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ADDING A POINT TO CONFIGURATIONS IN CLOSED BALLS

LEI CHEN, NIR GADISH, AND JUSTIN LANIER

Abstract. We answer the question of when a new point can be added in a continuous way to configurations

of n distinct points in a closed ball of arbitrary dimension. We show that this is possible given an ordered

configuration of n points if and only if n 6= 1. On the other hand, when the points are not ordered and the

dimension of the ball is at least 2, a point can be added continuously if and only if n = 2. These results

generalize the Brouwer fixed-point theorem, which gives the negative answer when n = 1. We also show

that when n = 2, there is a unique solution to both the ordered and unordered versions of the problem up

to homotopy.

1. Introduction

Let Bm be the closed ball of dimension m, with m ≥ 1. This paper answers the following basic question:

Is there a continuous rule that adds a new distinct point to every configuration of n distinct

points in B
m?

The challenge here is that the new point must be distinct from all of the existing ones, and it is not clear

whether such a choice can be made continuously.

Example 1 (Case n = 1: Brouwer fixed-point theorem). Given one point in B
m, a continuous choice

of a second distinct point can be thought of as a continuous function from the closed ball to itself with no

fixed points. By the Brouwer fixed-point theorem [Bro11] no such continuous function exists, and therefore

introducing a second distinct point continuously is impossible.

When extending the Brouwer fixed-point theorem to n > 1, the question splits into two versions: either

the n points are given with an ordering (p1, . . . , pn), or the points instead form an unordered set. The first

author addressed both versions of this question with respect to point configurations lying in the infinite

plane, in the 2-sphere, and in closed surfaces Sg with g ≥ 2 in [Che17] and in her joint work with Salter

[CS17].

It is perhaps surprising that having more points to avoid does not necessarily make the task of adding a

point harder.

Example 2 (Case n = 2: midpoint). Given two distinct points in B
m, their midpoint provides a continuous

way to introduce a third point, distinct from the existing two. In fact, in §4 we show that this midpoint

construction is the unique way to add a point when n = 2 up to homotopy.

Let us state more formally the problem of continuously adding a point to a configuration of n points

in B
m, which from here on will be abbreviated to B. Let PConfn(B) denote the pure configuration space

of n distinct ordered points in B, topologized as a subspace of (B)n. A continuous map PConfn(B) → B

is said to ‘add a point’ if the image of every configuration (p1, . . . , pn) is a point p0 distinct from all pi

with i ≥ 1. Equivalently, consider the map gm,n : PConfn+1(B) → PConfn(B) that forgets the 0th point

(p0, p1, . . . , pn) 7→ (p1, . . . , pn). The problem of continuously introducing a new point is precisely the question

of finding a continuous section for gm,n.
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Next, the symmetric group Σn acts on ordered configurations by permuting the indices, and the quotient

Confn(B) := PConfn(B)/Σn is the configuration space of n distinct unordered points. The map gm,n

forgetting the point p0 is Σn-equivariant and descends to a map ḡm,n : PConfn+1(B)/Σn → Confn(B). With

this, our problem of adding a point distinct from a given unordered set of n points is the problem of finding

a section for ḡm,n.

The easy positive result for n = 2 in Example 2 suggests that the problem for larger n might also have

a solution. However, this is where the two versions of the problem part ways: the ordered version extends

the n = 2 case by admitting similar solutions, while the unordered version reverts back to the behavior at

n = 1.

Theorem A (Ordered). In dimension m ≥ 1 and with n ≥ 1 points, the forgetful map gm,n has a section

if and only if n 6= 1. That is, one can continuously add a new point to an ordered configuration exactly when

it consists of 2 or more ordered points.

Theorem B (Unordered). In dimension m ≥ 2 and with n ≥ 1 points, the forgetful map ḡm,n has a

section if and only if n = 2. That is, one cannot continuously add a new point to an unordered configuration

unless it consists of precisely 2 unordered points.

As for the exceptional case of n = 2,

Theorem C (Uniqueness for n = 2). In every dimension m ≥ 1, the midpoint construction of Example 2

homotopically unique. That is, every section of gm,2 or ḡm,2 is homotopic to the midpoint construction via

a homotopy through sections.

Note that the case of points on a line segment (m = 1) is excluded from Theorem B. In this case, the

unordered version coincides with the ordered one, as the points in an unordered configuration are nevertheless

forced into a linear order. We may therefore add a point continuously to a configuration of n points in B
1

as long as n 6= 1.

Recasting Theorem B as a direct generalization of Brouwer’s fixed-point theorem one can say that, except

for when n = 2, every continuous map f : Confn(B) → B has a ‘fixed point’. This is meant in the sense that

there must exist some configuration S = {p1, . . . , pn} whose image under f lies inside S.

We remark that the negative results in Theorem B contrasts with the analogous problem of introducing

a new point to an unordered configuration of points in R
m (or equivalently, on the open ball). This latter

problem always has a solution: add a point ‘at infinity’, i.e., place it very far away from all the others

[Che17]. Such a construction is of course not possible on the closed ball. However, since the configuration

spaces of the open and closed balls are homotopy equivalent (see §3), there is no purely homotopy theoretic

obstruction to finding a section in the case of a closed ball. This means that a different approach is needed.

Even more, many standard tools of algebraic topology fail in our context since the forgetful map gm,n is not

a fibration: it has fibers of distinct homotopy types, depending on how many points lie on the boundary of

the ball.

Outline. We treat the easy ordered version of the problem in §2 by briefly proving Theorem A. The

main argument of our proof of Theorem B proceeds by contradiction. Any section of ḡm,n induces an Σn-

equivariant section of gm,n : PConfn+1(B) → PConfn(B). Theorem B is then proved by pulling back a

cohomology class in two different ways and arriving at a contradiction. We conclude by proving Theorem C

in §4.
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2. Case of ordered configurations

In this section we prove Theorem A by generalizing the midpoint construction of Example 2.

Proof of Theorem A. The case n = 1 is covered by Example 1. Otherwise, fix n ≥ 2. For any pair (i, j)

with 1 ≤ i, j ≤ n and i 6= j, the line segment [pi, pj] is contained within B. Let vij := pj − pi be the vector

pointing from pi to pj. Further, let di := min {‖pk − pi‖ : k 6= i} be the minimal distance between pi and

any other point in the configuration. One can then introduce a new point “close” to pi, lying at a distance

di/2 from pi along the interval [pi, pj ]: explicitly, p0 := pi +
di

2‖vij‖
vij . The added point p0 is clearly distinct

from all other points, and it depends on the configuration continuously since di and vij do so. �

We remark that the first author gave a prior classification of sections between configuration spaces (see

the discussion preceding [Che17, Theorem 1.1]). Under this classification, the above construction of adding

a point is of the type ‘add close to pi’. Let us also call attention to the fact that the above construction

relies on singling out two of the points, which cannot be done continuously in the unordered version of the

problem when n > 2.

3. Case of unordered configurations

In this section we prove Theorem B, which says that in dimension m ≥ 2 there is no section of ḡm,n

except when n = 2. We begin with a few preliminary observations.

First, generators and relations for the integral cohomology ring of PConfn(R
m) were produced by Arnol’d

in dimension m = 2 and by Cohen for general m [Arn69, Coh88]. This cohomology ring is generated by

classes

Gab ∈ Hm−1(PConfn(R
m);Z)

for distinct 1 ≤ a < b ≤ n, where the generator Gab measures the winding of point a around point b. The

induced Σn-action is given by σ∗(Gab) = Gσ(a)σ(b), where Gba = (−1)mGab. This description applies equally

well to the closed ball as the following argument shows. Since R
m is homeomorphic to the open unit ball U,

their configuration spaces are also equivariantly homeomorphic. Then scaling by 0 < t < 1 gives a sequence

of inclusions

tU ⊂ tB ⊂ U ⊂ B

with compositions isotopic to the identity. It follows that U and B have equivariantly homotopy equivalent

configuration spaces, and in particular they have the same cohomology.

Our second observation is that any section s̄ of ḡm,n for the unordered configuration spaces lifts to a

Σn-equivariant section s of gm,n for the ordered spaces. This follows from the lifting criterion for connected

coverings.

Third, we leverage the fact that an equivariant section s of gm,n induces a solution to a related section

problem where the configurations have the added restriction that the point p1 is constrained to the boundary

sphere. This solution gives us a map, whose pullback on cohomology we compute in two ways, leading to a

contradiction. More precisely, let U ⊂ B denote the interior of the closed ball and consider the subspace of

PConfn(B) in which only the 1st point lies on the boundary sphere Sm−1:

B1
n := {(p1, . . . , pn) ∈ PConfn(B) | p1 ∈ ∂ B, (p2, . . . , pn) ∈ PConfn(U)} ∼= Sm−1 × PConfn−1(U)

3



Define B1
n+1 ⊆ PConfn+1(B) similarly. Lastly, let E1

n+1 denote the preimage g−1
m,n(B

1
n) and consider the

inclusion B1
n+1 →֒ E1

n+1. The difference between these two spaces is that in the larger space the additional

point p0 may lie on the boundary ∂ B, while in the smaller space this is not allowed. Despite this apparent

difference, we have the following.

Lemma 3.1. The inclusion B1
n+1 →֒ E1

n+1 is a homotopy equivalence.

Proof. Choosing an inward-pointing vector field that vanishes on the point p1 ∈ ∂ B, one can push any other

point into the interior of B. Explicitly, the vector field −(p− p1) on B gives rise to a smooth vector field on

PConfn+1(B). Its flow produces an isotopy Φ1
t such that for all t > 0,

Φ1
t (B

i
n+1) ⊂ Φ1

t (E
i
n+1) ⊂ B1

n+1 ⊂ E1
n+1

thus establishing the homotopy equivalence. �

Consider the compatible projections onto the 1st coordinate

B1
n+1

##●
●

●

●

●

●

●

●

gm,n

��
B1

n
// Sm−1.

Pulling back an orientation class [Sm−1] ∈ Hm−1(Sm−1), we get a class 0 6= X1 ∈ Hm−1(B1
n) whose pullback

will also be abusively denoted by X1 ∈ Hm−1(B1
n+1). These classes measure how many times the point p1

wraps around the boundary sphere.

Lemma 3.2. Under the inclusion ι : B1
n+1 →֒ PConfn+1(B) we have

ι∗(G1a) = X1 for all 1 < a

and the class Gab for 1 < a, b pulls back to Gab ∈ Hm−1(PConfn(U)). The same is true for B1
n ⊆ PConfn(B).

Via the homotopy equivalence B1
n+1 ≃ E1

n+1, we consider Lemma 3.2 as a statement about E1
n+1 as well.

In particular we shall keep the notation X1 for the corresponding class in Hm−1(E1
n+1).

Proof of Lemma 3.2. These facts are geometrically obvious: the class Gab is pulled back from Sm−1 under

the ‘Gauss map’, sending a configuration to the direction vector from pa to pb. When 1 < a, b, this Gauss

map factors through the projection B1
n+1 → PConfn(U), as claimed.

Otherwise, if 1 < a then since p1 lies on the boundary and pa is internal, the Gauss map is homotopic

to a map in which pa is fixed at the origin. But when pa = 0 the Gauss map coincides with the projection

which records only p1. �

With these facts in hand, we can now complete our proof.

Proof of Theorem B. Let m ≥ 2. If n = 1, we have no section by Example 1. If n = 2, we have a section

by Example 2. Otherwise, let n ≥ 3. Assume that s̄ is a section of ḡm,n and let s be its Σn-equivariant

lift to a section of gm,n. The assumption that s is a section forces s(B1
n) ⊆ E1

n+1, thus it restricts to a

section s′ : B1
n → E1

n+1 of gm,n. From this one observes that (s′)∗X1 = X1. Let us show that this leads to a

contradiction.

Since the classes Gab span Hm−1(PConfn(B);Z), there is an expansion

s∗(G01) =
∑

1<a≤n

λaG1a +
∑

1<a<b≤n

δabGab

4



for some integer coefficients. Equivariance implies that a permutation σ ∈ Σn fixing 1 will preserve this

expansion, and therefore λa = λb for all 1 < a < b ≤ n. Denote this constant value by λ. Similarly, it also

follows that all δab must be equal, say to the constant δ. We thus get

s∗(G01) = λ
∑

1<a≤n

G1a + δ
∑

1<a<b≤n

Gab. (1)

Next, we have a commutative diagram

E1
n+1

ι // PConfn+1(B)

B1
n

s′

OO

ι // PConfn(B)

s

OO

through which the pullback of the class G01 ∈ Hm−1(PConfn+1(B)) along the two different paths must agree.

Pulling it back through the top-left corner,

G01
ι∗

7−→ X1
(s′)∗

7−→ X1.

But pulling back through the bottom right corner, one first applies s∗ for which we have the expansion (1).

Since the restriction of Gab with 1 < a, b to B1
n gives the class Gab again and each G1a restricts to X1, we

obtain the following:

ι∗s∗(G01) = λ(n− 1)X1 + δ
∑

1<a<b≤n

Gab.

The above equation has to be equal to the pulling back from the top-left corner, which is X1. But since the

Künneth formula for the product B1
n
∼= Sm−1 × PConfn−1(U) implies that Xi is linearly independent from

the other classes Gab, such an equality is possible only if δ = 0 and λ(n − 1) = 1. But λ is an integer and

n > 2 which gives a contradiction. �

4. Uniqueness of the midpoint construction for n = 2

We now show that the midpoint section from Example 2 is unique up to a homotopy through sections.

Proof of Theorem C. Let us denote the midpoint section by M : PConf2(B) → PConf3(B) and suppose that

s is another section of gm,2, possibly Σ2-equivariant. We construct a homotopy between s and M through

sections, such that if s was equivariant then so will be the homotopy.

If for every configuration s(p1, p2) = (p0, p1, p2), the added point p0 lies either between p1 and p2 or off

of the line connecting them, then the straight-line homotopy Ht := (1 − t)s + tM demonstrates the claim.

With this, the uniqueness problem is reduced to finding a homotopy to a section possessing this property.

The idea goes as follows. Given a configuration (p1, p2) we let the points repel each other, moving

outwards along the line connecting them until they hit the boundary. By applying the section s to this

motion, one gets a path of configurations of 3 points, where at the end of the process we have p1 and p2 on

the boundary and p0 somewhere in B. Thus if p0 is on the line containing p1 and p2, it must lie between

them. On such a configuration one can perform the straight-line homotopy to the midpoint. However, to

remain within sections of gm,2, we must apply the aforementioned process while globally scaling B down so

that overall the points p1 and p2 do not move.

Now more explicitly, for any configuration c = (p1, p2), let Lc be the straight line passing through it.

Then Lc intersects ∂ B at two distinct points q1 and q2, labeled so that qi is closer to pi. Let xc be the
5



unique point on the line Lc from which the ratios of ‖qi − xc‖ to ‖pi − xc‖ are equal for i = 1, 2, and denote

this common ratio by rc. Then the isotopy

hc
t : v 7→ ((1 − t) + rct)(v − xc) + xc

is a scaling of Rm out from xc at a linear rate, and hc
0 = Id while hc

1 : pi 7→ qi for i = 1, 2. Note that since

hc
t is scaling out from a point inside B, the image of B contains B at every time t.

Now, since hc
t and (hc

t)
−1 are injective, they induce Σn-equivariant isotopies of the configuration spaces

(Hc
t )

±1 : PConfn(R
m) → PConfn(R

m) by applying them to a configuration diagonally. Lastly, it is clear that

Hc
t (p1, p2) is contained in B at all times 0 ≤ t ≤ 1, and that everything in sight depends on c continuously

(even algebraically).

A homotopy through sections is then given by

st(c) := (Hc
t )

−1 ◦ s ◦Hc
t (c)

This map acts by expanding the ball, using s to add a point at every time t and then contracting the ball

back – thus producing a path of configurations in which (p1, p2) never moves. The section s1 has the property

that allows us to connect it to M by a straight-line homotopy.

Lastly, if s was Σ2-equivariant, then st is a composition of equivariant maps and is thus itself equivariant.

�
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