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Abstract 

We have investigated the role of surface roughening on the CO2 reduction reaction (CO2RR) over 

Cu. The activity and product selectivity of Cu surfaces roughened by plasma pretreatment in Ar, 

O2, or N2 were compared with that of electrochemically polished Cu those. Differences in total 

and product current densities, the ratio of current densities for HER (the hydrogen evolution 

reaction) to CO2RR, and the ratio of current densities for C2+ to C1 products depend on the 

electrochemically active surface and are nearly independent of plasma composition. Theoretical 

analysis of an electropolished and roughened Cu surface reveals a higher fraction of 

undercoordinated Cu sites on the roughened surface, sites that bind CO preferentially. Roughened 

surfaces also contain square sites similar to those on a Cu(100) surface but with neighboring step 

sites, which adsorb OC-COH, a precursor to C2+ products. These findings explain the increases in 

the formation of oxygenates and hydrocarbons relative to CO and the ratio of oxygenates to 

hydrocarbons observed with increasing surface roughness.
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Electrochemical CO2 reduction reaction (CO2RR) offers a promising route for the production 

of chemicals and fuels using renewable electricity generated from wind and solar energy.1-4 

Among metallic electrocatalysts evaluated for this purpose, copper is the only metal that produces 

hydrocarbons and oxygenated products with high Faradaic efficiency (FE).5-10 Previous studies 

have shown that the activity and selectivity of Cu are strongly dependent on the surface 

morphology of the metal, as well as its local reaction environment (electrolyte composition and 

pH).11-16 For example, Cu(100) and Cu(211) surfaces are more active than Cu(111) surfaces and 

more effective in promoting C-C bond formation on both single crystal Cu electrodes17, 18 and Cu 

nanoparticles.19, 20 Recent theoretical calculations have shown that square sites of Cu(100) bind 

*OCCO and *OCCHO more strongly than do sites on Cu(111), and that the step sites of Cu(211) 

facilitate the kinetics of CO dimerization relative to those on Cu(111), resulting in a higher C2+/C1 

selectivity on square and stepped facets.21, 22  The role of other low-coordination Cu sites beyond 

those present on low-index facets is the subject of continuing discussion. An investigation of the 

CO2RR over size-controlled Cu nanoparticles has also shown that the population of low-

coordination Cu surface sites increases with decreasing Cu particle size (from 15 nm to 2 nm), and 

that high coordination site result in higher H2 and CO selectivities and lower hydrocarbon (CH4 

and C2H4) selectivities.23 By contrast, a comparative investigation of CO2RR on (100)-, (111)-, 

and (751)-preferentially orientated Cu thin film electrodes revealed that both Cu(100) and (751) 

surfaces with Cu coordination numbers from 6 to 8 promote C-C bond formation relative to more 

highly coordinated sites on Cu(111) surfaces.24 More recently, a study of the electrochemical 

reduction of CO has suggested that highly porous Cu electrode could favor C2+ oxygenates 

selectivity with a large suppression of competitive HER; however, the underlying causes for these 

observations remains unclear.25

Oxide-derived Cu with enriched surface grain boundaries have also been reported to be 

efficient for reducing CO2 to multi-carbon products.26-29 It has been hypothesized that this 

enhanced C2+ products selectivity on oxide-derived Cu could arise from surface Cu+ retained under 

reaction conditions and stabilized by subsurface oxygen28, 30 or adsorbed halide anions,31, 32 e.g., 

I‒, based on quasi in situ spectroscopic experiments. However, this hypothesis has been challenged 

by recent DFT calculations,33, 34 18O labeling,35 electrochemical Raman spectroscopy36, 37 and in 

situ synchrotron XAS and XRD experiments,38, 39 suggesting the near-surface oxygen and/or Cu(I) 

species are not sufficiently long-lived to be present under reaction conditions at highly reducing 
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cathode potentials.40 A more plausible interpretation for the enhanced C2+ selectivity of oxide-

derived Cu is offered by a recent theoretical analysis of sites present on a rough Cu nanoparticle. 

This work concludes that  surface twin boundaries in the oxide-derived Cu associated with concave 

defects with respect to Cu(100) planes serve as active sites for C-C bond formation by stabilizing 

OC-COH species, one of the precursors to C2+ products.41

In this study, we investigate the effects of plasma pretreatment of polished Cu foils in different 

gas atmospheres on their CO2RR activity and selectivity. Since O2-plasma treatment will cause 

both chemical and physical modifications to Cu surfaces, we pretreated Cu by Ar+ ion 

bombardment in an Ar plasma in order to isolate the effects of surface roughening. These studies 

show that the changes in the distribution of CO2RR products is attributable to changes Cu surface 

topography created by the plasma pre-treatments. Roughened Cu surfaces containing a high 

proportion of under-coordinated Cu sites that exhibit stronger CO adsorption energies than more 

highly coordinated site present of planar surfaces. Consistent with this finding, the fraction of CO 

formed from CO2 released as CO decreases and the fraction converted to hydrocarbons and 

alcohols increases with increasing roughness. Our experimental efforts are supported by an 

analysis of the distribution of sites on a simulated roughened surface of Cu. This work shows that 

the roughened surface contains a much higher proportion of under-coordinated sites, and in 

particular sites that adsorb OCCOH, a suggested precursor to C2+ products,41 more strongly than 

do the more highly coordinated sites present on a Cu(100) surface. 

Surface Characterization Before and After Plasma Pre-treatment

Figures 1A and 1B show atomic force microscopy (AFM) and scanning electron microscopy 

(SEM) images, respectively of the electrochemically polished Cu foil. Fig. 1C presents the AFM 

topography image of Cu foil after 10-min Ar plasma treatment.  In contrast to the polished foil, 

the Ar plasma-treated foil is much rougher, exhibiting extensive ridges and valleys.42 The 

arithmetic surface roughness factor (Sa) increases from 1.28 nm for the electropolished foil to 7.68 

nm after Ar+ sputtering based on an AFM scan of a 500 nm x 500 nm area (Fig. S1). SEM images 

of Ar plasma treated Cu foil before and after CO2RR electrolysis are shown in Fig. 1D. In 

agreement with the topography determined by AFM, the 2D projection exhibits a surface structure 
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covered with pits and islands generated by Ar+ bombarding and re-deposition of Cu atoms. Similar 

surface roughening effects were also observed for N2 and O2 plasma treated Cu foils (Fig. S2).

 

Figure 1. Cu electrodes characterization. AFM and SEM images of electrochemically polished Cu foil (A, 
B) acquired before and after a 10-min plasma pre-treatment in Ar. Images (A) and (C) show the 
reconstructed 3D topography of the surface obtained from AFM scans, images (B) and (D) show typical 
SEM images of Cu foils taken before and after 1-h CO2RR electrolysis at -1.0 V in CO2-saturated 0.1 M 
CsHCO3.

To further quantify the surface roughness of Cu foils electrodes, we determined the 

electrochemically active surface area (ECSA) by measuring the double-layer capacitances and then 

calculating the relative roughness of plasma pre-treated Cu compared to electropolished Cu (Table 

1 and Fig. S3). In general, all of the plasma treatments increased the roughness of Cu, and 

prolonged pretreatment time led to a more roughened surface. For the same pretreatment duration, 

Cu foils treated in either an Ar or O2 plasma were rougher than that exposed to an N2 plasma. 

These differences are likely due to the larger ion size of Ar+, the more aggressive etching of O2‒,43, 

44 as well as the pronounced surface structural rearrangement caused by removal of oxygen from 

copper oxide during electrochemical reduction.26, 34 We also note that plasma pretreatment in an 
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N2 plasma for more than 10 min did not increase the surface roughness of Cu further, in contrast 

to what was observed for pretreatment in an O2 plasma.

Table 1. Determined surface roughness of post electrolysis Cu foils with different plasma pretreatments.

N2 Plasma Ar Plasma O2 PlasmaElectrode Electro-
polished 10-min 5-min 10-min 20-min 5-min 10-min 20-min

Roughness 1.00 1.57 1.42 2.58 3.64 1.85 2.92 3.93

Figure 2. Chemical state characterization of Cu electrodes. Ex situ (A) XPS and (B) Raman spectra 
recorded on Cu foils after 10-min plasma treatments under different gaseous atmosphere.

Figure 2A shows the ex-situ core level X-ray photoelectron spectra (XPS) of the Cu 2p region 

after plasma treatments in different atmospheres. All four samples show the predominant peak at 

932.4 (Cu 2p3/2) and 952.2 eV (Cu 2p1/2), corresponding to Cu(0) or Cu(I). For the O2 plasma 

treated Cu, two other satellite peaks show up at ~935 eV and ~944 eV, which are assigned to Cu(II) 

species. Evidence for Cu(II) cation was also obtained from the Cu LMM region of the Auger 

spectrum (see Fig. S4). Raman spectra of these four Cu samples are shown in Fig. 2B. No obvious 

Raman scattering feature is observed for electropolished Cu or Cu exposed to a N2 or an Ar plasma. 

By contrast, features for both Cu2O (~218,  402 and 526 cm-1) and CuO (~290, 332 and 617 cm-1) 

are observed after O2 plasma pretreatment,45 in agreement with XPS spectra and Raman studies 

reported previously.28, 32
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7

Electrochemical Activity and Selectivity

Figure 3. Electrochemical reduction of CO2 over Cu foil electrodes after 10-min plasma pretreatments 
under different gaseous atmosphere. (A) Geometric area normalized, (B) ECSA-normalized partial current 
densities and (C) selectivity of major products during CO2RR over Cu foil electrodes after 10-min plasma 
pre-treatments under different atmosphere. 

The electrochemical CO2RR performance of plasma pre-treated Cu foils was evaluated by 1-

h chronoamperometric electrolysis at -1.0 V vs. RHE, for which the CO2 consumption rate is below 

17.0 nmol s-1 cm-2 (Fig. S5).46 0.1 M CsHCO3 was employed as the supporting electrolyte, based 

upon our previous studies showing that Cs+ cations enhance the field stabilization of the 

intermediates critical to the formation C2 products13, 14, 47 (further evidence for influence of cation 

identity is given in Fig. S6). The superficial current densities shown in Fig. 3A all increase with 

plasma pretreatment, in the order of the increasing ECSA. To account for this effect, Fig. 3B shows 

the current densities for all four samples normalized by the ECSA. The ECSA-normalized current 

densities for H2 and CH4 are not strongly changed by plasma pretreatment, whereas those for CO 

and HCOO‒ decreases and those for all C2+ product increases in the order no pretreatment < N2 

plasma pretreatment < Ar plasma pretreatment < O2 plasma pretreatment. We note in particular 

that the rate of CO evolution decreases by more than an order of magnitude upon Ar or O2 plasma 

pretreated Cu compared to that for electropolished Cu, and the rate of C3 products generation - 

allyl alcohol and n-propanol - increases by a factor of 3 to 5. The FEs of the principal products of 

the CO2RR generated on electropolished and plasma pretreated Cu are illustrated in Fig. 3C. After 

10-min plasma pretreatment, the selectivity toward hydrogen evolution (HER) and methane 

generation does not change very much, while the FEs for CO and HCOO‒ decrease in the order of 
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8

polished Cu > N2 plasma pretreated Cu > Ar plasma pretreated Cu ≈ O2 plasma pretreated Cu. By 

contrast, the FEs for C2+ products - C2H4, C2H5OH and n-propanol - follow the reverse trend.

Figure 4. CO2RR products distribution as a function of plasma treatment time. Both (A, B) O2 and (C, D) 
Ar atmosphere plasma pretreatments were plotted. The sum of as-determined overall FEs are varied from 
92.2% to 98.9% and all normalized to 100% in panels (A) and (C) for comparison. 

The similarity of both C2+ product selectivities and specific activities of Cu after Ar or O2 

pretreatment is particularly interesting. Therefore, we investigated the effects of the duration of 

plasma pretreatment in Ar and O2 on the distribution of CO2RR products. Fig. 4 shows these results 

for durations of 0, 5 10, and 20 min, with the electropolished sample referenced as 0-min. The 

normalized FEs (referenced to 100%) are given in Figs. 4A and 4C. The FE for HER is cyan 

column, the FE for C1 products (HCOO‒, CO and CH4) is orange column, the FE for C2 products 

(C2H4 and C2H5OH) is purple column, and the FE for C3 products (allyl alcohol and n-propanol) 

is magenta column. The selectivity ratio of HER/CO2RR (black line) and the C2+/C1 ratio (red line) 

are illustrated in Figs. 4B and 4D. We observe similar product distributions throughout the time-
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9

course for both O2 and Ar plasma pre-treatments, which could largely rule out the (sub)surface 

oxygen effect. HER decreases to below 30% after 5-min plasma exposure in both cases and levels 

off with prolonged exposure. The FE for C1 products also decreases from 0 to 10 min, then 

increases again due to enhanced methane evolution after a 20-min pretreatment. Over the same 

pretreatment time, the FE for C3 alcohols reaches ~10%, whereas the FE for C2+ products rises to 

~60%. The ratio of C2+/C1 reaches a maximum value of ~9 after 10-min of pretreatment in either 

an Ar or O2 plasma.

Since the Cu surface roughness increases with prolonged plasma-treatment time, we assessed 

whether the changes shown in Fig. 4 correlate with surface roughness. The choice of which product 

ratios to plot is guided by recent theoretical studies of the CO2RR mechanism, which suggest that 

2e‒ products (HCOO‒ and COg) are produced via the adsorbed intermediates *HCOO and *COOH, 

respectively, whereas both CH4 and C2+ products are produced via the reduction of *CO.5, 6, 48-51 

Therefore, as illustrated in Fig. 5A, *CO serves as the key intermediate to CH4 and C2+ products. 

Figures 5B and 5C plot the selectivity ratios for C2+ products versus C1 products (HCOO‒, CO, 

and CH4) and versus CH4 alone, respectively. The C2+/C1 ratio reaches a value of ~9 for a roughness 

of ~3 and then decreases thereafter, regardless of whether Cu is pretreated in an Ar or O2 plasma.  

By contrast, the C2+/CH4 ratio increases monotonically to a value of 30 in the case of Ar plasma 

pretreatment but reaches a maximum value of ~20 and then decreases in the case of O2 

pretreatment.
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10

Figure 5. CO2RR products distribution as a function of Cu surface roughness. (A) Simplified flowchart of 
CO2RR mechanism leading to C1 and C2+ products generation, * corresponds to adsorbed species, >2e 
reduction products of CH4 and C2+ that go through the reduction of *CO intermediate (*COR) are marked 
in light blue. (B) C2+/C1 ratio, (C) C2+/CCH4 ratio, (D) *COR/(CO(g) + *COR) ratio, and (E) 
oxygenate/hydrocarbon (only >2e reduction products) ratio.

Figure 5D show that the fraction of CO produced by the CO2RR converted to CH4 and C2+ 

products increases from 0.68 for a roughness of 1.0 to 0.96 for a roughness of 1.5. Further 

increasing the roughness to ~4.0 increases this ratio to 0.98. The trend observed in Fig. 5D suggests 
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11

that the binding energy for CO increases monotonically with surface roughness, consistent with 

temperature-programmed desorption experiments26 and recent theoretical calculations on 

simulated Cu particle surface.41, 52 The theoretical work also predicts that the stability of *OC-

COH, a critical precursor to C2 products, increases with surface roughness and in particular with 

the formation of concave sites at grain boundaries between Cu(100) and Cu(111) surfaces. The 

downturn in the ratio of FEs for C2+ product formation and CH4 formation seen in Fig. 5C when 

the roughness exceeds ~3.0 for O2 plasma pretreated Cu might be attributable to the formation of 

sub-nanometric Cu clusters (i.e., surface dimer and trimer adatoms) that could serve as active sites 

for selective CO2-to-CH4 conversion.53 Finally, Fig. 5E shows the surface roughness dependence 

of the ratio of FEs for C2+ oxygenated products to that for C2+ hydrocarbons. The selectivity to C2+ 

oxygenated products (ethanol, allyl alcohol and n-propanol) increases by a factor of two with 

increasing roughness, most likely due to the lower surface coverage by *H, as reflected in the HER 

trend of Fig. 4, and the reduced likelihood of hydrogenating C–C intermediates on the roughened 

Cu surfaces. Similarly, the selectivity to HCOO‒ decreases as the roughness increases from 1.0 to 

2.6, and levels off thereafter (Fig. S7). We suggest that this trend is due to the lower availability 

of terrace sites on roughened Cu surfaces, which are needed to bond bidentate *HCOO, the 

precursor to HCOOH and hence HCOO‒ upon desorption of HCOOH into the alkaline electrolyte.6

A further factor that can contribute to enhancing the ratio of C2+/CH4 on roughened vs smooth 

Cu surfaces is the higher local pH near the surface of the roughened Cu; therefore, we considered 

the possible effect of pH on the observed results. The higher pH near the roughened surface is 

ascribable to the higher rate of OH‒ generation rate per geometric electrode area. We note that this 

proposal is consistent with the control experiment presented in Fig. S8, illustrating the effects of 

increased bicarbonate concentration, and the earlier findings of Hori et al., who reported a 4-fold 

enhancement in the C2+/CH4 ratio upon increasing the surface pH from 8.5 to 9.5.54 In our studies, 

we observed only a ~2.6-fold increase in the C2+/CH4 ratio due to an estimated increase in the 

surface pH change from 9.76 to 9.88 for Cu treated for 5-min vs. 10-min in an Ar plasma. The pH 

for these experiments was estimated assuming a mass-transfer boundary layer thickness of ~40 

µm and a bicarbonate concentration of 0.1 M.46, 55 We also note that it has been reported that the 

increase in surface pH as a consequence of electrolyte polarization should suppress CH4 production, 

but keep C2+ activity constant at a given potential.56, 57 Figure 3B shows that while the intrinsic 

activity (ECSA-normalized partial current density) for forming CH4 decreases following plasma 
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12

pretreatment, the intrinsic activities for producing C2+ products, especially oxygenated products, 

increases. These observations suggest that the enhanced C2+ selectivity observed after plasma 

treatment is not attributable to the small change in the local pH. 

Table S1 compares our results on the effects of surface roughness with those previously 

reported. Various methods have been used to roughen the surface of Cu. These include reduction 

of copper oxides produced by thermal and/or plasma oxidation, potential cycling in halogen-

containing solutions, dendrite growth, etc. Regardless of the method used to achieve roughening, 

increased surface roughness generally leads to an enhanced C2+ FE and C2+/C1 ratio. Most authors 

have attributed these effects enhanced surface roughness to a greater abundance of under-

coordinated surface sites and defective sites that bind *CO strongly and promote its further 

reduction to C-C bond formation. Unfortunately, these results cannot be compared with those 

reported here because of large difference in the modes of sample preparation and conditions for 

their inveistgation.

Theoretical Simulation and Analysis

Insights into why surface roughening causes an increase in the formation of C2+ products can 

be gained by atomic-level analysis of the Cu surface created by computational simulation of  Ar+ 

bombardment roughening of a Cu(111) surface followed by thermal relaxation of the resulting 

surface. The simulation of roughening begins with a 17.6 nm × 17.4 nm surface that 10.1 nm thick, 

which contains ~ 5,422 total surface atoms (see Fig. 6A). Figure 6B and the Supporting Movie 1 

show that after bombardment of this surface with 1300 Ar+ cations, the Cu surface exposes 10,433 

atoms, corresponding to an increase in surface roughness of 1.93. The simulated untreated Cu 

surface and the plasma-treated surface resemble the topography and roughness of the experimental 

observations, as seen in Figure 1.
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13

Figure 6. Active site visualization by ReaxQM-Machine Learning. Images of the computationally produced 
Cu surface of (A) electro-polished and (B) after Ar plasma bombardment, and (C) predicted distribution of 
CO adsorption energies, ΔECO. The three dashed lines indicate the CO adsorption energies on Cu(111), 
(100) and (211).

The ReaxQM-Machine Learning approach was used to predict the distribution of CO binding 

energies, ΔECO, for both simulated electrochemically polished Cu and the Ar plasma roughened 

surfaces.41, 58 The electropolished Cu, shown in Fig. 6A, is dominated by close-packed low index 

sites, and, therefore, the mean values of ΔECO are close to those of Cu(111), (100) and (211) 

surfaces (Fig. 6C). By contrast, a much higher population of stronger CO binding sites, ranging 

from -1.10 to -1.54 eV (red sites along the ridges in Fig. 6B and the columns left of the Cu(211) 

line in Fig. 6C), appear after plasma pretreatment. The increased number of strong CO binding 

sites is consistent with the experimental observation of a reduced selectivity to CO formation 

following plasma pretreatment to roughen the catalyst surface. Since the adsorption of *CO and 

*H are expected to compete on the surface of Cu, the stronger adsorption of CO on roughened Cu 

is expected to result in a reduction of the *H/*CO. This reasoning would explain the increase in 
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the formation of oxygenated relative to hydrocarbon products observed with increasing roughening 

seen in Fig. 5E.

Figure 7. Visualization of square sites on computationally simulated Cu surfaces. (A) Electropolished Cu 
and (B) Ar plasma pretreated Cu, the surface square sites are marked in blue color. (C) Zoomed-in atomic 
structure of randomly chosen square sites on the plasma-treated Cu surface, both the square sites and the 
neighboring Cu step sites (if any) are highlighted in red.

In our previous work we have employed the formation energy of *OC-COH (ΔEOCCOH) as a 

descriptor for the selectivity of C2+ products formed during the CO2RR, and have shown that the 

mean value of ΔEOCCOH decreased from ~1.35 eV for random surface sites to ~0.50 eV for surface 

square sites.39 We also noted that concave defects located at Cu(100) plane next to a (111) step 

exhibited the most favorable values of ΔEOCCOH for C2+ selectivity. In the present study, we 

identified the surface square sites on the simulated Cu surfaces for comparison as shown in Fig. 

7A and 7B. The percentage of square sites to overall surface atoms increased from 20.9% on the 

Page 14 of 20

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

polished Cu surface to 38.5% on the surface produced by Ar plasma pretreatment. Fig. 7C shows 

the atomic structures of randomly chosen square sites occurring on the simulated surface produced 

by plasma treatment. The sites are similar to the Cu(100) configuration but have abundant 

neighboring step sites. As noted, the significantly increased percentage of surface square sites 

favors C-C bond formation and provides a rational for the enhanced C2+ selectivity that correlates 

with increased surface roughening caused by plasma pretreatment.

In conclusion, the present study investigated the effects of surface topography on the activity 

and product selectivity of electrochemical CO2 reaction, demonstrating the distribution of products 

produced by CO2RR on metallic Cu changes with Cu surface topography created by plasma 

pretreatment. The activity and product selectivity of electrochemically polished Cu was compared 

with those of roughened Cu surfaces prepared by different plasma pretreatments. The differences 

in overall CO2RR activity from different plasma pretreatments are attributable changes in the 

electrochemically active surface area. Of particular note, we observe that with increasing surface 

roughness, the ratio of current densities for CO2RR to HER, the ratio of the current densities for 

COR to the sum of the current densities for CO formation and COR, and the ratio of current 

densities for formation oxygenates to hydrocarbons all increase. These trends are interpreted based 

on an atomic-level analysis of the topogrphy of roughened Cu surface. We find that CO formed 

by the electrochemical reduction of CO2 binds more strongly on the roughened surface than on the 

electrochemically polished surface, suggesting that the ratio of adsorbed H to CO decreases with 

increasing surface roughness. These trends explain why the fraction of CO produced by CO2 

reduction converted to reduced products and the fraction of these products appearing as oxygenates 

rather than hydrocarbons increase with increasing surface roughness. A further effect of increasing 

surface roughness is an increase in the fraction of final products (oxygenates and hydrocarbons) 

containing two or more C atoms. Our analysis shows that surface roughening increases the fraction 

of square sites similar to those on a Cu(100) surface but having abundant neighboring step sites. 

Prior work has shown that such sites enhance the formation of C-C bonds required to form C2+ 

products during the electrochemical reduction of CO2. Finally, we find that increased roughening 

of the Cu surface increases the ratio of current densities for C2+ to C1 (CO, HCOO‒, and CH4) 

products up to a maximum value of ~ 9 for a surface roughness of ~ 3. Most of this downturn is 

ascribed to the enhanced formation of CH4 on surfaces with roughness in excess of 3. The 

enhanced formation of methane on highly roughened surfaces is attributed to the formation of 
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surface dimer and trimer clusters on the Cu surface that have been shown by theoretical calculation 

to serve as active sites for selective conversion of CO2 to CH4. In summary, the results of the 

present work highlight the importance of surface topography and defect sites on the observed CO2 

reduction activity and selectivity, and suggest that rational surface structure engineering could 

contribute to the development of Cu electrocatalysts exhibiting a high selectivity to multi-carbon 

products.
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