAGCGCATCGGCGCTTAATGCGAACACGC GCACCTCTCTGCGCGACGAGAATGGTAACGCCATCCGCGTTGATACAACCACCCCC CGCGCTTTAGAATTAGATGAGATTCCAGGTATTGTAAATGATTTTCGTCAGGCTGTG GCCAACGCCCGTGAAGCTGGTTTTGACCTGGTAGAACTTCACTCGGCTCACGGCTA CTTACTGCATCAGTTTTTAAGCCCTTCAAGTAATCAACGCACCGACCAATACGGCGG CTCGGTGGAAAATCGTGCCCGTCTGGTTCTGGAGGTGGTCGACGCCGTTTGTAATG AGTGGAGCGCGGATCGTATCGGCATCCGTGTGTCTCCCATTGGGACGTTCCAAAAC GTGGACAACGGACCGAATGAAGAGGCCGACGCTCTTTACCTGATCGAAGAGCTGG CGAAGCGCGGTATTGCTTATCTGCACATGTCGGAAACGGACTTGGCGGGAGGTAA GCCATACAGTGAAGCGTTTCGCCAAAAGGTCCGTGAACGCTTTCATGGGGTAATTA TCGGCGCCGGTGCGTACACGGCAGAAAAGGCGGAAGACTTAATCGGAAAAGGTTT GATCGATGCCGTGGCGTTTGGACGTGACTATATTGCTAACCCAGACCTTGTGGCCC GCTTGCAAAAGAAAGCGGAGTTGAACCCCCAGCGTCCAGAGTCCTTTTATGGCGGT GGGGCGGAAGGATATACTGACTACCCAAGCTTGCACCACCATCACCACCACTGA

12-Oxophytodienoate reductase 1 (OPR1)
UniProtKB - Q9XG54 (OPR1_SOLLC)
Protein Sequence:
MENKVVEEKOVDKIPLMSPCKMGKFELCHRVVLAPLTRQRSYGYIPQPHAILHYSQRSTNG GLLIGEATVISETGIGYKDVPGIWTKEQVEAWKPIVDAVHAKGGIFFCQIWHVGRVSNKDFQ PNGEDPISCTDRGLTPQIRSNGIDIAHFTRPRRLTTDEIPQIVNEFRVAARNAIEAGFDGVEIH GAHGYLIDOFMKDQVNDRSDKYGGSLENRCRFALEIVEAVANEIGSDRVGIRISPFAHYNEA GDTNPTALGLYMVESLNKYDLAYCHVVEPRMKTAWEKIECTESLVPMRKAYKGTFIVAGGY DREDGNRALIEDRADLVAYGRLFISNPDLPKRFELNAPLNKYNRDTFYTSDPIVGYTDYPFLET MTLEHHHHHH

DNA Sequence:
ATGGAGAATAAAGTTGTGGAGGAGAAACAAGTCGATAAAATCCCCTTGATGTCACC GTGCAAGATGGGAAAGTTTGAACTTTGCCACCGTGTTGTCCTGGCTCCGCTGACAC GGCAACGCTCCTACGGGTATATACCGCAGCCCCATGCAATCTTACATTACTCTCAGC GTTCAACCAACGGAGGGCTGTTGATAGGTGAAGCAACAGTCATTAGCGAAACGGG TATAGGCTATAAGGACGTACCCGGCATCTGGACTAAAGAACAAGTTGAGGCATGAA ACCCATAGTAGACGCCGTACATGCAAAGGGAGGGATCTTCTTCTGCCAGATATGGC ATGTGGGTAGAGTGAGTAATAAGGACTTCCAACCTAACGGTGAGGATCCCATTAGC tGTACCGATCGGGGATTAACGCCACAGATACGGTCAAATGGTATTGACATAGCTCA TTTTACAAGACCTAGACGTCTTACCACGGACGAGATCCCACAAATTGTCAACGAATT CCGCGTGGCGGCTAGAAATGCCATCGAAGCAGGATTCGACGGCGTAGAGATACAC GGAGCACACGGTTATCTGATAGACCAGTTCATGAAAGACCAAGTTAATGACCGGTC CGATAAGTATGGAGGATCTCTGGAAAACCGGTGTCGGTTCGCCTTGGAGATTGTTG AAGCCGTCGCTAATGAAATCGGAAGCGACCGTGTCGGAATACGCATTAGTCCATTC GCGCACTACAATGAGGCAGGGGATACCAATCCCACTGCGCTGGGTTTATATATGGT GGAGAGCCTGAATAAATACGATTTAGCATATTGTCATGTAGTGGAACCTCGCATGAA AACTGCTTGGGAAAAAATTGAATGCACTGAGAGTCTTGTTCCGATGCGTAAAGCGTA CAAGGGAACGTTCATAGTAGCTGGGGGTTATGATCGGGAGGACGGGAACGGGCC CTGATAGAAGACCGGGCCGACCTTGTCGCATACGGACGTTTGTTCATATCCAACCC AGATTTACCGAAACGTTTTGAGTTAAACGCTCCCCTGAATAAATACAATCGTGACAC GTTCTATACTTCTGATCCAATCGTGGGTTATACGGACTATCCGTTTTTAGAGACGATG ACGCTCGAGCACCACCACCACCACCACTGA

LacER from Lactobacillus casei str. Zhang
NCBI Reference Sequence: WP_016363397.1
LacER Protein Sequence:
MSGYHFLKPFTFKHQTITLKNRIVIPPMTTRLSFEDGTVTRDEIRYYQQRAGGVGMFITGTAN VNALGKGFEGELSVADDRFIPGLSKLAAAMKTGGTKAILQIFSAGRMSNSKILRGEOPVSAS AVAAPRAGYETPRALTSAEIEATIHDFGQAVRRAILAGFDGIELHGANTYLIQQFYSPNSNRR TDEWGGDRDKRMRFPLAVVHEAEKVIATIADRPFLLGYRISPEELEOPGITLDDTLALIDALK QTKIDYLHVSQSDVWRTSLRNPEDTAIMNEQIRDHVAGAFPVIVVGGIKTPADAEKAAESFD LVAIGHEMIREPHWVOKVLDHDEKAIRYOIAPADLEELGIAPTFLDFIESISGGAKGVPLTTAQ SVTSSNVTQDLEHHHHHH

LacER DNA Sequence:
ATGTCGGGCTACCACTTCCTGAAGCCATTTACTTTTAAGCACCAAACTATAACGCTTA AAAACCGCATCGTCATTCCACCCATGACTACGAGACTTTCCTTCGAGGATGGTACAG TTACCAGAGACGAGATTAGATACTATCAGCAACGGGCGGGTGGCGTCGGTATGTTT ATAACTGGTACTGCAAACGTCAACGCTCTTGGGAAAGGCTTTGAAGGAGAATTATC GGTCGCGGACGATCGGTTCATTCCGGGCTTGAGCAAATTGGCTGCAGCCATGAAG ACTGGAGGGACCAAGGCTATTCTGCAGATCTTTTCTGCCGGTCGCATGTCTAACAG CAAAATCTTGAGAGGGGAACAACCCGTGTCGGCATCAGCTGTGGCGGCGCCAAGA GCCGGGTACGAAACACCTCGGGCGTTGACATCGGCTGAGATCGAAGCCACGATCC ACGACTTTGGGCAAGCTGTCCGTAGAGCAATCTTGGCGGGCTTCGATGGGATAGAA TTGCATGGCGCCAATACATATTTGATCCAGCAATTTTATTCCCCTAACAGCAACCGG CGTACCGATGAATGGGGAGGGGATAGAGACAAACGCATGCGGTTTCCCTTAGCAG TGGTCCACGAGGCTGAAAAGGTGATAGCAACCATCGCGGATCGCCCTTTCCTGCTT GGGTATCGGATCTCTCCTGAAGAACTGGAGCAACCGGGGATAACTCTTGATGACAC TCTGGCCTTAATTGACGCTCTGAAACAAACGAAGATCGATTATTTACACGTTTCCCA GTCAGATGTCTGGAGAACTTCACTGCGTAACCCCGAGGATACAGCTATTATGAATG AGCAAATCCGTGATCATGTCGCAGGCGCCTTCCCAGTTATCGTAGTAGGAGGAATC AAGACTCCAGCCGACGCTGAGAAAGCTGCGGAATCTTTTGATTTAGTTGCTATAGGT CATGAAATGATACGTGAGCCTCACTGGGTTCAAAAAGTACTGGACCACGACGAAAA GGCTATCCGTTATCAAATTGCACCGGCGGACTTGGAAGAACTGGGCATCGCCCCTA CGTTTTTAGATTTTATCGAGAGCATCTCTGGTGGAGCCAAGGGGGTGCCCTTGACG ACGGCGCAGTCGGTCACTAGCAGTAACGTCACACAAGACCTCGAGCACCACCATC ACCACCACTGA

Nicotinamide-dependent cyclohexanone reductase (NCR)
Genbank Accession Number: AAV90509
Protein Sequence:
MPSLFDPIRFGAFTAKNRIWMAPLTRGRATRDHVPTEIMAEYYAQRASAGLIISEATGISOEG LGWPYAPGIWSDAQVEAWLPITQAVHDAGGLIFAQLWHMGRMVPSNVSGMOPVAPSAS QAPGLGHTYDGKKPYDVARALRLDEIPRLLDDYEKAARHALKAGFDGVQIHAANGYLIDEFI RDSTNHRHDEYGGAVENRIRLLKDVTERVIATIGKERTAVRLSPNGEIQGTVDSHPEQVFIPA AKMLSDLDIAFLGMREGAVDGTFGKTDQPKLSPEIRKVFKPPLVLNODYTFETAQAALDSG VADAISFGRPFIGNPDLPRRFFEKAPLTKDVIETWYTQTPKGYTDYPLLGDHHHHHH

DNA Sequence:
ATGCCGTCACTGTTCGATCCAATCCGCTTTGGGGCTTTCACTGCAAAAAATCGTATC TGGATGGCGCCGTTAACACGGGGTCGGGCAACCCGTGACCATGTCCCAACAGAGA TAATGGCTGAATACTATGCCCAACGCGCATCCGCGGGCTTGATCATCAGCGAGGCG ACCGGGATCAGCCAAGAGGGCCTGGGCTGGCCCTATGCACCAGGAATCTGGAGTG ATGCGCAGGTCGAGGCATGGTTACCCATAACCCAAGCGGTACACGATGCCGGAGG TTTGATATTTGCACAACTGTGGCACATGGGGCGTATGGTGCCTTCCAACGTTTCTGG AATGCAACCTGTCGCACCTAGCGCTTCACAAGCGCCCGGCTTGGGCCATACTTATG ATGGCAAAAAGCCATACGATGTAGCCAGAGCATTGAGACTTGACGAGATCCCACG GCTGCTGGACGACTATGAAAAGGCAGCTCGGCACGCACTGAAAGCTGGGTTCGAT GGAGTTCAGATTCATGCTGCCAACGGATACCTGATTGACGAGTTCATCCGGGATTC AACAAATCATAGACACGACGAATACGGGGGGGCGGTTGAGAACAGAATACGGTTA TTGAAGGATGTCACTGAGCGGGTTATCGCAACCATCGGAAAGGAGCGCACAGCAG TGCGTTTAAGTCCGAATGGAGAGATACAAGGCACAGTAGACTCGCATCCAGAACAG GTATTTATCCCGGCTGCAAAGATGTTATCTGATTTAGATATCGCGTTCCTTGGGATGC GCGAGGGTGCTGTAGACGGGACATTTGGCAAAACAGACCAGCCCAAACTTTCGCC CGAGATCCGTAAAGTTTTCAAGCCACCCCTTGTTCTGAATCAAGATTACACTTTCGA GACTGCCCAGGCTGCGTTAGATTCGGGTGTAGCCGATGCAATCAGTTTTGGTCGTC CATTCATTGGGAATCCCGACTTACCGAGAAGATTCTTTGAAAAGGCACCGTTAACTA AGGACGTAATTGAGACTTGGTACACTCAGACTCCCAAAGGTTACACCGACTATCCA CTGTTAGGTGATCTCGAGCACCACCATCACCACCACTGA

Bacillus subtilis NADPH dehydrogenase (YqjM)

Genbank Accession Number: BAA12619

Protein Sequence:
MHHHHHHMARKLFTPITIKDMTLKNRIVMSPMCMYSSHEKDGKLTPFHMAHYISRAIGQVG LIIVEASAVNPQGRITDQDLGIWSDEHIEGFAKLTEQVKEQGSKIGIQLAHAGRKAELEGDIF APSAIAFDEQSATPVEMSAEKVKETVQEFKQAAARAKEAGFDVIEIHAAHGYLIHEFLSPLSN HRTDEYGGSPENRYRFLREIIDEVKOVWDGPLFVRVSASDYTDKGLDIADHIGFAKWMKEQ GVDLIDCSSGALVHADINVFPGYQVSFAEKIREQADMATGAVGMITDGSMAEEILQNGRA DLIFIGRELLRDPFFARTAAKOLNTEIPAPVQYERGW

DNA Sequence:

ATGCACCACCATCACCACCACGCCCGTAAGCTGTTCACGCCCATCACCATTAAGGA TATGACTTTGAAAAACCGTATCGTTATGAGTCCCATGTGCATGTACAGCAGCCATGA AAAAGACGGAAAATTAACTCCGTTTCATATGGCGCATTATATCAGTCGTGCAATCGG CCAAGTTGGTCTTATTATCGTGGAGGCAAGTGCCGTAAATCCCCAGGGACGTATTA CGGATCAAGATTTGGGTATCTGGAGCGATGAACACATCGAAGGCTTCGCGAAGCTG ACAGAACAGGTTAAGGAACAAGGGTCTAAGATCGGCATTCAACTGGCCCACGCCG GACGTAAGGCTGAATTGGAGGGTGACATCTTTGCTCCATCTGCTATCGCGTTTGACG AGCAATCTGCGACTCCGGTCGAGATGAGCGCTGAGAAGGTGAAGGAAACAGTGCA AGAGTTCAAGCAGGCAGCAGCACGTGCGAAGGAAGCAGGGTTCGATGTGATTGAG ATCCATGCAGCACATGGTTATCTGATTCACGAGTTTCTGTCCCCTCTGTCAAACCATC GCACCGATGAGTATGGAGGAAGCCCTGAGAATCGCTATCGCTTCCTGCGTGAAATT ATCGATGAAGTTAAACAGGTTTGGGACGGTCCGCTTTTTGTGCGCGTGTCTGCCTCA GATTACACGGATAAGGGCTTGGATATTGCTGACCACATCGGGTTCGCAAAGTGGAT GAAGGAGCAAGGAGTGGACTTAATTGATTGCAGCAGCGGGGCTTTAGTACACGCG GACATTAACGTATTCCCGGGCTACCAAGTTTCCTTTGCAGAAAAGATCCGCGAACAA GCGGATATGGCAACAGGTGCTGTTGGGATGATCACGGACGGTTCGATGGCCGAGG AAATCCTTCAAAACGGCCGTGCCGACTTGATCTTTATCGGTCGTGAATTACTTCGCG ACCCTTTTTTTGCTCGCACCGCAGCGAAACAATTAAATACGGAAATTCCTGCACCAG TGCAATACGAGCGTGGTTGGTGA

Ene-reductase from Deinococcus radiodurans (DrER)
NCBI Reference Sequence: WP_010888821.1
Protein sequence:
MTVSSAAAPOPASPAAPLLFTPLKLRSLELPNRVVVSPMCTYSATDGVANEFHLVHLGQYAL GGAGLILAEATAVSPEGRITPEDLGLWDDRQIVPLGHITDFVHQHGGHIGVQLAHAGRKAS TYAPWRGKGAVPAELGGWQVIGPDENSFHDLFPTPAMMGADELRGVVDAFSAAARRAQ VAGFDAVEVHAAHGYLLHOFLSPLANTRTDDYGGSFENRTRLLLEVVRAVRHVWPAHLPLF VRLSATDWAEGGWDLEQTVQLSKLLKYEGVDVLDISSGGLTAAQQIEVGPGYOVPFAAAV SRAETEISVMAVGLIETGAQAEAILQAGDADLIALGRPFLRDPHWAQRAARELGLRPVSIDQ YARAGWLEHHHHHH

DNA sequence:

ATGACTGTATCATCCGCCGCAGCTCCGCAACCAGCTTCCCCCGCGGCTCCCCTGCT GTTTACGCCGTTGAAGTTACGGTCCCTGGAACTTCCTAATAGAGTTGTGGTGTCCCC TATGTGCACGTACTCCGCTACCGATGGGGTCGCTAATGAATTCCACTTGGTACATTT GGGGCAATATGCGCTGGGAGGAGCCGGCTTGATACTTGCAGAAGCCACGGCAGTG AGCCCGGAGGGGCGTATAACCCCGGAGGATTTGGGTTTGTGGGATGACAGACAGA TTGTTCCCCTGGGTCACATCACAGATTTCGTCCATCAACACGGGGGACACATAGGG GTTCAACTGGCGCACGCTGGCCGCAAAGCAAGTACATACGCACCCTGGAGAGGCA AGGGGGCCGTTCCAGCGGAATTAGGAGGCTGGCAGGTTATCGGTCCAGACGAGAA CAGTTTTCATGACCTGTTTCCGACTCCTGCAATGATGGGGGCTGATGAGTTGCGCG GGGTGGTCGATGCCTTTTCCGCCGCTGCACGTCGCGCACAGGTGGCTGGCTTTGAC GCTGTTGAGGTGCACGCGGCCCACGGATATTTACTTCACCAGTTTCTGTCTCCGCTG GCGAATACCCGGACAGATGACTATGGGGGATCATTTGAAAACCGTACGCGTTTGTT GCTTGAGGTTGTGCGTGCCGTGCGCCACGTATGGCCGGCACACTTACCCCTTTTCG TCCGGTTATCAGCCACAGATTGGGCAGAAGGGGGATGGGACCTGGAACAAACCGT CCAATTGTCTAAGCTTTTGAAATATGAAGGCGTGGATGTTTTAGATATATCAAGTGGC GGCCTTACCGCAGCCCAGCAAATTGAGGTAGGTCCCGGTTATCAGGTACCCTTTGC GGCGGCCGTTTCTAGAGCTGAGACCGAGATTTCTGTGATGGCTGTGGGGTTGATAG AGACCGGCGCACAAGCGGAAGCCATCCTGCAAGCTGGAGATGCCGACTTGATAGC ATTAGGCCGTCCTTTTCTGAGAGATCCTCATTGGGCTCAGCGCGCAGCTCGTGAACT TGGACTTAGACCTGTGAGTATTGACCAATACGCTCGTGCTGGCTGGCTCGAGCACC ACCATCACCACCACTGA

Ene-reductase from Tersenia bercovieri (YersER)
NCBI Reference Sequence: WP_032896199.1
Protein sequence:
MKTAKLFSPLKVGALTLPNRVFMAPLTRLRSIEPGDIPTPLMAEYYRQRASAGLITEATQISFQ AKGYAGAPGLHTQEQLNAWKKITQAVHEEGGHIAVOLWHVGRISHSSLQPGQQAPVAPS AIAADTRTTVRDENGAWVRVPCSTPRALETEEIPGIIINDFROATANAREAGFDYIELHAAHG YLLHOFMSPASNORTDOYGGSIENRTRLTLEVVDATAAOWSAERIGIRISPLGPFNGLDNGE DQEEAALYLIDELNKRHIAYLHISEPDWAGGKPYSEAFRDAVRARFKGVIIGAGAYTAEKAEE LIEKGFIDAVAFGRSYISNPDLVARLQOHAPLNEPDGETFYGGGAKGYTDYPTLLEHHHHH H

DNA sequence:

ATGAAGACGGCTAAGTTATTCAGTCCTCTTAAGGTGGGCGCGTTGACCCTGCCTAAT CGGGTTTTCATGGCTCCGCTTACGAGACTTCGGTCTATTGAACCTGGGGACATTCCA ACCCCCTTAATGGCTGAGTACTACCGCCAACGTGCCTCGGCGGGGTTAATAATAAC CGAAGCGACCCAAATAAGCTTCCAGGCGAAAGGTTACGCCGGTGCGCCGGGCTTA CACACGCAGGAACAATTAAACGCTTGGAAGAAGATTACGCAAGCTGTCCACGAGG AAGGTGGACACATTGCCGTTCAGTTATGGCACGTGGGCCGCATCTCGCATAGCTCG CTGCAGCCAGGACAACAAGCACCAGTGGCCCCTTCCGCGATTGCGGCTGATACGA GAACGACGGTACGCGATGAGAATGGGGCATGGGTACGTGTCCCCTGCTCGACGCC ACGCGCGTTGGAGACTGAGGAGATACCTGGTATTATAAATGATTTCCGTCAGGCAA CCGCTAACGCTAGAGAGGCAGGCTTTGATTACATAGAATTACACGCCGCGCATGGT TACCTGTTGCATCAGTTTATGAGTCCTGCTAGTAATCAGCGGACAGACCAGTACGGA GGGTCCATAGAAAATCGGACCCGGTTGACGTTGGAGGTCGTCGACGCCACCGCAG CCCAATGGTCCGCCGAGCGGATAGGCATCCGTATAAGTCCACTTGGTCCTTTTAATG GGCTTGACAACGGGGAAGACCAGGAGGAGGCCGCGCTGTATTTAATCGATGAACT GAACAAACGGCATATCGCTTATCTGCATATCTCAGAACCGGACTGGGCAGGAGGG AAGCCTTACAGTGAAGCGTTCAGAGACGCAGTCCGTGCTCGTTTCAAAGGGGTAAT CATTGGCGCAGGAGCATATACCGCCGAGAAAGCAGAGGAACTTATAGAGAAGGGC TTCATTGACGCGGTGGCTTTTGGACGTTCATATATCTCCAACCCAGACCTTGTGGCG AGATTACAGCAGCATGCCCCCTTGAATGAACCAGATGGAGAAACGTTTTACGGAGG AGGGGCAAAAGGATATACTGATTATCCTACACTGCTCGAGCACCACCATCACCACC ACTGA

Ene-reductase from Cupriavidus metallidurans (RmER)
NCBI Reference Sequence: WP_011519282.1
Protein sequence:
MPHLFDPYRIGNLELANRIAIAPMCOYSAQEGNATDWHMIHLGQMALSGAGLLIIEATAVS PEGRITPTDLGLYNDANEAALGRVLGAVRNHSPIAVTIQLAHAGRKASSEAPWDGGGQIRP DQPRGWOTFAPSAVPHAAGEVPPAALDKAGMKKIRDDFVAAAKRAARLGIEGIEVHGAH GYLLHOFLSPIANHRTDEYGGSLENRMRFPLEVFDAVREAFPAERPVWMRVSATDWVPNG WDIEGTIALSHELKARGSAAVHVSTGGVSPQQAIKIGPGYQVPYAQRVKAEVGLPTMAVGLI TEAEQAEAIIANNEADIIIIARAMLYDPRWPWHAAAKLGASVNAPKOYWRSOPRGLEKLFK DAHFGQRLEHHHHHH

DNA sequence:

ATGCCCCATTTATTCGATCCATATCGGATTGGCAACCTTGAATTGGCGAACAGAATT GCTATCGCACCCATGTGTCAATACTCCGCCCAAGAGGGGAATGCCACAGATTGGCA CATGATTCATTTAGGTCAAATGGCCTTGAGCGGTGCCGGTCTGTTGATCATAGAAGC TACGGCAGTATCGCCCGAGGGGCGCATCACACCTACGGACTTAGGTCTTTACAATG ATGCAAATGAGGCAGCTTTAGGAAGAGTCCTTGGTGCTGTCCGCAACCATAGTCCT ATCGCCGTGACCATTCAACTGGCCCATGCGGGTCGTAAGGCAAGCTCAGAGGCGC CGTGGGATGGCGGCGGTCAGATACGCCCAGACCAACCCAGAGGATGGCAGACGT TTGCTCCGAGCGCAGTGCCTCACGCGGCGGGTGAGGTACCGCCTGCTGCACTTGA TAAGGCTGGTATGAAAAAAATCCGGGATGACTTTGTCGCCGCGGCAAAAAGAGCC GCTAGACTTGGTATCGAGGGCATCGAAGTCCACGGCGCACACGGGTACCTTTTGCA CCAATTCCTTAGTCCCATAGCAAATCATCGGACAGACGAGTATGGAGGTAGTCTTGA GAATCGGATGAGATTCCCCCTTGAAGTCTTCGACGCCGTTCGTGAGGCATTCCCTG CCGAGCGTCCTGTGTGGATGCGTGTAAGCGCTACAGACTGGGTGCCAAACGGCTG GGACATAGAGGGTACGATCGCGCTTTCTCATGAGCTGAAAGCGAGAGGTTCCGCG GCAGTGCATGTATCGACGGGAGGTGTTAGCCCTCAGCAGGCGATTAAGATTGGAC CAGGGTATCAAGTCCCATACGCTCAGCGTGTGAAGGCGGAGGTCGGTTTACCGAC GATGGCTGTAGGCCTTATTACTGAAGCAGAGCAGGCTGAGGCGATCATCGCTAATA ATGAGGCGGATATTATCAGTATAGCCCGCGCCATGTTATATGATCCCCGTTGGCCAT GGCACGCCGCTGCGAAGTTGGGCGCATCGGTTAATGCCCCCAAGCAGTATTGGCG GTCCCAACCCAGAGGGTTAGAGAAACTTTTCAAGGACGCGCACTTCGGCCAAAGAC TCGAGCACCACCATCACCACCACTGA

Flavin reductase family protein from Pyrococcus horikoshii (PhENR) NCBI Reference Sequence: WP_010884948.1

Protein sequence:
MEGYRLLYPMRTYLIVSGHGEETNVMAADWVTVVSFDPFIVGVAVAPKRTTHKLIKKYGEFVI SVPSLDVLRDVWIAGTKKGPSKLKEMSVTLIPSKKVKVPSIEEALANIECRVIDARSYGDHTFFV GEVVGYTYKDYAFEKGKPNLKAKFLAHVSWSEFVTFSEKVHKAELEHHHHHH

DNA sequence:

ATGGAGGGTTACCGCCTTTTGTACCCTATGAGAACCTACTTGATCGTGAGTGGACAC GGAGAGGAGACAAACGTTATGGCAGCGGACTGGGTGACGGTTGTCTCGTTTGACC CCTTCATTGTGGGAGTTGCTGTAGCCCCCAAACGTACTACTCACAAGCTGATCAAAA AATATGGCGAGTTCGTTATTTCTGTTCCGAGCCTGGACGTTCTTAGAGATGTGTGGA TAGCGGGAACCAAGAAGGGTCCAAGCAAATTAAAAGAGATGAGTGTTACTTTAATA CCAAGCAAAAAGGTAAAGGTGCCATCTATAGAGGAGGCTCTGGCTAATATAGAGTG TCGGGTGATCGACGCAAGATCCTACGGTGATCATACCTTCTTTGTGGGGGAAGTCG TCGGATATACATACAAGGACTATGCCTTTGAGAAGGGAAAGCCGAATCTTAAAGCA AAGTTTCTGGCACACGTTAGTTGGTCCGAGTTTGTCACATTCTCCGAAAAAGTACAT AAGGCCGAGCTCGAGCACCACCATCACCACCACTGA

Supplementary Tables

Table S1. Enzyme Screen for Photoenzymatic Reduction of Vinyl Pyridines

entry	ERED	yield (\%) $^{\mathbf{a}}$	e.r. $^{\mathbf{b}}$
1	PhENR	Trace	-
2	YersER	71	$55: 45$
3	RmER	>99	$50: 50$
4	TsOYE	85	$50: 50$
5	DrER	75	$50: 50$
6	LacER	41	$52: 48$
7	NostocER	57	$70: 30$
8	GluER	32	$51: 49$
9	MorB	84	$75: 25$
10	NCR	0	-
11	OPR1	95	$58: 42$
12	OYE1	85	$58: 42$
13	OYE2	84	$75: 25$
14	OYE3	64	$65: 35$
15	PETNr	95	$59: 41$
16	XenA	23	$54: 46$
17	YqjM	72	$50: 50$

${ }^{\text {a}}$ Yield calculated by ${ }^{1} \mathrm{H}$-NMR analysis against internal standard. ${ }^{\text {b }}$ Determined by HPLC over chiral stationary phase.

Table S2. Buffer and pH Screen for Photoenzymatic Reduction of Vinyl Pyridines

entry	ERED	Buffer (pH)	yield (\%) ${ }^{\mathbf{a}}$	e.r. ${ }^{\mathbf{b}}$
1	OYE2	KPi (6.5)	43	$58: 42$
2	OYE2	KPi (7.0)	64	$57: 43$
3	OYE2	KPi (7.5)	89	$59: 41$
4	OYE2	KPi (8.0)	84	$75: 25$
5	OYE2	KPi (8.5)	59	$70: 30$
6	OYE2	TEOA (8.0)	58	$67: 33$
7	OYE2	Tricine (8.0)	28	$78: 22$
8	OYE2	Tricine (8.5)	86	$82: 18$
9	OYE2	Tricine (9.0)	60	$89: 11$
10	OYE2	HEPES (8.0)	72	$80: 20$
11	OYE2	Borate (8.0)	18	$66: 34$
12	OYE2	Tris (8.0)	57	$61: 39$
13	OYE2	MOPS (8.0)	88	$66: 34$
14	NostocER	KPi (8.0)	57	$70: 30$
15	NostocER	TEOA (8.0)	83	$74: 26$
16	NostocER	Tricine (8.0)	81	$75: 25$
17	NostocER	Tricine (8.5)	86	$81: 19$
18	NostocER	Tricine (9.0)	70	$86: 14$
19^{c}	NostocER	Tricine (9.0)	96	$92: 8$
20	NostocER	HEPES (8.0)	55	$83: 17$

${ }^{\text {a }}$ Yield calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard. ${ }^{\text {b }}$ Determined by HPLC over chiral stationary phase.
${ }^{\text {c }}$ Reaction temperature $4{ }^{\circ} \mathrm{C}$, reaction time 48 h .

Table S3. Photocatalyst Screen for Photoenzymatic Reduction of Vinyl Pyridines

entry	Photocatalyst	yield (\%) ${ }^{\text {a }}$	e.r. ${ }^{\text {b }}$
1	$\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2}\left(\lambda_{\text {max }}=452\right)$	96	92:8
2	$\mathrm{Ru}(\text { phen })_{3} \mathrm{Cl}_{2}\left(\lambda_{\text {max }}=422\right)$	82	92:8
3	$\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}\left(\lambda_{\text {max }}=443\right)$	0	-
4	$\operatorname{Ir}[\mathrm{dCF} 3 \mathrm{ppy}](\mathrm{bpy}) \mathrm{PF}_{6}$	3	-
5	$\begin{aligned} & \mathrm{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}\left(\lambda_{\max }\right. \\ & =380) \end{aligned}$	3	-
6	$\operatorname{Ir}(\text { ppy })_{3}\left(\lambda_{\text {max }}=375\right)$	8	-
$7{ }^{\text {c }}$	Rose Bengal ($\lambda_{\text {max }}=520$)	Trace	-
$8{ }^{\text {c }}$	Eosin $\mathrm{Y}\left(\lambda_{\text {max }}=549\right)$	Trace	-
9	Fluorescein ($\left.\lambda_{\text {max }}=437\right)$	0	-

${ }^{\text {a }}$ Yield calculated by ${ }^{1} \mathrm{H}$-NMR analysis against internal standard. ${ }^{\text {b }}$ Determined by HPLC over chiral stationary phase. ${ }^{\text {c }}$ Green LED used instead (maximum emission 530 nm).

Table S4. Point mutants of NostocER tested for redox activation of substrate.

entry	Mutation	yield (\%) $^{\mathbf{a}}$	e.r. $^{\text {b }}$
1	Y106F	60	$79: 21$
2	W140F	91	$84: 16$
3	Y219F	66	$86: 14$
4	Y384F	65	$82: 18$
5	H214A	47	$75: 25$
6	N217A	44	$85: 15$
7	H214A+N217A	18	$55: 45$

${ }^{\text {a}}$ Yield calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard. ${ }^{\text {b }}$ Determined by HPLC over chiral stationary phase.

Supplementary Figures

Figure S1. View of NostocER (PDB code: 6UFF) active site with residues selected for mutation from Table S4. FMN is shown in yellow, targeted residues are highlighted.

Figure S2. Resubjection of reduced product 2 to deuterated buffer reaction conditions. No deuterium exchange is noted, indicating deuterium labelling studies are not an artefact of washing out labels in buffer.

Blue LED
no Deuterium incorporation

Figure S3. Free flavin and bovine serum albumin (BSA) control of model reaction. Racemic outcome indicates reduction of the pyridine is not occurring on the surface residues of a generic enzyme.

racemic

Figure S4. Free Flavin control reactions. Lower pH leads to higher background reactivity.

$\mathrm{pH} 9: 16 \%$ yield pH 8: 36% yield

Preparation of Apo-Nostoc

In a falcon tube, a solution of 1500 nmol NostocER was diluted to a concentration of 300 $\mathrm{nmol} / \mathrm{mL}$ in 20 mM KPi pH 7, 300 mM NaCl . The solution was then transferred to a dialysis bag and sealed with clips. Three independent 1 L buffers of $200 \mathrm{mM} \mathrm{KPi} \mathrm{pH} 5.3,2 \mathrm{M} \mathrm{NaCl}$ were prepared and cooled to $4^{\circ} \mathrm{C}$ on ice. NostocER was then dialyzed against 1 L of 200 mM KPi $\mathrm{pH} 5.3,2 \mathrm{M} \mathrm{NaCl}$ in a cold room at $4^{\circ} \mathrm{C}$ with stirring. Buffer was exchanged every 8 hours for 24 hours, or until all of the yellow color of flavin was absent from dialysis bag. A white precipitate was observed forming. After all yellow color was removed from dialysis, the dialysis bag was removed. Apo-Nostoc was then dialyzed against 20 mM sodium pyrophosphate pH 8.5 with 3 buffer exchanges every 8 hours for 24 hours. After complete buffer exchange, ApoNostoc was removed from the dialysis bag and placed into a falcon tube. The falcon tube was centrifuged at 14,000 xg to pellet denatured Nostoc. The supernatant was carefully removed and concentrated. Protein concentration was measured using an extinction coefficient of $40,340 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 280 nm .

Figure S5. Circular dichroism spectra of NostocER and Apo-NostocER after flavin removal, both solutions at $0.1 \mathrm{mg} / \mathrm{mL}$. Close overlap of spectra indicate secondary structure of ApoNostocER has not changed dramatically from that of the native, flavin-containing enzyme.

Figure S6. Attempted Apo-Nostoc riboflavin reconstitution. Blue Trace is UV-Vis spectra of Apo-Nostoc, distinctly lacking clear flavin signals in the visible region, indicating all flavin has been removed. Apo-Nostoc was incubated with 1 equiv. riboflavin with respect to enzyme at room temperature for 4 hours. Orange trace is the UV-Vis spectra of this incubation reaction before centrifuging. Post-centrifugation, enzyme loses any yellow color and flavin signals in the UV-Vis, shown in the grey trace. This indicates riboflavin without the negatively charged phosphate group does not bind to NostocER, and can serve as a model for freely floating flavin in solution with an apo-Nostoc protein in a reaction.

UV-Vis Spectra of Apo-Nostoc Reconstitutions

Figure S7. Model reaction using Apo-NostocER and riboflavin. Figure S6 demonstrates riboflavin does not bind to NostocER without the negatively charged phosphate in the ribityl side chain to form a salt bridge with the enzyme. Thus, riboflavin can be used as a model system for a dissociated, freely floating flavin in the model reaction with Apo-protein. Enantioseletivity of the product is racemic, indicating there is no pocket on the surface of NostocER imparting enantioselectivity to the product; instead, enantioselectivity is a direct result of radical quenching by flavin within the canonical NostocER active site.

8% yield racemic

Figure S8. Docking model of substrate 30 inside NostocER (PDB = 6UFF) showing lowest energy pose. After H -atom transfer from flavin, the shown pose corresponds to the observed stereochemistry of the product. Docking was conducted using YASARA docking program.

Alternate view of 30 docking model.

Docking model of 30 docked in NostocER with surface density shown.

Figure S9. SDS-PAGE gel of purified NostocER. Protein ladder in lane 1, BSA standards (5 $\mathrm{mg} / \mathrm{mL}, 2.5 \mathrm{mg} / \mathrm{mL}, 1.25 \mathrm{mg} / \mathrm{mL}, 0.625 \mathrm{mg} / \mathrm{mL}, 0.3125 \mathrm{mg} / \mathrm{mL}$) in lanes $2,3,4,5,6$, respectively, purified NostocER in lane 7.

Figure S10. Photographic depiction of Blue LED light setup. LED strips were bought from www.superbrightleds.com (STN-BBLU-A3A-10B5M-12V). Emmission spectra for blue LED's are shown below. Light intensity is $3 \mathrm{~W} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. LED's are glued to the inside walls of a crystallization dish, and wrapped on the outside with aluminum foil. Left picture shows blue dish when no lights are on, right picture shows reaction setup with a cooling fan overtop. NOTE: During normal reaction setup, the blue dish is shielded with a cardboard box (not shown) to prevent eye damage. During reaction setup, orange glasses with blue cutoff are worn to mitigate possible eye damage from looking at the setup.

Blue LED Emission Spectrum

General Procedures for Substrate Synthesis
$\mathrm{MeNHOMe} \cdot \mathrm{HCl}$

Or

Procedure for Weinreb amide synthesis (General Procedure A):

To a stirred solution of 2-picolinic acid (1 equiv.), EDC (1.1 equiv.) and N,Odimethylhydroxylamine hydrochloride (1.1 equiv.) in DCM (0.2 M) at $0^{\circ} \mathrm{C}$ was added triethylamine (2 equiv.). Upon complete addition, the reaction mixture was warmed to ambient temperature. The reaction was monitored by TLC, and upon completion (approx. 2 hours) the mixture was diluted with DCM , treated with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and washed with saturated NaHCO_{3} aqueous solution, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography with 100% ethyl acetate.

Nucleophile addition to Weinreb amide (General Procedure B):

To a solution of aryl Grignard, as either the commercially available solution or freshly generated from magnesium turnings and 1,2-dibromoethane at reflux, in anhydrous THF ($0.5 \mathrm{M}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$ was added the Weinreb amide derived from picolinic acid (1 equiv.). The reaction mixture was warmed to ambient and monitored by TLC. Upon completion (usually $<4 \mathrm{~h}$), the reaction mixture was diluted with EtOAc and treated with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was separated and extracted with EtOAc. Combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered
and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography.

Ketone olefination (General Procedure C):

To a flame-dried flask containing KOtBu (1.5 equiv.) and methyltriphenylphosphonium bromide (1.5 equiv.) at $0^{\circ} \mathrm{C}$ was added anhydrous THF ($20 \mathrm{~mL} / \mathrm{mmol}$ substrate). The bright yellow suspension was warmed to ambient and stirred for 1 hour, before being cooled back to $0^{\circ} \mathrm{C}$. The 2-pyridyl ketone was added in one portion, and the reaction was monitored by TLC. Upon completion (typically $<1 \mathrm{~h}$), the reaction was diluted with hexanes, and filtered through a celite pad. The collected filtrate was concentrated under reduced pressure, and purified by flash column chromatography.

Nucleophile addition to 2-pyridyl ketones (General Procedure D):

A flame-dried flask under nitrogen atmosphere was charged with aryl bromide (1.25 equiv.), magnesium turnings (1.25 equiv.), anhydrous THF (0.5 M solution), and 3 drops of 1,2-dibromoethane. The solution was gently heated with a heat gun until bubbling was observed from the magnesium turnings. The solution was then heated at $70^{\circ} \mathrm{C}$ until magnesium turnings were consumed, producing a light brown solution. The solution was subsequently cooled to $0^{\circ} \mathrm{C}$, and 2-acetylpyridine (1 equiv.) was added in one portion, and monitored by TLC. Upon completion, the reaction was quenched with water and extracted three times with ethyl acetate. The organic portions were pooled together, washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified via flash column chromatography.

Mesylation of tertiary alcohols and elimination (General Procedure E):

A flame-dried flask was charged with tertiary alcohol (1 equiv.) from General Procedure D/E and DCM (0.2 M). Triethylamine (3 equiv.) was added, and the solution cooled to $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride (3 equiv.) was added dropwise over five minutes, upon which the reaction was warmed to room temperature and stirred for three hours. The reaction concentrated under pressure to obtain crude mesylated tertiary alcohol. This material was then redissolved in toluene (0.2 M), charged with DBU (6 equiv.), and heated at $90^{\circ} \mathrm{C}$ overnight. The reaction was quenched with NaHCO_{3}, and extracted three times with ethyl acetate. Organic portions were pooled together, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified via flash column chromatography to yield desired 2-vinylpyridines.

Characterization of Vinyl-Pyridine Substrates

2-(1-phenylvinyl)pyridine (1)

Compound was prepared in 2 steps from phenylmagnesium bromide and Weinreb amide derived from picolinic acid to provide phenyl(pyridin-2-yl)methanone (1.208 g , 73% yield) via General Procedure B ($1.500 \mathrm{~g}, 9.026 \mathrm{mmol})$. Reaction of phenyl(pyridin-2-yl)methanone ($1.208 \mathrm{~g}, 6.549 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($255.5 \mathrm{mg}, 21 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.54$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ (ddd, $\left.J=5.0,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64$ (td, $J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{dt}, \mathrm{J}=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (ddd, $J=7.5,5.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 158.67,149.50,149.26,140.48,136.47,128.56,128.43$, 127.98, 123.04, 122.61, 117.91.

IR (neat, cm^{-1}): 1581, 1563, 1493, 1466, 1429, 913, 802, 775, 747, 702, 663.
HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 181.0891$ Found: 181.0891

2-(1-phenylvinyl)pyridine (3a)

Compound was prepared in 2 steps from 4-iodotoluene and Weinreb amide $\mathbf{S} 1$ to provide pyridin-2-yl(p-tolyl)methanone ($591 \mathrm{mg}, 75 \%$ yield) via General Procedure B ($664 \mathrm{mg}, 3.995 \mathrm{mmol}$). Reaction of pyridin-2-yl(p-tolyl)methanone ($197 \mathrm{mg}, 1.000$ mmol) via General Procedure C yielded title compound as a yellow oil ($95.0 \mathrm{mg}, 49 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.60$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 8.64$ (ddd, $\left.J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63$ (td, $J=7.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28$ (dt, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20$ (ddd, $J=7.5,5.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, $3 H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 158.90,149.51,149.20,137.77,137.63,136.36,129.12$, 128.45, 122.98, 122.51, 117.22, 21.36.

IR (neat, cm^{-1}): 1584, 1562, 1510, 1468, 1429, 1242, 913, 825, 802, 747, 678, 580
HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 195.1048$ Found: 195.1043

2-(1-(4-methoxyphenyl)vinyl)pyridine (3b)

Compound was prepared in 2 steps from 4-bromoanisole and Weinreb amide S1 to provide (4-methoxyphenyl)(pyridin-2-yl)methanone ($503 \mathrm{mg}, 59 \%$ yield) via General Procedure B ($664 \mathrm{mg}, 4.0 \mathrm{mmol}$). Reaction of (4 -methoxyphenyl)(pyridin-2yl)methanone ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$) via General Procedure D and E with methylmagnesium bromide yielded title compound as a yellow oil ($31.3 \mathrm{mg}, 30 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.43$ ($1: 4, \mathrm{EtOAc}:$ hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64$ (ddd, $\left.J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64$ (td, $J=7.5,2.0$ Hz, 1H), $7.31-7.27$ (m, 3H), 7.21 (ddd, J=7.5, 5.0, 1.0 Hz, 1H), $6.90-6.88$ (m, 2H), 5.86 (d, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.56 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.51,159.01,149.50,148.81,136.39,132.97,129.71$, 123.02, 122.52, 116.59, 113.82, 55.46.

IR (neat, cm^{-1}): 1584, 1510, 1247, 835, 802, 750, 677, 582, 558, 509, 482, 447, 456.
HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{\dagger}: 211.0997$ Found: 211.0993

2-(1-(4-fluorophenyl)vinyl)pyridine (3c)

Compound was prepared in 2 steps from 4-bromofluorobenzene and Weinreb amide S1 to provide (4-fluorophenyl)(pyridin-2-yl)methanone ($484 \mathrm{mg}, 32 \%$ yield) via General Procedure B ($830.9 \mathrm{mg}, 5.000 \mathrm{mmol}$). Reaction of (4-fluorophenyl)(pyridin-2-
yl)methanone ($201.2 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($79.3 \mathrm{mg}, 40 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.54$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, $J=7.5,5.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.70(\mathrm{~d}, \mathrm{~J}=123 \mathrm{~Hz}), 158.58,149.55,148.36,136.56$, $136.49(d, J=3.3 \mathrm{~Hz}), 130.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 122.89,122.70,117.81,115.34(\mathrm{~d}, \mathrm{~J}=21$ $\mathrm{Hz})$
${ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}) $\boldsymbol{\delta}$-114.55.
IR (neat, cm^{-1}): 1584, 1507, 1468, 1222, 913, 840, 801, 748, 720, 677, 617, 578, 544, $518,501,472,456,442,434,423,418,406,401$.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}: 199.0797$ Found: 199.0791

2-(1-(4-chlorophenyl)vinyl)pyridine (3d)

Compound was prepared from 2-bromopyridine and 4'-chloroacetophenone. In a flame-dried flask, 2-bromopyridine ($2.000 \mathrm{~g}, 12.658 \mathrm{mmol}, 1$ equiv.) was cooled to -78 ${ }^{\circ} \mathrm{C}$ in 25 mL anhydrous THF. To this solution, $n-\mathrm{BuLi}$ ($12.658 \mathrm{mmol}, 1$ equiv.) was added and stirred for 30 min . After 30 min . elapsed, the solution was warmed to $0^{\circ} \mathrm{C}$, and 4^{\prime} chloroacetophenone ($2.935 \mathrm{~g}, 18.987 \mathrm{mmol}, 1.5$ equiv.) was added in one portion. The workup for General Procedure D was followed, yielding 1-(4-chlorophenyl)-1-(pyridin-2-yl)ethan-1-ol ($2.073 \mathrm{~g}, 70 \%$ yield). Reaction of 1-(4-chlorophenyl)-1-(pyridin-2-
yl)ethan-1-ol ($1.700 \mathrm{~g}, 7.274 \mathrm{mmol}$) via General Procedure E yielded title compound as a colorless oil ($804.1 \mathrm{mg}, 51 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.54$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64$ (ddd, $\left.J=5.0,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66$ (td, $J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23$ (ddd, $J=7.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.96 ($d, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 158.32,149.57,148.31,138.90,136.59,132.63,129.88$, 128.62, 122.88, 122.77, 118.21

IR (neat, cm^{-1}): 1584, 1489, 1091, 913, 834, 801, 747, 674, 617, 472, 457.
HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}: 215.0501$ Found: 215.0500

2-(1-(4-(trifluoromethyl)phenyl)vinyl)pyridine (3e)

Compound was prepared from 2-bromopyridine and 4'-(trifluoromethyl)acetophenone. In a flame-dried flask, 2-bromopyridine ($2.000 \mathrm{~g}, 12.658 \mathrm{mmol}, 1$ equiv.) was cooled to $-78^{\circ} \mathrm{C}$ in 25 mL anhydrous THF. To this solution, n-BuLi ($12.658 \mathrm{mmol}, 1$ equiv.) was added and stirred for 30 min . After 30 min . elapsed, the solution was warmed to $0^{\circ} \mathrm{C}$, and 4'-(trifluoromethyl)acetophenone ($3.572 \mathrm{~g}, 18.987 \mathrm{mmol}, 1.5$ equiv.) was added in one portion. The workup for General Procedure D was followed, yielding 1-(pyridin-2-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol (1.757 g, 51\% yield). Reaction of 1-(pyridin-2-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol ($1.000 \mathrm{~g}, 3.741 \mathrm{mmol}$) via General Procedure E yielded title compound as a colorless oil ($134 \mathrm{mg}, 14 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.57$ ($1: 4, \mathrm{EtOAc}:$ hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66$ (dd, $\left.J=5.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71$ (td, $J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.65,149.28,148.48,123.88,137.29,137.17,128.91$, 128.20, 125.48 ($q, J=3.8 \mathrm{~Hz}$), 123.03, 119.83.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.62.
IR (neat, cm^{-1}): 1325, 1165, 1123, 1065, 1017, 913, 748, 676
HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]$: 249.0765 Found: 249.0766

2-(1-(m-tolyl)vinyl)pyridine (3f)

Compound was prepared in 2 steps from m-tolylmagnesium bromide and Weinreb amide S1 to provide pyridin-2-yl(m-tolyl)methanone ($982.9 \mathrm{mg}, 55 \%$ yield) via General Procedure B ($1.000 \mathrm{~g}, 6.017 \mathrm{mmol})$. Reaction of pyridin-2-yl(m-tolyl)methanone (750 $\mathrm{mg}, 3.802 \mathrm{mmol}$) via General Procedure C yielded title compound as a colorless oil ($266.1 \mathrm{mg}, 35 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.50$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.68-8.62(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.12(\mathrm{~m}, 7 \mathrm{H}), 5.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (s,3H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.75,149.44,149.34,140.45,138.00,136.46,129.25$, 128.74, 128.30, 125.67, 123.03, 122.54, 117.76, 21.60.

IR (neat, cm^{-1}): 1769, 1758, 1582, 1467, 1429, 1377, 1241, 1048, 800, 749, 747, 683.
HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 195.1048$ Found: 195.1049

2-(1-(3-methoxyphenyl)vinyl)pyridine (3g)

Compound was prepared in 2 steps from 3-bromoanisole ($1.500 \mathrm{~g}, 8.020 \mathrm{mmol}$) via General Procedure D ($776.6 \mathrm{mg}, 56 \%$ yield). Reaction of 1-(3-methoxyphenyl)-1-(pyridin-2-yl)ethan-1-ol ($700 \mathrm{mg}, 3.053 \mathrm{mmol}$) via General Procedure E yielded title compound as a colorless oil ($329 \mathrm{mg}, 51 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.38$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.65$ (ddd, $J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, \mathrm{J}=$ $7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21$ (ddd, $J=7.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.86$ $(\mathrm{m}, 3 \mathrm{H}), 6.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.60,158.45,149.46,149.09,141.91,136.48,129.41,123.02$, 122.60, 121.12, 118.03, 114.29, 113.42, 55.38.

IR (neat, cm^{-1}): 1662, 1581, 1485, 1465, 1457, 1448, 1429, 1306, 1285, 1230, 1148, 1042, 993, 912, 877, 784, 748, 719, 684, 617

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 212.1069$ Found: 212.1069

2-(1-(3-(trifluoromethyl)phenyl)vinyl)pyridine (3h)

Compound was prepared in 2 steps from 1-bromo-3-(trifluoromethyl)benzene (2.500 g, 11.110 mmol) via General Procedure D ($658.7 \mathrm{mg}, 22 \%$ yield). Reaction of 1-(pyridin-2-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1-ol ($914 \mathrm{mg}, 3.420 \mathrm{mmol}$) via General Procedure E yielded title compound as a colorless oil ($337.6 \mathrm{mg}, 39 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.42$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.68$ - 8.62 (m, 1H), 7.72 - 7.57 (m, 4H), 7.56 $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=1.0$ $\mathrm{Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.95,149.63,148.25,141.22,136.73,131.91,130.87$ (q, $J=32.2 \mathrm{~Hz}$), 128.88, $125.32(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.74(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.91,122.80$, 119.12.
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-62.62$.
IR (neat, cm^{-1}): 1583, 1468, 1431, 1329, 1308, 1280, 1163, 1122, 1070, 913, 802, 747, 699, 657

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 249.0765 Found: 249.0759

2-(1-(o-tolyl)vinyl)pyridine (3i)

Compound was prepared in 2 steps from o-tolylmagnesium bromide and Weinreb amide $\mathbf{S} 1$ to provide pyridin-2-yl(o-tolyl)methanone ($809 \mathrm{mg}, 45 \%$ yield) via General Procedure B ($1.500 \mathrm{~g}, 9.026 \mathrm{mmol}$). Reaction of pyridin- 2 -yl(o-tolyl)methanone (500 $\mathrm{mg}, 2.535 \mathrm{mmol}$) via General Procedure C yielded title compound as a colorless oil $(170.6 \mathrm{mg}, 35 \%$ yield).

Rf $_{\mathrm{f}} 0.53$ ($1: 4$, EtOAc : hexanes)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.65$ (dt, $J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (td, $J=7.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.26 (tdd, $J=13.3,7.1,3.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.15 (ddd, $J=7.4,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (dt, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) 157.36, 149.56, 148.61, 140.54, 136.60, 136.31, 130.19, 130.13, 127.89, 126.01, 122.37, 121.64, 118.75, 20.18.

IR (neat, cm^{-1}): 1580, 1562, 1487, 1466, 1456, 1428, 1040, 989, 920, 804, 766, 746, 730, 626, 608, 583, 404

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 195.1048$ Found: 195.1049

2-(1-(furan-3-yl)vinyl)pyridine (3j)

Compound was prepared from 2-bromopyridine and Weinreb amide derived from furan-3-carboxylic acid. In a flame-dried flask, 2-bromopyridine ($1.388 \mathrm{~g}, 8.790 \mathrm{mmol}$, 1 equiv.) was cooled to $-78^{\circ} \mathrm{C}$ in 18 mL anhydrous THF. To this solution, n-BuLi (8.790 mmol, 1 equiv.) was added and stirred for 30 min . After 30 min . elapsed, the solution was warmed to $0^{\circ} \mathrm{C}$, and N -methoxy- N -methylfuran-3-carboxamide ($1.500 \mathrm{~g}, 9.669$ mmol, 1.1 equiv.) was added in one portion. The workup for General Procedure B was followed, yielding furan-3-yl(pyridin-2-yl)methanone as a white solid ($888.1 \mathrm{mg}, 58 \%$ yield). Reaction of furan-3-yl(pyridin-2-yl)methanone ($950 \mathrm{mg}, 5.485 \mathrm{mmol}$) via General Procedure C yielded title compound as a brown oil ($348 \mathrm{mg}, 37 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.57$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.64$ (ddd, $J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (td, $J=$ $7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (ddd, $J=7.5,4.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.33,149.16,142.98,141.35,140.23,136.62,124.76,122.70$, 122.29, 115.82, 109.70.

IR (neat, cm^{-1}): 1584, 1563, 1467, 1457, 1430, 1159, 1065, 1020, 960, 898, 872, 796, 747, 650.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 171.0684$ Found: 171.0679

2-(1-(thiophen-3-yl)vinyl)pyridine (3k)

Compound was prepared in 2 steps via an adaptation of General Procedure D. In a flame-dried flask, 3 -bromothiophene ($2.000 \mathrm{~g}, 12.266 \mathrm{mmol}, 1$ equiv.) was added with 24 mL anhydrous THF and cooled to $-78^{\circ} \mathrm{C}$. To this solution, $4.9 \mathrm{~mL} \mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes) (1 equiv.) and allowed to stir for 30 min . The reaction was warmed to $0^{\circ} \mathrm{C}$, upon which 2-acetylpyridine ($1.634 \mathrm{~g}, 13.493 \mathrm{mmol}, 1.1$ equiv.) was added in one portion. The remainder of General Procedure D was followed to yield tertiary alcohol ($610.4 \mathrm{mg}, 24 \%$ yield). Reaction of 1-(pyridin-2-yl)-1-(thiophen-3-yl)ethan-1-ol (601.4 $\mathrm{mg}, 2.929 \mathrm{mmol}$) via General Procedure E yielded title compound as a yellow oil ($442.1 \mathrm{mg}, 80 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.53$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=23.9,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (s, 1H), $5.69(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 158.56,149.20,143.67,140.88,136.52,131.00,128.18$, 127.45, 125.44, 123.50, 122.67, 122.61, 116.76.

IR (neat, cm^{-1}): 1582, 1561, 1467, 1429, 908, 867, 836, 794, 747, 689, 668, 650, 623, 603.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 187.0456$ Found: 187.0456

2-(1-(benzo[d][1,3]dioxol-5-yl)vinyl)pyridine (31)

Compound was prepared in 2 steps from 5-bromobenzo[d][1,3]dioxole and Weinreb amide S1 to provide benzo[d][1,3]dioxol-5-yl(pyridin-2-yl)methanone ($407 \mathrm{~g}, 36 \%$ yield) via General Procedure B ($831 \mathrm{mg}, 5.000 \mathrm{mmol}$). Reaction of benzo[d][1,3]dioxol-5-yl(pyridin-2-yl)methanone ($227 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a pale yellow oil ($176 \mathrm{mg}, 78 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.46$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63$ (ddd, $\left.J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.65$ (td, $J=7.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32$ (dt, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (ddd, $J=7.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.79$ (m, 3H), 5.97 (s, 2H), 5.85 (d, J = $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (d, J = 1.0 Hz, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.92,149.50,148.93,147.66,147.49,136.45,134.62$, 123.04, 122.59, 122.28, 116.97, 109.03, 108.30, 101.24.

IR (neat, cm^{-1}): 1583, 1501, 1488, 1430, 1234, 1038, 913, 802, 747, 677, 457.
HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 225.0789$ Found: 225.0783

2-(4-phenylbut-1-en-2-yl)pyridine (3m)

Compound was prepared in 2 steps from phenethylmagnesium bromide and Weinreb amide S1 to provide 3-phenyl-1-(pyridin-2-yl)propan-1-one ($534.5 \mathrm{mg}, 51 \%$ yield) via General Procedure B ($830 \mathrm{mg}, 5.000 \mathrm{mmol}$). Reaction of 3-phenyl-1-(pyridin-2-yl)propan-1-one ($105 \mathrm{mg}, 0.500 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($43 \mathrm{mg}, 41 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.70$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61$ (ddd, $J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{HO}, 7.66(\mathrm{td}, J=8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 5.74(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=2.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.82(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 158.45,149.14,147.71,142.19,136.44,128.63,128.39$, 125.91, 122.27, 120.56, 115.47, 35.74, 34.89.

IR (neat, cm^{-1}): $1585,1563,1466,1455,1430,912,801,744,698,677,617,557,501$, 472, 458.

HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 209.1204$ Found: 209.1201

2-(3-phenylprop-1-en-2-yl)pyridine (3n)

Compound was prepared in 2 steps from benzylmagnesium bromide and Weinreb amide S1 to provide 2-phenyl-1-(pyridin-2-yl)ethan-1-one ($705 \mathrm{mg}, 71 \%$ yield) via General Procedure B ($830 \mathrm{mg}, 5.000 \mathrm{mmol}$). Reaction of 2-phenyl-1-(pyridin-2-yl)ethan-1-one ($107 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($101.6 \mathrm{mg}, 52 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.68$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59$ (ddd, $\left.J=4.5,2.01 .0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{td}, J=8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14$ (ddd, $J=8.0,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dt}, J=1.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=1.5,1.0 \mathrm{~Hz}$, 1H), 3.98 (brs, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.99,149.04,147.22,139.82,136.44,12925,128.43$, 126.16, 122.35, 120.70, 117.29, 39.92.

IR (neat, cm^{-1}): 1584, 1563, 1466, 1430, 913, 800, 743, 698.
HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 195.1048 Found: 195.1049

2-(pyridin-2-yl)prop-2-en-1-ol (30)

Compound prepared from 2-bromopyridine and allyl alcohol. In a flame-dried flask, 2bromopyridine ($3.0 \mathrm{mmol}, 1$ equiv.), triethylamine ($4.8 \mathrm{mmol}, 1.6$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.12 \mathrm{mmol}, 0.04$ equiv.) and 1,3-bis(diphenylphosphino) propane ($0.24 \mathrm{mmol}, 0.08$ equiv.) were combined with $3 \mathrm{~mL}[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ ionic liquid. The solution was degassed with three freeze-pump-thaw cycles. Allyl alcohol ($15 \mathrm{mmol}, 5$ equiv.) was then added and the flask sealed. The reaction mixture was then heated to $125^{\circ} \mathrm{C}$ for 24 hours. The reaction was cooled to room temperature, and 10 mL of 3 M HCl were added and allowed to stir for 1 hour. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added dropwise, and the solution was extracted three times with DCM. Organic extracts were combined, washed with water and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The dried solution was filtered and concentrated under reduced pressure. The resulting brown residue was purified via column chromatography to give 22 mg of title compound (5% yield).
$\mathbf{R}_{\mathrm{f}} 0.54$ (100\% EtOAc)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.55$ (dd, $J=5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (td, $J=7.8,1.8 \mathrm{~Hz}$, 1H), 7.64 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.20$ (m, 1H), 5.81 ($\mathrm{s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.49,148.32,145.54,136.74,122.59,120.13,116.22,77.28$, 77.03, 76.77, 66.20.

HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 135.0684$ Found: 135.0680

4-methoxy-2-(1-phenylvinyl)pyridine (3p)

Compound prepared via an adapted procedure from Hilton et al.
In a flame-dried flask, 2-(1-phenylvinyl)pyridine ($622.6 \mathrm{mg}, 3.435 \mathrm{mmol}$) was dissolved in 34 mL anhydrous DCM. The solution was cooled to $-78^{\circ} \mathrm{C}$, and triflic anhydride (969 $\mathrm{mg}, 3.435 \mathrm{mmol}, 1$ equiv.) was added dropwise. The resulting solution was stirred for 30 min ., at which $\mathrm{PPh}_{3}(990 \mathrm{mg}, 3.778 \mathrm{mmol}, 1.1$ equiv.) was added in one portion. To this solution, DBU ($522 \mathrm{mg}, 3.435 \mathrm{mmol}, 1$ equiv.) was added dropwise and stirred for 30 min . at room temperature. The reaction was then quenched with water, diluted with DCM, and the resulting organic layer washed three times with water. The organic layer was dried with MgSO_{4} and concentrated under reduced pressure to approximately $\sim 5 \mathrm{~mL}$ volume. Chilled $\mathrm{Et}_{2} \mathrm{O}$ was then added to the concentrated solution. The resulting phosphonium salt precipitate was filtered and used crude in the next step.

A flame-dried flask was charged with $60 \mathrm{wt} \% \mathrm{NaH}$ ($205 \mathrm{mg}, 5.152 \mathrm{mmol}, 1.5$ equiv.) and 6 mL anhydrous THF. The solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{MeOH}(165 \mathrm{mg}, 5.152$ mmol, 1.5 equiv.) was added dropwise. The solution was stirred for 30 min . at $0^{\circ} \mathrm{C}$, at which point the phosphonium salt was added in one portion. The reaction was then subjected to nitrogen backfill, and allowed to react for 12 hours. The reaction was then quenched with water and extracted three times with ethyl acetate. The organic solutions were combined, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting residue was purified via flash column chromatography, yielding title compound as a colorless oil ($68.5 \mathrm{mg}, 10 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.26$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.49$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (d, $J=3.9 \mathrm{~Hz}, 5 \mathrm{H}$), $6.82-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 166.01,160.21,150.62,149.15,140.27,128.41,128.29,127.84$, 117.71, 109.38, 108.28, 55.14.

IR (neat, cm^{-1}): 1585, 1562, 1470, 1442, 1300, 1261, 1231, 1142, 1037, 1028, 913, 779, 704.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 211.0997$ Found: 211.1004

3-(1-phenylvinyl)pyridine (3q)

Compound was prepared by addition of phenylmagnesium bromide ($10.565 \mathrm{mmol}, 1.1$ equiv.) to nicotinonitrile ($1.000 \mathrm{~g}, 9.605 \mathrm{mmol}$) in 20 mL anhydrous THF at $0^{\circ} \mathrm{C}$. Water was added to the resulting solution, and extracted three times with ethyl acetate.
Organic residues were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified via flash column chromatography to yield phenyl(pyridin-3-yl)methanone ($1.302 \mathrm{~g}, 74 \%$ yield). Reaction of phenyl(pyridin-3$\mathrm{yl})$ methanone ($1.000 \mathrm{~g}, 5.458 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($741 \mathrm{mg}, 75 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.37$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.66$ ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (dd, $J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (dt, J = 7.9, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.52 (d, J = $1.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 149.37,149.02,147.00,140.44,137.18,135.63,128.54,128.27$, 128.12, 123.13, 115.91, 77.41, 77.16, 76.90.

IR (neat, cm^{-1}): 1609, 1564, 1493, 1473, 1444, 1410, 1070, 1022, 902, 815, 776, 719, 701, 624, 596, 573.

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 181.0891 Found: 181.0889

4-(1-phenylvinyl)pyridine (3r)

Compound was prepared in 2 steps from phenylmagnesium bromide and Weinreb amide derived from isonicotinic acid (via General Procedure A) to provide phenyl(pyridin-4-yl)methanone ($726 \mathrm{mg}, 79 \%$ yield) via General Procedure B (831 mg , $5.000 \mathrm{mmol})$. Reaction of phenyl(pyridin-4-yl)methanone ($183 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($89.4 \mathrm{mg}, 43 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.27$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59-8.57(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.61$ (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 150.03,139.90,128.80,128.58,128.38,128.29,128.06$, 122.93, 117.10.

IR (neat, cm^{-1}): 1595, 1240, 913, 743, 720, 677, 617, 575, 525, 517, 502, 457.
HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 181.0891$ Found: 181.0891

2-(1-phenylvinyl)quinoline (3s)

Compound was prepared by addition of phenylmagnesium bromide ($8.400 \mathrm{mmol}, 1.2$ equiv.) to quinoline-2-carbaldehyde ($1.096 \mathrm{~g}, 7.000 \mathrm{mmol}$) in 35 mL anhydrous THF at $78^{\circ} \mathrm{C}$. The brown solution was allowed to warm to ambient temperature overnight. The reaction was then quenched with 35 mL water, and the workup for General Procedure D was followed, yielding phenyl(quinolin-2-yl)methanol. The resulting alcohol was dissolved in 50 mL DCM at $0^{\circ} \mathrm{C}$, and Dess-Martin periodinane (2.97 g , 7.000 mmol) was added. The milky-cream color reaction was diluted with DCM, treated with saturated NaHCO_{3} solution. The aqueous solution was separated and extracted three times with ethyl acetate. Organic solutions were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure and purified via flash column chromatography yielding phenyl(quinolin-2-yl)methanone ($812.5 \mathrm{mg}, 50 \%$ yield).

Reaction of phenyl(quinolin-2-yl)methanone ($233 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a colorless oil ($87.3 \mathrm{mg}, 38 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.72$ (1:4, EtOAc: hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=8.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, $J=8.0,7.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 6 \mathrm{H}), 6.11$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.97,149.67,148.11,140.24,136.21,129.94,129.73$, 128.54, 128.46, 128.06, 127.55, 127.53, 126.59, 121.37, 118.94.

IR (neat, cm^{-1}): 1595, 1501, 913, 837, 744, 720, 669, 617, 545, 472, 419
HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 231.1048 Found: 231.1053

1-methyl-2-(1-phenylvinyl)-1H-imidazole (3t)

To a stirred solution of N-methylimidazole ($0.821 \mathrm{~g}, 10 \mathrm{mmmol}, 1$ equiv.) and benzoyl chloride ($2.108 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv.) in acetonitrile at $0^{\circ} \mathrm{C}$ was added triethylamine ($1.517 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv.) dropwise. After addition was finished, the solution was warmed to ambient temperature. The solution was then diluted with dichloromethane and treated with water. The organic phase was separated and washed with saturated NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting brown solid was purified via flash column chromatography to yield (1-methyl-1H-imidazol-2-yl)(phenyl)methanone ($497 \mathrm{mg}, 27 \%$ yield). Reaction of (1-methyl-1H-imidazol-2-yl)(phenyl)methanone ($186 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($128.6 \mathrm{mg}, 70 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.27$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 147.79,139.45,139.18,132.20,128.76,128.39,126.95$, 121.90, 119.78, 34.15

IR (neat, cm^{-1}): 913, 744, 676.
HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 184.1000$ Found: 184.0994

2-(1-phenylvinyl)thiazole (3u)

To a stirred solution of thiazole ($425 \mathrm{mg}, 5.000 \mathrm{mmol}, 1$ equiv.) in 10 mL acetonitrile was added 4-dimethylaminopyridine ($183 \mathrm{mg}, 1.5 \mathrm{mmol}, 0.3$ equiv.), and triethylamine ($1.517 \mathrm{~g}, 15 \mathrm{mmol}, 3$ equiv.). At room temperature, benzoyl chloride ($1.405 \mathrm{~g}, 10$ mmol, 2 equiv.) was added, and a white precipitate was observed forming. A reflux condenser was attached to the flask, and the reaction heated to $80^{\circ} \mathrm{C}$ overnight. The reaction was cooled to room temperature, poured into 100 mL water, and extracted two times with ethyl acetate. The organic solutions were combined, and subsequently washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, saturated NaHCO_{3} solution, and brine. The organic phase was then separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting brown oil was purified via flash column chromatography to yield a phenyl(thiazol-2-yl)methanone as a yellow solid (908 mg , 96% yield). Reaction of phenyl(thiazol-2-yl)methanone ($189 \mathrm{mg}, 1.000 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($128.8 \mathrm{mg}, 69 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.64$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39$
(m, 3H), $7.31(d, J=3.5 \mathrm{~Hz}, 1), 6.11(d, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.97,143.64,143.09,139.45,128.67,128.59,128.48$, 119.64, 118.47.

IR (neat, cm^{-1}): 1483, 1444, 1105, 1070, 1025, 913, 775, 743, 696, 582.
HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 187.0455$ Found: 187.0450

2-(1-phenylvinyl)oxazole (3v)

In a flame-dried flask, oxazole ($200 \mathrm{mg}, 2.89 \mathrm{mmol}, 1$ equiv.), benzoyl chloride (810 $\mathrm{mg}, 5.78 \mathrm{mmol}, 2$ equiv.) and 4-dimethylaminopyridine ($106 \mathrm{mg}, 0.87 \mathrm{mmol}, 0.3$ equiv.) were combined in 6 mL anhydrous acetonitrile. To this solution, triethylamine ($870 \mathrm{mg}, 8.67 \mathrm{mmol}, 3$ equiv.) were added. A reflux condenser was attached to the flask, and the reaction mixture heated at $80^{\circ} \mathrm{C}$ for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate and saturated NaHCO_{3}. Ethyl acetate was used to extract the aqueous layer three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The resulting residue was purified by column chromatography yielding oxazol-2-yl(phenyl)methanone ($283 \mathrm{mg}, 56 \%$ yield). Reaction of oxazol-2-yl(phenyl)methanone ($280 \mathrm{mg}, 1.620 \mathrm{mmol}$) via General Procedure C yielded title compound as a yellow oil ($170.0 \mathrm{mg}, 61 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.64$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\boldsymbol{\delta} 7.66$ (s, 1H), $7.57-7.51$ (m, 2H), $7.46-7.34$ (m, 3H), 7.21 (s, 1H), $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}) $\delta 161.99,141.67,138.73,137.37,137.15,134.15,130.98,128.65$, 128.58, 128.46, 128.45, 128.40, 120.35.

IR (neat, cm^{-1}): 1665, 1482, 1448, 1370, 1286, 1173, 1139, 1071, 955, 913, 743, 720, 683, 617, 555, 456, 444.

HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 171.0684$ Found: 171.0680

1-phenyl-2-(pyridin-2-yl)propan-2-yl acetate (7)

To a stirred solution of 2-acetylpyridine ($1.211 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) in 50 mL anhydrous THF at $0^{\circ} \mathrm{C}$ was added benzylmagnesium chloride (2.0 M in $\mathrm{Et}_{2} \mathrm{O}$) (7.5 mL , $15 \mathrm{mmol}, 1.5$ equiv.). The reaction was allowed to stir for 30 min ., at which point acetic anhydride ($3.062 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv.), causing the solution to turn from brown, to greenish-yellow, to bright yellow over the course of 30 min . After consumption of starting material was observed via TLC, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$, then treated with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layers were washed with saturated NaHCO_{3}, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. The organic layer was separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting red oil was purified via flash column chromatography to yield the title compound ($1.561 \mathrm{~g}, 61 \%$ yield).
$\mathbf{R}_{\mathrm{f}} 0.44$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62$ (ddd, $\left.J=5.0,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57$ (td, $J=8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.41$ and $3.35\left(\mathrm{ABq}, J_{A B}=13.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 170.06,162.54,148.83,136.44,136.20,130.67,127.91$, 126.62, 122.09, 120.15, 84.69, 46.88, 23.90, 22.33.

IR (neat, cm^{-1}): 1737, 1730, 1590, 1432, 1367, 1251, 1234, 1167, 1105, 1079, 1016, 913, 781, 747, 700, 674.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 195.1048 Found -AcOH 195.1042

General Procedures for Vinyl Pyridine Reductions

Enzymatic Reduction (General Procedure F):

In the Coy chamber was introduced: protein aliquots (NostocER, in "OYE concentration buffer" [20 mM KPi pH 7.4, 300 mM NaCl], generally $2 \sim 4 \mathrm{mM}$ concentration, 100 nmol total in each aliquot), shell vial with magnetic cross stir-bar, substrate in a one-dram vial, and a "master mix" vial containing 1.0 mg $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ and 2.0 mg NADP ${ }^{+}$and 10.7 mg GDH-105 and 96.0 mg D-glucose. To the "master mix" was added 4.018 mL Tricine buffer ($100 \mathrm{mM}, \mathrm{pH} 9$,). iPrOH was added to substrate vial (such that concentration was 1 M). To each reaction shell vial was added $450 \mu \mathrm{~L}$ of "master mix", $30 \mu \mathrm{~L}$ of substrate in PrOH , and 3 aliquots of protein. A rubber septum was affixed to the reaction vial, brought out of the Coy chamber and irradiated with blue LED's at $0^{\circ} \mathrm{C}$ for 48 hours.

Upon completion, the reaction vials were treated with $\mathrm{MeCN}(0.9 \mathrm{~mL})$ and an internal standard (1,3,5-tribromobenzene, $100 \mu \mathrm{~L}$ of a $10 \mathrm{mg} / \mathrm{mL}$ solution in MeCN [1 mg total]). The resultant mixture was centrifugated ($10,000 \mathrm{xg}, 5 \mathrm{~min}$), and supernatant was partitioned between $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}(3 \mathrm{~mL}: 3 \mathrm{~mL})$. The aqueous layer was separated and extracted with DCM. Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for yield calculation. The CDCl_{3} solution was reconcentrated and dissolved in HPLC grade hexanes for HPLC analysis.

(\pm)

Pd/C Hydrogenation (General Procedure G):

To a solution of olefin (typically $\sim 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added $10 \mathrm{wt} \% \mathrm{Pd}$ on activated carbon ($100 \mathrm{mg} / \mathrm{mmol}$ substrate). A balloon of H_{2} was bubbled through the solution and monitored by TLC until complete consumption of starting material was observed. The reaction was filtered through celite and concentrated under reduced pressure. The resulting residue was purified via flash column chromatography with hexanes/ethyl acetate as eluent.

Characterization of Vinyl-Pyridine Products

(S)-2-(1-phenylethyl)pyridine (2)

Title compound was obtained following General Procedure F from 1. Yellow oil (96\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 96\% (Run 1), 91\% (Run 2), 96\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.55$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\boldsymbol{\delta} 8.59$ - 8.54 (m, 1H), 7.56 (td, J = 7.7, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(q d, J=5.3,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.71 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}) $\delta 165.03,149.12,145.08,136.45,128.48,127.70,126.33,122.15$, 121.24, 77.31, 77.06, 76.81, 47.38, 20.76.

IR (neat, cm^{-1}): 1588, 1568, 1493, 1471, 1450, 1431, 1027, 993, 804, 746, 698, 639, 609, 584, 546.

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 183.1048$ Found: 183.1047
HPLC OJ-H column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 31.4 \mathrm{~min}$ (major), 29.4 min (minor), 92 : 8 e.r.

(S)-2-(1-(p-tolyl)ethyl)pyridine (4a)

Title compound was obtained following General Procedure F from 3a. Yellow oil (83\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 86\% (Run 1), 82\% (Run 2), 82\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.56$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55$ (ddd, $\left.J=5.0,1.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55$ (td, $J=7.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 1.69 (d, J = 7.0 Hz, 3H).
${ }^{13}$ C-NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 165.42,149.24,142.25,136.52,135.96,129.30,127.68$, 122.18, 121.27, 47.14, 21.15, 20.93.

IR (neat, cm^{-1}): 1587, 1568, 1512, 1471, 1456, 1432, 1241, 1047, 1033, 913, 824, 788, 747, 720, 678, 549.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 197.1204 Found: 197.1199
HPLC IA column, $98: 2$ (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 6.71 \mathrm{~min}$ (major), 6.21 min (minor), 90 : 10 e.r.

(S)-2-(1-(4-methoxyphenyl)ethyl)pyridine (4b)

Title compound was obtained following General Procedure F from 3b. Yellow oil (76\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 78\% (Run 1), 77\% (Run 2), 72\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.41$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 8.55$ (ddd, $\left.J=5.0,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55$ (td, $J=8.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.0,5.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, CDCl ${ }_{3}$) $\delta 165.56,158.17,149.26,137.40,136.53,128.73,122.12$, 121.26, 113.98, 53.38, 46.71, 21.05.

IR (neat, cm^{-1}): 1587, 1569, 1558, 1511, 1470, 1432, 1245, 1178, 1032, 913, 835, 788, 747, 720, 677, 617, 558.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 213.1153$ Found: 213.1147
HPLC IA column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 8.05 \mathrm{~min}$ (major), 7.42 min (minor), 85 : 15 e.r.

(S)-2-(1-(4-fluorophenyl)ethyl)pyridine (4c)

Title compound was obtained following General Procedure F from 3c. Yellow oil (57\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 56\% (Run 1), 53\% (Run 2), 62\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.53$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{dd}, J=5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=8.0 \mathrm{~Hz}$, 1H), 1.68 (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.91,161.53(\mathrm{~d}, \mathrm{~J}=243 \mathrm{~Hz}), 149.38,140.90,136.65$, 129.21 ($d, J=7.8 \mathrm{~Hz}$), 122.13, 121.47, $115.22(\mathrm{~d}, J=21 \mathrm{~Hz}), 46.77$, 21.08.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.08.
IR (neat, cm^{-1}): 1509, 1240, 1052, 1033, 913, 744, 720, 677, 617, 517, 502.
HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}: 201.0953$ Found: 201.0953
HPLC OJ-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 17.05 \mathrm{~min}$ (major), 13.64 \min (minor), $90: 10$ e.r.

(S)-2-(1-(4-chlorophenyl)ethyl)pyridine (4d)

Title compound was obtained following General Procedure F from 3d. Yellow oil (61\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 54\% (Run 1), 69\% (Run 2), 60\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.53$ (1:4, EtOAc: hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{dd}, \mathrm{J}=5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 164.57,149.43,143.72,136.67,132.19,129.18,128.70$, 122.16, 121.55, 46.91, 20.89.

IR (neat, cm^{-1}): 1588, 1492, 1471, 1432, 1245, 1091, 1051, 1014, 913, 836, 747, 720, 676, 617, 548, 501, 472, 457.

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}: 217.0658$ Found: 217.0658
HPLC OJ-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 13.20 \mathrm{~min}$ (major), 11.23 min (minor), 80 : 20 e.r.

(S)-2-(1-(4-(trifluoromethyl)phenyl)ethyl)pyridine (4e)

Title compound was obtained following General Procedure F from 3e. Yellow oil (26\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 24\% (Run 1), 31\% (Run 2), 24\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.56$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58-8.57(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.00,149.44,149.23,136.84,128.74(\mathrm{q}, \mathrm{J}=32 \mathrm{~Hz})$, 128.17, 126.31, 125.55 ($q, J=3.8 \mathrm{~Hz}$), 122.29, 121.74, 47.32, 20.79 .
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$-62.43.
IR (neat, cm^{-1}): 1325, 1164, 1118, 1069, 1033, 1016, 913, 744, 720, 676, 617, 502, 472, 458, 443.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 251.0921$ Found: 251.0923
HPLC IA column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 8.33 \mathrm{~min}$ (major), 7.13 min (minor), 72 : 28 e.r.

(S)-2-(1-(m-tolyl)ethyl)pyridine (4f)

Title compound was obtained following General Procedure F from 3f. Yellow oil (73\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 86\% (Run 1), 68\% (Run 2), 65\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.59$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, ~ C h l o r o f o r m-d) \delta 8.56(d, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (td, $\left.J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=12.3,10.9,5.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}) $\delta 165.13,149.07,145.00,138.03,136.45,128.49,128.37,127.10$, 124.67, 122.13, 121.20, 47.32, 21.51, 20.74.

IR (neat, cm^{-1}): 1588, 1567, 1470, 1456, 1431, 913, 775, 747, 720, 702, 672.
HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 197.1204 Found: 197.1198
HPLC OJ-H column, 98 : 2 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 15.17 \mathrm{~min}$ (major), 14.24 min (minor), 80:20 e.r.

(S)-2-(1-(3-methoxyphenyl)ethyl)pyridine (4 g)

Title compound was obtained following General Procedure F from 3g. Yellow oil (51\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 48\% (Run 1), 52\% (Run 2), 51\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.56$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.59-8.53(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{ddd}, J=8.2,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28 ($q, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}) $\delta 164.84,159.66,149.02,146.69,136.52,129.43,122.15,121.28$, 120.11, 113.69, 111.46, 55.16, 47.35, 20.69.

IR (neat, cm^{-1}): 1585, 1567, 1485, 1471, 1456, 1430, 1249, 1149, 1037, 993, 775, 747, 719, 697, 582.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 213.1153$ Found: 213.1152
HPLC ID column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 13.07 \mathrm{~min}$ (major), 16.10 min (minor), 84 : 16 e.r.

(S)-2-(1-(3-(trifluoromethyl)phenyl)ethyl)pyridine (4h)

Title compound was obtained following General Procedure F from 3h. Yellow oil (62\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 62\% (Run 1), 64\% (Run 2), 61\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.54$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.60-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (dd, $\mathrm{J}=$ $16.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=7.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 1H), 1.72 (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.01, 149.39, 146.07, 136.89, 130.83 ($q, J=32.0 \mathrm{~Hz}$), 130.45, 129.02, 124.52 ($q, J=3.8 \mathrm{~Hz}$), 123.39 ($q, J=3.8 \mathrm{~Hz}$), 122.25, 121.74, 47.27, 20.89.
${ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}) $\boldsymbol{\delta}$-62.50.
IR (neat, cm^{-1}): 1589,1472, 1432, 1326, 1162, 1121, 1074, 810, 780, 747, 701, 673, 657.
HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 251.0921 Found 251.0918
HPLC OJ-H column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 6.73 \mathrm{~min}$ (major), 8.00 \min (minor), 83 : 17 e.r.

(S)-2-(1-(o-tolyl)ethyl)pyridine (4i)

Title compound was obtained following General Procedure F from 3i. Yellow oil (49\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 45\% (Run 1), 51\% (Run 2), 50\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.56$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, ~ C h l o r o f o r m-d) \boldsymbol{\delta} 8.56$ (ddd, $\left.J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53$ (td, $J=7.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=7.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08$ (ddd, J $=7.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.67$ (d, J = 7.2 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}) $\delta 165.39,149.19,142.97,136.55,136.39,130.55,126.93,126.45$, 126.29, 122.00, 121.16, 43.77, 20.86, 19.97.

IR (neat, cm^{-1}): 1586, 1567, 1471, 1457, 1430, 1419, 1048, 1033, 992, 786, 747, 675, 614, 596, 558.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 197.1204 Found: 197.1208
HPLC OD-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 7.69 \mathrm{~min}$ (major), 6.88 min (minor), 56 : 44 e.r.

(S)-2-(1-(furan-3-yl)ethyl)pyridine (4j)

Title compound was obtained following General Procedure F from 3j. Yellow oil (82\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 85\% (Run 1), 83\% (Run 2), 77\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.51$ (1:4, EtOAc : hexanes)
Yield: 85\% (Run 1), 83\% (Run 2), 77\% (Run 3)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.58-8.53(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ ($p, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.91,149.29,143.11,139.01,136.73,129.01,121.63,121.55$, 110.47, 38.96, 20.79.

IR (neat, cm^{-1}): 1589, 1568, 1457, 1433, 1158, 1054, 1021, 873, 778, 748, 729, 679, 663, 599.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 173.0840$ Found 173.0840
HPLC OJ-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 15.77 \mathrm{~min}$ (major), 18.81 min (minor), 86: 14 e.r.

(S)-2-(1-(thiophen-3-yl)ethyl)pyridine (4k)

Title compound was obtained following General Procedure F from 3k. Yellow oil (87% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 74\% (Run 1), 82\% (Run 2), 78\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.52$ (1:4, EtOAc : hexanes)
Yield: 74\% (Run 1), 82\% (Run 2), 78\% (Run 3)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.58(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26 (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.99$ (dd, $J=4.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 164.82,148.96,145.58,136.77,127.64,125.56,121.83,121.42$, 120.30, 43.14, 20.93.

IR (neat, cm^{-1}): 1590, 1568, 1472, 1457, 1432, 1419, 770, 748, 678, 658.
HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 189.0612$ Found: 189.0612
HPLC OJ-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 21.80 \mathrm{~min}$ (major), 23.05 min (minor), 93 : 7 e.r.

(S)-2-(1-(benzo[d][1,3]dioxol-5-yl)ethyl)pyridine (4I)

Title compound was obtained following General Procedure F from 31. Yellow oil (87\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 92\% (Run 1), 82\% (Run 2), 87\% (Run 3)
$\mathbf{R f}_{\mathrm{f}} 0.43(1: 4$, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55$ (ddd, $J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (td, $J=7.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (ddd, $J=7.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}$, $2 \mathrm{H}), 6.74(\mathrm{td}, J=7.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ and $5.90\left(\mathrm{ABq}, J_{A B}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.21(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 165.16,149.31,147.79,146.06,139.29,136.57,122.11$, 121.37, 120.67, 108.35, 108.29, 100.99, 47.18, 21.09.

IR (neat, cm^{-1}): 1588, 1501, 1485, 1472, 1456, 1432, 1234, 1037, 935, 911, 814, 748, 669.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 227.0946$ Found: 227.0941
HPLC ID column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 18.09 \mathrm{~min}$ (major), 20.96 min (minor), 83 : 17 e.r.

(S)-2-(4-phenylbutan-2-yl)pyridine (4m)

Title compound was obtained following General Procedure F from 3m. Yellow oil (73\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 73\% (Run 1), 75\% (Run 2), 69\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.54$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 5 \mathrm{H}), 2.93$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.48$ (m, 2H), 2.16-2.08(m, 1H), $1.96-1.88(m, 1 H), 1.33(d, J=7.0 \mathrm{~Hz}, 2 H)$.
${ }^{13}$ C-NMR (125 MHz, CDCl ${ }_{3}$) $\delta 166.24,149.42,142.56,136.45,128.50,128.38,125.77$, 121.88, 121.28, 41.69, 38.85, 34.01, 21.08.

IR (neat, cm^{-1}): 1589, 1568, 1494, 1473, 1455, 1432, 1029, 990, 786, 746, 697, 624, 541, 517, 497.

HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 211.1361 Found: 211.1365
HPLC OJ-H column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 20.17 \mathrm{~min}$ (major), 15.10 min (minor), 86 : 14 e.r.

(S)-2-(1-phenylpropan-2-yl)pyridine (4n)

Title compound was obtained following General Procedure F from 3n. Yellow oil (57\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 57\% (Run 1), 61\% (Run 2), 68\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.51$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58$ (ddd, $\left.J=5.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54$ (td, $J=7.5,2.0$ Hz, 1H), $7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.03$ (d, J = 7.5 $\mathrm{Hz}, 1 \mathrm{H}), 3.18$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ and $2.84\left(\mathrm{ABX}, J_{A B}=13.5 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}\right.$, 2H), 1.29 (d, J = 7.0 Hz, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 165.66,149.37,140.79,136.37,129.27,128.24,125.97$, 122.10, 121.37, 43.98, 43.46, 20.14.

IR (neat, cm^{-1}): 1589, 1568, 1494, 1473, 1456, 1433, 1419, 990, 913, 786, 742, 698, 532.

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 198.1277 Found: 197.1198
HPLC OJ-H column, $99: 1$ (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 12.63 \mathrm{~min}$ (major), 8.81 min (minor), 96 : 4 e.r.

(R)-2-(pyridin-2-yl)propan-1-ol (40)

Title compound was obtained following General Procedure F from 3o. Yellow oil (72\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 72\% (Run 1), 69\% (Run 2), 70\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.33$ (100\% EtOAc)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.46-8.38(\mathrm{~m}, 1 \mathrm{H}), 7.58$ (td, $J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.01(\mathrm{~b}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=10.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (pd, J = 7.1, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.94,147.56,135.80,121.15,120.50,66.12,40.77,16.16$.
HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 137.0840$ Found: 137.0843
HPLC AJ-H column, 97 : 3 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{R}_{\mathrm{t}} 21.9 \mathrm{~min}$ (major), 18.3 min (minor), 96 : 4 e.r.

(S)-4-methoxy-2-(1-phenylethyl)pyridine (4p)

Title compound was obtained following General Procedure F from 3p. Yellow oil (43\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 43\% (Run 1), 43\% (Run 2), 40\% (Run 3)
$\mathrm{R}_{\mathrm{f}} 0.14$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.42-8.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{tt}, \mathrm{J}=5.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 166.85,166.20,150.51,145.06,128.58,127.77,126.45,108.37$, 107.38, 55.12, 47.50, 20.83.

IR 1590, 1565, 1478, 1450, 1419, 1300, 1285, 1153, 1028, 815, 746, 698.
HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 213.1153$ Found: 213.1156
HPLC IC column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 21.63 \mathrm{~min}$ (major), 24.28 min (minor), 93 : 7 e.r.

(S)-3-(1-phenylethyl)pyridine (4q)

Title compound was obtained following General Procedure F from 3q. Yellow oil (95\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 95\% (Run 1), 95\% (Run 2), 92\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.51$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\boldsymbol{\delta} 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dt}, \mathrm{J}=8.0,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dt}, J=8.6,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.18(\mathrm{q}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.38,147.58,145.08,141.74,135.13,128.71,127.65,126.58$, 123.51, 42.55, 21.68.

IR (neat, cm^{-1}): $1573,1496,1477,1450,1420,1375,1022,912,813,763,743,713$, 698, 624, 581.

HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 183.1048 Found: 183.1049
HPLC IC column, $90: 10$ (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 11.91 \mathrm{~min}$ (major), 12.57 min (minor), 89 : 11 e.r.

(S)-4-(1-phenylethyl)pyridine (4r)

Title compound was obtained following General Procedure F from 3r. Yellow oil (99\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 99\% (Run 1), 99\% (Run 2), 99\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.23$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50$ (brs, 2H), $7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, CDCl 3) $\delta 155.20,149.91,144.52,128.76,127.74,126.77,123.16$, 44.36, 21.19.

IR (neat, cm^{-1}): 1595, 1462, 1058, 1033, 913, 744, 676, 617, 532, 471, 443.
HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 183.1048 Found: 183.1050
HPLC OJ-H column, 99 : 1 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 32.44 \mathrm{~min}$ (major), 28.78 \min (minor), 84 : 16 e.r.

(S)-2-(1-phenylethyl)quinoline (4s)

Title compound was obtained following General Procedure F from 3s. Yellow oil (30\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yield 33\% (Run 1), 29\% (Run 2), 23\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.69$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1), 7.75$ (dd, J $=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (ddd, $J=8.5,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}$, 1H), $7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 165.33,147.78,144.79,136.44,129.44,129.35,128.63$, 127.96, 127.59, 126.99, 126.55, 126.05, 120.81, 48.22, 20.57.

IR (neat, cm^{-1}): 1598, 1501, 1450, 1425, 1027, 913, 832, 748, 720, 699, 675, 617, 551, 501, 476, 449.

HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 233.1204 Found: 233.1207
HPLC IA column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 9.85 \mathrm{~min}$ (major), 7.36 min (minor), 92 : 8 e.r.

(S)-1-methyl-2-(1-phenylethyl)-1H-imidazole (4t)

Title compound was obtained following General Procedure F from 3t. Yellow oil (56\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 55\% (Run 1), 55\% (Run 2), 58\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.28$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.12(\mathrm{~m}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 150.18,143.83,128.84,127.23,126.94,126.65,121.09$, 38.28, 32.71, 21.82.

IR (neat, cm^{-1}): 1492, 1451, 1280, 1055, 1032, 913, 743, 701, 540.
HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 186.1157$ Found: 186.1154
HPLC IC column, $90: 10$ (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 16.01 \mathrm{~min}$ (major), 18.15 min (minor), 92 : 8 e.r.

(S)-2-(1-phenylethyl)thiazole (4u)

Title compound was obtained following General Procedure F from 3u. Yellow oil (76\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard, averaged over 3 runs).

Yields 76\% (Run 1), 77\% (Run 2), 74\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.58$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.25$ (m, 1H), 7.19 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ ($q, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 175.76,143.86,142.32,128.74,127.54,127.11,118.52$, 43.96, 21.77.

IR (neat, cm^{-1}): 1588, 1493, 1472, 1450, 1431, 1027, 912, 803, 747, 698, 582, 546, 502, 457, 441.

HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 189.0612$ Found: 189.0612
HPLC ID column, 99.5 : 0.5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 20.24 \mathrm{~min}$ (major), 23.41 min (minor), 88 : 12 e.r.

2-(1-phenylethyl)oxazole (4v)

Title compound was obtained following General Procedure F from 3v. Yellow oil (40\% yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis against internal standard).

Yields 36\% (Run 1), 41\% (Run 2), 40\% (Run 3)
$\mathbf{R}_{\mathrm{f}} 0.53$ (1:4, EtOAc : hexanes)
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\boldsymbol{\delta} 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 0 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.21$ (m, 3H), 7.05 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.91,141.99,138.67,128.84,127.42,127.19,127.01,39.73$, 20.13.

IR (neat, cm^{-1}): 1647, 1566, 1492, 1451, 1376, 1136, 1086, 1049, 1027, 913, 744, 720, 697, 676, 617, 527, 492, 478, 472, 450.d

HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 173.0840 Found: 173.0839
HPLC OJ-H column, 95 : 5 (hexane : iPrOH), $1.0 \mathrm{~mL}-\mathrm{min}, \mathrm{t}_{\mathrm{R}} 15.28 \mathrm{~min}$ (major), 12.97 min (minor), 70 : 30 e.r.

Radical Clock Experiments:

Yield: 12\%
Standard Curve:

Crystal Structure Determination

Structure determination and refinement

The gene for NostocER1 was expressed from pET22b in BL21(DE3) E. coli and purified as described above. The purified protein was brought to a final concentration of 1.00 mM , approximately $40 \mathrm{mg} / \mathrm{mL}$ in 20 mM KPi pH 7.4, 300 mM NaCl . Crystals used for data collection were grown using the sitting drop method (1:1 ratio of protein to crystallization solution with a $3 \mu \mathrm{~L}$ total drop size), $500 \mu \mathrm{~L}$ of buffer per well. The crystallization solution contained 0.1 M Tricine $\mathrm{HCl} \mathrm{pH} 9.0,0.1-0.2 \mathrm{M} \mathrm{CaCl} 2,28-30 \%$ (w/v) PEG3350. Up to 25 mM of ligand $\mathbf{3 0}$ was included in the crystallization medium, but no ordered ligand was evident in the active site of the protein. Crystals typically appeared after $3-5$ days at $20^{\circ} \mathrm{C}$. Crystals were prepared for flash cryocooling by rapid equilibration in the crystallization solution supplemented with 20% (v / v) ethane-1,2-diol. Diffraction data for NostocER1 was obtained at NSLS-II beam line 17-ID-1 (AMX) at a wavelength of $0.9790 \AA$ from crystals flash-cooled to 100 K . Data extended to a maximum resolution of 2.0 A. All data was integrated with the program XDS (1) and scaled with the program AIMLESS (2). Crystals grew in space group P1 with eight molecules in the asymmetric unit. The structure for NostocER1 was determined by the method of molecular replacement using the PDB entry 3GKA (3) as the model and the program PHASER (4). Electron density was clearly visible for residues 38-398. COOT (5) was used for model building and structure refinement was carried out with PHENIX.REFINE (6). Data collection, processing and refinement statistics are summarized in Table S5. The final model was deposited in the Protein Data Bank as entry 6UFF.

Ref 1: W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132 (2010). doi:10.1107/S0907444909047337 Medline

Ref2: P. R. Evans, G. N. Murshudov, How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204-1214 (2013). doi:10.1107/S0907444913000061 Medline

Ref 3: PDB ID: 3GKX, Crystal structure of N-ethylmaleimidine reductase from Burkholderia pseudomallei, Seattle Structural Genomics Center for Infectious Disease (SSGCID)

Ref4: A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007). doi:10.1107/S0021889807021206 Medline

Ref 5: Paul Emsley and Bernhard Lohkamp and William G. Scott and Kevin Cowtan, Features and Development of Coot, Acta Crystallogr.D Biol. Crystallogr,2010,66,486-501.

Ref 6: Towards automated crystallographic structure refinement with phenix.refine. P.V. Afonine, R.W. Grosse-Kunstleve, N. Echols, J.J. Headd, N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H. Zwart, and P.D. Adams. Acta Crystallogr D Biol Crystallogr 68, 352-67 (2012).

Table S5. Data collection, processing and refinement.

Data Collection

Space group	$P l$
Cell Dimensions	
$\mathrm{a}, \mathrm{b}, \mathrm{c}(\AA)$	$81.56,95.59,99.90$
$\quad \alpha, \beta, \gamma\left({ }^{\circ}\right)$	$66.79,89.91,82.58$
Resolution (\AA)	$90.0-2.01(2.13-2.01)$
$\mathrm{R}_{\text {sym }}$	$0.102(0.668)$
$\mathrm{R}_{\text {meas }}$	$0.120(0.796)$
$\mathrm{I} / \sigma \mathrm{I}$	$8.7(1.6)$
Completeness (\%)	$97.3(94.5)$
Redundancy	$3.6(3.4)$

Refinement

Resolution (\AA)	$29.5-2.01$
No. reflections	178926
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	$0.173 / 0.222$

No. atoms

Protein	22186
Ligand	248

Ligand 248
Water 1656
B-factors
Overall $\left(\AA^{2}\right)$
29.8

Protein $\left(\AA^{2}\right) \quad 29.5$
Ligand $\left(\AA^{2}\right) \quad 21.4$
Wilson B-factor $\left(\AA^{2}\right) \quad 28.7$
R.m.s. deviations

Bond lengths (\AA)
0.007
Bond Angles (${ }^{\circ}$) 0.92Ramachandran Plot
Favored (\%) 96.5
Outliers (\%) 0.1

Density functional theory (DFT) calculations

All DFT computations were carried out using the PySCF quantum chemistry software package ${ }^{1}$. We performed spin-polarized gas-phase ground state geometry optimizations for radical anionic states of 2-, $3-$, and $4-\left(1\right.$-phenylvinyl)pyridine using the B3LYP exchange-correlation functional ${ }^{2}$ in the $6-31+\mathrm{G}(\mathrm{d})$ basis set ${ }^{3}$. We then performed population analyses on optimized geometries using the intrinsic atomic orbital (IAO) approach ${ }^{4}$ in PySCF. The IAO analysis has been shown to be a robust method for computing partial charges from DFT wave functions. The anionic partial charge results are shown in Fig. S1. As can be seen, the IAO analysis shows that approximately 50% of the anionic charge resides on the C2 position of the alkene in all cases. In contrast, almost no anionic charge appears on the C1 position of the alkene.

Fig. S1. Anionic partial charges on radical anionic states of 2-, 3-, and 4-(1-phenylvinyl)pyridine from DFT calculations and IAO population analysis.

We further performed DFT calculations to determine whether the radical anion or radical states of 2-(1phenylvinyl)pyridine are persistent in water. The B3LYP exchange-correlation functional and COSMO solvent model ${ }^{5}$ were used with the $6-31+G(d)$ basis set. The free energies of two C-C bond breaking reactions in Fig. S2 were computed. The free energy of Reaction 1 was computed to be $17.7 \mathrm{kcal} / \mathrm{mol}$, while the free energy of Reaction 2 was $-93.0 \mathrm{kcal} / \mathrm{mol}$, indicating the $\mathrm{C}-\mathrm{C}$ bond is highly unstable in the dianion.

Fig. S2. C-C bond breaking reactions to form radical (Reaction 1) and radical anion (Reaction 2) states of 2-(1-phenylvinyl)pyridine.

Figure S3. C-C bond breaking reaction to form radical (Reaction 3).

The optimized geometries of all compounds in the radical anionic state are shown below:

Cartesian coordinates of anionic 2-(1-phenylvinyl)pyridine:

H	0.9887100362	-0.1247365419	2.3062857295
C	0.5126291670	-0.0329133381	1.3349718524
C	-0.8045659944	0.3835711375	1.2607353334
H	-1.3618023439	0.5911144166	2.1740148271
C	-1.4067454510	0.5565749804	-0.0101789637
H	-2.4379711585	0.8820906831	-0.1263962184
C	-0.5919079923	0.3199080657	-1.1210285986
H	-1.0001537524	0.4725393445	-2.1251390511
N	0.6767694954	-0.0852234520	-1.0821850267
C	1.2664041601	-0.3050793116	0.1524544541
C	2.6673271729	-0.6918591649	0.1649151414
C	3.4412488899	-0.5825738793	-0.9928346399
H	3.0088628415	-0.1945116890	-1.9070240311
H	4.4568131140	-0.9677718629	-1.0270067529
C	3.3060990387	-1.1798185832	1.4025523086
C	2.6619542944	-2.0602797138	2.3108251244
C	3.3095113761	-2.5648543389	3.4369531486
C	4.6435696384	-2.2254121670	3.7137932288
C	5.3080632722	-1.3697423034	2.8237940284
C	4.6588507191	-0.8637992450	1.6984259581
H	5.1861431338	-0.1854180485	1.0326165610
H	5.1505771016	-2.6230853711	4.5908885722
H	6.3428022437	-1.0853480971	3.0155342226
H	1.6425161116	-2.3732929697	2.1026459507
H	2.7738848859	-3.2449585499	4.0989968407

Cartesian coordinates of anionic 3-(1-phenylvinyl)pyridine:

C	-4.5710803650	0.8800147004	1.3211415254
C	-5.6872903239	0.1340471972	0.9085569976
N	-5.5611858254	-0.9747028020	0.1505387547
C	-4.3340410517	-1.3546059395	-0.2069281750
C	-3.1169811902	-0.6833269768	0.1338261275
C	-3.2981276905	0.4750943349	0.9418524167
H	-2.4294814729	1.0300396503	1.2858044239
H	-4.7055232094	1.7619662111	1.9469455209
H	-6.6999230852	0.4232484356	1.1877175137
H	-4.2811394563	-2.2414497226	-0.8352827526
C	-1.8155113670	-1.2267762557	-0.2435870192
C	-0.6582541973	-0.3384611512	-0.3997810487
C	-1.6650242561	-2.6057105600	-0.4493168252
H	-2.4524355729	-3.3100168865	-0.1988597611
H	-0.7641085102	-3.0202720018	-0.8921923230
C	-0.7715903510	1.0177201246	-0.8178326336
C	0.3416843105	1.8234697684	-1.0340059295
C	1.6450551557	1.3234562700	-0.8523512646
C	1.7866208165	-0.0130292242	-0.4521080726
C	0.6731387543	-0.8220854913	-0.2341451241
H	0.8145123259	-1.8447524676	0.1047971408
H	-1.7601699125	1.4282119547	-1.0049221363
H	0.1965793204	2.8525750638	-1.3626020659
H	2.5156840805	1.9530176607	-1.0248947493
H	2.7826630738	-0.4286518924	-0.2965205404

Cartesian coordinates of anionic 4-(1-phenylvinyl)pyridine:
C $\quad-3.3797616793 \quad 2.9235648377-0.7095408744$
$\mathrm{N} \quad-4.6423427904 \quad 2.6141801891$-0.3191657083
$\begin{array}{lllll}\text { C } & -4.7662318359 & 1.3759659802 & 0.2075073515\end{array}$

C	-3.7364127687	0.4598697101	0.3628650056
C	-2.3974434074	0.7824574250	-0.0309812244
C	-2.2783767913	2.0905707328	-0.5946537796
H	-3.2559744930	3.9128852137	-1.1542586789
H	-5.7725202215	1.1052619851	0.5355168328
H	-3.9493924238	-0.4992198383	0.8264706866
H	-1.3211760293	2.4379879401	-0.9732055812
C	-1.3146185888	-0.1799906496	0.0501814563
C	-1.5776585842	-1.5539997292	0.1377943029
H	-2.5784790261	-1.9560410761	0.0162341228
H	-0.7869580273	-2.2690976488	0.3453544125
C	0.0895430563	0.2703088845	0.0320614534
C	0.5174536288	1.4733958769	0.6525147451
C	1.8581892477	1.8489468151	0.6900646399
C	2.8504777838	1.0377019553	0.1154727449
C	2.4561459103	-0.1612736303	-0.4932350380
C	1.1135615275	-0.5363573379	-0.5325093971
H	-0.2226202553	2.1052601382	1.1353869704
H	2.1369361049	2.7787070525	1.1852893855
H	3.8982221071	1.3300804991	0.1476213639
H	3.2036946590	-0.8075947541	-0.9532488523
H	0.8283128971	-1.4582705709	-1.0323663398

Cartesian coordinates of neutral reactant in Reaction 1:
C $-1.737709-0.060621 \quad 0.315990$
C $-0.398280 \quad 0.123325-0.648118$
$\begin{array}{lllll}\text { C } & 0.467180 & 1.356566 & -0.239617\end{array}$
C $-0.852595 \quad 0.306313-2.118711$
H -1.627811 1.069578 -2.210998
H -1.254133 -0.620672 -2.527358

H -0.015376 $0.613807-2.752800$
C $0.513096-1.134285-0.567955$
C -1.3990390 .1945171 .810354
H -2.304079 0.0685692 .415633
H -1.036267 1.209053 1.972899
H -0.628795 -0.488097 2.166394
C -2.810162 1.017118 -0.039580
C -2.307396-1.499654 0.147291
C 0.409876 2.564185 -0.961623
C $1.1959603 .668782-0.616293$
C 2.0737093 .6011440 .466588
C 2.1513912 .4112371 .195004
$\begin{array}{llll}\text { C } & 1.364168 & 1.311250 & 0.845767\end{array}$
С 1.088738 -1.709381-1.716174
C 1.930427 -2.815045 - 1.591627
C $2.188343-3.336784-0.325085$
C 1.584652-2.704206 0.761554
N 0.781836 -1.641273 0.648241
C -2.607888 2.3761250 .280060
C $-3.6011393 .311450-0.003779$
C -4.792818 $2.884679-0.592361$
C -4.915474 1.524306-0.870562
N -3.959704 $0.624237-0.607873$
C -2.895759 -1.953377-1.050725
C -3.375083 -3.257427-1.192361
C $-3.300481-4.162221-0.130798$
C -2.739688 -3.733542 1.071688
C -2.253607-2.428028 1.202308
$\begin{array}{lllll}\mathrm{H} & 1.452653 & 0.399954 & 1.424497\end{array}$
H $2.6894914 .456380 \quad 0.734672$

```
H 2.831981 2.331007 2.039826
H -0.260609 2.667711 -1.806588
H 1.118147 4.581650 -1.202887
H 0.893074 -1.311227 -2.703461
H 2.374835 -3.261048 -2.478426
H 2.832417 -4.199619 -0.179874
H 1.751434 -3.066043 1.775925
H -1.816147-2.152213 2.152918
H -3.028605 -1.276192 -1.881288
H -3.824674 -3.557701 -2.136583
H -3.678472 -5.176451 -0.237852
H -2.671919 -4.412852 1.918867
H -5.598287 3.576605 -0.823382
H -5.823875 1.129230-1.324839
H -1.688507 2.710210 0.742467
H -3.444806 4.359725 0.240848
```

Cartesian coordinates of radical 2-(1-phenylvinyl)pyridine in Reaction 1:
C -3.157552 -0.263758 0.972171
C -2.157406 -0.138454 2.098256
H -2.526979 -0.640915 3.004493
H -1.972568 0.8990172 .380889
H - 1.192995 -0.604157 1.851386
C $-3.784068 \quad 0.9502070 .457713$
C -3.461060-1.594198 0.475655
C -3.132281 2.2112620 .525603
C -3.7734713 .3511450 .053743
C $-5.061522 \quad 3.239091-0.477649$
С -5.631758 $1.961374-0.522547$
N -5.030631 $0.856823-0.082272$

```
C -4.108512 -1.829728-0.769871
C -4.330330-3.120194-1.239655
C -3.925180 -4.235470-0.494496
C -3.279746 -4.034456 0.730931
C -3.045129 -2.745229 1.202327
H -2.544782 -2.630644 2.157911
H -4.433384 -0.986795 -1.364650
H -4.822557 -3.258645 -2.199721
H -4.105445 -5.241823 -0.864394
H -2.956689 -4.887249 1.323835
H -5.604667 4.103089 -0.849874
H -6.632105 1.821646 -0.932503
H -2.122115 2.290392 0.912612
H -3.270978 4.314873 0.094394
```

Cartesian coordinates of dianion reactant in Reaction 2:

```
C -2.343681 -0.160476 0.481645
C -1.007734 -0.081985 -0.486651
C -0.285918 1.292683-0.263494
C -1.431127 -0.170319-1.974546
H -2.159176 0.591309 -2.241142
H -1.907833 -1.126235 -2.199967
H -0.551671 -0.061829 -2.621458
C -0.047394 -1.291840-0.204204
C -1.917622-0.023234 1.965469
H -2.796014 -0.108327 2.617007
H -1.439124 0.939005 2.157214
H -1.187612 -0.776015 2.252035
C -3.325996 1.024060 0.170853
C -3.041995 -1.552088 0.291247
```

C	-0.570408	2.393120	-1.098883
C	0.075391	3.624009	-0.952700
C	1.057078	3.797137	0.027195
C	1.339723	2.731237	0.882798
C	0.666671	1.511336	0.756183
C	0.213298	-2.278274	-1.172277
C	1.097158	-3.328570	-0.898372
C	1.782028	-3.333493	0.322617
C	1.464667	-2.334074	1.234028
N	0.556508	-1.370259	1.008762
C	-3.549130	2.067927	1.086383
C	-4.458189	3.091768	0.795553
C	-5.206248	3.012357	-0.388388
C	-4.915789	1.966016	-1.254339
N	-3.983390	1.027570	-1.020086
C	-3.932302	-1.834700	-0.769690
C	-4.589496	-3.064961	-0.869900
C	-4.354366	-4.081267	0.058067
C	-3.434795	-3.846063	1.084223
C	-2.803601	-2.604712	1.200582
H	0.900524	0.706626	1.442228
H	1.572841	4.751796	0.135872
H	2.084152	2.844301	1.672604
H	-1.322022	2.313986	-1.877133
H	-0.196200	4.449289	-1.612849
H	-0.276670	-2.267169	-2.138628
H	1.258946	-4.113462	-1.638949
H	2.512673	-4.103812	0.572507
H	1.944322	-2.309321	2.216452
H	-2.099286	-2.479481	2.015754

```
H -4.138391 -1.067483-1.504896
H -5.284593 -3.226097-1.695521
H -4.858204 -5.044417 -0.028914
H -3.200565 -4.631252 1.805022
H -5.959392 3.757125 -0.647442
H -5.440260 1.879436 -2.210241
H -3.009949 2.121277 2.024760
H -4.591628 3.919155 1.493600
```

Cartesian coordinates of neutral reactant in Reaction 3:

C	-0.564079	-0.17109	1.160469
C	-0.227274	-1.202554	2.047159
C	-0.497246	-1.063117	3.406115
C	-1.10106	0.105067	3.858436
C	-1.417056	1.074961	2.910713
N	-1.166692	0.944219	1.605802
H	-0.240635	-1.85946	4.097168
H	0.233764	-2.112724	1.690254
H	-1.331656	0.259895	4.906429
H	-1.903689	1.999326	3.213646
C	-1.62719	0.15091	-1.097292
C	0.041801	-1.70078	-0.77503
H	1.0156	-2.029067	-0.41801
H	-0.706923	-2.398959	-0.397947
H	0.04248	-1.797599	-1.861024
C	-0.30151	-0.256286	-0.355837
C	0.916899	0.737954	-0.782555
C	1.295604	0.505024	-2.263393
H	2.027951	1.250654	-2.583787
H	1.740309	-0.476346	-2.413151
H	0.44663	0.577416	-2.942338
C	0.512445	2.229136	-0.620496
C	-0.20666	2.912461	-1.61445
C	-0.531364	4.253279	-1.439361
H	-0.5136	2.414508	-2.523436
C	0.604316	4.162035	0.647423

C	-0.123601	4.902451	-0.277914
H	-1.089568	4.782079	-2.205166
H	0.960159	4.626664	1.564286
H	-0.348515	5.947767	-0.098297
N	0.915301	2.872653	0.485843
C	2.210863	0.544834	0.103135
H	1.924865	0.631048	1.150083
H	2.82321	1.428939	-0.091974
C	3.127186	-0.65908	-0.049912
C	3.210834	-1.625508	0.962689
C	4.014161	-0.780985	-1.131295
C	4.104841	-2.693553	0.882299
H	2.572625	-1.536577	1.835342
C	4.908072	-1.847767	-1.221068
H	4.023573	-0.023911	-1.907662
C	4.952748	-2.816088	-0.21767
H	4.142493	-3.424559	1.684083
H	5.579588	-1.914436	-2.07155
H	5.650489	-3.644616	-0.284607
C	-2.792287	-0.816101	-0.981888
C	-3.049228	-1.748225	-1.997338
C	-3.671001	-0.78217	0.110497
C	-4.129972	-2.626782	-1.920413
H	-2.397623	-1.784181	-2.865525
C	-4.753672	-1.658479	0.193546
H	-3.512379	-0.055799	0.899578
C	-4.986262	-2.58859	-0.819881
H	-4.305162	-3.336847	-2.722767
H	-5.420567	-1.608718	1.048903
H	-5.82983	-3.268625	-0.757417
H	-1.941947	1.124973	-0.727895
H	-1.403749	0.265306	-2.158844

Cartesian coordinates of radical product in Reaction 3:

C	-0.503251	1.069484	0.250425
C	-0.216401	2.300728	-0.558651
H	-0.893831	3.1261	-0.301118
H	0.80292	2.651595	-0.390927
H	-0.325588	2.130779	-1.635814
C	-1.735325	0.364953	0.107545
C	-2.760399	0.815028	-0.771932
C	-3.940708	0.10036	-0.874809
H	-2.621276	1.715631	-1.357159
C	-3.053616	-1.437242	0.728945
C	-4.105985	-1.05712	-0.111757
H	-4.727205	0.439164	-1.542157
H	-3.143208	-2.33409	1.339314
H	-5.013586	-1.647963	-0.161168
N	-1.914821	-0.771354	0.847301
C	0.548836	0.605949	1.222623
H	0.127495	-0.166892	1.866095
H	0.835643	1.449243	1.864575
C	1.799072	0.075118	0.533664
C	1.738392	-1.101064	-0.225358
C	3.025769	0.736599	0.638461
C	2.873996	-1.600842	-0.857134
H	0.793507	-1.628879	-0.311352
C	4.165898	0.239865	0.004809
H	3.095024	1.645871	1.229635
C	4.0932	-0.930435	-0.746358
H	2.808998	-2.517108	-1.43603
H	5.109748	0.767725	0.101515
H	4.978236	-1.319985	-1.239354

Competition Experiment Raw Data

FMN (equiv.)	Observed enantioselectivity	Predicted enantioselectivity	$y-y$	$(y-y)^{\wedge} 2$	Rate Enhancement
0.01	92	92	0	0	1.18
0.5	76	79.5	3.5	12.25	
1	72	72.73394495	0.734	0.539	
2	66	65.58490566	-0.42	0.172	
5	61	58.01941748	-2.98	8.884	
10	58	54.43291592	-3.57	12.72	

References

1. Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L., WIREs Comput. Mol. Sci. 2018, 8 , e1340.
2. Becke, A. D., J. Chem. Phys. 1993, 98, 1372.
3. Hariharan, P. C.; Pople, J. A., Theoret. Chim. Acta 1973, 28, 213.
4. Knizia, G., J. Chem. Theory Comput. 2013, 9, 4834-4843.

HPLC Traces

Racemate

NostocER

Racemate

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	6.197	BV	8773.1	1056.3	0.1229	49.787	0.738
2	6.747	VV	8848	961.1	0.1364	50.213	0.741

NostocER

Racemate

NostocER

Racemate

NostocER

\#	Time	Type		Area	Height	Width		Area\%		Symmetry
1	13.645	BB	457.5	29.1	0.2461	9.753	0.979			
2	17.059	BB	4233.7	201.8	0.3247	90.247	0.633			

Racemate

NostocER

mad			$\begin{aligned} & \stackrel{\sim}{9} \\ & \underset{y y}{c} \end{aligned}$									
	11			11.5	12			12.5	13	13.5	min	
4								-			\checkmark	
\#	Time	Type	Area	Height	Width	Area\%	Symmetry					
1	11.23	BB	2695	199	0.207	19.750	0.845					
2	13.209	BV	10950.2	618.6	0.2685	80.250	0.447					

Racemate

NostocER

Racemate

NostocER

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	14.248	BB	2425.5	134.6	0.2782	20.752	0.85
2	15.175	BB	9262.9	458.2	0.3108	79.248	0.677

Racemate

NostocER

Racemate

NostocER

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	6.732	VV	11434.2	688.4	0.2648	82.275	0.832
2	8.005	VV	2463.4	145.1	0.2601	17.725	0.803

Racemate

NostocER

Racemate

NostocER

Racemate

NostocER

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	21.122	BV	2032.2	81.6	0.3544	96.914	0.846
2	22.426	BV	64.7	2.5	0.3107	3.086	1.642

Racemate

NostocER

Racemate

NostocER

Racemate

NostocER

Racemate

NostocER

Racemate

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	28.78	VB	1659.1	41.8	0.4701	49.648	0.409
2	32.442	BB	1682.6	38.6	0.5156	50.352	0.473

NostocER

Racemate

\#ime	Type		Area	Height	Width		Area $\%$ Symmetry	
1	11.865	BV	5255.1	383.2	0.211	49.607	0.824	
2	12.535	VB	5338.4	360.6	0.2277	50.393	0.79	

GluER

Racemate

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	7.252	VB	15431	1060.3	0.2068	48.529	0.346
2	9.798	BB	16366.5	786.5	0.3128	51.471	0.562

NostocER

DAD1 A, Sig=254,4 Ref=off (Dildata MMJBldef 2019-09-24 15-15-11 lquinoline_prepTLC.D)													
		$\begin{aligned} & \text { !e } \\ & \text { © } \end{aligned}$											
			7			8		8.5	9	9.5	10	10.5 min	-
1					-	-	\square					-	
\#	Time	Type	Area	Height	Width	Area\%	Symmetry						
1	6.645	VB	1475.3	90.7	0.2387	8.219	0.476						
2	9.261	BB	16473.1	525.2	0.4949	91.781	0.878						

Racemate

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	16.014	VV	16647.5	613.1	0.3718	50.117	0.248
2	18.152	BV	16570.1	545.3	0.4075	49.883	0.266

NostocER

Racemate

YersER

Racemate

DAD1 A, Sig=254,4 Ref=off (Didata MMJBldef 2019-09-16 11-01-57.D2F-A1-0801. D)											
			21		22			24	25	min	
1					-	\square				\bullet	
\#	Time	Type	Area	Height	Width	Area\%	Symmetry				
1	21.185	VB	6067.6	182.5	0.4668	50.831	0.344				
2	22.924	BB	5869.3	127.9	0.6353	49.169	0.234				

NostocER

Racemate

NostocER

${ }^{\text {i D. G. Gibson, L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison, H. O. Smith Nat. Methods 6, 343- }}$ 345 (2009).
${ }^{\text {ii }}$ A. Aliverti, B. Curti, M. A. Vanoni Indentifying and Quantitating FAD and FMN in Simple and in Iron-Sulfur-Containing Flavoproteins. In Flavoprotein Protocols, Chapman, S.K.; Reid, G.A., Eds.; Humana Press: Totowa, New Jersey, 131, 9 (1999).

d 0 ∞ \sim	$\sqrt{5}$		둥	

MJB-6-062.10.fid
PROTON.PU CDCl3 /opt/topspin3.0 mjblack 44

MJB-5-169.10.fid

MJB-5-185_carbon.20.fid
C13CPDp1.PU CDCI3 /opt/topspin3.0 mjblack 89

$\begin{aligned} & \stackrel{\circ}{\alpha} \\ & \text { in } \\ & \end{aligned}$	ますま゙ま		9oin ๓ัํํํ －	$\begin{aligned} & \text { にo } \\ & \stackrel{\circ}{\circ} \\ & \end{aligned}$	$\begin{aligned} & \text { ö丸 } \\ & \text { oio } \\ & \prod T \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\sim} \\ & \stackrel{0}{0} \\ & \Gamma \end{aligned}$	

00	${ }_{190}^{19}$	${ }_{180}^{180}$	170	160	$\stackrel{1}{150}$	140	130	120	110	100	9	18	70	60	50	40	30	20	10

Cls)

00	190	180	$\stackrel{1}{170}$	$\stackrel{1}{160}$	150	140	130	$\stackrel{1}{120}$	110	100	${ }_{90}$	1	70	60	50	$\stackrel{1}{40}$	1	$\stackrel{1}{20}$	10	0

YN-5-85_fluorine_2ndvialagain.10.fid

MJB-5-173_fluorine.10.fid

 ヘペへへ

$\begin{aligned} & \text { ® } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\sim}{\infty}$		$\stackrel{\check{0}}{\stackrel{0}{\mathrm{~N}}}$		\% m m	$\stackrel{\text { ® }}{\text { ¢ }}$

