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Trapped neutral atoms have become a prominent platform for quantum science, where entan-
glement fidelity records have been set using highly-excited Rydberg states. However, controlled
two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation
of more complex electronic structures as an open frontier that could lead to improved fidelities and
fundamentally different applications such as quantum-enhanced optical clocks. Here we demonstrate
a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg
atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom
entanglement surpassing previously published values. Our results pave the way for novel applica-
tions, including programmable quantum metrology and hybrid atom-ion systems, and set the stage
for alkaline-earth based quantum computing architectures.

Recent years have seen remarkable advances in gen-
erating strong, coherent interactions in arrays of neu-
tral atoms through excitation to Rydberg states, char-
acterized by large electronic orbits [1]. This has led
to profound results in quantum science applications,
such as quantum simulation [2–4] and quantum com-
puting [5–10], including a record for two-atom entan-
glement for neutral atoms [8]. Furthermore, up to 20-
qubit entangled states have been generated in Rydberg
arrays [11], competitive with results in trapped ions [12]
and superconducting circuits [13]. Many of these devel-
opments were fueled by novel techniques for generat-
ing reconfigurable atomic arrays [14–16] and mitigation
of noise sources [8, 17]. While previous Rydberg-atom-
array experiments have utilized alkali species, atoms
with a more complex level structure, such as alkaline-
earth atoms (AEAs) [18–24] commonly used in opti-
cal lattice clocks [25], provide new opportunities for
increasing fidelities and accessing fundamentally dif-
ferent applications, including Rydberg-based quantum
metrology [26–28], quantum clock networks [29], and
quantum computing schemes with optical and nuclear
qubits [30–32].

Here we demonstrate such a novel Rydberg array archi-
tecture based on AEAs, where we utilize the two-valence
electron structure for single-photon Rydberg excitation
from a meta-stable clock state as well as auto-ionization
detection of Rydberg atoms [Fig. 1]. We find leading fi-
delities for Rydberg state detection, coherent operations
between ground- and Rydberg-state, and Rydberg-based
two-atom entanglement [Table I]. More generally, our re-
sults constitute the highest reported two-atom entangle-
ment fidelities for neutral atoms as well as a proof-of-
principle for controlled two-atom entanglement between

∗ These authors contributed equally to this work
† Permanent address: Institute for Quantum Computing, Univer-
sity of Waterloo, 200 University Ave West, Waterloo, Ontario,
Canada
‡ mendres@caltech.edu

(a)

clock

qubit

detection

3P0

3S1

1S0 5s2

5s5p

5s61s

5p61se

RB

(i)

(ii)

(b)

FIG. 1. Schematic. (a) The relevant level structure (left),
and electronic configuration (right) for strontium−88. The
Rydberg-ground state qubit is defined by a metastable ‘clock’
state |g〉 and the 5s61s 3S1 mJ = 0 Rydberg state |r〉 (high-
lighted with a purple box), which we detect by driving to an
auto-ionizing 5p61s state |r∗〉. The clock state |g〉 is initial-
ized from the absolute ground state |a〉. (b) We use atom-by-
atom assembly in optical tweezers to prepare an effectively
non-interacting configuration [(i), blue box and data-points
throughout] and a strongly Rydberg-blockaded pair config-
uration [(ii), red box and data-points throughout] [4]. The
blockade radius RB , where two-atom excitation is suppressed,
is indicated by a dashed circle. Throughout, purple and black
circles indicate |r〉 and |g〉 atoms, respectively. Averaged flu-
orescence images of atoms in configurations (i) and (ii) are
shown.

AEAs. We further demonstrate a high-fidelity entangle-
ment operation with optical traps kept on, an important
step for gate-based quantum computing [1]. As detailed
in the outlook section, our results open up a host of new
opportunities for quantum metrology and computing as
well as for optical trapping of ions.

Our experimental system [23, 33, 34] combines various
novel key elements [35]: First, we implement atom-by-
atom assembly in reconfigurable tweezer arrays [14, 15]
for AEAs [Fig. 1(b)]. Second, we sidestep the typical
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Table I. Uncorrected and SPAM-corrected fidelities for single-
atom and Rydberg-blockaded pulses. The ‘T’ indicates set-
tings where the tweezers are on during Rydberg excitation.

Quantity Uncorrected SPAM-corrected

Single-atom π-pulse 0.9951(9) 0.9967(9)

Single-atom 2π-pulse 0.9951(9) 0.998(1)

Blockaded π-pulse 0.992(2) 0.996(2)

Blockaded 2π-pulse 0.992(2) 0.999(2)

Blockaded π-pulse, T 0.992(2) 0.996(2)

Blockaded 2π-pulse, T 0.987(2) 0.994(3)

Bell state fidelity ≥ 0.983(2) ≥ 0.995(3)

Bell state fidelity, T ≥ 0.978(2) ≥ 0.990(3)

protocol for two-photon excitation to S-series Rydberg
states, which requires significantly higher laser power to
suppress intermediate state scattering, by transferring
atoms to the long-lived 3P0 clock state |g〉 [25, 33–36].
We treat |g〉 as an effective ground state from which we
apply single-photon excitation to a 3S1 Rydberg state
|r〉 [26]. Third, instead of relying on loss through tweezer
anti-trapping as in alkali systems, we employ a rapid
auto-ionization scheme for Rydberg state detection. In
contrast to earlier implementations of auto-ionization de-
tection in bulk gases [37, 38], we image remaining neutral
atoms [33] instead of detecting charged particles.

More generally, our findings improve the outlook
for Rydberg-based quantum computing [1], optimiza-
tion [39], and simulation [2–4, 40, 41]. These applica-
tions all rely on high fidelities for preparation, detection,
single-atom operations, and entanglement generation for
which we briefly summarize our results: We obtain a state
preparation fidelity of 0.997(1) through a combination
of coherent and incoherent transfer [35]. The new auto-
ionization scheme markedly improves the Rydberg state
detection fidelity to 0.9963−0.9996 [8, 11]. We also push
the limits of single and two-qubit operations in ground-
to Rydberg-state transitions [3, 8, 9, 11]. For example,
we find π-pulse fidelities of 0.9951(9) without correct-
ing for state preparation and measurement (SPAM) and
0.9967(9) if SPAM correction is applied [35]. Finally, us-
ing a conservative lower-bound procedure, we observe a
two-qubit entangled Bell state fidelity of ≥ 0.983(2) and
≥ 0.995(3) without and with SPAM correction, respec-
tively. We note that all values are obtained on average
and for parallel operation in arrays of 14 atoms or 10
pairs for the non-interacting or pair-interacting case, re-
spectively.

We begin by analyzing short-time Rabi oscillations be-
tween |g〉 and |r〉 [Fig. 2(a)] and the auto-ionization
detection scheme [Fig. 2(b)] in an essentially non-
interacting atomic configuration [(i) in Fig. 1(b)]. To de-
tect atoms in |r〉 we excite the core valence-electron from
a 5s to a 5p level [35], which then rapidly auto-ionizes the
Rydberg electron [inset of Fig. 2(b)]. The ionized atoms
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FIG. 2. Rabi oscillations and auto-ionization. (a) Array-
averaged probability, P1, of detecting an atom after a resonant
Rydberg pulse and subsequent auto-ionization as a function of
Rydberg pulse time, showing high-contrast Rabi oscillations
with frequency ΩR = 2π × 6.80(2) MHz. The auto-ionization
pulse time is fixed to 5 µs. The points are uncorrected data.
(b) P1 as a function of auto-ionization pulse time at a fixed
Rydberg pulse time of 70 ns corresponding to a π-pulse (fol-
lowed by a second π-pulse). Inset: illustration of the auto-
ionization process.

are dark to subsequent detection of atoms in |g〉 [33],
providing the means to distinguish ground and Rydberg
atoms.

We use a |g〉 ↔ |r〉 Rabi frequency of ΩR ≈ 2π × 6− 7
MHz throughout, and observe Rabi oscillations with high
contrast at a fixed auto-ionization pulse length [Fig. 2(a),
Table I]. To quantify the auto-ionization detection, we
perform a π-pulse on |g〉 ↔ |r〉, then apply an auto-
ionization pulse for a variable duration [Fig. 2(b)], and
then perform a second π-pulse on |g〉 ↔ |r〉 before mea-
surement. The detected population decreases to zero with
a 1/e time of τA = 35(1) ns [35]. We can compare τA to
the lifetime of |r〉, which is estimated to be τ|r〉 ≈ 80
µs [42], placing an upper bound on the |r〉-state detec-
tion efficiency of 0.9996(1). A lower bound comes from
the measured π-pulse fidelity of 0.9963(9) corrected for
preparation and ground state detection errors [35]. These
limits can be increased with higher laser power and faster
switching [35].

To probe our longer-time coherence, we drive the Ryd-
berg transition for as long as 7 µs [Fig. 3(a)]. The decay
of the contrast on longer timescales is well modeled by
a Gaussian profile of the form C(t) = C0exp(−t2/τ2

C).
We find that τC ≈ 7 µs is consistent with our data, and
corresponds to a 1/e coherence of ≈ 42 cycles. To our
knowledge, this is largest number of coherent ground-to-
Rydberg cycles that has been published to date [8, 10].
Limitations to short- and long-term coherence are dis-
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FIG. 3. Long-time Rabi oscillations for single and blockaded atoms. (a) Array-averaged Rabi oscillations for the non-interacting
configuration (i), depicted by the inset. We operate with ΩR = 2π× 6.0 MHz. By fitting with a Gaussian profile, we find a 1/e
coherence of ≈ 42 cycles. (b) Same as in (a) but for the blockaded configuration (ii), depicted by the inset. We plot 1− P{01},
where P{01} is the array-averaged symmetrized probability [35] of detecting one atom of an initial pair (and not both). We

observe a blockade-enhanced Rabi frequency of Ω̃R = 2π × 8.5 MHz. We find a 1/e coherence of ≈ 60 cycles. The points are
uncorrected data.

cussed and modeled in detail in Ref. [35]. The main
contributing factors are laser intensity and phase noise
(which both can be improved upon with technical up-
grades, such as cavity filtering of phase noise [8]), and
finite Rydberg state lifetime.

We now turn to the pair-interacting configuration [(ii)
in Fig. 1(b)] to study blockaded Rabi oscillations [1, 8].
For an array spacing of 3.6 µm, we anticipate an interac-
tion shift of VB ≈ 2π× 130 MHz for the n = 61 Rydberg
state in the 3S1 series [42]. In this configuration, simulta-
neous Rydberg excitation of closely-spaced neighbors is
strongly suppressed, and an oscillation between |g〉 and

the entangled W -Bell-state |W 〉 = (|gr〉 + eiφ|rg〉)/
√

2
is predicted with a Rabi frequency enhanced by a factor
of
√

2 [1], as observed in our data. We show our results
for long-term coherent oscillations in Fig. 3(b) and find a
1/e coherence time corresponding to ≈ 60 cycles. Results
for short-term oscillations are shown in Fig. 4(a) and the
fidelity values are summarized in Table I.

We provide a lower bound for the Bell state fidelity
based on measured populations at the (blockaded) π-
time and a lower bound on the purity P of the two-atom
state [35]. The latter is obtained by measuring the atomic
populations at the (blockaded) 2π time, under the as-
sumption that the purity does not increase between the
π and the 2π time. For a detailed discussion and analy-
sis of this bound and the validity of the underlying as-
sumptions, see Ref. [35]. With this approach, we find un-
corrected and SPAM-corrected lower bounds on the Bell
state fidelity of 0.983(2) and 0.995(3), respectively [Ta-
ble I].

We note that all preceding results were obtained with
the tweezers switched off during Rydberg excitation. The

potential application of Rydberg gates to large circuit
depth quantum computers motivates the study of block-
ade oscillations with the tweezers on. In particular, we
foresee challenges for sequential gate-based platforms if
tweezers must be turned off during each operation. In
general, the prospects for quickly turning off individual
tweezers while not perturbing the other atoms in the ar-
ray are unclear, especially in two dimensions. In systems
implementing gates between the absolute ground and
clock states for example, blinking traps on and off will
eventually lead to heating and loss, ultimately limiting
the number of possible operations. To remedy this prob-
lem, repulsive traps such as interferometrically-generated
bottles [43] or repulsive lattices [9] have been used in lieu
of standard optical tweezer arrays [14, 15].

Despite finding that our Rydberg state is anti-trapped
(with a magnitude roughly equal to that of the ground
state trapping) at our clock-magic wavelength of λT =
813.4 nm [35], we observe high-fidelity entanglement even
when the tweezers remain on during Rydberg interro-
gation. Certain factors make this situation favorable for
alkaline-earth atoms. One is the ability to reach lower
temperatures using narrow-line cooling, which suppresses
thermal dephasing due to trap light shifts. Furthermore,
a lower temperature allows for ramping down of tweezers
to shallower depths before atoms are lost, further allevi-
ating dephasing. Finally, access to higher Rabi frequen-
cies provides faster and less light-shift-sensitive entan-
gling operations.

We study short-time blockaded Rabi oscillations both
with the tweezers switched off [Fig. 4(a)] and left on
[Fig. 4(b)]. We find similar fidelities for the π- and 2π-
pulses in both cases [Table I]. Further, we estimate a
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FIG. 4. Short-time Rydberg-blockaded Rabi oscillations with
tweezers off and on. (a) Short-time Rabi-oscillations for the
blockade configuration (ii) with the traps off, depicted by the
inset. (b) Same as in (a) but with tweezers on during Rydberg
interrogation with a |g〉-state depth of U/h ≈ 0.94 MHz. The
points are uncorrected data, and the blockade-enhanced Rabi
frequency is Ω̃R = 2π × 9.8 MHz.

lower bound for the Bell state fidelity in the tweezer
on case, and find uncorrected and corrected values of
≥ 0.978(2) and ≥ 0.990(3), respectively. We expect fur-
ther improvements in shorter-wavelength tweezers for
which the Rydberg states of AEAs are trapped [44], and
our observations show promise for Rydberg-based quan-
tum computing in a standard tweezer array [14, 15].

Our work bridges the gap between the fields of
Rydberg atom arrays and optical clocks [25], opening
the door to Rydberg-based quantum-enhanced metrol-
ogy [26, 27], including the programmable generation
of spin-squeezed states [28] in recently demonstrated
tweezer clocks [34, 36], and quantum clock networks [29].
Further, the demonstrated entangling operations provide
a mechanism for two-qubit gates in AEA-based quantum
computation and simulation architectures leveraging
optical and nuclear qubits [30–32]. More generally,
the observed entanglement fidelities could enable gate
fidelities for long-lived ground states approaching fault-
tolerant error correction thresholds [45]. In addition, the
high Rydberg- and ground-state detection-fidelities could
play an important role in applications based on sam-
pling from bit-string probability distributions [39, 46].
Finally, by auto-ionizing the Rydberg electron with
high fidelity and noting that we expect the remaining
ion to stay trapped, we have found a potential new
approach to the optical trapping of ions [47, 48] in up to
three dimensional arrays [16, 49]. Such a platform has
been proposed as a route to ion-based quantum com-
puting [50] as well as for hybrid atom-ion systems [51–53].
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Supplementary Materials

APPENDIX A: Summary of experiment

We briefly summarize the relevant features of our 88Sr
experiment [23, 33, 34]. We employ a one-dimensional ar-
ray of 43 tweezers spaced by 3.6 µm. Atoms are cooled
close to the tranverse motional ground state using nar-
row line cooling [33, 34, 36], with an average occupation
number of n̄r ≈ 0.3 (Tr ≈ 2.5 µK), in tweezers of ground-
state depth U0 ≈ kB × 450 µK ≈ h × 9.4 MHz with a
radial trapping frequency of ωr ≈ 2π × 78 kHz.

For state preparation [Fig. 1(a)], we drive from the 5s2

1S0 absolute ground state (labeled |a〉) to the 5s5p 3P0

clock state (labeled |g〉) with a narrow-line laser [34],
reaching Rabi frequencies of ΩC ≈ 2π×3.5 kHz in a mag-
netic field of ≈ 710 G [55, 56] (otherwise set to ≈ 71 G
for the entire experiment). We populate |g〉 with a π-
pulse reaching a loss-corrected fidelity of 0.986(2), which
we supplement with incoherent pumping (after adiabati-
cally ramping down the tweezer depth to UF = U0/10) to
obtain a clock state population without and with loss cor-
rection of 0.997(1) and 0.998(1), respectively. This value
is similar to, or higher than, the state preparation fideli-
ties achieved with alkali atoms [9–11, 57].

We treat the long-lived state |g〉 as a new ground state,
from which we drive to the 5s61s 3S1, mJ = 0 Ryd-
berg state (labeled |r〉). The |g〉 ↔ |r〉 Rydberg transi-
tion occurs at a wavelength of λR = 316.7 nm and we
use a 1/e2 beam radius of 18(1) µm. We readily achieve
a |g〉 ↔ |r〉 Rabi frequency of ΩR ≈ 2π × 6 − 7 MHz,
corresponding to ≈ 30 mW, and up to ΩR ≈ 2π × 13
MHz with full optimization of the laser system and beam
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path. To detect atoms in |r〉 we drive the strong tran-
sition to 5p3/261s1/2 (J = 1,mJ = ±1), labelled |r∗〉.
This transition excites the core ion, which then rapidly
auto-ionizes the Rydberg electron. The ionized atoms are
dark to subsequent detection of atoms in |g〉 with the
high-fidelity scheme described in Ref. [33], providing the
means to distinguish ground and Rydberg atoms. We
switch off the ramped-down tweezers during the Ryd-
berg pulse [3, 4], after which we apply an auto-ionization
pulse while rapidly increasing the depth back to U0 for
subsequent read-out.

The Rydberg and clock laser beams are linearly polar-
ized along the magnetic field axis, and the auto-ionization
beam is linearly polarized perpendicular to the magnetic
field axis. Accordingly, we excite to auto-ionizing states
with mJ = ±1. The tweezers are linearly polarized along
the axis of propagation of the Rydberg, clock, and auto-
ionization beams – perpendicular to the magnetic field
axis.

APPENDIX B: State preparation

The ground state |g〉 of our Rydberg qubit is the 5s5p
3P0 metastable clock state of 88Sr. We populate this state
in two stages: first, most atoms are transferred via a co-
herent π-pulse on the clock transition. Thereafter, any
remaining population is transferred via incoherent pump-
ing.

In our regime where the Rabi frequency of the clock
transition (ΩC ≈ 2π × 3.5 kHz) is significantly smaller
than the trapping frequency (ωr ≈ 2π × 78 kHz), coher-
ent driving is preferable to incoherent pumping because
it preserves the motional state of an atom, i.e., it does
not cause heating. However, atomic temperature, trap
frequency, trap depth, and beam alignment contribute to
the transfer infidelity of coherent driving. Although we
drive the clock transition on the motional carrier in the
sideband resolved regime, thermal dephasing still plays
an important role. Particularly, each motional state has
a distinct Rabi frequency, a thermal ensemble of which
leads to dephasing [34]. This thermal dephasing is less
severe at higher trapping frequencies; however, this can
only be achieved in our system by using deeper traps,
which would also eventually limit transfer fidelity because
of higher rates of Raman scattering out of the clock state.
We therefore perform coherent transfer initially in deeper
traps (≈ 450 µK), followed immediately by an adiabatic
rampdown to one-tenth of that depth. Finally, precise
alignment of the clock beam to the tight, transverse axis
of the tweezer is important to ensure that no coupling
exists to axial motion, which has a much lower trap fre-
quency and thus suffers more thermal dephasing than the
transverse direction.

The remaining population is transferred by simultane-
ous, incoherent driving of the 5s2 1S0 ↔ 5s5p 3P1, 5s5p
3P1 ↔ 5s6s 3S1, and 5s5p 3P2 ↔ 5s6s 3S1 transitions
for 1 ms. This pumping scheme has the clock state as a
unique dark state via the decay of 5s6s 3S1 to the clock

state and is in general more robust than coherent driv-
ing. However, due to photon recoil, differential trapping,
and an unfavorable branching ratio of 5s6s 3S1 to the
clock state (requiring many absorption and emission cy-
cles), this process causes significant heating, making it
unfavorable as compared to coherent driving. Therefore,
we only use this method as a secondary step to transfer
atoms left behind by the coherent drive.

We measure the fidelity of our state transfer by apply-
ing a 750 µs pulse of intense light resonant with the 1S0 ↔
1P1 transition immediately after state transfer. The large
recoil force of this pulse rapidly pushes out atoms in 1S0

with a fidelity of > 0.9999 while leaving atoms in the
clock state intact. Upon repumping the clock state back
into our imaging cycle and imaging the remaining atoms,
we obtain a measure of the fraction of atoms that were
successfully transferred to the clock state. With coher-
ent driving alone, we measure a state transfer fidelity of
0.986(2), while adding incoherent pumping increases this
value to 0.998(1). Both of these values are corrected for
loss to quantify state transfer in isolation; however, loss
also contributes to infidelity of the overall state prepara-
tion. Taking loss into account, our overall state prepara-
tion fidelity with both coherent driving and incoherent
pumping is FSP = 0.997(1).

APPENDIX C: Auto-ionization and Rydberg state
detection fidelity

The auto-ionization beam is resonant with the Sr+ ionic
transition 2S1/2 ↔ 2P3/2 at λA = 407.6 nm. The 1/e2

beam waist radius is wAo = 16(1) µm with power PA =
2.8(4) mW, from which we estimate a Rabi frequency of
ΩA ≈ 2π × 3 GHz.

To quantify the Rydberg state detection fidelity of our
auto-ionization scheme, we compare the observed auto-
ionization loss 1/e timescale of τA = 35(1) ns to the
expected lifetime of |r〉, which is τ|r〉 ≈ 80 µs [42]. That
is, we compute the probability that an atom in the Ryd-
berg state is auto-ionized before it decays away from the
Rydberg state. This estimate places an upper bound on
the detection fidelity of |r〉 to be 0.9996(1), where the
uncertainty is dominated by an assumed uncertainty of
±20 µs in τ|r〉. Note that when the auto-ionization pulse
is not applied, there is still a residual detection fidelity of
|r〉 of 0.873(4) due to anti-trapping of |r〉 in the tweezer
(this value is smaller than the previously reported < 0.98
for alkalis in part because the atoms are colder here than
in previous work [8]). A lower bound on our detection
fidelity is given by the measured π-pulse fidelity after
correcting for errors in preparation and ground state de-
tection, which gives 0.9963(9).

Although the auto-ionization rate of |r∗〉 is ΓA ∼ 100’s
of GHz [37, 38] and we drive the ion core transition with
a Rabi frequency ΩA ≈ 2π×3 GHz, the |r〉 ↔ |r∗〉 transi-
tion is inhibited by the continuous quantum Zeno mech-
anism [58, 59]. Accordingly, the effective auto-ionization
rate of |r〉 is given by Γeff

A ≈ Ω2
A/ΓA. This is in quali-



6

tative agreement with the fact that our measured auto-
ionization loss timescale continues to increase with beam
intensity, despite the ionic transition being driven far be-
yond its bare saturation. Furthermore, the finite rise time
of the acousto-optic modulator (AOM) that we use for
switching the auto-ionization beam is a limiting factor in
achieving faster auto-ionization rates. Therefore, detec-
tion fidelity can be increased further with higher beam
intensity as well as faster beam switching.

APPENDIX D: State preparation and measurement
(SPAM) correction

Our detection basis is binary between zero detected
atoms, 0, and one detected atom, 1, for each site in the ar-
ray. Two factors affect our ability to correctly determine
the occupation of a tweezer: the false positive avoidance
probability, F0, and the true positive detection proba-
bility, F1. By fitting the bimodal histogram of detected
photons for each tweezer and using a binary detection
threshold, we determine both F0 and F1, with their er-
rors given by averaging over the whole array [33]. We
measure an uncorrected imaging survival probability S0

(with no clock or Rydberg excitation) by measuring how
many atoms detected in an image are also detected in a
subsequent image. We also measure an uncorrected clock
state transfer fidelity K0 by a technique described in Ap-
pendix B.

With F0, F1, S0, and K0, we compute a detection-
corrected value for survival probability with no clock
or Rydberg excitation, S, and a detection and survival-
corrected value for clock state transfer fidelity, K, via

Table II. Probabilities entering into SPAM correction calcu-
lations.

Probability Symbol Value

False positive avoidance F0 0.99997(5)

Atom detection F1 0.9988(7)

Bare survival S0 0.9979(3)

Corrected survival S 0.9991(7)

Bare |g〉 transfer K0 0.997(1)

Corrected |g〉 transfer K 0.998(1)

Loss during |g〉 transfer L 0.0008(8)

Rydberg state detection D 0.9996(1)

Table III. Populations in the single-atom four-state basis.
Note that the sum of these populations equals unity for any

P
′
r , where P

′
r is the SPAM-corrected |r〉 population.

State Symbol Value

Null (atom lost) Pl 1− S + SL
1S0 (absolute ground state) Pa S(1− L−K)
3P0 (clock) Pg KS(1− P

′
r)

3S1 (Rydberg state) Pr KSP
′
r

S =
S0 + F0 − 1

F0 + F1 − 1
, (D1)

K =
K0 + F0 − 1

S0 + F0 − 1
(1− C). (D2)

Here C = 0.00104(1) is the probability of clock state de-
cay before the Rydberg pulse due to Raman scattering
from trapping light, estimated by a measure of the life-
time in the clock state at a particular tweezer depth [33]
and the time delay between our state preparation and
Rydberg interrogation. The total clock state preparation
fidelity is then given by FSP = KS = 0.997(1). While a
fraction of the atoms that are unsuccessfully transferred
to the clock state end up in the absolute ground state
|a〉, some atoms are instead lost entirely due to heating
out of the trap during incoherent pumping. We denote
this loss probability by L, such that the probability of
ending up in |a〉 is 1− (K +L). Note that we assume all
loss captured by S occurs before the start of the Rydberg
pulse, while loss during the read-out image that leads to
detection infidelity is accounted for by F1.

When considering detection of the Rydberg state, a
further detection fidelity, D, is introduced which charac-
terizes the fidelity with which an atom that was in the
Rydberg state is successfully transferred to a dark ionic
state, primarily limited by the finite Rydberg state life-
time. For all calculations we use the theoretical upper
bound of D, such as to be maximally conservative in our
SPAM-correction.

To account for imperfect rearrangement, we post-select
our data (both uncorrected and SPAM-corrected) to ac-

Table IV. Populations in the two-atom 16-state basis. Note
that the sum of these populations equals unity for any pulse

fidelities P
′
rg, P

′
gr, and P

′
rr, where P

′
rg and P

′
gr are the SPAM-

corrected populations of states with one Rydberg excitation,

and P
′
rr is the similarly corrected population of the Prr state.

For cases where the initial state |gg〉 is not properly pre-

pared, the factor of Pc = P
′
rcos2(A/(2

√
2)) captures the non-

blockaded Rydberg Rabi excitation, where A is either π or
2π. Note that terms expressed in {, } are assumed to have a
symmetric partner, e.g. Pal ≡ Pla.

States Symbol Value

(Lost, Lost) Pll (1− S + SL)2

{Lost, 1S0} Pla (1− S + SL)S(1− L−K)

{Lost, 3P0} Plg (1− S + SL)SK(1− Pc)

{Lost, 3S1} Plr (1− S + SL)SKPc

(1S0, 1S0) Paa S2(1− L−K)2

{1S0, 3P0} Pag S(1− L−K)SK(1− Pc)

{1S0, 3S1} Par S(1− L−K)SKPc

(3P0, 3P0) Pgg K2S2(1− P
′
rg − P

′
gr − P

′
rr)

(3P0, 3S1) Pgr K2S2P
′
gr

(3S1, 3P0) Prg K2S2P
′
rg

(3S1, 3S1) Prr K2S2P
′
rr
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count only for instances where a target number of atoms
(either one atom or two neighboring atoms in the case
of blockaded oscillations) have no further neighboring
atoms detected within a two-tweezer distance in any of
the images following rearrangement. We do not correct
for false negative detections of neighboring atoms that
may increase infidelity due to interactions. False nega-
tives of such neighbors are rare because of an already
small rate of false negative detection, but are even fur-
ther suppressed by rearrangement and the fact that we
use two images to post-select on such events

1. Correcting the single-atom pulse fidelities

Having defined the relevant states, their preparation
probabilities, and detection fidelities, we now turn to con-
verting the detection basis of 0 and 1 into the basis of |g〉
and |r〉 to perform SPAM-correction. The bare, measured
value P1 shown in Figs. 2 and 3 of the main text gives the
probability of measuring 1 in the detection basis, which
corresponds to positively detecting the combined popula-
tion in |a〉 and |g〉 plus the probability of a false positive
when no neutral atom is present. This can be quantified
by writing P1 in terms of the values in Tables II and III:

P1 = (Pa + Pg + Pr(1−D))F1 + (Pl + PrD)(1− F0).
(D3)

We put in all the quantities from Table III and solve for
P

′

r , the desired quantity, to obtain:

P
′

r =
SF1 + (1− S)(1− F0)− LS(F0 + F1 − 1)− P1

KSD(F0 + F1 − 1)
.

(D4)

For the single-atom short-time Rabi oscillations shown
in Fig. 2 of the main text, we observe the bare values
of P1(π) = 0.0049(9) and P1(2π) = 0.9951(9), yielding

pulse fidelities of FSPAM(π) = P
′

r(π) = 0.9967(9) and

FSPAM(2π) = 1− P ′

r(2π) = 0.998(1), respectively.

2. Correcting the two-atom pulse fidelities

For the atomic configuration (ii), there are 16 possible
states for each atom pair. Similarly to Table III, we can
write populations of each of these states in terms of the
survival and transfer fidelities in Table II, as shown in
Table IV.

We now write the experimentally measured quantities
P10, P00, and P11 in terms of the values in Tables II
and IV. For notational simplicity we define F̄0 ≡ (1−F0),

and similarly for F1 and D:

P10= Pll(F̄0F0)

+Pla(F̄0F̄1)

+Pal(F1F0)

+Plg(F̄0F̄1)

+Pgl(F1F0)

+Plr(F̄0F0D + F̄0D̄F̄1)

+Prl(F̄0DF0 + F1D̄F0)

+Paa(F1F̄1)

+Pag(F1F̄1)

+Pga(F1F̄1)

+Par(F1DF0 + F1D̄F̄1)

+Pra(F1D̄F̄1 + F̄0DF̄1)

+Pgg(F1F̄1)

+Pgr(F1DF0 + F1D̄F̄1)

+Prg(F1D̄F̄1 + F̄0DF̄1)

+Prr(F1D̄F0D + F̄0DF̄1D̄ + F̄0F0D
2 + F1F̄1D̄

2),

(D5)

P00= Pll(F
2
0 )

+Pla(F0F̄1)

+Pal(F̄1F0)

+Plg(F0F̄1)

+Pgl(F̄1F0)

+Plr(F
2
0D + F0F̄1D̄)

+Prl(F
2
0D + F̄1D̄F0)

+Paa(F̄1
2
)

+Pag(F̄1
2
)

+Pga(F̄1
2
)

+Par(F̄1F0D + F̄1
2
D̄)

+Pra(F̄1
2
D̄ + F0DF̄1)

+Pgg(F̄1
2
)

+Pgr(F̄1F0D + F̄1
2
D̄)

+Prg(F̄1
2
D̄ + F0DF̄1)

+Prr(F̄1
2
D̄2 + F0DF̄1D̄ + F 2

0D
2 + F̄1D̄F0D),

(D6)
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P11= Pll(F̄0
2
)

+Pla(F̄0F1)

+Pal(F1F̄0)

+Plg(F̄0F1)

+Pgl(F1F̄0)

+Plr(F̄0
2
D + F̄0F1D̄)

+Prl(F̄0
2
D + F1D̄F̄0)

+Paa(F 2
1 )

+Pag(F
2
1 )

+Pga(F 2
1 )

+Par(F1F̄0D + F 2
1 D̄)

+Pra(F 2
1 D̄ + F̄0DF1)

+Pgg(F
2
1 )

+Pgr(F1F̄0D + F 2
1 D̄)

+Prg(F
2
1 D̄ + F̄0DF1)

+Prr(F
2
1 D̄ + F̄0DF1D̄ + F̄0

2
D2D̄ + F1D̄F̄0D).

(D7)

Note that P01 = 1 − P10 − P00 − P11. Thus, with the
three above equations, we can solve for P

′

rg, P
′

gr, and

P
′

rr in terms of the measured P00, P{10}, P[10] and P11,
where P{10} = P10 + P01 and P[10] = P10 − P01. We
perform this analysis on the measurements both with the
traps off and with the traps on (denoted with a T, as
in Table I). These experimentally measured values are
shown in Table V, with which we compute the SPAM-
corrected values shown in Table I of the main text.

Table V. Experimentally measured (uncorrected) values used

to calculate P
′
rg, P

′
gr, and P

′
rr at both the π- and 2π-times.

The ‘T’ superscript indicates the values for which the traps
were on.

Variable Value

P{10}(π) 0.992(2)

P[01](π) 0.01(1)

P00(π) 0.0032(7)

P11(2π) 0.992(2)

P[01](2π) 0.004(2)

P00(2π) 0.0036(7)

PT
{10}(π) 0.992(2)

PT
[01](π) 0.004(10)

PT
00(π) 0.0032(7)

PT
11(2π) 0.987(2)

PT
[01](2π) -0.003(2)

PT
00(2π) 0.0030(6)

APPENDIX E: Bell state fidelity

1. Bounding the Bell state fidelity

Characterizing the state of a quantum system is of fun-
damental importance in quantum information science.
Canonical tomographic methods addressing this task re-
quire a measurement of a complete basis set of opera-
tors. Such measurements are often expensive or not ac-
cessible. More economic approaches can be employed to
assess the overlap with a given target state. For exam-
ple the overlap of a two-qubit state with a Bell state
is routinely determined by measuring the populations in
the four computational basis states (yielding the diago-
nal elements of the density operator), in addition with a
measurement that probes off-diagonal elements via par-
ity oscillations [8, 60]. To access the latter it is however
necessary to perform individual, local operations on the
qubits. Here, we present a bound on the Bell state fidelity
that can be accessed with only global control and mea-
surements in the computational basis and elaborate on
the underlying assumptions.

Specifically, we are interested in the overlap F of the
experimentally created state ρ with a Bell state of the
form |Wφ〉 = 1√

2
(|gr〉+ eiφ|rg〉). This is defined as

F = max
φ
〈Wφ|ρ|Wφ〉 =

1

2

(
ρgr,gr + ρrg,rg + 2|ρgr,rg|

)
.

(E1)

Here we denote matrix elements of a density operator
ρ in the two-atom atomic basis by ρi,j = 〈i|ρ|j〉, with
i, j ∈ {gg, gr, rg, rr}. Clearly a measurement of F re-
quires access to the populations in the ground and Ry-
dberg states ρi,i as well as some of the coherences ρi,j
with i 6= j. While the former are direct observables (in
particular, we identify ρi,i with our measured values Pi),
the latter are not. We can however bound the fidelity F
from below via a bound on |ρgr,rg|. Namely, it can be
shown via Cauchy’s inequality |ρa,b|2 ≤ ρa,aρb,b and the
normalization of states

∑
i ρi,i = 1 that

|ρgr,rg|2 ≥
1

2
(tr
{
ρ2
}
− 1) + ρgr,grρrg,rg

(E2)

where tr
{
ρ2
}

=
∑
i,j |ρi,j |2 is the purity.

Evaluating the bound given by equation Eq. (E2) re-
quires access to the purity (or a lower bound thereof).
One can bound the purity from below by the populations
in the ground and Rydberg states as

tr
{
ρ2
}
≥
∑
i

(ρi,i)
2. (E3)

In general Eq. (E3) is a very weak bound. In particular,
it does not distinguish between a pure Bell state |ψφ〉
and the incoherent mixture of the two states |gr〉 and
|rg〉. However, if the state ρ is close to one of the four



9

atomic basis states (as is the case at the 2π time of the
Rabi evolution), the bound Eq. (E3) becomes tight. This
fact allows us to estimate the purity of the Bell state
in the experiment as follows. The Bell state in our pro-
tocol is generated by evolving the state |gg〉 for a time

T = π/Ω̃R in the Rydberg-blockade regime. Note that
the same evolution should lead to a return to the initial
state at time 2T in the ideal case. Under the assumption
that a coupling to the environment decreases the purity
of the quantum system (see further exploration of this as-
sumption in the following subsection), we can bound the
purity of the state at time T by the purity of the state at
time 2T , which in turn can be bounded by measurements
of the atomic populations at time 2T via Eq. (E3):

tr
{
ρ(T )2

}
≥ tr

{
ρ(2T )2

}
≥
∑
i

ρi,i(2T )2. (E4)

Using this estimated bound on the purity leads to a lower
bound on the Bell state fidelity F at time T solely in
terms of the populations in the ground and Rydberg
states at times T and 2T :

F(T ) ≥ 1

2

(
ρgr,gr(T ) + ρrg,rg(T )

+2
√

max
(
0, (
∑
i ρi,i(2T )2 − 1)/2 + ρgr,gr(T )ρrg,rg(T )

))
.

(E5)

2. Bounding an increase in purity due to
spontaneous decay

Although we make the assumption that the purity of
our state does not increase between times T and 2T
and assert that this assumption is reasonable, we rec-
ognize the hypothetical possibility that dissipative pro-
cesses such as spontaneous emission can in principle in-
crease the purity of quantum states. We note an increase
of purity with time typically occurs only in specially en-
gineered situations (as in optical pumping schemes), and
we have no reason to believe such mechanisms are active
in our system. In fact, reasonable numerical models of po-
tential decoherence mechanisms are all consistent with a
decrease of the purity. Nevertheless, we now analyze how
strongly our assumption of purity decrease could poten-
tially be violated given the spontaneous emission rate of
our Rydberg state and show that the corresponding de-
crease of the inferred Bell state fidelity is well within our
confidence interval.

We assume that the system can be modeled by a
Markovian Master equation of the form:

ρ̇ = Lρ = −i[H, ρ]+
∑
µ

γµ(cµρc
†
µ −

1

2
{c†µcµ, ρ})

+
∑
µ

γ̄µ(hµρhµ −
1

2
{hµhµ, ρ})

(E6)

Here we explicitly distinguish incoherent terms generated
by Hermitian jump operators (hµ = h†µ, e.g. dephasing),
and non-Hermitian jump operators (cµ, e.g. spontaneous
emission). We find

d

dt
tr
{
ρ2
}

= 2tr {ρ(Lρ)} ≤ 2
∑
µ

γµtr
{
ρcµρc

†
µ − c†µcµρ2

}
(E7)

which simply reflects the fact that the purity of the
quantum state can not increase due to the coher-
ent part of the evolution or due to any incoherent
part of the evolution that is generated by Hermitian
jump operators (dephasing). Thus the coherent part
of the evolution does not affect the bound we obtain
in the end. Eq. (E7) can be obtained from Eq. (E6)
by noting that tr {ρ[H, ρ])} = tr

{
ρHρ− ρ2H

}
=

0 and tr {ρ[hµ, [ρ, hµ]]} = −tr {[hµ, ρ][ρ, hµ]} =
−tr

{
([ρ, hµ])†[ρ, hµ]

}
≤ 0, which gives Eq. (E7).

Now let us assume that the non-Hermitian jump op-
erators correspond to decay from the Rydberg state |r〉
into some set of states {|f〉|f = 1, 2, . . . n} that also in-
clude the ground state |g〉 ≡ |1〉. The following argument
works for arbitrary n ≥ 1. Since we have two atoms we

have 2n non-Hermitian jump operators c
(a)
f = |f〉a〈r|,

where a = 1, 2 labels the atoms. With this model we
have (denoting the reduced state of atom a by ρ(a)):

d

dt
tr
{
ρ2
}
≤ 2

∑
f,a

Γf tr

{
ρc

(a)
f ρc

(a)
f

†
− c(a)

f

†
c
(a)
f ρ2

}
= 2

∑
f,a

Γf (ρ
(a)
f,fρ

(a)
r,r − ρ(a)

r,rρ
(a)
r,r −

∑
e 6=r

ρ(a)
r,eρ

(a)
e,r )

≤ 2
∑
f,a

Γf (ρ
(a)
f,fρ

(a)
r,r − ρ(a)

r,rρ
(a)
r,r )

(E8)

where ΓF is the single-atom decay rate from |r〉 to |f〉.
Note that ρ

(a)
f,fρ

(a)
r,r − ρ(a)

r,rρ
(a)
r,r ≤ (1− ρ(a)

r,r )ρ
(a)
r,r − ρ(a)

r,rρ
(a)
r,r ≤

1/8. This gives the final result

d

dt
tr
{
ρ2
}
≤ 1

2

∑
f

Γf =
1

2
Γ (E9)

That is, the rate at which the purity increases is upper
bounded by half the rate at which a single atom in the
Rydberg state decays into other states by spontaneous
emission. Over a time interval of length T the 2-atom
purity can thus not increase by more than TΓ/2.

Using our blockaded π-time for T and Rydberg state
decay rate for Γ, we evaluate this bound on the purity
increase to be 3.2× 10−4. This would lead to a decrease
in our bound on the Bell state fidelity by 1.6× 10−4 for
both the cases of tweezers off and tweezers on, which
is significantly smaller than our quoted error for these
values.
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APPENDIX F: Rydberg laser system

The Rydberg laser system is based on a Toptica laser,
in which an extended cavity diode laser (ECDL) at
λIR = 1266.8 nm seeds a tapered amplifier (TA) with
output power up to ≈ 2 W, which is then frequency dou-
bled via second harmonic generation (SHG) in a bowtie
cavity to obtain up to ≈ 1 W at λRed = 633.4 nm, which
is then frequency doubled in a second bowtie cavity to
obtain fourth harmonic generation (FHG) with up to
≈ 0.4 W at λUV = 316.7 nm. The fundamental laser at
λIR = 1266.8 nm is stabilized to an ultralow expansion
(ULE) cavity system (Stable Laser Systems) of length 10
cm with finesse of ≈ 14000 and line width (full width at
half maximum) of ≈ 110 kHz. The finesse was measured
by performing cavity ringdown spectroscopy [61]. We cur-
rently do not filter the fundamental laser with the cav-
ity [8], but we are prepared to implement this approach.
Further discussion on the laser frequency stability can be
found in Appendix G.

We use a beam power of PR = 28.1(4) mW, measured
immediately before it enters the vacuum cell (through
4 mm of uncoated quartz). The geometric mean 1/e2

waist radius of the beam at the position of the atoms is
wR0 = 18(1) µm. These conditions correspond to the Rabi
frequency used throughout the text of ΩR ≈ 2π × 6 − 7
MHz. The maximum power we can achieve is ≈ 110 mW,
for which we observe a Rabi frequency of ≈ 13 MHz. The
Rydberg pulses are derived from an AOM, which limits
the rise and fall time to ≈ 40 ns – corresponding to the
π-pulse time for ΩR ≈ 2π×13 MHz. We observe an asym-
metric reduction in Rabi signal contrast by ≈ 1− 2% at
the multiples of 2π, unlike conventional detuned Rabi os-
cillations where the contrast reduction occurs at the odd
multiples of π, which we attribute to early-time dynam-
ics during the AOM switching. We do not use an optical
fiber, so there is limited spatial – and thus spectral –
filtering between the AOM and the atoms. Accordingly,
we intentionally work with ΩR ≈ 2π × 6 − 7 MHz such
that the π-pulse time is sufficiently slow compared to the
AOM rise and fall times. However, when operating at
ΩR ≈ 2π × 13 MHz we observe long-time coherence sim-
ilar to, or slightly better than, the reported values in the
main text for ΩR ≈ 2π × 6 − 7 MHz. Measured results
under all conditions are consistent with the numerical
analysis summarized in Fig. 6 below.

APPENDIX G: Rydberg decoherence mechanisms

For a non-interacting case where Rydberg atoms in a
tweezer array are well separated, the HamiltonianH driv-
ing Rabi oscillations is

H =

N∑
i=1

ΩR,iS
x
i + ∆iS

z
i , (G1)

where ΩR,i and ∆i are the Rabi frequency and the detun-
ing for the atom at site i, Sµ are the spin-1/2 operators

with µ = x, y, z, and N is the total number of atoms.
Variations in the Rabi frequency and detuning, mani-
festing either as non-uniformity across the tweezer array
(e.g. from non-uniform beam alignment) or as random
noise, lead to a decay in the array-averaged Rabi signal.
In our system, we measure a 1/e decay time of ≈7 µs
at a Rabi frequency of 6 MHz [see Fig. 3(a) of the main
text]. In this section, we present a model of decoherence
mechanisms that accounts for our observed decay.

As a preliminary, we begin by confirming that the spa-
tial variation of Rabi frequency across different tweezers
is less than 0.2%, and that no variation of detuning across
the array is observed. We conclude that non-uniformity is
not a dominant contributor to our observed Rabi decay.

Therefore, we focus here on three factors that induce
random noise in the Rabi frequency and detuning: atomic
motion, laser phase noise, and laser intensity noise. We
perform Monte Carlo-based simulations [17] that take
into account these noise sources as well as the finite life-
time ≈80 µs of the n = 61 Rydberg state due to sponta-
neous emission. In the following subsections, we discuss
relative contributions from these noise sources.

1. Atomic motion

An atom with a nonzero momentum shows a Doppler
shift relative to the bare resonance frequency. At the be-
ginning of Rabi interrogation, the momentum distribu-
tion, and thus the distribution of Doppler shifts, follows
that of an atom in a trap. More specifically, for an atom
at temperature T trapped in a harmonic potential with
the radial trap frequency ωr, the Doppler shift distribu-
tion can be modeled as a normal distribution with the
standard deviation ∆T :

∆T =
kL
m

√
~mωr

2 tanh(~ωr/2kBT )
, (G2)

where m is the mass of 88Sr and kL is the wavevector of
the Rydberg excitation light.

The radial temperature of our atomic array (along
the axis of propagation of the Rydberg beam) is mea-
sured via sideband spectroscopy on the clock transition
[34] to be Tr ≈ 2.5 µK at a radial trap frequency of
ωr ≈ 2π× 78 kHz. We adiabatically ramp down the trap
by a factor of 10 before Rydberg interrogation, thereby
reducing the temperature and the trap frequency by a
factor of

√
10 (which we also confirm via further sideband

spectroscopy). Using Eq. G2, we estimate the Doppler
broadening to be ∆T ≈ 2π×30 kHz. At a Rabi frequency
of ΩR ≈ 2π × 6 MHz, the expected Doppler decoherence
timescale is τ ∼ ΩR/∆

2
T ≈10 ms, which is three orders of

magnitudes longer than the measured value ≈7 µs. This
implies that motional effects are negligible in the Rabi
decoherence dynamics.
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FIG. 5. Ramsey interferometry. We use a detuning of 2 MHz
between the two pulses to show oscillations with a characteris-
tic 1/e decay time τRamsey ≈ 2 µs. A sine-modulated Gaussian
decay is used for the fit (solid line).

2. Laser phase noise

Phase noise manifests as random temporal fluctuation
of the detuning ∆ in the Hamiltonian in Eq. G1. Since
the frequency of the Rydberg laser is stabilized to a
ULE reference cavity via the Pound-Drever-Hall (PDH)
method, we use an in-loop PDH error signal derived from
the cavity reflection to extract a phase noise spectrum
(see Ref. [17] for the detailed procedures of phase noise
extraction). The obtained noise power spectral density,
predicting a RMS frequency deviation of ≈0.6 MHz after
fourth-harmonic generation, allows us to generate ran-
dom time-varying detuning profiles that are fed into our
Monte Carlo simulations to extract a predicted decay
time. Note that while the estimated laser linewidth is
∼ 1−10 kHz, phase noise from the servo bumps centered
at νSB ≈ 0.6 MHz is highly relevant since ΩR > νSB, and
in fact dominates the RMS.

Since the cavity filters phase noise beyond its linewidth,
this noise is suppressed on the measured PDH signal
as compared to the actual noise of the laser light that
we use for Rydberg interrogation. We therefore correct
our measured phase noise spectrum with a cavity roll-
off factor [62] obtained from the cavity linewidth and
finesse, which results in an increase in noise as compared
to the uncorrected measured spectrum. However, we can
also use the uncorrected spectrum to predict the phase
noise we would have if we used the filtered cavity light
to generate our Rydberg light via a technique described
in Ref. [8]. The results in Fig. 6 show simulated results
both with and without cavity filtering.

Our simulations (without cavity filtering, as in our cur-
rent setup) predict a Ramsey decay time of ≈ 2 µs with
a Gaussian envelope, which is consistent with our ex-
perimental observation. In principle, Doppler broadening
∆T could also lead to dephasing in Ramsey signals; how-
ever, the corresponding 1/e decay time is expected to be

τRamsey =
√

2/∆T = 7.5 µs, longer than the observed
2 µs, suggesting that laser phase noise is dominant over
motional effects in our Ramsey signal.
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FIG. 6. Simulated and measured 1/e coherence vs Rabi fre-
quency. The star represents the measured data shown in
Fig. 3(a), and the circle and square points represent numer-
ical modeling with measured laser phase and intensity noise
profiles. The yellow circles show the case when cavity phase
noise filtering is not performed (as in this work), and the
green squares show the case where cavity phase noise filter-
ing is performed. The horizontal gray line shows the upper
limit due to measured intensity noise fluctuations with RMS
deviation of 0.8% (see Eq. (G3)).

3. Laser intensity noise

Our intensity noise predominantly originates directly
from the Rydberg laser. This intensity noise is com-
posed of both high-frequency fluctuations compared to
the pulse length, and lower frequency (effectively shot-to-
shot) fluctuations. Using a UV avalanche photodetector
(APD130A2, Thorlabs), we measure that the intensity
noise fluctuations between different experimental trials
exhibit an expected scaling of σRMS ∼ 1/

√
L, where L

is the pulse duration, saturating to 0.8% when L > 1
µs. Note that the pulses are too fast to stabilize with an
AOM during interrogation, and that we employ a sample-
and-hold method.

In the presence of only intensity noise following a nor-
mal distribution with standard deviation σRMS, one can
derive an analytical expression for a 1/e Rabi decay time

as τRabi = 2
√

2/(ΩRσRMS) where ΩR is the nominal,
noise-free Rabi frequency. In the intensity noise limited
regime, we thus expect a Rabi lifetime NRabi (in oscil-
lation cycles) to be Rabi frequency-independent (see the
line in Fig. 6):

NRabi =
ΩRτRabi

2π
=

√
2

πσRMS
. (G3)

4. Summary

Including all the discussed noise sources (atomic mo-
tions, phase noise, intensity noise) as well the finite state
lifetime and a Rydberg probe-induced light shift (dis-
cussed in a subsequent section), we calculate NRabi as
a function of drive frequency, as shown in Fig. 6. We
find that the simulated Rabi oscillation agrees well with
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FIG. 7. Light shifts of |r〉 from the Rydberg laser and the
tweezer light. (a) The differential shift of the |g〉 ↔ |r〉 res-
onance between Ωinit

R = 2π × 1 MHz and variable ΩR versus
Ω2

R. This set of data was measured with the two-rail self-
comparison technique utilized in Ref. [34]. The fit line re-
flects the quadratic scaling ∆ν = κUV

|r〉 Ω2
R, with κUV

|r〉 = 5.1(7)

kHz/MHz2. (b) The differential shift of the |g〉 ↔ |r〉 reso-
nance between the dark case U = 0 where the tweezers are
extinguished during excitation, and the bright case with vari-
able |g〉-state depth U up to U0 ≈ kB × 450 µK ≈ h × 9.4
MHz. This fit shows a linear dependence with ∆ν = κT

|r〉U,

where κT
|r〉 = 18.8(9) MHz/U0.

the experimental result at a Rabi frequency of 6 MHz.
While the Rabi lifetime improves with increasing Rabi
frequency, it becomes saturated to NRabi ≈ 56 at high
Rabi frequencies due to intensity noise fluctuations. In-
terestingly, we note that there is a crossover between a
phase noise-limited regime at low Rabi frequencies and
an intensity noise-limited regime at higher Rabi frequen-
cies, which for our phase and intensity noise profiles oc-
curs at ΩR ≈ 2π × 7 MHz. Our numerical simulations
suggest that, at Rabi frequencies less than this value,
cavity phase noise filtering [8] can enhance the long-time
Rabi coherence.

APPENDIX H: Rydberg state systematics

1. State identification and quantum defects

The Rydberg state |r〉 we use for this work is the
5s61s 3S1 mJ = 0 state of 88Sr. To confirm the quan-
tum numbers, we measure the transition wavelengths of
n = 48, 49, 50, 61 for the 3S1 series and of n = 47, 48, 49
for the 3D1 series and find nearly perfect agreement with
the values predicted by the quantum defects given in
Ref. [42].

2. Rydberg probe-induced light shift

The pulse generation for our Rydberg interrogation is
facilitated by switching on and off an acousto-optic mod-
ulator (AOM). However, due to the finite speed of sound
in the AOM crystal, the switch-on and switch-off times
are limited to tens of nanoseconds. This timescale begins
to approach the timescale of our π-pulses for Rabi fre-
quencies greater than ≈10 MHz. This poses a potential
problem if there is also a significant intensity-dependent

light shift of the resonance frequency due to the Ryd-
berg interrogation beam. For example, a detuning that
changes significantly on the timescale of the Rabi fre-
quency could lead to non-trivial dynamics on the Bloch
sphere, causing unfaithful execution of Rabi oscillations.
We note that such an effect scales unfavorably with in-
creasing Rabi frequency, as both the relevant timescale
becomes shorter and the magnitude of the shift becomes
quadratically larger.

To this end, we operate at Rabi frequencies smaller
than 6 MHz to isolate the pure Rydberg laser-induced
light shift from the undesired AOM-related transient ef-
fect. Using the two-rail clock operation technique de-
scribed in Ref. [34], we measure the light shift induced
by the Rydberg beam and find it to be described by
∆ν = κUV

|r〉 Ω2
R with κUV

|r〉 = 5.1(7) kHz/MHz2, as shown

in Fig. 7(a).

3. Tweezer-induced light shift

We have demonstrated high-fidelity blockaded Rabi os-
cillations without extinguishing the tweezer traps. To
gain a partial understanding of this observation, we mea-
sure the light shift of |r〉 in the tweezers with wavelength
λT = 813.4 nm and waist of wT ≈ 800 nm. We measure
the differential shift of the |g〉 ↔ |r〉 resonance between
the dark case U = 0 where the tweezers are extinguished
during excitation, and the bright case with variable |g〉-
state depth U up to U0 ≈ 450 µK ≈ h × 9.4 MHz. This
fit shows a linear dependence with ∆ν = κT

|r〉U, where

κT
|r〉 = 18.8(9) MHz/U0. We conclude that κT

|r〉 ≈ −κ
T
|g〉

at this tweezer wavelength and waist. We leave the de-
tailed modeling of the polarizability to future work.

4. Diamagnetic shift from magnetic fields

We measure a magnetic-field-dependent shift of the
Rydberg resonance that is quadratic in the magni-
tude of the field. We attribute this shift to the dia-
magnetic effect, which has a Hamiltonian given by
Hdm = 1

8me
|d×B|2 [63], where d is the dipole opera-

tor, B is the magnetic field, and me is the electron mass.
This Hamiltonian gives rise to a first order shift in the
energy that is quadratic in the magnitude of the field
such that ∆νdm = β|B|2, where β is a state dependent
quantity that increases with the principal quantum num-
ber n. For 5s61s 3S1 mJ = 0, we experimentally measure
β ≈ 3.4 kHz/G2.

We compare this value to a value predicted by perform-
ing exact diagonalization of Hdm on a limited manifold
of Rydberg states in a similar fashion to Ref. [63] while
using quantum defects from Ref. [42]. This numerical pro-
cedure produces βpredicted = 2.9 kHz/G2 for our state, in
near agreement with our measured value.
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[29] P. Kómár et al., Nature Physics 10, 582 (2014).
[30] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Physical

Review Letters 101, 170504 (2008).
[31] A. V. Gorshkov et al., Physical Review Letters 102,

110503 (2009).
[32] A. J. Daley, Quantum Information Processing 10, 865

(2011).
[33] J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres,

Physical Review Letters 122, 173201 (2019).
[34] I. S. Madjarov et al., Physical Review X 9, 041052 (2019).

[35] See Supplemental Material .
[36] M. A. Norcia et al., Science 366, 93 (2019).
[37] W. E. Cooke, T. F. Gallagher, S. A. Edelstein, and R. M.

Hill, Physical Review Letters 40, 178 (1978).
[38] G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and

M. P. A. Jones, Physical Review A 87, 053409 (2013).
[39] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D.

Lukin, arXiv:1808.10816 (2018).
[40] V. Lienhard et al., Physical Review X 8, 021070 (2018).
[41] E. Guardado-Sanchez et al., Physical Review X 8, 021069

(2018).
[42] C. L. Vaillant, M. P. A. Jones, and R. M. Potvliege, Jour-

nal of Physics B: Atomic, Molecular and Optical Physics
45, 135004 (2012).

[43] D. Barredo et al., arXiv:1908.00853 (2019).
[44] R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and

T. Pohl, Journal of Physics B: Atomic, Molecular and
Optical Physics 44, 184010 (2011).

[45] E. Knill, Nature 434, 39 (2005).
[46] F. Arute et al., Nature 574, 505 (2019).
[47] L. Karpa, A. Bylinskii, D. Gangloff, M. Cetina, and
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