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13 ABSTRACT  The -hydroxyalkyl-hydroperoxides [R-(H)C(-OH)(-OOH), -HH] produced in the 

14 ozonolysis of unsaturated organic compounds may contribute to SOA aging. -HHs inherent 

15 instability, however, hampers their detection and a positive assessment of their actual role. 

16 Here we report, for the first time, the rates and products of the decomposition of the -HHs 

17 generated in the ozonolysis of atmospherically important monoterpenes -pinene (-P), d-

18 limonene (d-L), -terpinene (-Tn) and -terpineol (-Tp) in water:acetonitrile (W:AN) 

19 mixtures. We detect -HHs and multifunctional decomposition products as chloride-adducts 

20 by online electrospray ionization mass spectrometry. Experiments involving D2O and H2
18O 

21 instead of H2
16O, and an OH-radical scavenger show that -HHs decompose into gem-diols + 

22 H2O2 rather than free radicals. -HHs decay mono- or bi-exponentially depending on 

23 molecular structure and solvent composition. e-fold times, 1/e, in water-rich solvent mixtures 

24 range from 1/e = 15-45 min for monoterpene-derived -HHs to 1/e > 103 min for the -Tp-
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25 derived -HH. All 1/e’s dramatically increase in < 20 % (v:v) water. Decay rates of the -Tp-

26 derived -HH in pure water increase at lower pH (2.3  pH  3.3). The hydroperoxides 

27 detected in day-old SOA samples may reflect their increased stability in water-poor media 

28 and/or the slow decomposition of -HHs from functionalized terpenes. 

29
30
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31 INTRODUCTION

32 The detection of extremely low-volatility organic compounds (ELVOCs)1-3 has gone a long 

33 way to explaining how biogenic volatile organic compounds (VOCs) contribute to the 

34 formation of secondary organic aerosol (SOA).4, 5 ELVOCs are mostly produced during the 

35 ozonolysis of monoterpenes (C10H16), particularly those containing endocyclic double bonds 

36 such as -pinene (see Scheme 1),2, 6 and condense as nanoparticles. High-resolution chemical 

37 ionization mass spectrometry reveals that -pinene ELVOCs consist of highly oxidized 

38 monomeric Cx=8-10Hy=12-16Oz=6-12 and dimeric Cx=17-20Hy=26-32Oz=8-18 species.1, 3 The mechanism of 

39 ELVOCs formation proceeds via Criegee intermediates (CIs) that isomerize, fragment or 

40 undergo reactions with hydroxylic species such acids, alcohols and water.7-10 The 

41 fragmentation of CIs produces alkylperoxyl (R’OO) radicals that undergo fast intramolecular 

42 H-transfers into hydroperoxides and second generation R’’OO radicals.11, 12 The latter 

43 propagate an autoxidation mechanism that produces ELVOCs possessing multiple 

44 hydroperoxide functionalities and elevated O/C ratios.13-15 CIs also react with water yielding 

45 -hydroxyalkyl-hydroperoxides (R-(H)C(-OOH)(-OH), -HHs).7, 14

46 Hydroperoxides as a class are thermally unstable,16-18 and decompose into RO. and HO. 

47 radicals via O-O homolysis.19, 20 On this basis, it was hypothesized that they would trigger SOA 

48 aging via free radical reactions under atmospheric conditions. Previous kinetic studies, 

49 however, show that alkyl hydroperoxides in dilute solutions decompose at high temperatures, 

50 having ½ = 10 h half-lives above 130 oC.18 The unidentified (hydro)peroxide functionalities 

51 contained in the highly oxygenated molecules (HOMs) produced in the ozonolysis of -pinene 

52 (quantified by iodometry)21, however, decompose (into unidentified products) in tens of 

53 minutes at ambient temperature.22 

54 Clearly, a better understanding of the factors that control the stabilities of 

55 hydroperoxides, and the identity of their decomposition products in condensed phases will 
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56 help assess their actual role in SOA chemistry and, as potential sources of reactive oxygen 

57 species (ROS), the toxicity of ambient particulate matter.23 Here, we investigate the products 

58 and decomposition rates of four atmospherically relevant monoterpene-derived -HHs in 

59 aqueous organic solutions at ambient temperature for the first time. Since -HHs are the least 

60 stable hydroperoxides,18 their lifetimes should provide a lower bound to the lifetimes of 

61 hydroperoxides, and insights into structural and matrix effects on -HHs persistence.

62 Recently, we found that the -HHs generated from the ozonolysis of the sesquiterpene 

63 -caryophyllene in water:acetonitrile (W:AN) mixtures containing NaCl (an inert cosolute that 

64 does not react with O3 during our experiments) could be detected as chloride-adducts by 

65 electrospray ionization mass spectrometry (ESI-MS).24, 25 The same study showed that -HHs 

66 decay in a couple of hours in  20 % (v:v) water mixtures, but persist longer than a day in < 10 

67 vol % water.25 The goal of the present study is to investigate the effects of chemical structure 

68 and other functional groups on the stability of -HHs. This information may help evaluate the 

69 fate of atmospherically relevant -HHs in general. Here we report the rates of decomposition 

70 of -HHs produced in the ozonolysis of -pinene (-P), d-limonene (d-L), -terpinene (-Tn), 

71 and -terpineol (-Tp) (Scheme 1) in W:AN mixtures of variable composition. Our study 

72 focuses on -P as the most abundant biogenic monoterpene, whose global annual emissions 

73 (66.1 Tg) vastly exceed those of related -pinene (18.9 Tg) and limonene (11.4 Tg).26 We take 

74 advantage of the high solubility of -Tp in pure water to investigate the effects of pH on -

75 HH decay rates. The main findings are that in aqueous organic media monoterpene -HHs 

76 decompose into hydrogen peroxide plus aldehydes rather than free radicals in tens of 

77 minutes, with e-fold decay times, 1/e, that depend sensitively on water content and the 

78 presence of substituents. The fact that 1/e’s depend non-linearly on water content for all 

79 tested terpenes, strongly suggest that similar behaviors should be expected for the -HHs 

80 produced in aqueous media in the atmosphere. We found that the decomposition of the -
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81 Tp-derived -HH in water is accelerated at lower pH in the range of acidities prevalent in cloud 

82 water and aqueous aerosols. The main finding, however, is that hydroperoxides and -

83 hydroxyalkyl-hydroperoxides may not produce reactive free radicals by thermal16, 27-29 or 

84 photochemical O-O homolysis under atmospheric conditions.30 Among organic peroxides, 

85 only diacyl peroxides could appreciably decompose into free radicals at ambient 

86 temperatures.18, 31

87

88 Scheme 1. Chemical Structures of the Monoterpenes Used in the Present Study

89

90
OH

-pinene (-P) d-limonene (d-L) -terpinene (-Tn) -terpineol (-Tp)

91

92 EXPERIMENTAL SECTION

93 Figure S1 shows a schematic diagram of our experimental procedure for preparing -HHs 

94 in solution.24 Monoterpenes (C10H16, MW 136.13) or -Tp (C10H16OH, MW 154.14) and NaCl 

95 were dissolved in 10 mL of W:AN mixtures (10, 20, 30, 40, 50, 60 vol % W for -P, 20, 50 vol % 

96 W for d-L, 20, 50 vol % W for -Tn, and 50, 100 vol % W for -Tp) in a glass vial (25 mL). Note 

97 that the low solubilities of -P (0.018 mM)32 and other monoterpenes (except for -Tp) 

98 preclude these studies in neat water. We use W:AN mixtures as surrogates of environmental 

99 aqueous SOA due to AN polarity and low reactivity toward O3 and free radicals (SOA produced 

100 from the ozonolysis of -pinene mainly consists of mixtures of polar hydrophilic species, such 

101 as di-carboxylic acids and esters, as well as some high-molecular weight HOMs).33 O3 solutions 

102 were prepared separately by sparging 10 mL of the same W:AN mixtures in a 25 mL vial with 

103 O3(g) from a commercial ozonizer (KSQ-050, Kotohira, Japan) fed with ultrahigh purity O2(g) 
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104 (> 99.999%). The ozonizer output gases were carried to the vial using Teflon tubing (3 mm ID) 

105 at 1 L/min flow rate (set by a digital mass flow controller) for 5~20 seconds. O3 concentrations 

106 in the sparged solutions, [O3(sol)], were determined by UV-Vis spectroscopy (Agilent 8453) 

107 based on the reported O3 molar extinction coefficient in the near-UV: 258nm = 3840 M-1 cm-1 

108 in water,34 which is expected to be largely unaffected by the presence of AN.35 Reactions were 

109 initiated by mixing terpene and ozone solutions (2.5 mL each) in a glass syringe (5 mL) covered 

110 with aluminum foil to avoid the photo-degradation. To minimize unwanted secondary 

111 reactions, terpene concentrations were always in excess: [terpene]0/[O3(sol)]0 > 15. These 

112 mixtures were immediately injected (at 100 L min-1 by a syringe-pump, Harvard apparatus) 

113 into an ESI mass spectrometer (Agilent 6130 Quadrupole LC/MS Electrospray System at NIES, 

114 at Tsukuba). The pH of solutions was measured with a calibrated pH meter (LAQUA F-74, 

115 Horiba) before experiments. The evolution of -HHs and other species were followed by ESI-

116 MS as a function of time, recorded with a digital stopwatch. 

117 The prominent feature of our experiments is that the presence of sub-millimolar NaCl 

118 allows us to detect by online ESI-MS, and unambiguously establish the molecular mass of -

119 HHs and other multifunctional species (such as those containing -OOH, -OH and -C=O groups) 

120 as chloride adducts without further manipulation.7, 36-42 We verified that the monofunctional 

121 tert-butyl hydroperoxide (TBHP), cumene hydroperoxide (CHP) as well as difunctional 1,6-

122 hexanediol do not produce detectable Cl--adducts in the presence of NaCl. The implication is 

123 that species should contain at least three functional groups to be detected as a Cl--adduct by 

124 ESI-MS. Chloride-adducts characteristically appear as 3:1 doublets at m/z = M + 35 (+ 37) in 

125 the mass spectra.7-10, 43, 44 We verified that Cl- is inert toward O3 (k ≈ 1 × 10-2 M-1 s-1) in the 

126 time scale of our experiments.36 

127  The ESI mass spectrometer was operated as follows: nitrogen drying gas flow rate: 12 L min-

128 1; nitrogen drying gas temperature: 340 oC; inlet voltage: + 3.5 kV relative to ground; 
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129 fragmentor voltage: 60 V. All solutions were prepared in ultrapure water (Resistivity ≥ 18.2 

130 M cm at 298 K) from a Millipore Milli-Q water purification system and used within a day. 

131 Chemicals: (-)--pinene (> 95%, Wako or > 99% Sigma-Aldrich), d-limonene (> 99.0%, Tokyo 

132 Chemical Industry), -terpinene (> 95.0%, Tokyo Chemical Industry), -terpineol (> 97.0%, 

133 Tokyo Chemical Industry), tert-butyl hydroperoxide (70 wt. %, Sigma-Aldrich,), cumene 

134 hydroperoxide (> 80 %, Tokyo Chemical Industry), 1,6-hexanediol (> 97 %, Tokyo Chemical 

135 Industry), acetonitrile (> 99.8 %, Wako), tetrahydrofuran (> 99.8 %, stabilizer free, Wako), D2O 

136 (> 99.9 atom % D, Sigma-Aldrich), H2
18O (> 97 %, Cambridge Isotope Laboratories), NaCl (> 

137 99.999 %, Sigma-Aldrich) and HCl (37 %, ACS reagent, Sigma-Aldrich) were used as received.

138 RESULTS AND DISCUSSION

139 Products of the Ozonolysis of -Pinene in Water:Acetonitrile Mixtures

140 The products of the ozonolysis of -P appear as negative ions in the online ESI mass spectra 

141 of (1 mM -P + 0.2 mM NaCl + [O3]0 = 0.03 mM) solutions in W:AN (50:50 v:v; [H2O] = 27.8 M) 

142 mixtures (Fig. 1). 
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145 Figure 1 – A) Negative ion ESI mass spectra of (1 mM -pinene + 0.2 mM NaCl + [O3]0 = 0.03 mM) in W:AN 

146 (50:50 by volume) at various times. B) Zooming-in on later-generated products. P1 and P2 correspond to 

147 the chloride-adducts of a gem-diol and a hydroperoxide-cyanohydrin, respectively. FC stands for 

148 functionalized carboxylate. See the text for details.

149

150 O3 should be consumed by excess -P in a few milliseconds upon mixing 2.5 mL each of 

151 the (2 mM -P + 0.4 mM NaCl) and 0.06 mM O3 solutions. Our estimate is based on assuming 

152 that the reaction rate constants in the gas and liquid phases have similar values, i.e.: k(-P + 

153 O3)liquid  6.0 x 104 M-1 s-1, from k(-P + O3)gas = 1.0 x 10-16 cm3 molecule-1 s-1.45 Hence, O3 

154 should decay within 1/e ~ 17 milliseconds in [-P] = 1 mM solutions. Based on previous 

155 studies,46 we propose that O3 adds to the -P C=C double bond producing a primary ozonide,7, 

156 47 which opens up into a carbonyl and (in condensed phases) a stabilized CI (Scheme 2). The 

157 CI is expected to rapidly isomerize into a functionalized carboxylic acid (detected as a 
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158 carboxylate, m/z 183) or competitively add water to produce a -hydroxyalkyl-hydroperoxide 

159 (-HH) (Scheme 2).48 

160

161 Scheme 2. Mechanism of -Pinene Ozonolysis in Aqueous Phases a

162

O

O

O

O3(aq)

Criegee intermediate 
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OH
OH
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O

O

163 a Shown are what we consider the most likely structural isomers.

164

165 The intense peaks at m/z 237/239 are therefore assigned to the chloride-adducts of the 

166 -HH: 237/239 = 136 (-P) + 48 (O3) + 18 (H2O) + 35/37 (Cl-), in line with previous experiments 

167 from our laboratory.44 The substitution of D2O and H2
18O for H2

16O and the addition of an OH-

168 radical scavenger support the assigned stoichiometries (see below). Establishing their 

169 molecular structures would require tandem mass spectrometric studies. The presence of 

170 chloride in the m/z 237/239 and other species is revealed by the characteristic 3-to-1 ratio of 

171 237/239 signal intensities, which corresponds to the ratio of natural abundance 35Cl/37Cl 

172 chlorine isotopes. We also detect species at m/z 221/223 (P1) and 246/248 (P2) (see below) 

173 at longer reaction times (Fig. 1B). Qualitatively similar results were obtained in the ozonolysis 

174 of the monoterpenes d-L and -Tn (see Figs. S2-S6, Schemes S1 and S2). It should be 

175 emphasized that the absence of commercially available samples of -HH and the products of 

176 its decomposition precluded determining their relative response factors and, hence, 

177 establishing mass balances from measured mass signal intensities. 

178 We verified that the presence of 100 mM tetrahydrofuran (THF) (an efficient OH-radical 

179 scavenger, kOH+THF = 2.1 x 109 M-1 s-1)49 in reaction mixtures has negligible effects on the extent 

180 of reaction or the products distribution: the same product signals appear at m/z 237/239 (-
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181 HH), m/z 221/223 (P1) and 246/248 (P2) (Fig. S7). This finding excludes the significant 

182 participation of OH-radicals in the formation or destruction of these species.50 

183 Products of the Ozonolysis of -Pinene in D2O:Acetonitrile and H2
18O:Acetonitrile Mixtures

184 The shifts of mass signals in D2O:AN and H2
18O:AN solutions are consistent with the 

185 proposed mechanism of -HH formation (Scheme 2) and decomposition (Scheme 3). The fact 

186 that the m/z = 237/239 signals shift by + 2 mass units to m/z 239/241 in both D2O:AN and 

187 H2
18O:AN (Figs. S8 and S9) confirms the participation of one water molecule in the formation 

188 of the -HH. A second water molecule substitutes an –O-H group for the –O-O-H functionality 

189 by eliminating H2O2 and producing an aldehyde whose gem-diol can exchange two O-atoms 

190 via a keto  gem-diol equilibrium (Scheme 3). This is confirmed by the finding that the P1 

191 (m/z 221/223) signals shift by + 2 Da to m/z 223/225 in D2O:AN (Fig. S8), and by + 4 Da to m/z 

192 225/227 in H2
18O:AN (Fig. S9). We infer that -HH decomposes by reacting with water via 

193 reaction R1,

194 -HH + 2H2O  gem-diol (P1) + H2O2                  (R1)

195

196 Scheme 3. Mechanism of -Pinene -Hydroxyalkyl-Hydroperoxide Reaction with Water a

197
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199 a Shown are what we consider the most likely among isomers.

200

201 The P2 m/z 246/248 even mass signals clearly correspond to a species containing one N-

202 atom. The molecular formula of P2 corresponds to the chloride-adduct of the cyanohydrin 
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203 resulting from the addition of HCN (an impurity from the partial hydrolysis of AN in W:AN 

204 mixtures) to an intermediate species derived from a fast CI isomerization channel:51, 52 m/z = 

205 136 (-P) + 48 (O3) + 27 (HCN) + 35/37 (Cl-) = 246/248. We tentatively assign to such 

206 intermediate a vinyl-hydroperoxide (Scheme S3). The putative vinyl-hydroperoxide 

207 intermediate, by having a single -OOH group (such as TBHP and CHP, see above), is not 

208 expected to form a Cl--adduct. The reasoning behind this assignment is that the delayed 

209 formation of P2 (see Figs. 1 B and 3) implies that HCN does not compete with water for the 

210 CI, but rather reacts with a species simultaneously produced with the formation of the -HH 

211 (Scheme S3). A P2 cyanohydrin containing -OH and –OOH groups that can exchange protons 

212 for deuterons accounts for the +2 Da shifts undergone by the 246/248 signals in D2O:AN (Fig. 

213 S8). The +2 Da shifts in H2
18O:AN mixtures are tentatively ascribed to O-atom exchange 

214 between H2
18O and the carbonyl O-atom of the vinyl-hydroperoxide (Fig. S9). We note that 

215 HCN does not add to the carbonyl group of the -HH (a reaction that would have produced a 

216 species appearing at m/z 264/268), possibly because the carbonyl is blocked by 

217 intramolecular hydrogen bonding with the –C(-OH)(-OOH) group. 

218 Products of the Ozonolysis of -Terpineol in Water and Water:Acetonitrile Mixtures

219 Negative ion mass spectra as functions of time in the ozonolysis of (-Tp + NaCl) in 100% 

220 W and W:AN (50:50) mixtures are shown in Fig. 2. The intense peaks at m/z 255/257 are 

221 ascribed to the chloride-adducts of the -Tp -HH: 255/257 = 154 (-Tp) + 48 (O3) + 18 (H2O) 

222 + 35/37 (Cl-) (Scheme 4), in line with results for the ozonolysis of -Tp at the air-water 

223 interface.53 The presence of a hydroperoxide-cyanohydrin, detected as a chloride-adduct at 

224 m/z = 264/266 = 154 (-Tp) + 48 (O3) + 27 (HCN) + 35/37 (Cl-), in W:AN (50:50) (Fig. 2B), and 

225 its absence in pure W (Fig. 2A) confirms that HCN originates from the partial hydrolysis of AN 

226 in W:AN mixtures.
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232 Scheme 4. Mechanism of the Ozonolysis of -Terpineol in Water:Acetonitrile a
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235

236 Kinetic Experiments 

237 The temporal profiles of the detected products of -P ozonolysis, namely the -HH (m/z 

238 237/239), P1 (m/z 221/223) and P2 (m/z 246/248), in W:AN (50:50, [W] = 27.8 M and 20:80, 

239 [W] = 11.1 M) are shown in Figures 3 A and B. In both mixtures, -HH (m/z 237/239) signals 

240 decay as single-exponentials (see below) with rate coefficients: k1(20:80) = (2.7 + 1.7) x 10-4 

241 s-1 and k1(50:50) = (1.1 + 0.1) x 10-3 s-1, the averages of four independent runs. These k1 values 

242 correspond to 1/e = 62 min and 15 min, respectively. The rate coefficients determined in the 

243 present study are summarized in Table 1. In similar experiments, we had found that the -HH 

244 from the ozonolysis of -caryophyllene (50:50) mixtures decayed in 1/e = 52 min.25 Inspection 

245 of the data in Table 1 and Figure 4 shows that the decay of -P -HH becomes significantly 

246 slower in solvent mixtures of lower water content. The dependence of k1 on water content, 

247 however, is not linear as it would be expected from water as a reactant in R1. Remarkably, 

248 while 1/e = 52 min in 30% water slightly increases to 1/e = 62 min in 20% water, the decay of 

249 -HH in 10% water is dramatically different. In the 10% water mixture, -HH decays by  35% 

250 in the first 15 min followed by a much slower decay that extends for hours (Figure S11). 

251 It should be realized that if water molecules were homogeneously mixed at the molecular 

252 level, the decay of -HH would be single-exponential function because water participates as 

253 a reagent in both the consecutive reactions in Scheme 3. The decay of -HH signal intensities 

254 (S) in (10:90) mixtures is well represented by a bi-exponential function: S = S01 exp(-k1t) + S02 

255 exp(-k2t) (Fig. S11), with 1/e = 1/k2 = 641 min (Table 1). The observed fast and slow regimes 

256 may be indicative of the availability of water to -HHs in W:AN water-rich and water-poor 

257 domains of molecular dimensions (see below). The -HHs from d-L and -caryophyllene 

258 display a similar behavior in (20:80) and (10:90) mixtures.25
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260 Figure 3 – Temporal profiles of the chloride-adducts of the products of -pinene ozonolysis of (1 mM -

261 pinene, 1 mM NaCl, [O3]0 = 0.05 mM) in A: (50:50), B: (20:80) W:AN mixtures. Blue: -HH (m/z 237/239); 

262 dark cyan: P1 (m/z 221/223); red: P2 (m/z 246/248). P1 signal intensities were multiplied by 10 (A) and 20 

263 (B), respectively. Lines correspond to fitting signal intensities (S) vs time with: S = S0 exp(-k1t) or S = Smax [1-

264 exp(-kt)] functions. See text for details.

265
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268 Figure 4 – A) First-order rate coefficients k1 of the decay of the chloride-adduct of -pinene -HH (m/z 

269 237/239) in W:AN mixtures as a function of water volume, at 298 + 3 K. Data from Table 1. k1 values 

270 derived by fitting -HH signal intensities (S) vs time with: S = S0 exp(-k1t), except in the case of the 10 % 

271 W mixture where the plotted value is k2 from: S = S01 exp(-k1t) + S02 exp(-k2t), fits. See text for details. 

272 Error bars are derived from 3-4 independent measurements. B) The semi-log plot shows the dramatic 

273 increase of -HH persistence in 10 % W.

274
275

276

277

Page 15 of 29

ACS Paragon Plus Environment

Environmental Science & Technology



16

278  
279 Table 1- Rate Coefficients of -HHs Decay in Water:Acetonitrile Mixtures vs Water vol % at 298 + 3 K

280

281  
282

283

284

285

286

287

288

289

290

291

292

293

294

295 aRate coefficients are k1 values derived from experimental -HH signal intensities (S) fits by single-

296 exponential decay functions: S = S01 exp(-k1t) functions (1/e = 1/k1), except those marked with an asterisk 

297 (*), which correspond to k2 for the slower component of the observed bi-exponential decays: S = S01 exp(-

298 k1t) + S02 exp(-k2t) (1/e = 1/k2) b In the presence of 1 M FeCl2. c From reference 25. See text for details.

299

300 We also analyzed the rise of product signal intensities with time. The evolution of P1 (m/z 

301 221/223) signal intensities with time (Fig. 3) in -P experiments is well fitted by: S = Smax [1-

302 exp(-kP1t)] functions. Four independent measurements led to kP1 = (1.6 + 0.2) x 10-3 s-1 in 

303 (50:50) mixtures, and kP1 (2.0 + 0.2) x 10-4 s-1, in (20:80) mixtures. These values compare well 

304 with the k1 = (1.1 + 0.1) x 10-3 and (2.7 + 1.7) x 10-4 s-1 values for -HH decays in the same 

305 mixtures, confirming that P1 is a direct product of -HH decomposition. Based on this result 

306 and the P1 mass shifts in D2O:AN and H2
18O:AN experiments, we assign P1 to the [1-(3-(2,2-

Terpene Water (volume %) k (10-4 s-1)a 1/e (minutes)

-Pinene 10  0.26 + 0.11* 641

20 2.7 + 1.7 62

30 3.2 + 1.5 52

40 6.1 + 0.6 27

50 11 + 1 15

60 12 + 2 14

d-Limonene 20   1.3 + 1.0* 128

50 12 + 3 14

-Terpinene 20  0.48 + 0.29 347

50  3.7 + 1.5 45

-Terpineol 50  0.16 + 0.01 1042

100  1.3 + 0.4 128

 100 b  1.0 + 0.1 167

-Caryophyllene c 10

20

30

40

50

0.031 + 0.002*

1.4 + 0.6

1.4 + 0.2

1.7 + 0.4

3.2 + 0.7

5376

119

119

98

52
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307 dihydroxyethyl)-2,2-dimethylcyclobutyl) ethenone] gem-diol produced from the substitution 

308 of an -OH for the -OOH group in -HH (Scheme 3). Because -HH signals decay to zero in all 

309 cases, except in 10% water, the equilibrium: -HH = P1 + H2O2, is fully shifted to the products 

310 side (Scheme 3).54 In contrast, the rise P2 (m/z 246/248) signal intensities in (50:50) mixtures: 

311 S = Smax [1-exp(-kP2t)], corresponds to kP2 = (4.2 + 0.3) x 10-4 s-1. This value is about four times 

312 smaller than k1 indicating that P2 is not a product of -HH decomposition (Scheme 4). 

313 To recapitulate, the data of Table 1 reveal that in (50:50) mixtures the -HHs from -P 

314 and d-L decompose into H2O2 at comparable rates, which are 3 times faster than the -HH 

315 from -Tn, and  70 times faster than that from -Tp. Decay rates markedly increase in a non-

316 linear manner with water content. The -HH from -P, the most abundant biogenic 

317 monoterpene in the atmosphere, lasts from tens of minutes in > 20% water mixtures to 9 

318 hours in < 10% water. Below we show that the rapid conversion of -HH to H2O2 in SOA under 

319 atmospheric conditions may preempt its decomposition into free radicals via solar 

320 photolysis22, 55 or catalyzed by transition metal ions.29, 30

321 We analyze the physicochemical underpinnings of these findings, and their potential 

322 implications for the fate and quantification of hydroperoxides in SOA. In the case of -P, the 

323 strong non-linear dependence on water content of the rate constants (k1 or k2, see above) for 

324 the -HH + H2O reaction (Fig. 4) implies that H2O is not directly accessible to the -HH in these 

325 solvent mixtures. We had observed a similar non-linear behavior in the decay of the -HH 

326 produced from the ozonolysis of -caryophyllene.25, 56 We propose that this is evidence that 

327 -HHs are produced in discrete domains where water accessibility depends on their structure 

328 and water exchange dynamics, rather than in homogeneous media. 

329 These domains are generally present in mixtures of water with miscible organic 

330 solvents.57-59 This is substantiated by small-angle neutron and dynamic light scattering 

331 experiments detect short-lived (< 50 ps), short-ranged (1 nm) concentration fluctuations in 
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332 most water-hydrotrope mixtures,58-60 and with recent reactivity and selectivity studies of 

333 reactions in these media.57, 59 A recent soft X-ray absorption spectroscopic study of W:AN 

334 mixtures presented evidence of microheterogeneity.61 Ab-initio quantum chemical inner-

335 shell calculations suggested that the three distinct regions observed in these mixtures result 

336 from the interplay of hydrogen bonding and dipolar interactions between water and 

337 acetonitrile molecules.61 Notably, the discontinuity observed at  13 vol % W (molar fraction 

338 of water xw = 0.3) was ascribed to a transition between phases mainly containing AN-rich large 

339 WnANm clusters below xw = 0.3 and smaller clusters held by dipolar interactions above xw = 

340 0.3.61 We believe that the dramatic increase of -HH persistence below 20 vol % W is 

341 associated with such phase-transition. Additional evidence is provided by the non-linear 

342 dependences of the intensity, peak emission wavelength, and decay lifetime of 7-cyanoindole 

343 fluorescence in W:AN and other eight W:hydrotope mixtures as functions of water molar 

344 fraction.62  The fact that 7-cyanoindole fluorescence in W:AN decayed as a single exponential 

345 in the 2-12 ns range, indicated that 7-cyanoindole fluoresced while embedded in the most 

346 abundant WnANm clusters of the (n, m) distribution. 

347 Against this backdrop, our results suggest that -HHs (reaction R1) are generated in situ 

348 from the ozonolysis of monoterpenes embedded in WnANm clusters rather than dissolved in 

349 molecularly homogeneous solutions. The accessibility of H2O to -HHs should depend on the 

350 composition and rearrangement dynamics of WnANm clusters rather than on the macroscopic 

351 concentration of water. In such scenario, the limited rapid initial decay of -HHs followed by 

352 a much slower process in (10:90) mixtures may reflect the (n, m) distribution of WnANm 

353 clusters. In (10:90) mixtures, only a few clusters would contain a significant number of water 

354 molecules, those accounting for the fast -HH decay. Since microheterogeneity should be a 

355 general phenomenon in “internally mixed” aqueous organic mixtures, we suggest that the 

356 existence of inhomogeneities at the molecular level, as distinct from mesoscopic 
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357 segregation,63-65 could play unanticipated roles in atmospheric aqueous media.56 

358 The relatively short lifetimes of the -HHs derived from the ozonolysis of monoterpenes 

359 relative to the dramatic persistence of the -HH derived from -Tp (Table 1 and Fig. S12) is 

360 another unanticipated outcome, because it is difficult to envision a long-range intramolecular 

361 effect (through four bonds) of the –OH group on the reactivity of the R-(H)C(-OH)(-OOH) 

362 group. Even in pure W, the -Tp-derived -HH survives for over 2 hours. One possibility is 

363 that water molecules bridge -OH and -OOH groups via extended hydrogen-bonding, thereby 

364 blocking the formation of the six-membered transition state for to -HH decomposition into 

365 aldehyde + H2O2 (Scheme 1). Another possibility involves an orientation effect whereby the 

366 polar exo-OH group of -Tp forces the hydrophobic backbone containing the endo C=C bond 

367 (and, as a result the R-(H)C(-OOH)(-OH) group) to AN-rich cluster cores in W:AN mixtures.61

368 pH Effects on the Decay Rates of -Tp-derived -HH in Pure Water

369 Finally, we investigated the pH dependence (in the pH = 2.3 to 3.3 range, adjusted by HCl 

370 additions) on the kinetics of decomposition of -Tp-derived -HH in pure water. The results 

371 are shown in Table 2.  

372

373

374

375

376

377

378

379 It is apparent that decomposition rates are accelerated at lower pH, implying an acid-

-Terpineol pH K1 (10-4 s-1) 1/e (minutes) a

2.3 8.7 + 1.0 19

2.6 4.4 + 0.5 38

3.0 3.0 + 0.2 56

3.3 2.5 + 0.2 66

6.1 (as is) 1.3 + 0.4 128

Table 2- Rate Coefficients of -Tp-derived -HHs Decay in Water vs pH at [-Tp]0 = 1 

mM, [O3]0 = 0.06 mM at 298 + 3 K.

a 1/e = 1/k1

Page 19 of 29

ACS Paragon Plus Environment

Environmental Science & Technology



20

380 catalyzed reaction. This is an important effect, considering that ambient cloud water and 

381 aqueous aerosols are more acidic than previously assumed.66-68 This finding is in contrast with 

382 the opposite pH effect reported for the decomposition of -acyloxyalkyl-hydroperoxides, 

383 produced from -P’s CIs reactions with pinonic and adipic acids.40 Zhao et al. reported the 

384 linear increase in the first-order decay rate coefficient as pH increased from 3.5 to 5.1, which 

385 is consistent with an OH- catalyzed decomposition.40 The different behaviors may be ascribed 

386 to the key role played by the -OH group in R(-H)(-OH)(-OOH) decomposition, which is absent 

387 in -acyloxyalkyl-hydroperoxides R(-H)(-OR’)(-OOH).

388 Atmospheric Implications

389 The fast decomposition of monoterpene-derived -HHs, e.g., 1/e ~ 15 min in 50 vol % 

390 water, suggests that significant losses may occur prior to off-line chemical analyses of SOA 

391 samples whether collected in the field or synthesized in the laboratory.39, 40, 69 We suggest 

392 that discordant results obtained under otherwise similar conditions could be due to variations 

393 of depending on relative humidity or water content, to the non-linear dependence of k1 on 

394 water content, and to the onset of the much slower component of bi-exponential decays in < 

395 20% water media.

396 Regarding the role of -HHs in SOA aging, our findings reveal that their decomposition 

397 does not yield free radicals but H2O2 via reaction R1. R1 preserves the peroxide content and, 

398 therefore, the potential toxicity of SOA.50, 70, 71 Regarding the putative role of free radicals in 

399 SOA aging from the decomposition of RC-OOH hydroperoxides, we point out that thermal 

400 decomposition studies in dilute solutions have shown that the homolysis of RO-OH bonds 

401 proceeds with ½ = 10 h half-lives at temperatures above 130 C.18 In other words, neither RC-

402 OOH hydroperoxides nor R-(H)C(-OH)(-OOH) -hydroxyalkyl-hydroperoxides could 

403 conceivably produce free radicals in SOA at ambient temperatures. On the other hand, UV-

404 visible spectra of 1 mM -caryophyllene in W:AN (50:50) before and after ozonolysis (Fig. S13) 
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405 show that the peak absorption of reaction products occurs at ~280 nm, which corresponds to 

406 carbonyl chromophores. Thus, the solar photolysis of -HHs and their products will be 

407 dominated by carbonyl rather than peroxide photochemistry.22, 72   

408 Fenton-like chemistry is expected to take place in hours rather than in tens of minutes 

409 under typical conditions.22, 55 From representative values of [Fe2+] ~ 10-7 M, [ROOH] ~ 10-6 M 

410 in aqueous aerosol/cloud droplets,30, 54 and k(Fe2+ + ROOH) ~ 20 M-1 s-1,29 we estimate 1/e > 

411 14 h for Fenton-like -HHs decompositions, which is much longer than the 1/e < 1 h values 

412 derived from the data of Table 1. We confirmed the slowness of Fenton-like chemistry in the 

413 timeframe of our experiments by showing that the presence of catalytic concentrations of 

414 Fe2+ did not even accelerate the slow decay of the -HH derived from the ozonolysis of (1 mM 

415 -Tp + 0.2 mM NaCl + 1 M FeCl2) in neat water (Table 1). 

416 In summary, we found that the -HHs derived from the ozonolysis of atmospherically 

417 important monoterpenes react with water to produce (gem-diols + H2O2) rather than free 

418 radicals. -HHs decay mono- or bi-exponentially depending on both molecular structure and 

419 solvent composition. 1/e in water-rich solvent mixtures range from 1/e = 15-45 min for 

420 monoterpene-derived -HHs to 1/e > 103 min for the -Tp-derived -HH. Remarkably, all 

421 1/e’s dramatically increase in < 20 % (v:v) water. The decomposition of the -Tp-derived -

422 HH in pure water is accelerated at lower pH in the pH 2.3 to 3.3 range. The residual 

423 hydroperoxides detected in day-old SOA samples may reflect the slower components of bi-

424 exponential decays in water-poor media and/or the slow decomposition of -HHs from 

425 functionalized terpenes.
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