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Abstract

Phase-averaged dilute bubbly flow models require high-order statistical moments of the bubble
population. The method of classes, which directly evolve bins of bubbles in the probability space,
are accurate but computationally expensive. Moment-based methods based upon a Gaussian closure
present an opportunity to accelerate this approach, particularly when the bubble size distributions
are broad (polydisperse). For linear bubble dynamics a Gaussian closure is exact, but for bubbles
undergoing large and nonlinear oscillations, it results in a large error from misrepresented higher-
order moments. Long short-term memory recurrent neural networks, trained on Monte Carlo truth
data, are proposed to improve these model predictions. The networks are used to correct the
low-order moment evolution equations and improve prediction of higher-order moments based upon
the low-order ones. Results show that the networks can reduce model errors to less than 1% of their
unaugmented values.
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1. Introduction

The dynamics of bubble clouds play a central role in diverse applications from analyzing injury
from blast trauma [21], understanding kidney stone pulverization in shock- and ultrasound-based
lithotripsy [28, 18, 22], designing artificial heart valves and pumps [5], and minimizing cavitation
erosion over propellers and hydrofoils [9]. When the size distributions of bubble nuclei are broad,
the average response of the bubbles to pressure fluctuations damps and disperses [32, 31, 10, 3].
Ensemble-averaged bubbly flow models [42] must account for such size distributions and disequilibria
if they are to represent the dynamics of realistic bubbly flows. Current methods for representing
such polydispersity are computationally expensive, even in the dilute limit [6].

Previous models have approximated statistical moments of these populations using the method of
classes [36, 6, 3]. This approach evolves bins of the bubble size distribution. While straightforward,
this approach is costly in a simulation environment with spatial inhomogeneities, since it involves
solving a large system of equations at each point in space. An alternative approach is Monte Carlo
methods; they solve the governing equations by discretely sampling the bubble population [43].
Unfortunately using Monte Carlo for this purpose is also expensive, and thus are usually only used
for validation of other methods [44].

In the present work, we explore moment methods as an alternative to the aforementioned
approaches. Moment methods evolve some parameters of a distribution, such as moments [17]
or expected values [27], that follow from a population balance equation. This technique has
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been used to model polydisperse bubbly flows, including coalescence and breakup [15] and dilute
gas-particle flows [20, 7, 12], though to our knowledge has not been applied to cavitating bubble
populations, which undergo large volume changes. For nonlinear bubble dynamics the moment
evolution equations cannot be expressed in terms of only lower order moments. One way to treat
this issue is the quadrature-based moment method (QBMM), which approximates unclosed terms
by evolving quadrature points and weights that correspond to an assumed-underlying distribution
(often Gaussian) [26, 23]. However, QBMMs have their own difficulties, such as delta-shocks and
negative quadrature node weights, that can pollute solutions [8, 13]. Further, high-order moment
predictions are still computationally expensive in this framework.

Instead, the current model evolves a multivariate probability density function that describes
the bubble distribution. Probability calculus and a Gaussian closure ansatz determine the moment
evolution equations. This approach is more general than the classes method because it utilizes
random variables in the full bubble state configuration (instantaneous and equilibrium radii and
radial velocity), rather than just the equilibrium bubble size parameter. This provides additional
model flexibility that can describe, for example, experimental conditions that only have statistical
estimates of bubble population state.

However, this approach is potentially limited for bubble populations with significant high-order
statistics. A more general density function can address this, though this is computationally expensive
and challenging because of the so-called moment problem [1, 35]. Instead, recent developments
suggest that a recurrent neural network (RNN) can efficiently augment such imperfect dynamical
systems, accounting for the dependency of current-time data on previous data [37, 38, 33]. In
particular, long short-term memory (LSTM) RNNs are well suited for this task as they truncate
gradient-based errors when they do not affect the prediction, resulting in short training times [16]
Here, we use LSTM RNNs to improve model predictions for the the low-order moment evolution
and high-order moment evaluation when high-order statistics are significant.

Section 2 presents an overview of the bubble dynamic model and governing equations. Section 3
formulates the density-function-assumed statistical evolution model (appendix Appendix A includes
references for specific derivations). Section 4 shows results for linear bubble dynamics of both Ro
monodisperse and polydisperse populations. Section 5 extends this analysis to nonlinear dynamics
via the Rayleigh–Plesset equation. Section 6 presents the RNN that improves model predictions
and results from it. Section 7 discusses the limitations of this method and potential treatments for
them. Section 8 concludes the paper.

2. Bubble dynamics model

As a representative scenario, the bubbles are non-interacting, isothermal, and surface tension
is neglected. While such assumptions are not appropriate under all circumstances, this model
includes the key driving dynamics and can be appended to represent additional physical effects.
The Rayleigh–Plesset equation thus represents the single-bubble dynamics:

RR̈+
3

2
Ṙ2 +

4

Re

Ṙ

R
= Ca

[(
Ro
R

)3γ

− 1

]
− Cp (1)

where γ is the polytropic index, Ro is the equilibrium bubble radius, R is the instantaneous radius,
and the dots represent time derivatives. The Reynolds number, cavitation number, and dimensionless
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pressure forcing are

Re ≡
√
po
ρo

Ro
νo
, Ca ≡ po − pv

po
, and Cp ≡

p∞ − po
po

, (2)

respectively, where νo is the reference kinematic viscosity, ρo is the reference liquid pressure, and
pv, po, and p∞ are the vapor, ambient, and liquid far-field pressures. The bubbles are gas-filled
(pv = 0 and so Ca = 1) and compress adiabatically (γ = 1.4). The time-independent pressure
ratio po/p∞ modifies the bubble collapse strength. In general, phase-averaged model flows have a
time-dependent p∞, though the time scale of the bubble dynamics is much shorter than that of the
flow that advects them in these cases. Thus, the time-independent case serves as a model problem,
though the method presented here can extend to time-dependent pressures.

3. Density-shape-assumed model formulation

3.1. General, polydisperse model

The polydisperse bubble dynamics of section 2 entail three uncertain variables: R, Ṙ, and Ro.
The probability of any such state ~x = {R, Ṙ,Ro} occurring is

P = P (~x, ~θ, t), (3)

where P is at most a trivariate probability density function with parameters (e.g. means, shape
parameters) ~θ and raw moments ~µ′. There are

Nq∑
q=1

(
Nr + q − 1

q

)
(4)

such moments, where Nr = 3 is the number of random variables, q is the moment order index, and
Nq is the highest moment order. The specific moments are

µ′lmn =

∫
PRlṘmRno dx (5)

where l +m+ n = q.
A governing equation for P follows from the usual master equation

dP

dt
=
∂P

∂t
+

∂

∂R
(PṘ) +

∂

∂Ṙ
(PR̈) = 0, (6)

where Ṙo = 0 since the Ro distribution is static [2]. This constraint complements (6) as a marginal
condition for P (R, Ṙ) when P (Ro) is specified. The moment system evolves as

∂~µ′

∂t
= ~f(~µ′,x), (7)

where ~f is over all moments {l,m, n}:

flmn = lµ′l−1,m+1,n + n

∫
R̈(~x)RlṘm−1RnoP (~x, ~θ) d~x, (8)
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where R̈ follows from (1) and the integration is over the support of P . We call this the PDF-based
model (or PDF) throughout. The derivation of (8) is in appendix A. Thus, (7) is a nonlinear system
of integro-differential equations that requires specification of Nq, P , and the transformation ~µ′ ⇔ ~θ.
The second-order accurate Adams–Bashforth method evaluates the time derivative.

3.2. Monodispersity in Ro

Ro-monodisperse cases test the model performance throughout. P (Ro)→ δ(R∗o − 1) describes
these cases, where δ is the Dirac delta function, though these populations can still be in bubble size
and velocity disequilibrium. These cases require no Ro moments (n = 0, P = P (R, Ṙ, t), Nr = 2).
Thus, we compute the Ro integral of (8) analytically, resulting in double integrals over R and Ṙ.

4. Prediction of linear bubble dynamics

This section considers linear bubble dynamics as a case for which a Gaussian closure is exact.
Linearizing (1) about R = Ro yields

R̈+ β(Ro)Ṙ+ ω2(Ro)(R−Ro) = −Cp
Ro

(9)

where

β =
4

ReR2
o

and ω2 =
3γCa

R2
o

(10)

characterize the damping rate and bubble natural frequency, respectively.

4.1. Ro-monodisperse populations

The integrals of (8) are evaluated analytically for linear Ro-monodisperse bubble populations:

∂~µ′

∂t
= ~f =



f100

f010

f200

f020

f110


=



µ′010
−βµ′010 − ω2(µ′100 +Ro)− Cp/Ro

2µ′110
−2(βµ′020 + ω2(µ′110 +Roµ

′
010))

µ′020 − (βµ′110 + ω2(µ′200 +Roµ
′
100))


. (11)

Since ~f requires only a finite number of moments (only the low-order moments, ~µ′ up to Nq = 2),
this system is closed for any five-parameter bivariate distribution P . The multivariate normal
distribution

P (~x, ~θ) =
1

2π
√
|Σ|

exp

(
−1

2
(~x− ~µ)>Σ−1(~x− ~µ)

)
(12)
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Figure 1: Linear bubble dynamics for an example case. (a) Validation error ε (see text) of the density function

parameters ~θ for varying Monte Carlo sample number NMC and (b)–(d) their temporal evolution. (b) shows
µR − µR(t = 0) instead of µR to ease visualization.

demonstrates this method, where Σ is the covariance matrix. For Ro-monodisperse cases ~x = {R, Ṙ}
are the random variables, ~µ = {µR, µṘ} are their means, and the transformation ~µ′ ⇔ ~θ is

~θ =



µR

σ2R

µṘ

σ2
Ṙ

ρRṘ


=



µ′100

µ′200 − µ′2100

µ′010

µ′020 − µ′2010
µ′110−µ′100µ′010√

µ′200−µ′2100
√
µ′020−µ′2010


and ~µ′ =



µ′100

µ′010

µ′200

µ′020

µ′110


=



µR

µṘ

µ2R + σ2R

µ2
Ṙ

+ σ2
Ṙ

µRµṘ + ρRṘσRσṘ


. (13)

An example linear dynamics case determines if this method can reproduce the expected statistics
for a binormal distribution function. It is specified by Ro = µR(t = 0), Re = 20, and po/p∞ = 0.9,
with initial conditions µR = 1, µṘ = 0, σ2R = 0.012Ro, σ

2
Ṙ

= 0.01, and ρRṘ = 0, though the
conclusions are insensitive to these choices. The relative metric

ε(∗) ≡ ‖∗MC − ∗PDF‖2
‖∗MC‖∞

(14)

quantifies the error. Subscripts MC and PDF refer to the Monte Carlo and PDF-based models,
respectively, and ‖∗‖s is the Ls norm.

Figure 1 (a) shows the low-order moment errors ε over three periods of the mean bubble dynamics.
They are small and decay with increasing NMC, consistent with the expected Monte Carlo sampling
error for all moments, validating the linear model above. Figure 1 (b) shows the low-order moment
evolution. The means µ∗ have the same dynamics as a damped harmonic oscillator and the variances
σ∗ grow and decay out of phase. A covariance ρRṘ develops despite the linear dynamics and initially
independently distributed random variables ρRṘ(t = 0) = 0. Thus, representing the linear bubble
population statistics requires a random variable covariance parameter.

4.2. Ro-polydisperse populations

A trivariate correlated normal distribution (following (12)) is used to predict linear, polydisperse
bubble dynamics. Thus in (12), ~x = {R, Ṙ,Ro}, ~µ = {µR, µṘ, µRo}, and ~µ′ ⇔ ~θ follows from (13)
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with the additional rows:

~θ =



µRo

σ2Ro

ρRRo

ρṘRo


=



µ′001

µ′002 − µ′2001
µ′101−µ′100µ′001√

µ′200−µ′2100
√
µ′002−µ′2001

µ′011−µ′010µ′001√
µ′020−µ′2010

√
µ′002−µ′2001


and ~µ′ =



µ′001

µ′002

µ′101

µ′011


=



µRo

µ2Ro
+ σ2Ro

µRµRo + ρRRoσRσRo

µṘµRo + ρṘRo
σṘσRo


. (15)

Evaluating the integrals of (8) via adaptive Gaussian quadrature to within 10−7% relative error
ensures that the observed errors result from the statistical model. The system has the same
parameterization as that of section 4.1, with additional initial conditions µRo = µR, ρṘRo

= 0, and
ρRRo = 0.

102 103 104 105
10−3

10−2

10−1

NMC

ε(
∗)

∗ = µR µṘ σ2
R σ2

Ṙ
ρRṘ

Figure 2: Validation errors for linear, Ro-polydisperse bubble population dynamics.

Figure 2 shows the validation error associated with a general polydisperse bubble population
when comparing to a Monte Carlo simulation of varying sample sizes NMC. We again compute the
errors over three cycles of the mean bubble dynamics. Similar to figure 1 (a), increasing NMC results
in the expected decrease in Monte Carlo sample error for all density function parameters. These
errors are of similar size to those of the Ro-monodisperse results for the largest NMC considered.
Thus, this model can represent linear polydisperse bubble dynamics at least up to this accuracy.

5. Prediction of nonlinear bubble dynamics

Gaussian closure is not exact for nonlinear bubble dynamics. This section characterizes the
errors incurred by applying this closure. The bubbles evolve according to the Rayleigh–Plesset
equation (1) with different pressure ratios po/p∞. For small pressure ratios, the bubbles collapse
violently and oscillate nonlinearly, whereas as the pressure ratio approaches unit, linear dynamics
are recovered. Thus, the moments of such a bubble population match those of the linear case when
po/p∞ → 1 and σṘ → 0.

The initial bubble populations are independently distributed and Gaussian with means µR = 1
and µṘ = 0 and variances σ2R = 0.01 and σ2

Ṙ
= 0.05. Monte Carlo simulations with NMC = 105

samples serve as a surrogate for the exact solution throughout. We restrict our analysis to Ro-
monodisperse cases. However, as discussed in section 3 and shown in section 4, including Ro
polydispersity is straightforward.
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Figure 3: Low-order bubble population moments (a)–(e) for example case po/p∞ = 0.3 using the PDF-based model
(PDF) and Monte Carlo simulation (Exact). The second-order moments are normalized by their t = 0 values and tc is
the nominal collapse time.

5.1. Low-order moment prediction

Computing the high-order moments associated with phase-averaged bubbly flow models requires
evaluating the low-order (first- and second-order) moments. Figure 3 shows these low-order moments
for an example case over 10 periods of the mean bubble dynamics. For both the exact and PDF-based
model the moments associated with population variance, µ′02 and µ′20, grow and decay significantly
from period-to-period. The covariance moment µ′11 oscillates between values near ±1, indicating
correlation between the random variables. The exact moments damp from period-to-period, whereas
the moments of the PDF-based model are approximately periodic and do not display this behavior.
Thus, for this low pressure-ratio case the PDF-based model cannot accurately represent the actual
statistics.
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10−1 (a) R moments

po/p∞

ε(
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∗ = µ′10 µ′20

0 0.2 0.4 0.6 0.8 1

(b) Ṙ moments

po/p∞

∗ = µ′01 µ′02

0 0.2 0.4 0.6 0.8 1

(c) Mixed moment

po/p∞

∗ = µ′11

Figure 4: Model error ε for the low-order moments (a)–(c) over ten cycles of the mean bubble dynamics for varying
po/p∞.

Figure 4 shows the model error for a range of pressure ratios. The errors of all the low-order
moments increases with decreasing po/p∞. The errors associated with the bubble velocity moments
µ′0∗ are largest, which appears to result from the large variations that these moments have for low
pressure ratios. For pressure ratios near unity the dynamics are approximately linear and the errors
are small.
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Figure 6: PDF-basd model error ε associated with specific distribution moments (a)–(d).
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Figure 5: (a) Maximum Pearson’s moment coefficient of skewness γ1 and (b) excess kurtosis κ over ten cycles of the
mean bubble motion for varying pressure ratio.

The normality of the evolving bubble dynamics quantifies the validity (or lack thereof) of the
Gaussian PDF used. Figure 5 shows two high-order moments associated with non-Gaussian statistics:
the maximum skewness (third standardized moment, γ1) and excess kurtosis (fourth standardized
moment, κ). We compute these using Monte Carlo simulations. For po/p∞ → 1 the dynamics are
nearly linear and γ1 and κ are both small (less than about unity), as expected. However, both
skewness and kurtosis become large for smaller po/p∞. For example, κṘ = 126.7 and γ1,Ṙ = 4.9
for po/p∞ = 0.1. The large skewness results from slower bubble growth than collapse, so bubbles
on spend more time at large radius and small radial velocity. Thus, the PDF-based model, when
equipped with Gaussian closure, cannot accurately predict the low-order moments for small pressure
ratios.

5.2. Higher-order moment prediction for phase-averaged models

For ensemble-averaged simulations, the moments required are not the usual means and variances,
but instead are higher-order functions of the random variables. Following Bryngelson et al. [6],
these are µ′3(1−γ)0, µ

′
30, µ

′
21, and µ′32. Since P is a multivariate Gaussian the integer moments are

expressed in terms of the low-order moments as

µ′30 = 3µ′10µ
′
20 − 2µ′ 310, (16)

µ′21 = µ′01µ
′
20 + 2µ′10µ

′
11 − 2µ′ 210µ

′
01, (17)

µ′32 = µ′ 310
(
6µ′ 201 − 2µ′02

)
− 12µ′ 210µ

′
01µ
′
11 + 6µ′01µ

′
20µ
′
11 + µ′10

[
3µ′20

(
µ′02 − 2µ′ 201

)
+ 6µ′ 211

]
(18)

Adaptive Gaussian quadrature computes the non-integer moment µ′3(1−γ)0 via (5).
Figure 6 shows the relative model error of the phase-averaged model moments. Similar to

figure 4, the errors grow with decreasing pressure ratio and the moments associated with the bubble
radius R have smaller errors, including the non-integer moment µ′3(1−γ)0. These errors are large
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Figure 7: Low-order bubble population moments (a)–(e) for example case po/p∞ = 0.3 using the PDF-based model
(PDF), the neural-network-augmented model (ML), and Monte Carlo simulation (exact). The second-order moments
are normalized by their t = 0 values and tc is the nominal collapse time.

for small po/p∞, and the highest-order moment µ′32 has the largest error. However, this is still
comparable to the errors observed for µ′02.

6. Model augmentation via LSTM recurrent neural networks

The Gaussian-closure-based method performed well for modest pressure ratios, but poorly for
strong bubble dynamics because of population skewness and kurtosis. Representing such high-order
statistics via a more general density function is challenging because of the moment problem discussed
in section 1. Instead, we will employ a machine learning formulation to complement the Gaussian
closure method. This approach can effectively augment imperfect dynamical systems (e.g. [37]).
Here, it attempts to improve prediction of both low-order moment evolution and high-order moment
evaluation. The machine learning component is an LSTM RNN, which allows incorporation of
memory effects in the resulting machine-learned equations. Thus, the moment system (19) has
non-time-local closures and is non-Markovian [39]

6.1. Low-order moment prediction

Using the Gaussian closure of section 3 as a starting point, a machine-learned forcing term ~fML

augments the low-order moment evolution (7) as

∂~µ′

∂t
= ~f(~µ′) + ~fML(~µ′). (19)

A separate single-layer LSTM RNN (each with 32 time delays) determines each component of this
term. The Monte Carlo time history of ~µ′ for cases po/p∞ = {0.15, 0.25, . . . , 0.85} trains the neural
networks and provide the first 32 time delays.

Figure 7 shows these low-order moments for the neural-network-augmented model. Even for this
relatively low pressure-ratio case, the moments associated with machine learning approach are much
closer to the exact data than the PDF-based model alone. This including the relative damping of
all moments, which the PDF-based model could not represent.

Figure 8 shows the error of the PDF-based model and its augmentation via neural networks. The
machine learning approach significantly decreases the model error for all moments for po/p∞ . 0.5,
while the errors for larger pressure ratios only decrease modestly. These errors are approximately
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Figure 8: Model error ε for the low-order moments (a)–(c) for the PDF-based model (PDF) and ML-augmented
PDF-based model (ML) at varying pressure ratio.
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Figure 9: Model error ε associated with specific distribution moments (a)–(d) for the PDF-based model (PDF),
the ML-augmented PDF-based model (ML+GC), and the ML-augmented PDF-based model, augmented with an
additional LSTM RNN for these moments (ML+ML).

the same for the bubble radius and radial velocity moments. Thus, the Ṙ moment predictions
improve the most, since they had the largest errors for PDF-based model alone. For example, for
po/p∞ = 0.2 the ML error is only 8% of the PDF error for µ′01 and 0.9% of it for µ′02. Note that
for the lowest pressure ratio we consider, po/p∞ = 0.1, including the f term associated with the
Gaussian closure did not improve our results. This is because this case has significant non-Gaussian
features. Thus, for this case we trained a neural network on the data itself without f .

6.2. Higher-order moment prediction for phase-averaged models

This section analyzes the higher-order moments of section 5.2 for the improved model predictions.
Figure 9 shows the errors associated with these moments for the augmented PDF-based model. The
PDF-based model errors (PDF) are also those of figure 6 and ML-augmented errors (ML+GC)
follow from assuming a Gaussian PDF for the higher-order moments using the low-order moments
of section 6.1. We see that this approach alone reduces the error from the PDF-only model for the
µ′30 and µ′21 moments. However, the non-integer moment errors do not decrease significantly. This
is because the primary error results from non-Gaussian statistics, and so assuming Gaussianity for
the other moments precludes accurate prediction.

An additional LSTM neural network with output ~gML is used to reduce these errors as

~µ′ML = ~µ′HG(~µ′) + ~gML(~µ′), (20)

where ~µ′HG is the column vector of high-order moments as approximated via Gaussian statistics
following (16)–(18) and ~µ′ML are the new predictions (labeled as ML+ML in figure 9). The low-
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order moments ~µ′ and the residual of the truth-value of the higher-order moments (computed via
Monte Carlo data) and ~µ′HG train this neural network. Figure 9 shows these results (ML+ML) for
verification (out-of-training-set) pressure ratios. This approach reduces ε from the ML+GC and
PDF results for the µ′3(1−γ)0 and µ′32 moments and reduces it further from the ML+GC results for

the other moments. For example, for po/p∞ = 0.1 the ML+ML error is only 7% of the PDF error
for the µ′32 moment and 20% of it for µ′3(1−γ)0.

7. Discussion and outlook

The kernel of the integrals of (8) is P , which is ill-posed for ρ → 1 and fixed independent
coordinates. In practice the model only displayed this issue when the initial conditions require ρ = 1,
as the moment system did not generate such strong correlations otherwise. Still, evaluating the
ρ(t = 0) = 1 case requires a coordinate transformation, such as that of Glazunov and Zhang [14].

We did not analyze the cost of evaluating the integrals of (8) above. However, obtaining less
than 1% relative error requires only about 20 integrand evaluations when using adaptive Gauss
quadrature for the po/p∞ = 0.3 case of section 5 at t = tc. This compares favorably with other
moment methods because only five moments are evolved (for the cases of section 5). This is
because evolving more degrees of freedom in a simulation environment is expensive, particularly
for the high-order interface-capturing methods often used for bubbly flows [11]. Of course, there
are other ways to evaluate these integrals. For example, interpolated look-up tables are an efficient
treatment for problems of this type: molecular dynamic simulations often use these for particle-pair
potentials [40, 30] and associated integral quantities [34], chemical-reacting system simulations
use them for reduced-order chemistry [29] and flame models [19]. Such a method would be useful
because many parts of the flow fields are likely to see similar conditions at any instance in time.
Another route is accelerating their evaluation via neural networks. Indeed, this has been used to
evaluate integrals corresponding to combustion systems [4].

Actual simulation environments have spatial inhomogeneities that can lead to numerical instabil-
ities of the quadrature weights for QBMMs because of unrealizable quadratures [41, 24, 25]. This is
a complex problem that the method presented here did not address directly. However, this method
does not require fixed quadrature nodes that QBMMs use and so it is unclear whether and how
such instabilities could develop.

8. Conclusions

A moment method for predicting the statistics of a population of dilute, cavitating bubbles was
presented. The moment equations are closed via a Gaussian probability density function, and only
require evolution of the first two moments. In order to correct for errors incurred in the closure, it
is augmented by a recurrent neural network. This data-driven representation was trained on Monte
Carlo data to correct the low-order moments, substantially improving predictions. For example, for
low pressure ratio po/p∞ = 0.2 the ML-augmented model error was only 0.9% of the unaugmented
method for the µ′02 moment, which had the largest error without the neural network.

The higher-order moments required to close phase-averaged bubbly flow models cannot, however,
be predicted based on the (corrected) low-order moments, since they will contain errors associated
with non-Gaussian statistics. Using an additional neural network, trained on only Monte Carlo
and low-order moment data, prediction of these high-order moments improved significantly. For
example, for the lowest pressure ratio case po/p∞ = 0.1 the error was only 7% of the PDF error for
the highest-order moment.
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These results suggest that RNN-augmented moment models can efficiently evaluate the bubbly
flow statistics required to close phase-averaged models. Future work will evaluate the performance
of these models in coupled bubbly-flow simulations.
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Appendix A. Moment evolution equations

Equation (8) is derived as ∫ (
dP

dt
= 0

)
RlṘmRnodx→ (A.1)

∂

∂t

∫
PRlṘmRnodx+

∫
∂(ṘP )

∂R
RlṘmRnodx+

∫
∂(R̈P )

∂Ṙ
RlṘmRnodx = 0, (A.2)

∂µ′lmn
∂t

+

∫
∂(ṘPRlṘmRno )

∂R
dx−

∫
∂(RlṘmRno )

∂R
ṘPdx +∫

∂(R̈PRlṘmRno )

∂Ṙ
dx−

∫
∂(RlṘmRno )

∂Ṙ
R̈Pdx = 0, (A.3)

∂µ′lmn
∂t

− lµ′l−1,m+1,n − n
∫
R̈RlṘm−1RnoPdx = 0. (A.4)

Applying (6) to (A.1) results in (A.2). Performing integration by parts on the second and third
integrals results in (A.3). (A.4) follows from evaluation of the first and third integrals, application
of (5), and evaluation of the derivative in the last integrand. This also matches (8).
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