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Abstract

Large photometric surveys provide a rich source of observations of quiescent galaxies, including a surprisingly
large population at z>1. However, identifying large, but clean, samples of quiescent galaxies has proven difficult
because of their near-degeneracy with interlopers such as dusty, star-forming galaxies. We describe a new
technique for selecting quiescent galaxies based upon t-distributed stochastic neighbor embedding (t-SNE), an
unsupervised machine-learning algorithm for dimensionality reduction. This t-SNE selection provides an
improvement both over UVJ, removing interlopers that otherwise would pass color selection, and over photometric
template fitting, more strongly toward high redshift. Due to the similarity between the colors of high- and low-
redshift quiescent galaxies, under our assumptions, t-SNE outperforms template fitting in 63% of trials at redshifts
where a large training sample already exists. It also may be able to select quiescent galaxies more efficiently at
higher redshifts than the training sample.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Computational astronomy (293); Galaxy
quenching (2040); Quenched galaxies (2016); Galaxy classification systems (582); Star formation (1569)

1. Introduction

Although not highly celebrated, perhaps the most influential
discovery in the history of modern astronomy has been
gradually finding that galaxies do not take on arbitrary
properties, spanning the entire range of theoretically possible
spectra. As a result, it has been possible to produce meaningful
surveys of faint galaxies using photometry, with only a very
limited amount of information about the full spectral energy
distribution (SED). Most commonly, a series of templates
(Bruzual & Charlot 2003; Maraston et al. 2009; Brown et al.
2014) are fit to photometric colors with one of several
competing techniques (see Arnouts et al. 1999; Brammer
et al. 2008; Kriek et al. 2009) in order to produce a best-fit set
of parameters.

Fundamentally, the goal of photometry is to map observed
colors to galaxy properties. The validity of this technique
therefore requires two additional assumptions. First, the
mapping between observed colors and galaxy properties must
be surjective, i.e., any specific combination of colors must only
be produced by one set of galaxy properties. Otherwise, the
colors are insufficient to break degeneracies between different
possible galaxy models. Second, due to the complexity of
calculating synthetic templates, current codes use a precom-
piled library of discrete models. Therefore, it is also necessary
to assume that similar colors map to similar properties, to the
point that it is possible to interpolate between nearby points
with a known mapping.

Interpolation presents a considerable challenge, because
there are often ∼10 galaxy parameters that one would like to
fit, and this produces too large of a search space. Fortunately,
we have discovered a series of scaling and other relations
between observed galaxy parameters, including the “funda-
mental plane” (Gudehus 1973; Pahre et al. 1998; Bernardi et al.

2003) between radius, velocity dispersion, and surface
brightness, the “star-forming main sequence” (Brinchmann
et al. 2004; Noeske et al. 2007; Peng et al. 2010; Speagle et al.
2014), and a similar sequence for quasar accretion(Steinhardt
& Elvis 2010, 2011). Because galaxies do not span the entirety
of this ∼10-dimensional space, it is natural to consider first
mapping to a smaller space that can be entirely searched, then
running similar algorithms.
Previous work has shown that dimensionality reduction via a

self-organizing map (SOM; Kohonen 1982) can be used to map
photometry to a two-dimensional space suitable for redshift
determination (Masters et al. 2015; Hemmati et al. 2019). The
SOM spreads objects out approximately equally, dedicating
more cells to more common types of objects. In this work, we
use a related technique, t-Distributed Stochastic Neighbor
Embedding (t-SNE; van der Maaten & Hinton 2008; Van Der
Maaten 2014), which similarly produces a map with reduced
dimension, but will produce a sparser mapping in an attempt to
preserve structure and relative distance.
It might be hoped that combining such a map with observed

spectroscopic redshifts will provide the basis for unsupervised
machine-learning-derived photometric redshifts. In practice,
redshifts determined by the SOM may produce a lower bias,
suitable for several applications to Euclid (Massey et al. 2013;
Masters et al. 2015, 2017, 2019; Hemmati et al. 2019) and
other upcoming surveys. For relatively common objects where
high-quality training data is available, it is also possible to
directly use machine learning to model other galaxy parameters
(Krakowski et al. 2016; Siudek et al. 2018; Davidzon et al.
2019). However, at present, photometric redshifts derived from
template fitting remain competitive with those from unsuper-
vised machine learning and for exotic outliers with few
counterparts in a training sample are typically superior (Masters
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et al. 2015; Hemmati et al. 2019). In effect, at this point, there
is more information in the theoretical templates derived from
current models than there is from observed spectroscopic
redshifts for rare but well-understood objects. However, it has
been possible to apply machine-learning techniques to a wide
variety of astronomical problems for which observations
indeed provide more information than theoretical models.
Recent work has included the use of t-SNE to derive stellar
chemical abundances (Anders et al. 2018) and spectral
information (Traven et al. 2017), as well as the use of
Convolutional Neural Networks to measure galaxy morph-
ology (Dieleman et al. 2015; Domínguez Sánchez et al. 2018;
Hausen & Robertson 2019; Cheng et al. 2020) and shape (Ribli
et al. 2019), perform light profile fitting (Tuccillo et al. 2018),
identify mergers (Bottrell et al. 2019), estimate cluster masses
(Ho et al. 2019), and classify supernovae (Muthukrishna et al.
2019).
For the same reason, unsupervised machine learning should

be expected to perform better than template fitting for objects
that are poorly modeled by current theory. In this work, we use
a combination of t-SNE and current observations to develop a
new selection for high-redshift, quiescent galaxies. In
Section 2, the underlying assumptions and a more formal
definition of a quiescent estimator is given. The new estimator
is described in Section 3. We then evaluate the success of this
algorithm in Section 4.

2. Quiescence Estimators and Varying Assumptions

In this work, we develop a method based upon the
unsupervised machine-learning algorithm t-SNE to select
quiescent galaxies from photometric surveys. Let Î xi

k{ }
be the set of photometric measurements provided by the
survey, where each individual xi has k components, represent-
ing one object in k bands. Each specific galaxy might be
quiescent; denote this by qi ä {0,1}. A method of quiescent
galaxy detection consists of an estimator6 xQ i({ }) for {qi}.
Although the true qi ä {0,1}, some estimators instead return a
probability of quiescence qi ä [0,1].

Current estimators use information learned from past
analysis of galaxies to produce a static mapping xQ qi i( ) .
The most commonly used example is a color–color selection
such as a UVJ diagram (Strateva et al. 2001; Baldry et al. 2004;
Wuyts et al. 2007; Williams et al. 2009; Muzzin et al. 2013;
van der Wel et al. 2014; Leja et al. 2019), which is a mapping
from only three of the k bands (chosen or adjusted to
approximate U, V, and J bands in rest-frame colors) to a
quiescence estimator, selecting a region of ratios between
adjacent bands that is populated primarily by quiescent
galaxies. A far more complex mapping is produced by
photometric template fitting (Arnouts et al. 1999; Brammer
et al. 2008; Kriek et al. 2009), which produces spectra for
various combinations of model parameters and uses them to
find a best-fit spectrum for each xi. The model parameters
corresponding to that spectrum determine the specific star-
formation rate (sSFR; or SFR per unit stellar mass), and
applying a threshold to the sSFR produces a quiescent
estimator. Both methods assume that our knowledge of typical
galaxies is sufficient to produce a mapping Q that will be valid

for all galaxies, and in the case of template fitting, that
knowledge includes a mapping from model parameters to
spectrum through stellar population synthesis (see Conroy et al.
2009; Conroy 2013).
The unsupervised machine-learning method developed here

does not require stellar population synthesis or any other
astrophysics but rather attempts to let the data itself determine
the proper quiescence estimators. Conceptually, the success of
such an algorithm relies upon three key assumptions:

1. There is a surjection xQ qi i( ) from photometric
measurements in the survey bands to quiescence. Unlike
the methods described above, it is not necessary to know
any properties of that surjection but merely that one
exists.

2. If x1 and x2 are nearby in the k-dimensional photometric
color space, it is very likely that q1=q2.

3. There is a mapping  T : k 2 from the k-dimensional
vector space to a lower-dimensional space, in this case
two-dimensional, in which the previous two properties
continue to hold.

The first assumption is straightforward, as it is minimum
necessary foundation for photometry as a valid astronomical
technique. In regions where the second assumption does not
hold, it means that quiescent and non-quiescent galaxies will be
very nearly degenerate. One example would be the near-
degeneracy between age and extinction in photometric template
fitting (Gallazzi et al. 2005). Thus, photometry will be
insufficient to determine quiescence with high certainty for
such galaxies regardless of the methodology employed.
The third assumption is necessary because unsupervised

machine learning requires a training set, and galaxy photometry
is sparse in k. Thus, we first map galaxies  ¢x xT: i i{ } { }
into 2, then find a surjection xQ qi i({ }) { } that produces a
quiescence estimator from a reduced space in which individual
galaxies are likely to have many close neighbors.
If all of these assumptions hold, it is then possible to produce

an estimator for whether any specific galaxy should be
classified as quiescent by looking at neighboring galaxies for
which q has been well measured and letting those neighbors
vote. We evaluate the correctness of this estimator in Section 4,
finding that, on average, it is more successful than template
fitting, more strongly so toward high redshift. However, there is
ultimately value in using both approaches, one which is based
upon astrophysical knowledge about the physics of galaxy
evolution and another which is entirely ignorant of that physics
and only given examples of quiescent and non-quiescent
galaxies, letting the data alone predict quiescence.

3. Using t-SNE to Select Quiescent Galaxies

The most successful existing methods for photometric
quiescent galaxy selection are variations on color–color
selection, in which galaxies are mapped into a two-dimensional
space based upon the two slopes described by a set of three
specific rest-frame photometric bands, then a region is
identified that is populated primarily by quiescent galaxies
(Williams et al. 2009). Every galaxy within that region is
selected as quiescent, and the remainder as selected as non-
quiescent.
The machine-learning method here, although is it con-

structed from a very different toolkit, is essentially an improved
version of this familiar color–color selection. It similarly finds

6 Note that this is a more general definition than required for previous
estimators, which can be given an individual xi and produce =xQ qi i( ) . The
machine-learning classification developed here can only operate on the entire
set xi{ } simultaneously, and is meaningless for individual objects.
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regions populated primarily by quiescent galaxies, but using all
available bands, so that all available information can be used in
the selection. Further, quiescent galaxies are selected from any
of a potentially large number of tiny regions. As a result, with a
sufficiently high-quality training sample, it becomes possible to
exclude dusty star-forming galaxies that are nearly identical,
but not entirely identical, to quiescent galaxies and avoid
selecting them. Naturally, if star-forming galaxies are truly
degenerate with quiescent galaxies, no algorithm can distin-
guish them, in which case the first assumption (Section 2)
would be violated because xQ qi i( ) would no longer be
surjective. Similarly, if, in practice, measurement uncertainties
are large enough to partially or fully restore degeneracies, it
will again become impossible to select all quiescent galaxies
but no interlopers.

The algorithm we select, t-SNE (van der Maaten &
Hinton 2008; Van Der Maaten 2014), is an unsupervised
machine-learning algorithm for dimensionality reduction
designed for the visualization of high-dimensional data sets.
We first use t-SNE to produce a map T in which galaxies with
similar photometric SEDs are placed in nearby locations, while
galaxies with dissimilar photometric SEDs are further away
(Figure 1(a)). For the figures shown in this work, maps were
constructed in rest-frame magnitude space, and different

features of the data set would be revealed using different units
or distance metrics.
Note that the two coordinates produced by t-SNE are

arbitrary and do not represent any sort of basis for the space. A
galaxy further in the x-direction has not become more “x-like,”
but is merely dissimilar from galaxies further to the left.
Further, t-SNE is a randomized algorithm, and running it on the
same data set with different initial conditions will produce the
same topology but a different map (Figure 1(b)).
To this point, the t-SNE map has been produced without any

direct information about galaxy quiescence or any other
astronomical properties. However, because photometry is an
indicator of astrophysical quantities, the map resulting from
arranging galaxies based upon their photometry has also
arranged them by these quantities. It is therefore possible to
predict the properties such as stellar mass that would be found
by photometric template fitting without the need to run
template fitting codes, merely by looking at the results of
running those codes on nearby galaxies (Figure 2, left panel).
Most importantly for our purposes, the same is very likely

true for quiescence. It is certainly true that a t-SNE map can
predict whether template fitting will determine that a galaxy is
quiescent, but this has limited utility. After all, the primary
advantage of unsupervised machine learning is avoiding the

Figure 1. (a) t-SNE map of all galaxies at 1.0<z<1.1 in the ULTRAVISTA catalog (McCracken et al. 2012) for which MIPS coverage is available. A narrow
redshift range is necessary, since otherwise, the primary structure shown in the map would indicate redshift. Galaxies with similar SEDs end up in neighboring
locations, and galaxies with dissimilar SEDs end up far apart. Mean SEDs with 1σ envelopes are calculated from the black circles indicated. (b) A second t-SNE map
for the same catalog, produced with a different random seed and initial ordering of the sample. The eight sample SEDs shown are the same for both maps, with
corresponding colors identifying the same SEDs. In each case, the range of SEDs within the indicated circle is shown, with all SEDs normalized to a common z-
band flux.
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need to make the assumptions required to produce templates.
Instead, we train our predictor on the most successful technique
applied to the ULTRAVISTA catalog, combining a successful
(rest-frame) UVJ color selection with a non-detection in the
Spitzer Space Telescope MIPS 24 μm band (Rieke et al. 2004),
an independent indicator of hot dust and likely also a high star-
formation rate (Rieke et al. 2009).

Galaxies with MIPS detections lie primarily within a set of
contiguous regions on the t-SNE map (Figure 2). Further,
nearly every galaxy within that region has an MIPS detection,
while nearly every galaxy lying elsewhere does not. Similarly,
galaxies classified as quiescent (UVJ-selected but no MIPS
detection) lie within distinct regions (Figure 3). Therefore, it is
natural to produce an estimator that examines the objects within

a small neighborhood on the map with known classification as
quiescent or non-quiescent and lets them vote on whether a
new object is likely to be quiescent and on the confidence in
that prediction. If the number of such neighborhoods were
known a priori, that information could be used to produce a
further improved predictor (see Turner et al. 2019). However,
avoiding the imposition of this condition allows t-SNE to
attempt to detect of all types of quiescent galaxies and all types
of dusty star-forming galaxies without imposing any prior
expectations on how many distinct types exist.

3.1. Information Used for t-SNE Mapping

The Laigle et al. (2016) catalog includes over 30 bands from
NUV out NIR , some which overlap with alternative bands at

Figure 2. (Left panel) Best-fit stellar mass for the galaxies in the ULTRAVISTA sample from Figure 1. Galaxies with similar best-fit stellar masses cluster together.
Thus, it is possible to predict the photometric template fitting-determined stellar mass of a galaxy without actually running those template fitting codes on the object in
question by instead looking at the masses of its neighbors. The same is true of many other galaxy properties that currently require template fitting. (Right panel)
Summary of MIPS detections for the low-z sample. Sources with credible detections (S/N>5; orange) are clustered with respect to those without credible detections
(S/N<5; gray).

Figure 3. (Left panel) Mapping produced by t-SNE for a combination of training (blue-labeled star-forming and orange-labeled quiescent) and test (gray) sets, both
taken from z∼1. The quiescent galaxies cluster within the map, implying that galaxies in the test sample should be labeled as star-forming or quiescent in a similar
manner. (Right panel) A second mapping produced with a smaller value of perplexity, which effectively optimizes the map for finding more local rather than global
structures. Different types of structure will be produced by different choice of t-SNE hyperparameters, so using t-SNE for predicting astronomical properties requires
careful tuning. Maps are produced with perplexity hyperparameters of 30 (left) and 7 (right).
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similar wavelength. However, due to differences in on-sky
coverage, many of those bands are only available for a fraction
of the catalog. Because t-SNE relies on Euclidean distances,
which cannot be calculated for vectors of different dimension,
we restrict our analysis to + ++u B r i z Y J H K, , , , , , , , s bands,
which are available as statistically significant detections for
most of the catalog. As described in Table 1 of Laigle et al.
(2016), their 3σ depths vary across the field and range from
23.4 (Ks) to 27.0 (B). Due to completeness, a mass cut is made
between < <M8.5 log 11.510 *( ) . Based on photometric red-
shift solutions, we isolate a low-redshift sample within
0.9<z<1.1 containing 19,774 galaxies (17% quiescent)
and a high-redshift sample within 1.9<z<2.1 containing
7524 galaxies (6% quiescent). When training and test samples
are made, in every case, objects are randomly selected from
within the relevant redshift boundaries.

3.2. Definition of “True” Quiescent Galaxies

What any learning algorithm attempts to do is predict how
new data would have been labeled if it were part of that training
sample. A significant issue in training t-SNE selection is
therefore that the labeling, in the ideal case, will ultimately be
exactly as good as the training sample. Thus, using t-SNE to
select quiescent galaxies relies on a good selection of the
ground truth of quiescence for the training sample.

Ideally, this would be done spectroscopically, using specific
lines as tracers of SFR and stellar mass. However, spectroscopy
is available for only about 1% of the Laigle et al. (2016)
catalog. Further, objects with spectroscopic follow up have
often been targeted because of specific photometric properties,
so that a complete spectroscopic sample would be even smaller.
It is therefore necessary to rely on photometry to select “true”
quiescent galaxies in the training and test samples. Several
methods have been proposed for using photometry to select
quiescent galaxies, including the new method developed here.
Of these, each has known flaws:

1. Static color selection, such as UVJ, provides a fairly good
proxy for quiescence while minimizing contamination.
However, some objects with very high SFR (and MIPS
flux) will pass the UVJ selection (Figure 7(a) and related
discussion). Quiescent galaxies can also lie outside the
UVJ region (Domínguez Sánchez et al. 2016). A possible
solution to these limitations is replacing the rest-frame U
band with near-UV (NUV) and increase the color
leverage by using NUV−r versus r−K (or r− J,
see, respectively, Arnouts et al. 2013; Ilbert et al. 2013).

2. MIPS is only successful at selecting the galaxies that are
brightest at 24 μm (COSMOS does not have uniform
MIPS coverage, so the detection threshold varies
significantly). Therefore, many star-forming galaxies,
including ones that, at low mass but high redshift, lie
above the main sequence, will not be detected by MIPS.

At z∼2, this potential mischaracterization of lower-
SFR (likely lower mass) star-forming galaxies will be
significantly worse than at z∼1. Thus, there is a strong
redshift dependence in this definition of a true quiescent
galaxy. This effect will therefore underestimate the
quality of a selection trained at one redshift but tested
at another (Section 4.2).

3. Photometric template fitting and the resulting sSFR
attempts to calculate a quantity that can be most directly

interpreted as “true” quiescence. However, photometric
template fitting is also known to produce significant
errors in SFR (see Laigle et al. 2019) and, therefore, even
less reliable sSFR, dividing that by an estimated stellar
mass. Often, there is insufficient multiwavelength cover-
age to use any other method (except for UVJ or some
other two-color selection), and photometric template
fitting is used by default. However, as shown in
Section 4, these flaws in using template fitting to estimate
SFR mean that best-fit sSFR is not a particularly good
proxy for quiescence, even though true sSFR would be.

Given the available options, in this work, a combination of
UVJ and MIPS selection is used to define ground truth for
quiescence. When a sufficiently large spectroscopic sample can
be produced, it would be ideal to then recalibrate the t-SNE
predictor based upon this improved definition of true
quiescence.

3.3. Training and Test Samples

Since t-SNE has no knowledge of astronomy, it must be
provided with a training set consisting of identified quiescent
and non-quiescent galaxies in order to produce a predictor.
Unlike algorithms such as a self-organizing map (Koho-
nen 1982; Masters et al. 2015), t-SNE does not produce a static
transformation from the higher-dimensional space to the lower-
dimensional one but rather produces a mapping that extremizes
a global penalty score for the entire sample. Thus, adding a new
object requires recalculating the entire t-SNE map, and may
alter the positions of every object. This means that t-SNE is a
poor choice for real-time analysis, because it is not possible to
precompute a static surjection xQ( ). However, if the training
sample is already large compared with the test sample, the
entire test sample can be processed in approximately the same
time as one object.
Therefore, the estimator developed here first uses t-SNE to

arrange the union of both training and test samples. Galaxies
described by their rest-frame photometry in the higher-
dimension space are mapped by t-SNE with a perplexity of
30 over 1000 iterations. Once converged, labels are applied to
the training set to denote quiescence (Figure 3). It should be
noted that the choice of perplexity and other settings
(conventionally called hyperparameters in order to distinguish
them from parameters, which instead belong to the model)
makes a substantial difference and is part of the t-SNE tuning
process. Perplexity formally is defined in terms of the Shannon
entropy of the system (van der Maaten & Hinton 2008), so that
higher values produce a wider search, which results in more
strongly weighting global structure, and lower values similarly
reveal more local structure. The choice of perplexity is
effectively a prediction of the number of neighbors that should
be used in determining the properties of a galaxy and, therefore,
depends not only on the underlying distribution of galaxy
properties but also on sample size and selection.
Because the quiescent galaxies cluster within the training

sample, if galaxies in the test sample are drawn from a very
similar population, they should have the same label as their
neighbors (Figure 3). This is also a corollary of the three
assumptions listed in Section 2. Objects in the test sample are
therefore classified as quiescent when the quiescent fraction of
m neighboring training galaxies is fQ>fmin.
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A natural choice of fmin might seem to be 0.5, letting a
majority of nearby objects determines the label. However, in
practice, the optimal choice depends upon how many objects
are scattered via measurement errors to incorrectly be close
neighbors. Therefore, the optimal choice of fmin depends upon a
combination of uncertainties and the underlying true fraction of
quiescent galaxies in the training sample. The choice of fmin

also depends upon the desired relationship between quantity
and quality in the resulting catalog; a higher value of fmin will
result in fewer false positives but more false negatives (e.g.,
Figure 4). It is common to see this tradeoff referred to in
machine-learning literature as one between precision (true
positives/total positives), a measure of sample quality, and
either recall or sensitivity, two terms referring to the true
positive rate, which is a measure of sample quantity.

4. Comparison with Template Fitting

We construct a series of tests to compare the effectiveness of
t-SNE in selecting “quiescent” galaxies (defined here as UVJ
selected but not MIPS detected) with that of photometric
template fitting. Since our fiducial definition of a quiescent
galaxy includes a two-color (UVJ) selection, it is difficult to test
t-SNE against two-color selection. However, in Section 4.3, we
evaluate whether t-SNE is more likely to discard dusty star-
forming galaxies with MIPS detections than a standard two-
color selection.

In all cases, the comparison is done on the ULTRAVISTA
photometric catalog (McCracken et al. 2012), with data drawn
from the Laigle et al. (2016) catalog providing improved
reductions and additional ancillary data. Currently, the most
reliable method for differentiating between dusty, star-forming
interlopers and bona fide quiescent galaxies in ULTRAVISTA
requires additional observations, using Spitzer/MIPS to search
for 24 μm emission characteristic of hot dust, and therefore a
dusty star-forming galaxy. A successful classification is
therefore defined as predicting correctly from

+ ++u B r i z Y J H K, , , , , , , , s bands whether a galaxy will both
be selected by (rest-frame) UVJ and have no discernible MIPS
24 μm detection with a S/N>5, at which threshold it would
instead be considered a dusty star-forming galaxy.

The sample used is described in detail in Laigle et al. (2016),
which provides robust multiwavelength rest-frame magnitudes.
Galaxies are then cross-matched with an FIR/mm catalog

(Sanders et al. 2007; Jin et al. 2018) over the same footprint.
Objects with MIPS SNR<3 are considered too faint for an
MIPS non-detection to be a reliable indicator of quiescence and
are not included in the sample. Although color selection and
template fitting are static methods, t-SNE requires a training
sample. Therefore, for t-SNE, the catalog must be divided into
a training sample and test sample.
Template fitting and t-SNE selection are compared in their

ability to solve two different problems. First, to examine the
case of a well-understood domain, the 0.9<z<1.1 popula-
tion is divided up into equal-sized, disjoint training and test
samples. t-SNE is given the entire training sample (in principle,
so are other methods, but they do not change based upon new
information) and a list of which training objects have been
identified as quiescent. The methods are also given the entire
test sample and its NIR photometry, but no information about
which test objects have MIPS detections. Each method
produces a catalog of test objects classified as quiescent and
is evaluated on both false-positive and false negative rates.
Second, template fitting and t-SNE selection are also

evaluated on their ability to determine which galaxies are
quiescent in an unexplored domain. The training sample
consists of the entire 0.9<z<1.1 catalog, but the test sample
consists of the 1.9<z<2.1 catalog. Because the z∼2
galaxy population is not identical to that at z∼1 (see Speagle
et al. 2014 for star-forming galaxies and van der Wel et al.
2014 for quiescent ones), this presents a far more difficult
problem for machine learning, which has no knowledge of
astronomy or any expected redshift evolution. Methods are
given rest-frame colors from the Laigle et al. (2016) catalog, so
any errors in photometric redshift determination for the test
sample will result in all three methods making predictions from
incorrect inputs at the same rate. Errors in photometric redshift
determination for the training sample will degrade the
efficiency of t-SNE but not the other methods.

4.1. Comparison of Estimators in a Well-explored Domain

We first consider these estimators in a domain that is already
well-explored. Both the training and test samples are drawn
from the same catalog at the same photometric redshift of
0.9<zphot<1.1, with “true” quiescent galaxies defined as in
Section 3.2. A typical use case might be producing a catalog of
quiescent galaxies for a large photometric survey with limited

Figure 4. Panels (a)–(b) Correct (sum of of true positive and true negative) prediction fractions for (a) t-SNE and (b) photometric template fitting (green) as a function
of the threshold used for both training and test sample drawn from the same 0.9<zphot<1.1 ULTRAVISTA catalog. The sSFR distribution (black, panel (b)) and
cumulative distribution (blue/orange in panels (a)/(b)) are also shown, as well as the maximum TPR+TNR achieved and their corresponding thresholds (gray dotted
lines). (c) Receiver operating characteristic (ROC) curve for both methods over 10,000 random draws of training and test samples. t-SNE (blue) outperforms
photometric template fitting (orange) in 63% of trials. With different tuning, t-SNE selection could be constructed to outperform sSFR selection either for high-
quantity samples (illustrated here) or instead for high-quality samples but not for both use cases simultaneously. A typical threshold used to identify quiescent galaxies
based on log10(sSFR) is −10.
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spectroscopy. In that case, the additional bands or spectro-
scopic follow up sufficient to produce confirmed quiescent
galaxies would only exist for a small fraction of the full
catalog, but could provide a high-quality training sample.

Color selection has no free parameters and, therefore, is
completely defined and produces a fixed error rate, both for
false positives and false negatives. The other two methods do
have tunable parameters. For photometric template fitting, a
large number of selections (choice of templates, grid spacing,
other fit parameters and hints) were made in the ULTRA-
VISTA catalog used (described in detail in Laigle et al. 2016)
and cannot be altered for this test. However, the choice of sSFR
threshold used to determine quiescence is an additional
parameter, and a higher threshold will reduce both true and
false positives for quiescence (Figure 4(b)).

For t-SNE, there are similarly several hyperparameters
required to produce an estimator. The most significant for
producing a map is perplexity, which governs the relative
importance of local neighbors compared with more distant
ones. Once the map is produced, the definition of close
neighbors, how many training sample neighbors are chosen,
and threshold fraction of quiescent training sample neighbors
are additional choices. These choices must be made differently
for every specific use case, because two identical galaxies will
end up at different distances on the t-SNE map depending upon
properties of other galaxies, sample selection, sample size,
perplexity, and t-SNE grid size. For this specific test, we
experimentally determined that perplexity 30 maximized
ΣROC (defined below) for the figures shown. Then, setting
the threshold for the required fraction of quiescent neighbors to
label a galaxy as quiescent produces a similar tradeoff between
true and false-positive rates as for template fitting (Figure 4(a)).
The total accuracy shown for each estimator is a combination
of the true quiescent galaxy fraction and a false-positive
fraction, (TP+TN)/total. The same accuracy could be
produced from, e.g., more true quiescent galaxies with more
false positives or fewer of each. Thus, the maximum accuracy
will lie at the cutoff where a marginal change in cutoff will
result in an equal change in both true and false positives.

The appropriate tool for comparing these estimators is a
receiver operating characteristic (ROC) curve, a tool that is
common for assessing the quality of medical diagnostics
producing a Boolean answer (Albeck & Børgesen 1990;
Baker 2003; Fawcett 2006). A random estimator containing no
information can be produced lying anywhere along the dashed
diagonal, e.g., randomly selecting 40% of galaxies to be

quiescent will result in a 40% of quiescent galaxies selected as
quiescent (true positive) as well as 40% of star-forming
galaxies selected as quiescent (false positive). The best
estimators have ROC curves lying as close as possible to the
top left, corresponding to 100% true positives with no false
positives.
We find that the t-SNE ROC curve is comparable to the

template fitting ROC curve (Figure 4(c)), with a slightly
different shape. For some desired true positive rates, a t-SNE
method will produce a corresponding sample with fewer false
positives, but for some true positive rates, template fitting is
more successful. With different hyperparameters, t-SNE
selection could be constructed to outperform sSFR selection
either for any specific true positive rate desired (illustrated for
high-quantity samples in Figure 4(c)) but not for all true
positive rates simultaneously and with a lower overall
success rate.
A related statistic7 is òS º dROC ROC TPR FPR

0

1
( ) , com-

monly used in machine learning to consider the quality of
estimators across all possible thresholds. Prior to selecting a
threshold, both template fitting (using sSFR) and t-SNE (using
fraction of quiescent neighbors) in a ranked ordering of the
entire test sample by likelihood that the object is quiescent. The
selection of a threshold then divides the sample into two
groups, labeling the more likely group with q=1 and the
remainder as q=0. The ΣROC corresponds to the probability
that a randomly selected quiescent galaxy is ranked higher than
a randomly selected star-forming galaxy (see Bradley 1997)
and produces a similar result the Wilcoxon-Mann-Whitney
rank sum test (Wilcoxon 1945; Mann & Whitney 1947). A
random estimator will rank the quiescent galaxy higher half of
the time, for a ΣROC of 0.5.
The t-SNE ΣROC is 0.951 and the photometric template

fitting ΣROC selecting quiescent galaxies as those with a low
best-fit sSFR is 0.950. Both are substantially better than
random, and t-SNE outperforms sSFR in 63% of trials from
random draws of training and test samples. The objects for
which the t-SNE estimator produces an incorrect classification,
as might be expected, are primarily those in two categories: (1)
galaxies with high measurement uncertainties, typically fainter
and, thus, lower-mass galaxies; and (2) galaxies near the
boundary between star-forming and quiescent, for which even

Figure 5. Panels (a)–(b) Distribution of stellar mass and star-formation rate for galaxies selected as quiescent or non-quiescent using the t-SNE threshold indicated in
Figure 4(a), with shading indicating the number of objects selected. Panel (c) Median quiescence score using t-SNE selection for the test sample, with a score of 1.0
indicating the highest certainty that an object is quiescent. Objects with the most uncertain classification lie either near the boundary between star-forming and
quiescent, as well as at low mass, where fainter galaxies have higher measurement uncertainties.

7 In previous literature, in medical diagnostics and, later, machine learning,
this is described as “area under the curve,” or AUC, rather than in terms of the
integral. Since astronomers should be more comfortable with a description in
terms of calculus, we choose to do so instead.
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small differences in SFR would change their classification
(Figure 5).

In Figure 4, we have attempted to optimize the choice of
hyperparameters for t-SNE to produce a clean separation. With
a different choice of hyperparameters, the quality of the
estimator would be decreased, much as it would be if inferior
templates were used for photometric template fitting. The ideal
choice of hyperparameters depends upon the sample, but can be
estimated using the following heuristics:

1. The perplexity should represent the number of neighbors
that should be considered informative as to the average
galaxy. Thus, if a survey is doubled in an area with
otherwise identical detection properties, the optimal
perplexity will also approximately double.

2. The neighborhood radius for determining which objects
are sufficiently close on t-SNE map to vote on quiescence
should be chosen so that the typical number of objects
within that radius matches the perplexity.

3. The threshold can then be set to different values
depending on the relative importance of completeness
and quality. A threshold set near the total fraction of
quiescent galaxies, or equivalently, the voting score that
would result if neighbors are chosen randomly from the
entire sample rather than from the t-SNE map, will
typically maximize the sum of TPR and TNR.

A reasonable interpretation is that the training sample used
by t-SNE has comparable, but slightly more, information about
quiescent galaxies than the models used to produce templates.
Depending upon which regime is most useful, that information
can be used to make either slightly better high-quality or high-
completeness samples, but t-SNE must be tuned for that
specific purpose.

4.2. Comparison of Estimators in a Novel Domain

We now consider these estimators in a domain that is
primarily unexplored. Both the training and test samples are
drawn from the same rest-frame ULTRAVISTA catalog, but
the training sample is drawn at a photometric redshift of
0.9<zphot<1.1 and the test sample is drawn at
1.9<zphot<2.1. This test is designed to explore the utility
of these estimators in finding quiescent galaxies in a new,
higher-redshift regime, on the basis of what has been learned
about them at lower redshifts. As a result, although

hyperparameters of the t-SNE map were carefully chosen in
order to optimize the lower-redshift quiescent galaxy selection,
we have then frozen them rather than selecting new
hyperparameters for the z∼2 test in order to provide a fair
test of a truly unexplored domain in which there is no training
sample to calibrate against.
All estimators considered are predicated on the idea that

high-redshift quiescent galaxies look sufficiently similar to
low-redshift counterparts that it will be possible to recognize
them without high-redshift examples. For photometric template
fitting, the assumption is that quiescent galaxies at different
redshifts might possibly have dissimilar properties apart from
their low star-formation rates, but that they will be driven by
similar astrophysics. Therefore, the same stellar population
synthesis codes, extinction laws, etc., can be used to produce
valid templates. The other two estimators make no direct
assumptions about the underlying astrophysics and instead
assume that high-redshift quiescent galaxies will have similar
SEDs, in a holistic way for t-SNE and in specific bands for UVJ
selection.
As in Section 4.1, photometric template fitting and t-SNE

both require a choice of threshold and can be assessed through
analyzing the true and false-positive rates as a function of
threshold (Figure 6). The optimal threshold is lower here,
because the overall fraction of true quiescent galaxies is lower
in the sample. In general, the optimal threshold will lie close to
the point at which neighbors are consistent with being
randomly drawn from the full sample, including both quiescent
and non-quiescent galaxies. This also means that the optimal
threshold will depend not just on redshift, but also the detection
limit. Even in a novel domain, some prior expectation about the
fraction of quiescent galaxies is required for optimal t-SNE
selection.
The resulting ROC curve indicates that t-SNE is a dominant

selection mechanism, and allows substantially larger high-
quality samples. For this unexplored domain, the t-SNE ΣROC
is 0.915 and the template fitting ΣROC is 0.871. In this case,
t-SNE even with fixed parameters is dominant over sSFR
selection; for any choice of ideal true positive rate, t-SNE
selection will have a lower false-positive rate than photometric
template fitting (Figure 4(c)). The information advantage in
favor of color space rather than model space is now sufficiently
large that the t-SNE hyperparameters no longer need to be

Figure 6. (a)–(b) Correct (sum of of true positive and true negative) prediction fractions for (a) t-SNE and (b) photometric template fitting (green) as a function of the
threshold used for a training sample drawn from the 0.9<z<1.1 ULTRAVISTA rest-frame catalog and test sample drawn at 1.9<z<2.1 from the same catalog.
The sSFR distribution (black, panel (b)) and cumulative distribution (blue/orange in panels (a)/(b)) are also shown, as well as the maximum TPR+TNR achieved and
their corresponding thresholds (gray dotted lines). (c) Receiver operating characteristic (ROC) curve for both methods. t-SNE (blue) is dominant over photometric
template fitting (orange) for any choice of optimal true positive rate, with different choices of initial conditions for t-SNE algorithm having negligible impact on the
ROC curve.
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tuned for a specific use case in order to substantially
outperform template fitting.

Both values of ΣROC are substantially lower than in the
well-sampled domain explored at Section 4.1. This is due to a
combination of several factors. For both methods, z∼2
galaxies are generally fainter, and therefore more poorly
measured than at z∼1. Additionally, both methods in different
ways assume that high-redshift galaxies look like those at low
redshift. For t-SNE, the assumption is indeed that they are
identical in (rest-frame) color space. For template fitting, this
same assumption is instead expressed in the choice of
templates, with the assumption that physical models developed
using a combination of theory and observed spectra of more
local quiescent galaxies continue to describe those at higher
redshift. Finding that both methods are broadly successful at
z∼2 confirms that the colors of quiescent galaxies perhaps
change slightly but do not change substantially between z=1
and z=2.

4.3. Improvement over Two-color Selection

For completeness, it is also important to show that t-SNE
indeed provides an improvement over color–color selection. It
should be expected that t-SNE will perform better than, e.g.,
UVJ selection because t-SNE is using more information and is
allowed to construct its quiescent locus by combining many
small regions of quiescent galaxies rather than one, continuous
region. Thus, it should be hoped that t-SNE will be able to
remove many of the UVJ-selected objects with MIPS
detections.

However, it is perhaps not obvious a priori that these
advantages must provide a significant improvement. The colors
of quiescent galaxies are dominated by very old stellar
populations, and the color of an aging stellar population
changes quickly for young populations but is nearly constant
for very old ones. As a result, the observed SEDs of quiescent
galaxies look very similar to each other, and predicting the full
SED of a quiescent galaxy from a small number of bands is
easier than doing so for a star-forming galaxy. Thus, the
additional bands might be mostly redundant information. If the
quiescent locus is tight, there may be negligible benefit to
instead describing it as the union of many small neighborhoods
and omitting galaxies that lie in between. Thus, it is necessary
to confirm that t-SNE selection truly outperforms UVJ.

Since the quiescent galaxy training sample already includes a
two-color (UVJ) selection, t-SNE is trained in part with the goal
of reproducing that selection. Indeed, if UVJ selection were the
only criterion used, t-SNE would reproduce it almost exactly,
since UVJ selection also corresponds to a region of the full
color space described by all bands. Instead, we test whether
t-SNE provides an improvement over UVJ by examining the
interlopers with MIPS detections indicating hot dust and,
therefore, that the object is not a quiescent galaxy.

For UVJ selection, these interlopers are well mixed with true
quiescent galaxies, so that it would not be possible to produce a
high-quality sample with a more restrictive cut in UVJ
(Figure 7(a)). However, t-SNE is able to find some regions
that do have lower interloper densities, so that it can produce a
higher-quality sample (Figure 7(b)).

Selecting quiescent galaxies from a catalog of only UVJ-
selected galaxies is a much more difficult problem than
selecting them from the full catalog. The full catalog contains
many galaxies that can be very easily rejected as quiescent

candidates, whereas the interlopers that pass UVJ selection look
far more similar to true quiescent galaxies. Thus, t-SNE is less
effective at this separation, with a ΣROC of 0.762, compared
with ΣROC=0.952 for the full catalog. However, this is still
a significant improvement upon UVJ selection; it means that
given the (rest-frame) optical photometry for a true quiescent
galaxy and a dusty star-forming galaxy that also passed UVJ
selection and asked to select which one is truly quiescent,
t-SNE will make the correct selection 76.2% of the time.
Template fitting also provides an improvement over UVJ
selection, but a smaller one, with a ΣROC of 0.664. Both are
an improvement upon UVJ selection alone, which makes no
distinction between objects that pass its selection and, thus,
would correctly identify the MIPS detection exactly 50% of
the time.
Clearly the best estimator of whether MIPS will detect an

object is based on MIPS observations, and in practice neither
t-SNE nor sSFR estimators would be used instead. However,
coverage is not always available, or is not available at sufficient
depth, when determining quiescent candidates from photo-
metry. Indeed, the rationale behind using template fitting is that
it should be possible to predict 24 μm flux from optical and
near-infrared photometry. These results show that t-SNE is a
much better estimator of 24 μm flux than photometric template
fitting.

5. Results and Discussion

In this work, we develop a new, machine-learning-based
method for selecting quiescent galaxies from optical photo-
metry. This method provides an improved catalog over two-
color selection by identifying and rejecting many (but not all)
of the dusty star-forming galaxies that contaminate two-color
samples. The choice of t-SNE threshold also provides a
tradeoff between sample size and sample quality that does not
exist in two-color classification.
The efficiency of this t-SNE is compared with photometric

template fitting, which similarly allows a tradeoff between
quality and quantity, with more restrictive cuts on best-fit sSFR
or SFR providing a smaller but higher-quality sample. We find
that in a well-explored domain, in which there is already a large
training sample available at the same redshift, t-SNE outper-
forms photometric template fitting in 63% of trials. In a novel
domain, using z∼1 galaxies as a training sample to select
z∼2 quiescent candidates, t-SNE is dominant over template
fitting, in that, for any choice of sample size, t-SNE will
produce a sample with fewer interlopers.
It should also be stressed that t-SNE was not evaluated here

under optimal conditions. The mapping was based upon a
limited number of bands, with IR bands available to template
fitting excluded from the t-SNE mapping (since t-SNE was
asked in part to make a prediction of 24 μm luminosity),
whereas other surveys often provide more information. Further,
because t-SNE needs to compare objects on a similar vector
basis, it was necessary to provide it with rest-frame optical
measurements. For objects with catastrophic errors in photo-
metric redshifts, t-SNE simply provided incorrect data, so that
some of the objects for which template fitting fails auto-
matically failed t-SNE as well. Still, the result is that t-SNE
provides an improvement over both color selection and
photometric template fitting under essentially all conditions
for which it was tested.
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An additional issue for both template fitting and t-SNE is
computational complexity. Two-color selection is very simple
(although in practice, two-color selection is done in the rest
frame and may require template fitting to be performed prior to
selection), and adding objects to an existing sample is also
quick. Photometric template fitting is a slow process, with the
quality of the fit often determined by the limited set of
templates that can be considered given available computing
time. However, adding one new object to an existing catalog
only requires running template fitting on that one object, which
can typically be done in minutes at reasonable quality. Because
t-SNE does not produce a static map, the addition of even one
new object requires reoptimizing the entire map, which is the
time-consuming step. Formally, t-SNE runs in  n2( ), and the
runtime is already prohibitive for the ∼104 objects in the
samples shown here. Approximations (e.g., Barnes–Hut;
Barnes & Hut 1986) exist to produce reductions to
d�three-dimensions in  n nlog( ) and were used here to
produce a runtime of a few minutes. However, this would still
be an issue for the entire >106 object COSMOS catalog or
upcoming catalogs from LSST, Euclid, etc. For such surveys,
an alternative algorithm such as the self-organizing map
(Masters et al. 2015), which produces a static mapping is
likely a better choice if real-time decision-making is required
for an individual object.

5.1. Where Does the Improvement Come from?

Understanding this improvement requires evaluating how
much information is being used and how useful that
information is for quiescent selection. The improvement in
t-SNE over color selection is straightforward, since t-SNE is
using all of the available information instead of only some
bands and doing so in a more flexible manner. The ability of
t-SNE to do this indicates that the three assumptions in
Section 2 are generally true, which should not be surprising

because these same assumptions are required for photometry to
be capable of building a catalog.
Photometric template fitting and t-SNE are much less

similar, since they arise from two different ways of modeling
galaxies. Photometry describes galaxies in physical parameter
space, using astrophysical modeling to transform those
parameters into colors on the basis of the knowledge that
human astronomers have built up about galaxy evolution.
t-SNE models galaxies purely empirically in color space, with
no astrophysical knowledge used at any stage of the process, so
that the information depends purely on the sample size.
The greater success of t-SNE means that at present, our

astrophysical models provide less information about quiescent
galaxies and dusty star-forming interlopers than photometric
catalogs, with the gap increasing toward high redshift. This is
the opposite of the current situation for redshift determination,
for which astrophysical models provide more information and
templates produce better fits. Whether this remains true going
forward will depend upon the rate at which models improve
compared with the rate at which catalogs become larger and of
higher quality.
On the other hand, it should be noted that the performance of

the two-color selection can be improved without resorting to
machine learning. In case of a rich multiwavelength baseline as
in COSMOS, the astrophysical model limitation mentioned
above can be minimized by estimating rest-frame magnitudes
from the nearest observer’s frame band (see, e.g., Davidzon
et al. 2017). Moreover, defining the quiescent locus in the
NUV−r versus r−J diagram (NUVrJ) instead of UVJ
dramatically reduces the contamination fraction, since
NUV−r probe shorter star-formation timescales and it is
more sensitive to fast quenching processes (see discussion in
Moutard et al. 2016 and Valentino et al. 2020 for applications
at higher redshift). To show that, we compare the NUVrJ
catalog of quiescent galaxies provided by Laigle et al. (2016)
with a fiducial t-SNE selection resulting from a threshold equal

Figure 7. (a) UVJ diagram for ULTRAVISTA galaxies at z∼1. Galaxies with MIPS detections (gray) are scattered throughout the region and well mixed with the
remainder of the population (red). (b) Receiver operating characteristic (ROC) curve for t-SNE when selecting non-MIPS detected galaxies from a sample that was
previously UVJ-selected. The t-SNE estimator is still trained on a training sample including all types of galaxies, but the ROC curve is only calculated from UVJ-
selected galaxies. Given a random pair of UVJ-selected galaxies, one with an MIPS detection and one with no MIPS detection, t-SNE will identify which one has the
MIPS detection 76.2% of the time. Template fitting also provides an improvement, but a smaller one, correctly identifying the MIPS detection for 66.4% of possible
pairs. For comparison, UVJ alone makes no distinction between objects that pass its selection, so it would correctly identify the MIPS detection exactly 50% of the
time and would correspond to the dotted line.
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to 0.46, which maximizes TPR+TNR at 0.9<z<1.1. For the
same validation sample used above (1685 quiescent galaxies),
the two methods have a similar fraction of interlopers (∼22%
in both cases) and a comparable level of completeness: NUVrJ
recovers 84% of the “true” quiescent galaxies while t-SNE (in
the 0.46 threshold configuration) about 79%.

It is perhaps more surprising that training t-SNE at z∼1 and
predicting whether z∼2 galaxies are quiescent still outper-
forms template fitting. This means that at least in (rest-frame)
color space, galaxies at z∼2 are nearly identical to those at
z∼1. If this were to continue to hold at much higher redshifts,
it means that t-SNE would be a good method for selecting high-
redshift quiescent candidates from rest-frame optical data
using, e.g., the James Webb Space Telescope. However, one
should use considerable caution here: because it has no
astrophysical knowledge, t-SNE is only capable of selecting
high-redshift quiescent galaxies which look like low-redshift
examples. If high-redshift quiescent galaxies have different
astrophysical properties and, therefore, exhibit different colors,
they will not be selected by t-SNE but could still be selected by
template fitting if these new properties are well described by
models. Similarly, if the low-redshift training sample definition
of “true” quiescent galaxies is flawed or incomplete, then
t-SNE will attempt to faithfully reproduce that flawed selection
at high redshift.

5.2. Additional Considerations

It should be noted that, as suggested by Figure 2, t-SNE may
be used to estimate many galaxy properties apart from
quiescence. A full discussion of these possibilities is beyond
the scope of this paper. However, as one example, t-SNE is
used to estimate MIPS detection alone (for both quiescent and
star-forming galaxies). In this way, we can evaluate the method
against a quantity that has been measured directly from
telescope images.

For MIPS detections as well, t-SNE is able to produce a
meaningful predictor (Figure 8). Since an MIPS detection
corresponds to a high SFR, not sSFR, it is compared against the

set of galaxies with best-fit SFR above some threshold using
photometric template fitting. The comparison has a simple
qualitative purpose: the best-fit SFR is, by construction, a
poorer predictor of 24 μm emission, as the latter also depends
on the amount of dust (which span a large range in galaxies at a
given SFR). The t-SNE ΣROC is 0.881 and the template fitting
ΣROC is 0.830.
In any regime in which target galaxies look similar to an

existing catalog of examples, dimensionality reduction pro-
vides an alternative selection mechanism and alternative
method for determining physical properties. Because quiescent
galaxies are all characterized by similar (very old) stellar
populations with little active galactic nucleus contamination,
their selection presents an ideal use case for these new
methods, and at this point, dimensionality reduction provides
superior classification to existing techniques.
It should be noted that it is not possible to provide a simple

prescription of applying dimensionality reduction and subse-
quent selection to a new catalog. Rather, doing so effectively
requires carefully tuning t-SNE hyperparameters to match the
expected properties of that catalog. For example, perplexity
needs to be tuned in order to ensure that the number of objects
strongly influencing the locations on the t-SNE mapping
matches the expected number of meaningful neighbors.
Similarly, the choice of t-SNE threshold depends upon the
expected fraction of true quiescent galaxies in the sample.
Properly applying t-SNE to, e.g., CANDELS (Grogin et al.
2011; Koekemoer et al. 2011) will almost certainly yield an
improved estimator, but additional optimization will be
required to produce that estimator.
Finally, it should be stressed that other techniques within the

family of machine-learning methods hold the possibility of
substantial further improvement. It can be more difficult to
understand where the improvement is coming from using
t-SNE, but an initial exploration (beyond the scope of this
current paper) suggests that it may be possible to produce a
further improved estimator. The best methods for selecting
quiescent galaxies in poorly explored domains such as at high
redshift, contrary to conventional wisdom, might not rely on
improved model making or on expensive observations of a few
specimens. Instead, future photometric surveys will probe those
domains with enough statistics so that the galaxy color space,
albeit unclassified, might be analyzed by means of t-SNE or
other manifold learning algorithms to identify galaxy classes
with no need for templates.
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