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In this work, we consider a Casimir apparatus that is put into free fall (e.g., falling into a black hole).
Working in 1þ 1D, we find that twomain effects occur: First, the Casimir energy density experiences a tidal
effect where negative energy is pushed toward the plates and the resulting force experienced by the plates is
increased. Second, the process of falling is inherently nonequilibrium and we treat it as such, demonstrating
that the Casimir energy densitymoves back and forth between the plates after being “dropped,”with the force
modulating in synchrony. In this way, the Casimir energy behaves as a classical liquid might, putting
(negative) pressure on thewalls as it moves about in its container. In particular, we consider this in the context
of a black hole and the multiple vacua that can be achieved outside of the apparatus.
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I. INTRODUCTION

The Casimir effect in flat space causes two distinct
objects (such as plates, as Casimir originally considered
[1]) to attract with a pressure that is diminished as the
objects recede (see, e.g., [2]). There are two competing
ways of conceptualizing the force, one based on the van der
Waals picture of fluctuating dipole moments interacting
through the photon field, and the other on the QED vacuum
energy changes between the plates. These conceptualiza-
tions are not in conflict; in principle they are two different
ways of doing the same energy bookkeeping, though in
practice the experimental regimes where each is useful are
complementary [3]. In this work we concentrate on the
vacuum-energy picture, in a highly idealized model. As we
will show, the energy density between the objects behaves
like a fluid: it is subject to both tidal forces and

nonequilibrium effects (including the so-called dynamical
Casimir effect [4–6]).
The subject of quantum field theory in a one-dimen-

sional moving cavity (hence, two accelerating, perfectly
reflecting boundaries) was initiated by Moore [7].
Independently, DeWitt [8] studied the effect of a single
accelerating boundary, which provides the foundation of
the dynamical part of the effects predicted by Moore. The
theory was further developed in a series of papers [9–12],
the last three of which moved into the context of curved
space-time. The most general situation thus combines
three ingredients: space-time curvature (possibly time-
dependent), moving boundaries (causing the particle cre-
ation now commonly known as dynamical Casimir effect),
and a cavity of finite size (creating the vacuum energy that
generalizes the true, static Casimir effect). We use the
general theory in Davies–Fulling [11] as a starting point for
our analysis. There, however, little attention was paid to the
combination of curvature with finite size, which is the
primary concern of the present paper.
Since the 1970s, the study of the dynamical Casimir

effect in a cavity has largely developed independently of its
curved-space origins [13,14]. The dynamical Casimir effect
has attracted interest with analogies in superconducting
circuits [5] that have seen experimental verification [6].
Developments that include effects of the discrete cavity
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spectrum include inverse solutions to Moore’s original
equation [15], nonrelativistic perturbative solutions [16],
solutions with constant relative velocity [17,18], and
vibrating boundaries [19–21] among others. We now add
to this list an apparatus in free fall.
In curved space, the photon propagator changes between

the plates and so one expects the Casimir effect to be
affected. The Davies–Fulling papers considered the exactly
solvable situation of a massless scalar field in two-dimen-
sional space-time. The qualitative picture is similar for
(e.g.,) four-dimensional electrodynamics, but explicit cal-
culations are much harder.
Consider a Casimir apparatus (precisely, a 1þ 1D scalar

field theory in a cavity) where two plates are kept a fixed
distance, L, from one another and their center of mass falls
along a geodesic. To understand how the force can be
modified by curvature, it is useful to consider the analogous
system of a box full of fluid as in Fig. 1. In thermodynamic
equilibrium, the gas exerts a pressure on the walls of the
box, equal on all sides. Now, consider that we take this box
and drop it; two things should happen. First, the particles
will be put out of equilbrium and will “slosh” around the
box causing a different pressure at different times. Second,
tidal effects will push some of the gas to either side of the
box, effectively causing an added pressure on those walls.
Now return to the Casimir apparatus. At rest in flat space it
exhibits a normal Casimir effect and the (regularized)
energy between the plates is flat (constant) between them.
We shall show that when we drop this apparatus two things

occur. First, the system is thrust out of equilibrium, as one
can see explicitly from the energy density, which begins to
change in time (it “sloshes” back and forth with period
2L=c). Second, the energy density exhibits a tidal effect
whereby negative energy density moves toward the plate.
While the total Casimir energy is less than in free space in
magnitude, the pressure on the plates increases. So far, it is
in direct analogy with particles; however, this analogy does
break down when we consider that particle number is not
conserved and, quite generally, moving plates will create
excitations that will contribute to the energy density.
Nonetheless, those dynamical terms are easily identified
and characterized, as we will see.
In Sec. II we review the basic theory and what is already

known about this problem. Then, in Sec. III we develop a
general theory to handle two moving plates, and also a
perturbation theory for detailed study of a free-fall Casimir
apparatus with fixed proper distance between the plates. In
Sec. IV we calculate all relevant terms in the energy-
momentum tensor inside and outside of the Casimir
apparatus. And in Sec. V we fully explore the force on
the plates and the energy density between them—observing
explicitly the tidal and nonequilibrium Casimir effects.
Lastly, in Sec. VI we apply all of this to the case of a
Casimir apparatus falling into a black hole and find that the
Casimir attraction between the plates increases from both
the tidal effects and the dynamical effects.
Throughout this work, we use the standard conventions

ℏ ¼ 1 ¼ c, and for consistency with the 1970s literature the
metric signature is (þ−) (i.e., the minus sign is associated
with the spatial dimension).

II. PRELIMINARIES

We are considering a 1þ 1D scalar field theory defined
by the action

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ; ð1Þ

where ϕ is the field and gμν is the metric tensor.
The line element (and hence metric) in 1þ 1D can

always be written—nonuniquely—in the conformally flat
form

ds2 ¼ Cðu; vÞdudv; ð2Þ

where ðu; vÞ are null coordinates (u ¼ t − x and v ¼ tþ x
where t and x are respectively timelike and spacelike
coordinates), and Cðu; vÞ is the conformal factor. The wave
equation in these coordinates is simply ∂u∂vϕ ¼ 0. These
coordinates also imply a natural set of Cauchy surfaces
defined by the timelike vector field ∂t ≡ 1

2
ð∂u þ ∂vÞ.

Quantizing the field with these surfaces gives us positive
energy modes, satisfying i∂tϕ ¼ ωϕ with ω > 0.

FIG. 1. Just as particles in a falling box experience a tidal force
which forces them to the sides (right), the negative Casimir
energy experiences a similar tidal force (left). The result, much
like the box, is an increase in (negative) Casimir pressure on the
two plates. Additionally, a falling Casimir apparatus is inherently
dynamical, and excitations will be created (not pictured) both
outside and inside the box.
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The only nonzero Christoffel symbols for this metric are

Γu
uu ¼ ∂u logC; Γv

vv ¼ ∂v logC ð3Þ

and the Ricci curvature scalar (which, in 1þ 1D, com-
pletely determines the geometry locally) is

R ¼ −4
∂v∂u logC

C
¼ −□ logC: ð4Þ

A key observation present in the very early works
[7–9,11,22] on the subject is that the subset of conformal
transformations u → ū ¼ fðuÞ and v → v̄ ¼ gðvÞ leave the
metric conformally flat but modify the conformal factor:

Cðu; vÞ → C̄ðū; v̄Þ ¼ Cðu; vÞ
f0ðuÞg0ðvÞ ; ð5Þ

then the physics, boundary conditions, and causal structure
dictate how to choose f and g.
In order to define a “vacuum” state, we need a timelike

vector field; it defines a set of Cauchy surfaces upon which
we can write a Hamiltonian operator H and hence arrive at
a preferred vacuumlike state j0i. This vector field is
conveniently encoded in the coordinates we use by ∂t ¼
1
2
ð∂u þ ∂vÞ, so a “conformal coordinate transformation” is

equivalent to picking a new vector field with which to
define H; this gives the construction a more intrinsic
geometrical flavor, as −C is the norm of the vector field
and R can be rewritten as in the right member of (4) [23]. In
general, different vector fields give different states j0i.
That difference is highlighted by the expectation value

(in j0i) of the energy-momentum tensor [11], the formula
for which is

hTμνi ¼ θμν −
1

48π
Rgμν; ð6Þ

where, in the case of two Dirichlet plates [ϕð0Þ¼0¼ϕðLÞ]
separated by a coordinate distance L,

θuu ¼
1

24π
FuðCÞ −

π

48L2
; ð7Þ

θvv ¼
1

24π
FvðCÞ −

π

48L2
; ð8Þ

θuv ¼ θvu ¼ 0; ð9Þ

with

FxðfÞ ¼
f00ðxÞ
fðxÞ −

3

2

�
f0ðxÞ
fðxÞ

�
2

: ð10Þ

The quantity θμν naturally breaks up into two terms,
obtained from Eqs. (7) and (8) as

θdynuu ¼ 1

24π
FuðCÞ; θdynvv ¼ 1

24π
FvðCÞ; ð11Þ

θstatuu ¼ −
π

48L2
; θstatvv ¼ −

π

48L2
: ð12Þ

The dynamical term (11) originates as radiation (particle
creation) from each individual plate (the DeWitt effect);
later this radiation suffers reflections from both plates. This
term, which depends essentially on the time dependence of
the geometry, corresponds most directly to what is called
“dynamical Casimir effect” in the recent literature, but is
more legitimately called the Moore effect. The other term,
(12), we call quasistatic; it is the direct descendent of the
usual Casimir effect of static plates in flat space (caused by
discreteness of the mode spectrum), and its existence
requires the presence of more than one plate. Section IV
demonstrates that both the tidal and the sloshing
effects mentioned previously are exhibited by the quasi-
static term, in the presence of curvature and time depend-
ence, respectively.
Note that Fxðf0Þ is exactly the Schwarzian derivative

[24] of f; this highlights the connection between 2D
Lorentzian geometry and complex analysis. When the
argument of Fu or Fv is the conformal factor, the result
can be written solely in terms of the Christoffel symbols:

FuðCÞ ¼ ∂uΓu
uu −

1

2
Γu

uu; ð13Þ

FvðCÞ ¼ ∂vΓv
vv −

1

2
Γv

vv: ð14Þ

To highlight how the appearance of Christoffel symbols
indicates dependence on the vector field ∂t, note that FuðCÞ
has nontrivial transformation properties. In particular,
following Eq. (5)

FūðC̄Þ ¼
1

f0ðuÞ2 ½FuðCÞ − Fuðf0Þ�: ð15Þ

It looks as though hTμνi is not transforming like a tensor,
but in fact there are two different, tensorial, stress tensors
involved, because j0̄i, the vacuum defined with respect to
∂ t̄ ¼ 1

2
ð∂ ū þ ∂ v̄Þ, is not the same as j0i, defined by ∂t. For

Eqs. (7)–(9), the Cauchy surfaces are defined by the vector
field ∂t.
We can make a series of coordinate transformations of

the ðfðuÞ; gðvÞÞ type to put both of our plates at fixed
coordinate positions. In such coordinates the field equation
is easily solved by d’Alembert’s construction. However, the
set of coordinate transformations that can do this is not
unique (and hence we have inequivalent vector fields with
different vacuum states), so a central technical result of this
paper is when and how to determine a unique coordinate
transformation and hence a unique initial vacuum.
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III. GENERAL THEORY FOR TWO
MOVING PLATES

A. The general construction

We begin by considering two plates labeled by A and B
on arbitrary trajectories in spacetime. By convention, B is
to the right of A (larger x at any given t). Written in null
coordinates the trajectories PA and PB are

PAðτÞ¼ ðUAðτÞ;VAðτÞÞ; PBðτÞ¼ ðUBðτÞ;VBðτÞÞ; ð16Þ

where τ is for the moment just a parameter, not necessarily
proper time. The trajectories represent boundary conditions
on ϕ which we take to be perfectly reflecting:

ϕðPAÞ ¼ 0 ¼ ϕðPBÞ: ð17Þ

This problem becomes simple to solve (i.e., Eqs. (7)–(9)
directly apply) if we can transform the trajectories to be on
constant spatial coordinates by appropriate conformal
transformations [of the type ðu; vÞ ↦ ðfðuÞ; gðvÞÞ]. We
will need two coordinate transformations to put the plates
on constant coordinates; then we will investigate degener-
ate mappings that keep the plates at fixed coordinates. The
series of transformations will be indicated by

ðu; vÞ ↦ ðū; v̄Þ ↦ ðû; v̂Þ ↦ ðũ; ṽÞ ð18Þ

and are pictured in Fig. 2.
The first coordinate transformation puts PA on a constant

coordinate:

ðu; vÞ ⟼ ðū; v̄Þ ¼ ðpðuÞ; vÞ; p ¼ VA ∘ U−1
A : ð19Þ

This is represented by the mapping ðp; 1Þ in Fig. 2. As we
can see, ðUA; VAÞ ↦ ðVA; VAÞ, indicating that the plate is
at x̄≡ 1

2
ðū − v̄Þ ¼ 0. Causality is already playing an

important role in how this coordinate transformation is
chosen: If the plate begins moving at UA ¼ 0 ¼ VA, for
instance, then only space-time points with u > 0 have light
rays which carry information that the plate has started to

move. Therefore, any change in the v coordinate here
would give an acausal vacuum.
Now, we become more constrained by the process of

putting the second plate on a fixed coordinate. First, to keep
the plate A in the same spot, we need

ðū; v̄Þ ⟼ ðû; v̂Þ ¼ ðHðūÞ; Hðv̄ÞÞ; ð20Þ

but we also would like to put plate B at a fixed coordinate
distance L (which will often be set equal to proper distance
without loss of generality), which leads us to the constraint

H ∘ VBðτÞ −H ∘ p ∘ UBðτÞ ¼ 2L; ð21Þ

these conditions give the coordinate transformation ðH;HÞ
in Fig. 2.
We can rewrite Eq. (21) as

HðvÞ ¼ H ∘ VA ∘ U−1
A ∘ UB ∘ V−1

B ðvÞ þ 2L; ð22Þ

and also as

ðH ∘pÞðuÞ¼ ðH ∘pÞ ∘UB ∘V−1
B ∘VA ∘U−1

A ðuÞþ2L: ð23Þ

To understand Eqs. (22) and (23) and what motivates them,
consider Fig. 3. Essentially, HðvÞ is equal to the coordinate
one gets by tracing a light ray back to plate B, reflecting to
plate A and registering the corresponding v coordinate there
(and similarly for H ∘ p). In this light-ray tracing scheme,
every point in space is related to a point in its past after two
reflections, and that defines a coordinate transformation
that puts the plates at constant spatial coordinates.
However, the solutions to Eq. (22) are not unique.

Consider a transformation

ðû; v̂Þ ⟼ ðũ; ṽÞ ¼ ðQðûÞ; Qðv̂ÞÞ ð24Þ

such that plates A and B both remain at constant coordinate
position. In that case, the only condition on Q is

Qðv̂Þ ¼ Qðv̂ − 2LÞ þ 2L: ð25Þ

FIG. 2. The series of coordinate transformations made to define coordinates where the plates’ coordinates are at constant coordinate
positions. The map ðp; 1Þ represents the mapping ðu; vÞ ↦ ðpðuÞ; vÞ (and similarly for the other mappings). We first “straighten” out
plate A with ðp; 1Þ, then plate B with ðH;HÞ. After that, there is an infinite-dimensional space of solutions that keep the plates at
constant coordinate position but are nontrivial transforms ðQ;QÞ. In an initially static model a unique Q can be determined by causality
as explained in Fig. 4 and associated text.
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This equation has multiple solutions, as can be easily seen
if one lets Qðv̂Þ ¼ v̂þΩðv̂Þ with Ωðv̂Þ ¼ Ωðv̂ − 2LÞ.
ThusΩ is any periodic function with period 2L—therefore,
we have a whole continuum of solutions. The final trans-
formation from ðū; v̄Þ ↦ ðũ; ṽÞ is then

H̃ ¼ Q ∘ H: ð26Þ

While this function Ω is an interesting mathematical
oddity, it has real physical consequences. First, we can
guess that the periodicity of 2L represents a sloshing of the
field between the plates, and is therefore an indication that
we are probing some out-of-equilibrium phenomenon.
To be precise, one can solve for the normal modes between
the plates and get two sets of functions (neglecting
normalization),

ψ̂nðt̂; x̂Þ ¼ e−iωnt̂ sinðωnx̂Þ;
ψ̃nðt̃; x̃Þ ¼ e−iωnt̃ sinðωnx̃Þ; ð27Þ

where ωn¼nπ=L (n>0) and ðt̂; x̂Þ are defined by û¼ t̂− x̂
and v̂ ¼ t̂þ x̂ (and similarly for the tilde-coordinates).
These functions have positive energy with respect to their
vector fields: i∂ t̂ψ̂n¼ωnψ̂n and i∂ t̃ψ̃n¼ωnψ̃n with ωn>0.
Now, if we make the substitution that ũ ¼ ûþΩðûÞ and

ṽ ¼ v̂þΩðv̂Þ, we first notice

ψ̃n ¼
1

2i
½e−iωnû−iωnΩðûÞ − e−iωnv̂−iωnΩðv̂Þ�; ð28Þ

and taking advantage of the periodicity in Ω, we expand

e−iωnΩðŵÞ ¼
�
α0þ

X∞
m¼1

ðαnme−iωmŵþβnmeiωmŵÞ
�
eiωnŵ ð29Þ

to obtain

ψ̃n ¼
X∞
m¼1

½αnmψ̂mðt̂; x̂Þ þ βnmψ̂
�
mðt̂; x̂Þ�: ð30Þ

By standard techniques [22] this can be used to relate
annihilation operators (âm for the hatted-coordinates and ãn
for the tilde-coordinates) by

âm ¼
X
n

½αmnãn þ β�mnã
†
n�; ð31Þ

so the vacuum j0̃i defined by ãnj0̃i ¼ 0 is not annihilated
by âm, and the number of excitations in the hatted
coordinates is

h0̃jâ†mâmj0̃i ¼
X
n

jβmnj2: ð32Þ

For even simple periodic functions Ω this quantity is
nonvanishing.
Now, we can identify this function Ω with the initial

conditions of the plates. To prove this, consider the physical
situation given in Fig. 4. At t ¼ 0 plate A begins to move
and at t ¼ t0 with jt0j < L plate B begins to move. In the
region in the past of C as pictured in Fig. 4, the vector field
that defines the vacuum state is ∂t. This defines our initial
conditions.

FIG. 4. In order to get physically sensible results, in the past of
region C we assume our space-time is static, and therefore we can
define a coordinate system in which the plates are initially at rest
with a vacuum j0i defined with respect to the vector field ∂t.
(Imagine dropping plates from above a black hole as we will
consider in Sec. VI.) Then at (0, 0) [i.e., t ¼ 0] plate A begins to
move and at ðt0 − L; t0 þ LÞ [i.e., t ¼ t0] plate B begins to move.
We can solve Eq. (22) using these initial conditions. On the other
hand, if we solve Eq. (22) in the future of region C without
specifying the initial conditions, we can use the function Q in
Eq. (25) to implement those initial conditions. The result is
Eqs. (36) and (38).

FIG. 3. This shows how the Eqs. (22) and (23) associate a
coordinate at one point in space to another point by reflections off
both mirrors. The operations should be read top to bottom. This
describes the coordinate transformation H that puts the plates
on constant coordinates after we transform ðu; vÞ ↦ ðû; v̂Þ ¼
ðH ∘ pðuÞ; HðvÞÞ.
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If we just solve Eq. (22) we may not satisfy the initial
conditions we desire. To find a Q and hence a H̃ such that
j0i is the initial vacuum state, we can look at region C in
Fig. 4, where by causality no information about the moving
plates exists. Thus, we impose

H̃ ∘ pðuÞ ¼ u; t0 − L < u < 0; ð33Þ

H̃ðvÞ ¼ v; 0 < v < t0 þ L: ð34Þ

We can now determine the form of Ω over all v̂ by
induction. First note that under the arbitrary H that solves

Eq. (22), ðt0 − L; t0 þ LÞ↦H ðt1 − L; t1 þ LÞ for some t1

and ð0; 0Þ↦H ð0; 0Þ. Therefore, we can take Eq. (33) along
with H̃ ¼ Q ∘ H to determine

H ∘pðuÞþΩ½H ∘pðuÞ� ¼ u; t0−L<u< 0; ð35Þ

ΩðwÞ ¼ ðH ∘ pÞ−1ðwÞ − w; t1 − L < w < 0: ð36Þ

Then, using Eq. (34) we have

HðvÞ þ Ω½HðvÞ� ¼ v; 0 < v < t0 þ L; ð37Þ

ΩðwÞ ¼ H−1ðwÞ − w; 0 < w < t1 þ L: ð38Þ

Equations (36) and (38) specify Ω over a range of 2L,
so they uniquely specify our periodic function. The
function is also continuous. To show this, note first that
Ωð0−Þ ¼ 0 ¼ Ωð0þÞ, and second that

Ωðt1 þ LÞ ¼ t0 − t1 ¼ Ωðt1 − LÞ: ð39Þ

Finally, we introduce the notation fXgt1þL
t1−L defined by

X ¼ 2nLþ fXgt1þL
t1−L ; n ∈ Z;

t1 − L < fXgt1þL
t1−L < t1 þ L; ð40Þ

so that we can write the full solution as

H̃ðvÞ¼HðvÞ−fHðvÞgt1þL
t1−L

þ
8<
:
ðH ∘pÞ−1½fHðvÞgt1þL

t1−L �; fHðvÞgt1þL
t1−L <0;

H−1½fHðvÞgt1þL
t1−L �; fHðvÞgt1þL

t1−L >0:
ð41Þ

With this general analysis, we can solve Eq. (22) with a
method that produces an arbitrary solution H, then using
Eq. (41) we can find H̃.
Given this understanding of what the “correct” vacuum

state is, it is important to understand that the state in a
space-time region such as region C displayed in Fig. 4 is
not completely determined by the plate’s motion displayed
there. The plates might not be static everywhere in the past

of that region; there might be an earlier period of wiggling,
off the bottom of the figure. In that case the functionsΩ,Q,
and hence Cðu; vÞ throughout Fig. 4 will be different. The
theory is causal but nonlocal, despite the locality of
Eqs. (7)–(8) as functionals of C; it is C itself that carries
the nonlocal information.
Importantly, in Fig. 4, plate B is assumed to be at the

same coordinate distance L from plate A in both the hatted-
and tilde-coordinate systems. This is done without loss of
generality, but one must be careful to scale the conformal
factor and coordinates appropriately to make sure this
is true.
While we will apply this theory to a falling Casimir

apparatus (i.e., geodesic motion of the center with a fixed
separation between the plates), this general theory applies
to more arbitrary trajectories.

B. Perturbation theory

To find an arbitrary solution, we appeal to perturbation
theory. In particular, the perturbation theory we consider is
for L small compared to both the curvature R and the
inverse acceleration of the plates. We additionally consider
only the causal region in the future of region C in Fig. 4; in
this region, we solve Eq. (22).
In a sense that we now make precise, the Casimir

apparatus will consist of two plates kept an equal distance
L from each other. We assume the center of mass after
t ¼ 0 (and into the future of region C) follows a timelike
geodesic P0 ¼ ðU0ðτÞ; V0ðτÞÞ, where τ is defined as the
proper time of this geodesic. This free-fall trajectory
satisfies the equations

CðU0ðτÞ; V0ðτÞÞU0
0ðτÞV 0

0ðτÞ ¼ 1;

U00
0ðτÞ þ Γu

uuU0
0ðτÞ2 ¼ 0;

V 00
0ðτÞ þ Γv

vvV 0
0ðτÞ2 ¼ 0: ð42Þ

At a given time τ, we can define a spacelike geodesic that
connects the two plates; this spacelike surface is orthogonal
to P0ðτÞ and parametrized by its proper distance η so that

∂2
ηUηðτÞ þ Γu

uu∂ηUηðτÞ2 ¼ 0; ð43Þ

∂2
ηVηðτÞ þ Γv

vv∂ηVηðτÞ2 ¼ 0; ð44Þ

with initial conditions

ðUηðτÞ; VηðτÞÞjη¼0 ¼ ðU0ðτÞ; V0ðτÞÞ;
ð∂ηUηðτÞ; ∂ηVηðτÞÞjη¼0 ¼ ð−U0

0ðτÞ; V 0
0ðτÞÞ: ð45Þ

(The latter initial condition comes from the spacelike vector
orthogonal to the trajectory’s two-velocity.) These coor-
dinates ðτ; ηÞ are called Fermi coordinates [25], and in order
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for them to be defined everywhere between the plates (for
all relevant times), we assume L is sufficiently small.
Abusing our notation, we will use A and B as both

coordinates and labels for the two plates, A ¼ −L=2 and
B ¼ L=2. We note that L is now a physical, not just a
coordinate, distance; the plates are kept a fixed distance L
from each other (but do not themselves follow geodesics).
In this sense, the center of mass of the Casimir apparatus is
in free fall.
This setup allows us to perform a perturbation theory

assuming U000
0 ðτÞL2 ≪ U00

0ðτÞL ≪ 1 and V 000
0 ðτÞL2 ≪

V 00
0ðτÞL ≪ 1. (These conditions can alternatively be written

in terms of Christoffel symbols and their derivatives.) The
details of that perturbation theory are in Appendix A, but
the result is that we perturbatively solve Eq. (22) and
Eq. (23) under the above conditions to obtain

H0ðvÞ ¼ 1

V 0
0 ∘ V−1

0 ðvÞ
�
1þ R

48
L2 þOðL4Þ

�
; ð46Þ

ðH ∘ pÞ0ðuÞ ¼ 1

U0
0 ∘ U−1

0 ðuÞ
�
1þ R

48
L2 þOðL4Þ

�
; ð47Þ

where R is the Ricci scalar as defined by Eq. (4).

C. Initial conditions

With our perturbative solution (46)–(47), we have a
particular solution, but now we need to consider Fig. 4 in
order to get a solution with initial conditions. To aid in this
task, we make an assumption on our metric: It has a
timelike Killing vector defined by ∂t; therefore, we assume

Cðu; vÞ ¼ Cðv − uÞ ð48Þ

in the starting coordinates. Further, in the past of Region C
in Fig. 4, the plates are on paths that follow the Killing
vector field. For ease of notation, we also define the
remainder rðvÞ≡ fHðvÞgt1þL

t1−L , and hence

H̃ðvÞ ¼ 2nLþ
� ðH ∘ pÞ−1½rðvÞ�; rðvÞ < 0;

H−1½rðvÞ�; rðvÞ > 0:
ð49Þ

With this setup, we can match the perturbative solution
of the previous section to the vacuum in the past of C,
and we obtain a function H̃ (as described in Appendix B)
given by

H̃ðvÞ ¼ HðvÞ þ
�
1

2
Γ0Lþ 1

6
½Γ0L�2

�
rðvÞ

− sgn½rðvÞ� 1
2
ð1þ Γ0LÞΓ0rðvÞ2

þ 1

3
Γ2
0rðvÞ3 þ � � � ; ð50Þ

where Γ0 ≡ Γv
vvjv−u¼x0 and x0 is the coordinate position

that is a proper distance L=2 from either plate at the
moment they are “dropped” [defined formally by Eq. (B4)].
The more interesting object for our calculation of hTμνi is

the derivative of this function, which can be obtained from
H̃0 ¼ ðQ0 ∘ HÞH0. The functionQðwÞ ¼ wþ ΩðwÞ and the
periodic function Ω can be read off from Eq. (50) as

ΩðwÞ¼ 1

6
Γ0wðL− jwjÞ½3þðL−2jwjÞΓ0�þOðL4Þ; ð51Þ

for w ∈ ½−L;L�. Clearly this is continuous (ΩðLÞ ¼
Ωð−LÞ ¼ 0). We also have a continuous first derivative:

Ω0ð0þÞ ¼ Ω0ð0−Þ ¼ 1

6
LΓ0ð3þ LΓ0Þ;

Ω0ðLÞ ¼ Ω0ð−LÞ ¼ −
1

6
LΓ0ð3 − LΓ0Þ: ð52Þ

But we start seeing discontinuities in the second derivative:

Ω00ð0þÞ ¼ −Ω00ð0−Þ ¼ −Γ0ð1þ LΓ0Þ;
Ω00ðLÞ ¼ −Ω00ð−LÞ ¼ −Γ0ð1 − LΓ0Þ: ð53Þ

In fact, at this order, the third derivative has δ-functions at
w ¼ 0 and L amidst a constant background, while the
fourth and higher are derivatives of the δ-functions at these
two points.
Therefore, we can write

H̃0ðvÞ ¼ H0ðvÞ
�
1þ 1

2
LΓ0 þ

1

6
Γ2
0L

2

− ð1þ Γ0LÞΓ0jrðvÞj þ Γ2
0rðvÞ2

�
: ð54Þ

And if w ∈ ð−L; L�, we have

Q0ðwÞ ¼ 1þ 1

2
Γ0Lþ 1

6
Γ2
0L

2 − ð1þ Γ0LÞΓ0jwj
þ Γ2

0w
2 þ � � � : ð55Þ

We can compute higher derivatives of Q to aid in the
calculation for the dynamical Casimir force,

Q00ðwÞ ¼ −ð1þ Γ0LÞΓ0sgnðwÞ þ 2Γ2
0wþ � � � ð56Þ

and finally

Q000ðwÞ ¼ 2Γ2
0 − 2Γ0ð1þ Γ0LÞδðwÞ

þ 2Γ0ð1 − LΓ0Þδðw − LÞ þ � � � ; ð57Þ

where in the last line the domain we calculate Q000ðwÞ for is
ð−Lþ ϵ; Lþ ϵ� for a small ϵ. These δ-functionswill become
important with the dynamical Casimir effect: They resemble
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classical photons that bounce between the two plates that are
in free fall (cf. [9]).

IV. THE ENERGY-MOMENTUM TENSOR

In this section, we concentrate on calculating θμν, and we
dedicate separate sections to θstatμν and θdynμν as well as to θμν
inside and outside of the apparatus.
The values of this tensor as stated in Eqs. (7) and (8) are

found in the tilde coordinates ðũ; ṽÞ that we previously
calculated in Sec. III with ũ ¼ H̃ ∘ pðuÞ and ṽ ¼ H̃ðvÞ.
The bulk of this section is spent transforming back to ðu; vÞ

coordinates, so that we can make sense of observables
in Sec. V.

A. Static Casimir contribution

Apply the coordinate transformation to (12):

θstatuu ¼−
π

48L2
½ðH̃ ∘pÞ0ðuÞ�2; θstatvv ¼−

π

48L2
½H̃0ðvÞ�2: ð58Þ

Substituting what we found previously, we have up
to order L0

θstatuu ¼ −
π

48½U0
0 ∘ U−1

0 ðuÞ�2L2

�
1þ 1

24
RL2

��
1þ Γ0Lþ 7

12
Γ2
0L

2 − ð2þ 3Γ0LÞΓ0jr ∘ pðuÞj þ 3Γ2
0ðr ∘ pðuÞÞ2

�
; ð59Þ

θstatvv ¼ −
π

48½V 0
0 ∘ V−1

0 ðvÞ�2L2

�
1þ 1

24
RL2

��
1þ Γ0Lþ 7

12
Γ2
0L

2 − ð2þ 3Γ0LÞΓ0jrðvÞj þ 3Γ2
0½rðvÞ�2

�
: ð60Þ

We see explicitly here dependence on rðvÞ, showing that
this negative energy is behaving like a fluid in a box and
sloshing back and forth. To see the average effect on this
Casimir apparatus, we define f̄ðvÞ≡ 1

2L

R
2L
0 f½v; rðvÞ�drðvÞ

as a semirunning average. Applying this to the above
amounts to averaging over a period of the periodic function
Ω, and we obtain

θstatuu ¼−
π

48½U0
0 ∘U−1

0 ðuÞ�2L2

�
1þ 1

24
ðRþ2Γ2

0ÞL2

�
;

θstatvv ¼−
π

48½V 0
0 ∘V−1

0 ðvÞ�2L2

�
1þ 1

24
ðRþ2Γ2

0ÞL2

�
: ð61Þ

The first thing we notice is the dependence on the null
coordinates ðu; vÞ. A free-fall observer located at the
midway point between the plates will observe the tensor
with her timelike vector ðU0

0ðτÞ; V 0
0ðτÞÞ. Therefore, we

can start to see the equivalence principle at work: the
lowest-order term is exactly what this observer would
expect from plates in flat space. The next order term is
Oð1Þ in 1þ 1D and captures both curvature and initial-
condition corrections. The curvature term is the beginning
of what will be the tidal Casimir effect, as will become
more apparent when we find the energy density as
measured by comoving observers. The initial-condition
contributions give us nontrivial dependence on ðu; vÞ
and an overall shift to the energy as captured by these
averaged quantities; while these represent excitations
between the plates, it is in fact lowering the already
negative energy.

B. Dynamic contribution

Using properties of the FxðfÞ, we first note that

θdynuu ¼ 1

24π
½FuðCÞ − Fu½ðH̃ ∘ pÞ0��; ð62Þ

θdynvv ¼ 1

24π
½FvðCÞ − FvðH̃0Þ�: ð63Þ

The first terms [FuðCÞ and FvðCÞ] were previously
evaluated in Eqs. (13) and (14). The second term in
Eq. (63) is

Fv½H̃0� ¼Fv½ðQ0 ∘HÞH0� ¼H0ðvÞ2Fw½Q0�þFv½H0�; ð64Þ

where w ¼ HðvÞ. We are only interested in L0 terms, so we
can calculate

Fw½Q0� ¼ 1

2
Γ2
0 − 2Γ0

X
n

½δðwþ 2nLÞ − δðwþ 2nL − LÞ�;

ð65Þ

and, again to order L0,

Fv½H0� ¼ Fv

�
1

V 0
0 ∘ V−1

0

�

¼ −
1

½V 0
0 ∘ V−1

0 ðvÞ�2 FV−1
0
ðvÞ½V 0

0�; ð66Þ

Since the center of the apparatus follows a geodesic, Fτ½V 0
0�

is easily calculated using the geodesic equation and its
derivative [see Eq. (A8)]. This yields
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1

ðV 0
0Þ2

Fτ½V 0
0� ¼ −

�
∂vΓv

vv −
1

2
ðΓv

vvÞ2
�
þ 1

4

R
ðV 0

0Þ2
: ð67Þ

Therefore,

Fv½H0� ¼
�
∂vΓv

vv−
1

2
ðΓv

vvÞ2
�
−
1

4

R
ðV 0

0 ∘V−1
0 ðvÞÞ2 : ð68Þ

The Christoffel symbols in this expression are evaluated
along the geodesic path at proper time given by V−1

0 ðvÞ. To
the order at which we are evaluating things currently, the
terms that go as the Christoffel symbols from both Fv½C�
and Fv½H0� cancel one another (corrections being of order
L1 and hence omitted from our equations).
Similar calculations can be conducted for Eq. (62); the

final formulas are then

θdynuu ¼ −
1

24π

1

U0
0 ∘ U−1

0 ðuÞ2
�
1

2
Γ2
0 − 2Γ0δ2L½H ∘ pðuÞ� þ 2Γ0δ2L½H ∘ pðuÞ − L� − R

4

�
; ð69Þ

θdynvv ¼ −
1

24π

1

V 0
0 ∘ V−1

0 ðvÞ2
�
1

2
Γ2
0 − 2Γ0δ2L½HðvÞ� þ 2Γ0δ2L½HðvÞ − L� − R

4

�
; ð70Þ

where δ2LðxÞ is a Dirac “comb”, δ2LðxÞ≡P
n δðx − 2nLÞ.

These terms represent null trajectories that bounce back and
forth between the plates, highlighting that we have ex-
citations between the plates as they fall.
We can again average the result much as before:

θdynuu ¼ −
1

96π

2Γ2
0 − R

U0
0 ∘ U−1

0 ðuÞ2 ;

θdynvv ¼ −
1

96π

2Γ2
0 − R

V 0
0 ∘ V−1

0 ðvÞ2 : ð71Þ

In these expressions, we see that we get a nonzero
contribution to the energy-momentum tensor only if Γ0 or
R is nonzero—this term is the generalization of the
dynamical Casimir effect in flat space. In curved space,
we notice that independent of our initial state we have an
effect proportional to R that can still be interpreted in the
context of the dynamical Casimir effect: Falling plates
experience a classical tidal force, but we have imposed that
they retain a fixed proper separation. This means that some
outside force (e.g., a rod of fixed length) is keeping the
plates on course; the resulting acceleration creates a
dynamical response in the energy-momentum tensor rep-
resented by R. On the other hand, the presence of Γ0 in this
expression is more straightforward: The plates are initially
at rest, we suddenly begin moving them, and that creates a
response in the energy-momentum tensor here just as it
does in flat space.

C. Outside the Casimir apparatus

To obtain the force on the plates from the energy-
momentum tensor, it is necessary to include the outside
of the plates. Different vector fields may define the
Hamiltonian to the left and right of the plates, and we
encode that information by using different coordinates in
the two regions: in the region left of A, ðu<; v<Þ with

conformal factor C<, and in the region right of B, ðu>; v>Þ
with conformal factor C>. The two corresponding vector
fields are ∂t< and ∂t> . To the right of plate B (see Fig. 2), we
only need to go to coordinates ðū>; v̄>Þ ¼ ðp>ðu>Þ; v>Þ to
get the appropriate causal structure, and in that case we
have only a dynamical part to worry with and we define it
as (dropping the superscript > on coordinates for ease of
reading)

θ>uu ¼
1

24π
½FuðC>Þ − Fuðp>0Þ�: ð72Þ

Recall that p> ¼ V>
A ∘ U>−1

A , and to lowest order we can
take A ¼ 0. Then

p>0ðuÞ ¼ V>0
A ½U>−1

A ðuÞ�
U>0

A ½U>−1
A ðuÞ�

and

Fuðp>0Þ ¼
FU>−1

0
ðuÞ½V>0� − FU>−1

0
ðuÞðU>0

0 Þ
U>0

0 ½U>−1
0 ðuÞ�2

¼ −
ðV>0

0 Þ2
ðU>0

0 Þ2
�
∂vΓ>v

vv −
1

2
ðΓ>v

vvÞ2
�

þ ∂uΓ>u
uu −

1

2
ðΓ>u

uuÞ2:

Also, on this side of the plates we have θ>vv ¼ 1
24πFvðC>Þ.

As always, we need to be careful about where we evaluate
the Christoffel symbols, but for the force calculations we
are interested in, we will be evaluating them on the
geodesic paths where FuðCÞ matches the appropriate part
of Fuðp0Þ. Thus we have near plate B
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θ>uu ¼ −
1

24π

ðV>0
0 Þ2

ðU>0
0 Þ2

�
∂vΓ>v

vv −
1

2
ðΓ>v

vvÞ2
�
;

θ>vv ¼ −
1

24π

�
∂vΓ>v

vv −
1

2
ðΓ>v

vvÞ2
�
: ð73Þ

A similar argument can be made for the region left of A,
but the roles of u and v are opposite. The result is that near
plate A,

θ<uu ¼ −
1

24π

�
∂uΓ<u

uu −
1

2
ðΓ<u

uuÞ2
�
;

θ<vv ¼ −
1

24π

ðU<0
0 Þ2

ðV<0
0 Þ2

�
∂uΓ<u

uu −
1

2
ðΓ<u

uuÞ2
�
: ð74Þ

We again stress that in general Γ<u
uu, Γu

uu, and Γ>u
uu

are not equal to each other, because the vacuum states are
defined by different vector fields (or conformal factors C).
Ordinarily we have in mind an initially static configuration,
so that the states are uniquely determined, but the motion of
a plate will induce a conformal mapping of the fðuÞ type on
one side and the gðvÞ type on the other, producing quite
different results for C. In particular, outside of a black hole
one can choose different vacua (Hawking-Hartle/Boulware/
Unruh), and we want to reserve the freedom to change the
vacuum on either side of the plate.

V. CASIMIR EFFECT

A. The Casimir force

To calculate the Casimir force, we have to tease out what
is happening between the plates versus outside the plates.
Plate B, for instance, in its reference frame experiences a
pressure coming from the different tensors Tμν on either
side of it.
The pressure in the energy-momentum tensor is

given by the purely spatial component, but we need to
be careful how to specify this for the plate. The plate is
defined as remaining a fixed distance from a geodesic, and
so its 2-velocity is orthogonal to the spacelike vector
ð∂ηUηðτÞ; ∂ηVηðτÞÞ with η ¼ L=2. In other words, the
2-velocity is ð−∂ηUηðτÞ; ∂ηVηðτÞÞ (again, with η ¼ L=2).
Therefore, we need to consider hTηηiB,

hTηηi ¼ hTuuið∂ηUηðτÞÞ2 þ hTvvið∂ηVηðτÞÞ2
þ 2hTuvi∂ηUηðτÞ∂ηVηðτÞ: ð75Þ

This quantity is different on the two sides of the plate,
yielding a net force on the plate. Indeed, that force is
given by

FB ¼ hTηηiB− − hTηηiBþ ; ð76Þ

the pressure from the left of the plate minus the pressure
from the right. In this quantity, parts of hTμνi that are the

same on both sides of the plates (such as the term
proportional to Rgμν) will cancel and will therefore be
neglected in what follows. To the order we have worked (L0

in hTμνi), we can find the pressure due to the dynamical
effect to the right of plate B by

hTηηiBþ ≡U0
0ðτÞ2θ>uu þ V 0

0ðτÞ2θ>vv;

¼ ½V>0
0 �2

12π

�
∂vΓ>v

vv −
1

2
ðΓ>v

vvÞ2
�
: ð77Þ

Between the plates we can combine the effects of
θdynμν and θstatμν . For the static contribution we cannot just
use the ðU0ðτÞ; V0ðτÞÞ trajectory because θstatμν is of order
L−2, so we need to consider ð∂ηUηðτÞ; ∂ηVηðτÞÞ. From
θstatuu ½∂ηUηðτÞ�2 þ θstatvv ½∂ηVηðτÞ�2, we see that the terms that
go as L−2 are multiplied by

∂ηUηðτÞ
U0

0½U−1
0 ðUηðτÞÞ�

¼ 1 −
1

4
Rη2 þ � � � ; ð78Þ

∂ηVηðτÞ
V 0
0½V−1

0 ðUηðτÞÞ�
¼ 1 −

1

4
Rη2 þ � � � : ð79Þ

Therefore, with the plates at η ¼ L=2, we have

hTηηiB− ¼−
π

24L2

×

�
1−

1

12
ðR−Γ2

0ÞL2−
1

2π2
ðR−2Γ2

0ÞL2

�
; ð80Þ

The total contribution to the Casimir force as experi-
enced by the plate is then

F̄B ¼ −
π

24L2
þ 1

48

�
π

6
þ 1

π

�
R −

1

24

�
π

12
−
1

π

�
Γ2
0

−
ðV>0

0 Þ2
12π

�
∂vΓ>v

vv −
1

2
ðΓ>v

vvÞ2
�
þOðLÞ: ð81Þ

Similarly, we can calculate the force on plate A, defined as
FA ¼ hTXXiAþ − hTXXiA− so that a negative force implies
attraction to the other plate:

F̄A ¼ −
π

24L2
þ 1

48

�
π

6
þ 1

π

�
R −

1

24

�
π

12
−
1

π

�
Γ2
0

−
ðU<0

0 Þ2
12π

�
∂uΓ<u

uu −
1

2
ðΓ<u

uuÞ2
�
þOðLÞ: ð82Þ

Recall that (unlike in our earlier, more general consid-
erations) L is now normalized to be the physical distance
between the plates. Equations (81) and (82) describe the
forces experienced by the falling plates. At lowest order
(L−2), the plate experiences the Casimir force in the normal
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way; by the equivalence principle the lowest order term
should be that of flat space. But at next order (L0) both
curvature and initial conditions start to affect the force. The
initial conditions (represented by Γ0) seem to increase
the attractive Casimir force somewhat counterintuitively:
The process of dropping the plates has created excitations
between the plates which, instead of pushing the plates
away from each other, are pulling the plates together. The
curvature can increase or decrease the Casimir force
depending on its sign. In particular the term that goes as
π
288

R is what we call the tidal Casimir effect, and it is not
captured by taking the derivative of the total Casimir energy
with respect to L, as explained in the next section. Finally,
the final term is the radiation pressure of the falling plate,
which would be present even without two Casimir plates.
Indeed, one can find the force on a single plate by
calculating FB − FA. However, the Casimir apparatus splits
this force between the two plates, as one would expect.

B. The static Casimir energy

In this section we drop the generality of the previous
sections to concentrate on the static Casimir energy. First,
we assume Γ0 ¼ 0 (so that there are no dynamical terms).
We can write the general metric in terms of Fermi
coordinates ðτ; ηÞ, and we find up to order L2

ds2 ¼
�
1þ 1

2
RðτÞη2

�
dτ2 − dη2; ð83Þ

where η ∈ ½−L=2; L=2�. If we assume R changes slowly
compared to η, then this expression has an approximate
Killing vector ∂τ, and we can define an approximately
conserved energy

E ¼
Z

hTτ
τi

ffiffiffiffiffiffi
−g

p
d2x: ð84Þ

With this, we can isolate an energy density

ρðηÞ ¼ hTτ
τi ¼ hTττi

�
1 −

1

2
Rη2 þ � � �

�
: ð85Þ

For this simple situation (specifically when R is τ-inde-
pendent), we can short-circuit the previous analysis to
obtain the Casimir result by defining η̃ ¼ η − 1

12
Rη3 þ � � �

so that dη ¼ ð1þ 1
2
Rη2 þ � � �Þ1=2dη̃ using Rη2 ≪ 1. These

ðτ; η̃Þ coordinates are conformally flat and using Eqs. (7)
and (8), we find

hTcas
ττ i ¼ −

π

24L2

�
1þ 1

24
RL2 þ � � �

�
: ð86Þ

Therefore, we have the energy density

ρcasðηÞ ¼ −
π

24L2

�
1þ 1

24
RL2 −

1

2
Rη2 þ � � �

�
: ð87Þ

We can integrate ρcasðηÞ according to Eq. (84) to obtain

Ecas ¼ −
π

24L

�
1þ 1

48
RL2 þ � � �

�
: ð88Þ

Before proceeding, notice that −∂Ecas=∂L does not repro-
duce the force we expect. We crucially obtain the wrong
numerical coefficient for what we dubbed the “tidal Casimir
force”: the term that went as π

288
R [26]. However, notice that

the energy density is tidally spread out over η as indicated by
Eq. (85). Our interpretation is that the force is related to the
local energy density at the plate, rather than the total energy
in the apparatus.
To make this precise, the force can be derived by

considering the total Killing energy in the system (defined
by the Killing vector field ∂τ). In addition to the Casimir
energy, this includes the energy-momentum vector of the
plates. If plate B is of massm, then its covariant momentum
vector is

pμ ¼ muμ;

uμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _η2B

q �
1 −

1

4
Rη2B þ � � �

�
; _ηB

�
; ð89Þ

where ηB is the position of plate B, and _ηB ¼ dηB
ds where s is

the proper time of the plate. Then, the conserved quantity is

E ¼ pτ þ ECas; ð90Þ

which is (up to order RL2)

E ¼ −
π

24ðηB þ L=2Þ −
π

1152
RðL=2þ ηBÞ

þm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _η2B

q �
1þ 1

4
Rη2B

�
: ð91Þ

We can obtain a force equation by taking a derivative with
respect to s, and we find

mη̈B ¼ −
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _η2B

p
ð1 − 1

48
RL2 − 1

4
Rη2BÞ

24ðηB þ L=2Þ
−
1

2
mð1þ _η2BÞRηB: ð92Þ

The second term is a gravitational force (and can be derived
from the geodesic equation), and we can find the Casimir
force by letting _ηB ¼ 0 and η ¼ L=2, so that the force
follows:

mη̈B ¼ −
π

24L2
þ π

288
R −

1

4
mRL: ð93Þ
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Therefore, the static Casimir force is

Fcas ¼ −
π

24L2
þ π

288
Rþ � � � : ð94Þ

This agrees with Eqs. (82) and (81) if we neglect all
dynamical effects. While the previous results are more
general, the agreement found here shows how hTηηi is
related to the force calculated from the existence of a
timelike Killing direction. And finally, note that
Fcas ≠ −∂Ecas=∂L, but Fcas has here been derived from
the Newton’s equation Eq. (93).
Recall that to keep the plates at a fixed distance, there

should be a rod between the plates balancing both Casimir
and tidal forces, Fcas and − 1

4
mRL respectively.

We end this section by returning to the full, time-
dependent solution derived in previous sections. First,
any comoving observer at position η between the plates
ought to be able to measure the energy density. The
observer’s worldline is given by ðUηðτÞ; VηðτÞÞ and due
to parallel transport, the two-velocity is given by
ð−∂ηUηðτÞ; ∂ηVηðτÞÞ. Calling the observer’s proper time
τ̃ (distinct from the center of mass’s proper time, τ), we can
compute the measured energy density

hT τ̃ τ̃i ¼ hTuuið∂ηUηðτÞÞ2 þ hTvvið∂ηVηðτÞÞ2
− 2hTuvi∂ηUηðτÞ∂ηVηðτÞ: ð95Þ

This quantity is nearly identical to hTηηi in Eq. (75) except
that the off-diagonal term hTuvi contributes with opposite
sign; this term is purely determined by the curvature as seen
in Eq. (6). In fact,

−2hTuvi∂ηUηðτÞ∂ηVηðτÞ ¼ −
1

24π
R: ð96Þ

The other terms can be found from Eqs. (59), (60), (69), and
(70) so that we have

hT τ̃ τ̃i ¼ θuu½∂ηUηðτÞ�2 þ θvv½∂ηVηðτÞ�2 −
1

24π
R: ð97Þ

This has a lot of out-of-equilibrium structure inherited from
θuu and θvv which we will explore in the next section. Here
though, we set Γ0 ¼ 0 and we obtain for the static Casimir
contribution

hTcas
τ̃ τ̃ i ¼ ρcasðηÞ: ð98Þ

In fact, a comoving observer at position η will measure
precisely the conserved energy density we previously derived
in the more restrictive case where R is τ-independent,
Eq. (87). And as previously observed, the static Casimir
contribution is tidally spread out between the two plates—
more negative energy has built up on the plates and the
attractive force between the plates has increased.

C. Out-of-equilibrium Casimir energy

In the previous section, we saw that the Casimir energy
gets tidally distributed between the plates, and the Casimir
force increases as a result. In this section, we see that this
analogy with a fluid holds even in the out-of-equilibrium
nature of that energy density. Indeed, we can see how that
energy density sloshes around between the plates.
If we return to Eq. (97), we can highlight what is

occurring out of equilibrium, by letting R ¼ 0 and keeping
Γ0 is finite (e.g., the Rindler coordinates with Cðv − uÞ ∝
eΓ0ðv−uÞ [10], where Γ0 describes the acceleration in a frame
that is constantly accelerating). The calculations can be
done exactly (but match the approximations made earlier
done for finite R and Γ0); the resulting components θstatμν and

θdynμν are pictured in Fig. 5. Since Γ0 represents the initial
conditions in our system, we find two interesting effects:
first, θstatτ̃ τ̃ is sloshing back and forth between the plates with
a period of 2L, and second, from θdynτ̃ τ̃ , little packets of
energy (positive and negative) are bouncing back and forth
between the plates—also with period 2L. In this model
these packets are created solely by the nonuniform accel-
eration at the time when the plates are dropped.
The fluid analogy holds well for the static contribution: a

container of fluid that is uniformly accelerated for a time
until it is “launched” into an inertial frame where it will
begin to slosh back and forth in the container. As expected,
the dynamical part breaks the analogy due to the excitations
being created from the vacuum. Nonetheless, these con-
tributions can be neatly separated from each other.

VI. FALLING INTO A BLACK HOLE

We can apply all of our previous analysis to the problem
of two plates falling into a black hole. We assume the plates
are dropped into the black hole from a Schwarzschild radial
coordinate r ¼ r0.

FIG. 5. Plots of the static and dynamic contributions to hTμνi
[progression in time is shifted vertically by þτ=2]. (left) The
Casimir energy is spread out in space and once it begins falling, it
starts to slosh back and forth between the plates. (right) The
dynamic Casimir effect creates small energy bursts at the point
where the plates are dropped, which then bounce back and forth
between the plates.
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First we need to determine the Cauchy surfaces with
which our vacuum state is defined inside and outside of the
plates. Inside the plates, we take the initial vacuum as
defined by the Killing field ∂t by our analysis in
Appendix B. Outside the plates, we retain more freedom
to choose our initial vacuum, and that freedom is charac-
terized by explicit dependence on Christoffel symbols in
Eq. (82) and (81).
First, let us ignore the vacuum outside the plates. The

metric between the plates is [10]

ds2 ¼
�
1 −

2GM
r

�
½dt2 − ðdr�Þ2�; ð99Þ

where r� ¼ rþ 2GM log j r
2GM − 1j. The null coordinates

are defined by

u ¼ t − r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=r0

p ; v ¼ tþ r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=r0

p :

The curvature term (which will lead to a tidal Casimir
effect) is

R ¼ −
4GM
r3

; ð100Þ

so if we look at the pressure on plateB in Eq. (94) due to the
curvature, the inward force between the plates and the
Casimir energy (88) increase as the plates fall into the black
hole. However, if we look at Eq. (87) the energy density
near the plate has decreased (i.e., the magnitude of the
negative energy density increased), and in fact that tidal
value is π

288
R < 0 as explained in Sec. V B. The negative

energy is experiencing an extra tidal force and moves to the
sides of the Casimir cavity; as a result, the plates feel a
stronger attractive force.
Additionally, the initial conditions can be used to find

Γ0 ¼ −
GM
r20

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=r0

p : ð101Þ

When r0 → ∞ (a fall from infinity), one sees that there is
no effect of initial conditions (this is, in some sense, an
“adiabatic” limit). Further, Γ0 → ∞ at the horizon, indicat-
ing that dropping the plates from a stationary state near the
horizon creates a burst of energy (and our perturbation
theory breaks down quite severely).
If we let r0 → ∞, we have the modified Casimir force

FA;B ¼ −
π

24L2
−
GM
12r3

�
π

6
−
1

π

�
þ Fdyn

A;B; ð102Þ

where Fdyn
A;B are the forces on plates A and B from the

radiation pressure outside of the plates (caused by the
dynamical Casimir effect). On the other hand, the total
energy between the plates is

Ecas ¼ −
π

24L
þ GM
288πr3

L: ð103Þ

To fully determine force, though, we need to consider the
radiation pressure from falling, given by Fdyn

A;B. The objects
Fdyn
A;B would be present with only one plate; in fact, for one

plate we would have the radiation pressure from both sides
so that Fone plate ¼ Fdyn

A − Fdyn
B . The choice of initial

vacuum is important since we need both the Christoffel
symbols and the trajectory in those coordinates.
On either side of the plates, we consider three states: the

Hartle–Hawking vacuum, the Boulware vacuum, and the
Unruh vacuum [22]. The Hartle–Hawking and Boulware
vacua are associated, respectively, with the timelike
Kruskal and Schwarzschild vector fields outside the black
hole. For our purposes, let us call the ðu; vÞ coordinates
Schwarzschild and ðu; vÞ Kruskal coordinates. The con-
version between the two is

u ¼ −e−u=ð4GMÞ; v ¼ ev=ð4GMÞ; ð104Þ

so that

u v ¼
�
1 −

r
2GM

�
er=2GM; ð105Þ

and the metric for Kruskal coordinates is

ds2 ¼ 4ð2GMÞ3
r

e−r=2GMdudv: ð106Þ

With these facts we can compute, in Kruskal coordinates
for plate A and trajectory ðU0ðτÞ; V0ðτÞÞ (again, dropping
the underline on coordinates in favor of one on the symbol)

∂uΓu
uu −

1

2
ðΓu

uuÞ2

¼ 1

u2

�
2GM
r

− 1

�
2
�
1þ 4GM

r
þ 3ð2GMÞ2

r2

�
: ð107Þ

Isolating the dynamical part outside of the apparatus from
Eq. (82), we have

Fdyn
A jHH ¼ −

1

12π

�
U0

0ðτÞ
U0ðτÞ

�
2
�
2GM
r

− 1

�
2

×

�
1þ 4GM

r
þ 3ð2GMÞ2

r2

�
; ð108Þ

where HH indicates the Hartle-Hawking vacuum. On the
other hand, in Schwarzschild coordinates the trajectory is
ðU0ðτÞ; V0ðτÞÞ and we have

∂uΓu
uu −

1

2
ðΓu

uuÞ2 ¼ −
2GM
2r3

�
1 −

3

4

2GM
r

�
; ð109Þ
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and hence

Fdyn
A jB ¼ U0

0ðτÞ2ð2GMÞ
24πr3

�
1 −

3

4

2GM
r

�
; ð110Þ

where B indicates the Boulware vacuum. Similar calcu-
lations can be done for Fdyn

B and it just amounts to letting
U0 → V0 and U0 → V0.
The only other input left is the trajectory itself. The

geodesic that begins at rest at r → ∞ has

U0ðτÞ ¼ λ−1=2ð1 − wÞewþ1
2
w2þ1

3
w3

;

V0ðτÞ ¼ λ1=2ð1þ wÞe−wþ1
2
w2−1

3
w3

; ð111Þ

where w≡ wðτÞ ¼
ffiffiffiffiffiffiffiffi
rðτÞ
2GM

q
and hence dw

dτ ¼ − 1
2GM

1
2w2.

Utilizing the coordinate transformation Eq. (104), we have
in Schwarzschild coordinates U0ðτÞ ¼ −4GM log½−U0ðτÞ�
and V0ðτÞ ¼ 4GM log½V0ðτÞ�. One can then compute the
objects

U0
0ðτÞ

U0ðτÞ
¼ 1

4GM
	 ffiffiffiffiffiffiffiffi

2GM
r

q
− 1


 ¼ −
U0

0ðτÞ
4GM

;

V0
0ðτÞ

V0ðτÞ
¼ 1

4GM
	 ffiffiffiffiffiffiffiffi

2GM
r

q
þ 1


 ¼ V 0
0ðτÞ

4GM
: ð112Þ

This all allows us to write down the full solution

Fdyn
A ¼

8<
:

− ð
ffiffiffiffiffiffi
2GM
r

p
þ1Þ2

48πð2GMÞ2
h
1þ 4GM

r þ 3ð2GMÞ2
r2

i
; Hawking-Hartle=Unruh vacuum;

1
12π

1−3GM
2r

ð
ffiffiffiffiffiffi
2GM
r

p
−1Þ2

GM
r3 ; Boulware vacuum:

Fdyn
B ¼

8<
:

− ð
ffiffiffiffiffiffi
2GM
r

p
−1Þ2

48πð2GMÞ2
h
1þ 4GM

r þ 3ð2GMÞ2
r2

i
; Hawking-Hartle vacuum;

1
12π

1−3GM
2r

ð
ffiffiffiffiffiffi
2GM
r

p
þ1Þ2

GM
r3 ; Boulware=Unruh vacuum:

ð113Þ

(We will explain the allusions to the Unruh vacuum case
shortly.) A note on the signs: for either plate, a negative
force indicates a force directed toward the center of the
apparatus while a positive force indicates a force away from
the apparatus’s center of mass.
Thus the Hartle–Hawking vacuum pushes the apparatus

away from the black-hole while also pushing the plates
together, and the Boulware vacuum tries to pull the plates
toward the black-hole while also pulling the plates apart.
Furthermore, Fdyn

A diverges at the horizon in the
Boulware vacuum. In the case of a star that has not
collapsed, the Boulware state should apply on both sides
of the apparatus up until the apparatus lands on the star.
When a horizon exists, however, Boulware conditions in
that region are physically implausible.
On the other hand, for an eternal black hole we would

expect the (more regular) radiation pressure induced by the
Hawking–Hartle vacuum to apply on plate A as the
apparatus falls toward the horizon.
Last, we consider the Unruh vacuum given by the metric

long after a black hole collapse [10,27]. In this case, we
have new coordinates ðuc; vcÞ which respect

ds2 ¼
�
1 −

2M
r

��
4M

A − uc
þ � � �

�
ducdvc; ð114Þ

we note that Γv
vv will remain unchanged from the

Boulware vacuum and thus Fdyn
B will similarly be left

unaltered. It is the force on plate A which differs from

Boulware, but in fact u ¼ −4M logðC − ucÞ þDðucÞ,
where DðucÞ is slowly varying and collapse-dependent
[10]. The dominant part is related to Kruskal coordinates on
only the u coordinate such that uc ≈ u while vc ¼ v
remains unaltered. Therefore, Γuc

ucuc matches that of the
Hawking-Hartle vacuum, and therefore the collapse causes
a radiation pressure on the plate nearer the black hole while
the plate further away from the hole has the same force as
the Boulware vacuum.
This allows for an intuitive explanation of the forces that

we see. In the Hawking-Hartle vacuum, the black hole is in
thermal equilibrium with radiation coming from r ¼ þ∞;
Hawking radiation leaves the black hole while radiation
comes in to balance it from r ¼ þ∞. Indeed Fdyn

A < 0

indicates radiation pressure away from the black hole while
Fdyn
B < 0 indicates pressure toward the black hole from the

radiation from r ¼ ∞. In the collapsing star case, the black
hole is not in thermal equilibrium so we instead find
Fdyn
B > 0, the Boulware result.
Last, we note that in the Unruh vacuum the apparatus is

unequivocally “pushed” away from the black hole by
dynamical forces (Fdyn

A and Fdyn
A now have their magnitudes

added together instead of subtracted); not only does the black
hole not “suck” the apparatus in, it tries to push it away [28].

VII. CONCLUSIONS

Using properties of free conformal field theory, we have
been able to show how the Casimir force and energy change
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on plates that are suddenly put into free fall. First, the
curvature of space redistributes the energy between the
plates in a tidal manner, in analogy with a fluid in a
container. This leads to an increase in the Casimir force as
negative energy gets pushed to the edges of the apparatus.
Second, the field between the plates can be put out of
equilibrium and begin to slosh back and forth between
the plates, causing changes in the forces experienced by the
plates. Although excitations are being created between the
plates, we see an increase in negative energy density near
the plates and a corresponding increase in attraction
between the plates.
The full calculation also includes radiation pressure

outside of the apparatus, which contributes to the force;
particulars of the system then indicate whether the radiation
pressure pulls the plates together or pushes them apart. In
particular, in the example of a spherical body we see a
difference in radiation pressure depending on whether the
body is a star or a black hole. The star pulls the Casimir
apparatus closer and stretches it by radiation pressure,
while the black hole tends to push the apparatus away and
compress it.
From an observational point of view, a real scalar field in

curved space appears naturally in a superfluid system
[29,30] as a phonon field in the acoustic limit. If one
considers objects that interact with that phonon field, one
gets a Casimir force between them [31], and if that
superfluid is flowing, the phonons can be described with
a curved space background [29,32]. Therefore, in a flowing
superfluid, the effects described here should occur. While it
is beyond the scope of this work to explore experimental
possibilities, we note this as a potential avenue for
future work.
Further, there has also been considerable work involving

entanglement [14] of photon modes caused by the motion
of a cavity such as the apparatus described here. The
methods and implications of this work might find harbor
within that community as well.
All of the results here are determined in the context of

1þ 1D free field theory. In 3þ 1D, two of us have also
considered a falling Casimir apparatus [33] where the
changing (time-dependent) gravitational field leads to
corrections to the Casimir energy in addition to dynamical
effects. However, that work inherently could not look at
tidal effects and the full dynamical response, something
that the techniques in 1þ 1D allow. We expect that the tidal
and nonequilibrium effects persist into higher dimensions,
but that must be left to future work. However, the results are
provocative: The Casimir energy itself is behaving in many
respects as a classical fluid in curved space both in and out
of equilibrium.
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APPENDIX A: PERTURBATION THEORY

The setup, as described in the main text, is a set of paths
Pη ¼ ðUηðτÞ; VηðτÞÞ, where ðU0ðτÞ; V0ðτÞÞ is a timelike
geodesic. The theory described below works for timelike
worldlines that are not geodesics, but the math becomes
onerous and little insight is gained from that analysis.
Therefore, to restate our conditions on P0ðτÞ,

CðP0ÞU0
0ðτÞV 0

0ðτÞ ¼ 1;

U00
0ðτÞ þ Γu

uuU0
0ðτÞ2 ¼ 0;

V 00
0ðτÞ þ Γv

vvV 0
0ðτÞ2 ¼ 0: ðA1Þ

The curves with η ≠ 0 are defined as being a fixed distance
η from P0. In other words, they solve

∂2
ηUηðτÞ þ Γu

uu½∂ηUηðτÞ�2 ¼ 0;

∂2
ηVηðτÞ þ Γv

vv½∂ηVηðτÞ�2 ¼ 0; ðA2Þ

with the initial conditions

ðUηðτÞ; VηðτÞÞjη¼0 ¼ ðU0ðτÞ; V0ðτÞÞ;
ð∂ηUηðτÞ; ∂ηVηðτÞÞjη¼0 ¼ ð−U0ðτÞ; V0ðτÞÞ: ðA3Þ

The second condition [Eq. (A3)] implies that η para-
metrizes a spacelike geodesic by proper distance.
Further, in dimension 2 it describes a spacelike surface
orthogonal to the proper time of the trajectory P0. For our
purposes we will need all second and third derivatives,
which can be calculated as

∂τ∂ηUηðτÞjη¼0 ¼ Γu
uuU0

0ðτÞ2;
∂τ∂ηVηðτÞjη¼0 ¼ −Γv

vvV 0
0ðτÞ2; ðA4Þ

and

∂3
ηUηðτÞjη¼0 ¼ ½∂uΓu

uu − 2ðΓu
uuÞ2�U0

0ðτÞ3

þ 1

4
RU0

0ðτÞ; ðA5Þ

U0
000ðτÞ¼−∂2

τ∂ηUηðτÞjη¼0¼ ∂τ∂2
ηUηðτÞjη¼0

¼−½∂uΓu
uu−2ðΓu

uuÞ2�U0
0ðτÞ3þ

1

4
RU0

0ðτÞ: ðA6Þ

∂3
ηVηðτÞjη¼0 ¼ −½∂vΓv

vv − 2ðΓv
vvÞ2�V 0

0ðτÞ3

−
1

4
RV 0

0ðτÞ; ðA7Þ
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V 000
0 ðτÞ¼ ∂2

τ∂ηVηðτÞjη¼0¼ ∂τ∂2
ηVηðτÞjη¼0

¼−½∂vΓv
vv−2ðΓv

vvÞ2�V 0
0ðτÞ3þ

1

4
RV 0

0ðτÞ: ðA8Þ

We place the plates at A ¼ −L=2 and B ¼ L=2 so that
they are separated by a proper distance L, and we can then
write Eq. (22) suggestively as

H ∘ VB ∘ U−1
B ðuÞ ¼ H ∘ VA ∘ U−1

A ðuÞ þ 2L ðA9Þ

or in terms of the central proper time

H ∘V0 ∘V−1
0 ∘VL=2 ∘U−1

L=2 ∘U0ðτÞ
¼H ∘V0 ∘V−1

0 ∘V−L=2 ∘U−1
−L=2 ∘U0ðτÞþ2L: ðA10Þ

With this form, we can calculate the objects that look like

U−1
η ∘ U0ðτÞ ¼ τ0: ðA11Þ

Assuming that τ0 ¼ τ þ αηþ βη2 þ γη3 þ � � �, we can
expand

U0ðτÞ ¼ Uηðτ0Þ; ðA12Þ

so that if we use the notation ∂n
ηU0ðτÞ≡ ∂n

ηUηðτÞjη¼0,

0 ¼ ½αU0
0ðτÞ þ ∂ηU0ðτÞ�η

þ
�
βU0

0ðτÞ þ
1

2
α2U00

0ðτÞ þ α∂ηU0
0ðτÞ þ

1

2
∂2
ηU0ðτÞ

�
η2

þ
�
γU0

0ðτÞ þ αβU00
0ðτÞ þ β∂ηU0

0ðτÞ þ
1

6
α3U0

000ðτÞ

þ 1

2
α2∂ηU00

0ðτÞ þ
1

2
α∂2

ηU0
0ðτÞ þ

1

6
∂3
ηU0ðτÞ

�
η3

þ � � � : ðA13Þ

Solving each of these, order-by-order, we get α ¼ 1, β ¼ 0,
and γ ¼ − 1

12
R. Therefore, we have

U−1
η ∘ U0ðτÞ ¼ τ þ η −

1

12
Rη3 þ � � � ;

U−1
0 ∘ UηðτÞ ¼ τ − ηþ 1

12
Rη3 þ � � � : ðA14Þ

Being careful with minus signs, we can similarly find

V−1
η ∘ V0ðτÞ ¼ τ − ηþ 1

12
Rη3 þ � � � ;

V−1
0 ∘ VηðτÞ ¼ τ þ η −

1

12
Rη3 þ � � � : ðA15Þ

Therefore, we can simplify Eq. (A10) into

H ∘ V0

�
τ þ L −

1

48
RL3

�
¼ H ∘ V0

�
τ − Lþ 1

48
RL3

�

þ 2L: ðA16Þ

The curvature R ¼ R½P0ðτÞ� is τ-dependent, so for
τ ¼ τ0 þ Δτ, we can expand R ¼ Rðτ0Þ þ ∂τRðτ0ÞΔτ,
and we have, for instance, H ∘ V0½Δτð1 − 1

48
∂τRðτ0ÞL3Þ þ

τ0 þ L − 1
48
Rðτ0ÞL3�. We can then find a perturbative

solution in Δτ which is simply

H ∘ V0ðτ0 þ ΔτÞ ¼ H ∘ V0ðτ0Þ þ Δτ
�
1þ 1

48
RL2

�

þOðΔτ2Þ: ðA17Þ

This expansion allows us to directly read off the derivative
of H as

H0ðvÞ ¼ 1

V 0
0 ∘ V−1

0 ðvÞ
�
1þ 1

48
RL2 þOðL4Þ

�
; ðA18Þ

where the order L4 comes from a careful analysis of
Eq. (A10). Additionally, one can obtain in a similar manner

ðH ∘pÞ0ðuÞ¼ 1

U0
0 ∘U−1

0 ðuÞ
�
1þ 1

48
RL2þOðL4Þ

�
: ðA19Þ

APPENDIX B: INITIAL CONDITIONS

In order to find the appropriate Q transformation from
Fig. 2 and Fig. 4, we make some assumptions about the
initial state. In order to apply Eq. (41), we need to assume
that plate B is at both coordinate and proper distance L
from plate A. Taken precisely: for t < 0 we assume
UAðτÞ − VAðτÞ ¼ 0 and VBðτÞ − UBðτÞ ¼ 2L where L is
the proper distance (but x≡ 1

2
ðv − uÞ is not necessarily the

proper distance; that is to say that when x ¼ L it coincides
with the proper distance but when x ≠ L it may not
correspond). As we describe in the main text, this
assumption is done without loss of generality, but appli-
cations of this theory must be scaled appropriately. Next,
we assume that the metric initially has a timelike Killing
vector ∂t so that Cðu; vÞ ¼ Cðv − uÞ and the center of the
apparatus begins “falling” at t ¼ 0 and τ ¼ 0.
Lastly, for ease we define rðvÞ≡ fHðvÞgt1þL

t1−L and so
there exists an n such that

H̃ðvÞ ¼ 2nLþ
� ðH ∘ pÞ−1½rðvÞ�; rðvÞ < 0;

H−1½rðvÞ�; rðvÞ > 0:
ðB1Þ

Under these conditions, both plates also begin moving at
t ¼ 0, so we have t0 ¼ 0 in particular. This can be under-
stood since the trajectory of the center of the plates before
being dropped has the 2-velocity C−1=2ð2x0Þð1; 1Þ which
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when parallel transported along x ¼ 1
2
ðv − uÞ is just

C−1=2ð2xÞð1; 1Þ. Therefore, Vηð0Þ ¼ −Uηð0Þ both before
and after t ¼ 0; this immediately implies that both
t0 ¼ 0 ¼ t1.
We now need to determine where everything is in space

with respect to the proper distance L between the plates. We
define the observer’s coordinate position as x0, and the
geometric quantities at that position are

C0ðx0Þ ¼ Cð2x0Þ

Γ0 ¼
1

2
∂x0 logC0ðx0Þ;

R0 ¼
∂2
x0 logC0ðx0Þ
C0ðx0Þ

: ðB2Þ

To determine distances, we will need the expansion

ffiffiffiffiffiffiffiffiffiffiffiffi
Cð2xÞ

p
¼

ffiffiffiffiffiffi
C0

p
ð1þ Γ0ðx − x0Þ

þ 1

4
ðC0R0 þ 2Γ2

0Þðx − x0Þ2Þ þ � � � : ðB3Þ

One can easily determine now where x0 is by considering

L
2
¼

Z
x0

0

ffiffiffiffiffiffiffiffiffiffiffiffi
Cð2xÞ

p
dx;

L
2

ffiffiffiffiffiffi
C0

p ¼ x0 −
1

2
Γ0x20 þ

1

12
ðR0C0 þ 2Γ2

0Þx30 þ � � � : ðB4Þ

This series can be inverted to give

x0 ¼
L

2
ffiffiffiffiffiffi
C0

p þ 1

2
Γ0

�
L

2
ffiffiffiffiffiffi
C0

p
�

2

þ 1

12
ð4Γ2

0 − R0C0Þ
�

L
2

ffiffiffiffiffiffi
C0

p
�

3

þ � � � : ðB5Þ

To enforce the constraint on the position of plate B, we have

L
2
¼

Z
L

x0

ffiffiffiffiffiffiffiffiffiffiffiffi
Cð2xÞ

p
dx; ðB6Þ

and we obtain

C0 ¼ 1þ 1

24
ð4Γ2

0 − R0ÞL2 þOðL4Þ: ðB7Þ

This lets us simplify to

x0 ¼
L
2
þ 1

2
Γ0

�
L
2

�
2

þOðL4Þ: ðB8Þ

With this setup, we can now determineQ for when we drop
these plates.

Dropping the plates amounts to setting the initial con-
ditions on U0ð0Þ ¼ −x0, V0ð0Þ ¼ x0 and

U0
0ð0Þ ¼ V 0

0ð0Þ ¼
1ffiffiffiffiffiffi
C0

p

¼ 1 −
1

48
ð4Γ2

0 − R0ÞL2 þOðL4Þ: ðB9Þ

The geodesic equations are particularly simple at this point
as well:

U00
0ð0Þ ¼ Γ0U0

0ð0Þ2;
V00
0ð0Þ ¼ −Γ0V 0

0ð0Þ2;
U000

0 ð0Þ ¼ 2Γ2
0U

0
0ð0Þ3;

V 000
0 ð0Þ ¼ 2Γ2

0V
0
0ð0Þ3: ðB10Þ

With all of this established, we can now take the inverses
of HðvÞ and H ∘ pðuÞ. We know that Hð0Þ ¼ 0 and
H ∘ pð0Þ ¼ 0, so we can expand the functions about that
point. Partially resumming H after Taylor-expanding and
using Eq. (46) gives

HðvÞ ¼ ½V−1
0 ðvÞ − V−1

0 ð0Þ�
�
1þ 1

48
R0L2

�
; ðB11Þ

for small v. Therefore, we have two equations

H−1½rðvÞ� ¼ V0

�
V−1
0 ð0Þ þ rðvÞ

�
1 −

1

48
R0L2

��
;

ðH ∘ pÞ−1½rðvÞ� ¼ U0

�
U−1

0 ð0Þ þ rðvÞ
�
1 −

1

48
R0L2

��
:

ðB12Þ

We expandV−1
0 ð0Þ by consideringV−1

0 ð0Þ¼V−1
0 ½Vð0Þ−x0�,

and similarly for U−1
0 ð0Þ:

V−1
0 ð0Þ ¼ −

L
2
þ R0

12

�
L
2

�
3

þ � � � ;

U−1
0 ð0Þ ¼ L

2
−
R0

12

�
L
2

�
3

þ � � � : ðB13Þ

With all of this we can expand the inverse functions that
we require:

H−1½rðvÞ�¼
�
1þ1

2
Γ0Lþ

1

6
½Γ0L�2

�
rðvÞ

−
1

2
ð1þΓ0LÞΓ0rðvÞ2þ

1

3
Γ2
0rðvÞ3þ���; ðB14Þ

and similarly
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ðH ∘ pÞ−1½rðvÞ� ¼
�
1þ 1

2
Γ0Lþ 1

6
½Γ0L�2

�
rðvÞ

þ 1

2
ð1þ Γ0LÞΓ0rðvÞ2

þ 1

3
Γ2
0rðvÞ3 þ � � � : ðB15Þ

As we show in the main text, these expansions define a
periodic function that is continuous, but its second deriva-
tive is not. For completeness, we write down the whole
function:

H̃ðvÞ ¼ HðvÞ þ
�
1

2
Γ0Lþ 1

6
½Γ0L�2

�
rðvÞ

− sgn½rðvÞ� 1
2
ð1þ Γ0LÞΓ0rðvÞ2

þ 1

3
Γ2
0rðvÞ3 þ � � � : ðB16Þ

Finally, note that this is true in a starting coordinate system
that has been scaled so that plate A is at x ¼ 0 and plate B is
at x ¼ L. The object Γ0 is dependent on this scaling, so we
need to be careful when applying this formula.
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