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1 Introduction

State sum constructions of quantum field theories extend Feynman’s formulation of the

time-sliced quantum mechanical path integral to theories of positive spatial dimension.

They are closely related to lattice models, which are expected to generate all consistent1

quantum field theories by a continuum limit. In the case of topological theories, which are

sensitive only to the spacetime topology (rather than a metric), the study of state sums has

been particularly fruitful, with applications in mathematics — perhaps most famously, to

knot theory [1] — as well as in physics. Merits of the state sum approach include that its

algebraic input is simpler than the continuum data and that quantities of interest may be

computed by local algorithms. This, however, comes at the cost of redundancy, as lattice

realizations are not unique. As we will see, this trade-off essentially reflects the difference

between certain algebraic structures and their Morita classes.

Topological quantum field theories (TQFTs) have recently gained prominence in con-

densed matter physics due to their connection to topological phases of matter. It is claimed

1Free of anomalies, such as the framing anomalies suffered by Reshetikhin-Turaev theories with nonzero

chiral central charge.
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that the field theories encode the universal, long-distance effective behavior — the “phase”

— of gapped quantum systems, which means characterizing their responses to topological

probes and reproducing the ground state expectation values of nonlocal order parame-

ters [2, 3]. State sum constructions of the field theories are directly related to the gapped

lattice models that live at renormalization group fixed points [2, 4, 5]. According to this

picture, a sensitivity of the theory to a spin structure, in addition to topology, captures

the response of massive fermions in the gapped system to boundary conditions. Such field

theories are known as spin-TQFTs. When a gapped system has a time-reversal symmetry,

its effective field theory is insensitive to the orientation of spacetime and is defined on

all unoriented spacetimes.2 When fermions transform under time-reversal symmetry with

T 2 = ∓1, the appropriate geometric structure is a pin± structure. Of particular physi-

cal relevance are pin− theories in two (spacetime) dimensions and their relationship with

time-reversal-invariant Majorana chains, which have been known for some time to have an

interesting interacting gapped phase classification [6].

Given the usefulness of state sum models for purely topological theories, it is natural

to ask whether spin- and pin±-TQFTs yield state sums as well. The case of spin theories

in two spacetime dimensions was recently studied by Barrett and Tavares [7] (see ref. [8]

for an alternate approach). They exploit the relation between spin structures on a surface

M and immersions of M into R3 to construct, for each spin surface, a ribbon diagram, the

twists and crossings of which keep track of the spin structure. Their state sum models are

then computed locally on this discrete realization of the spin geometry.

The main result of our paper is a state sum construction for two dimensional pin−

theories. Our approach extends that of ref. [7] to unoriented spacetimes. The state sums

amount to discretizations of all unitary invertible (as well as many non-unitary and/or non-

invertible) field theories with this structure, in particular the Arf-Brown-Kervaire theory,

which was recently studied along with its connection to Majorana chains in ref. [9]. A broad

class of them has a simple algebraic characterization in terms of certain real superalgebras.

From this perspective, the eight distinct powers of the Arf-Brown-Kervaire theory (the eight

phases of time-reversal-invariant Majorana chains) arise from the eight Morita classes of

central simple real superalgebras,3 a connection which has been noted previously in the

context of tensor network states [6, 10, 11]. In topological theories, the state sum data

has an interpretation as the space of states on the interval [12]; similarly, the real Clifford

algebras C`n,0R, n = 0, . . . , 7, whose state sums are the eight invertible pin− theories, have

to do with Majorana zero modes localized at the endpoints of the open chain.

The structure of the paper is as follows. In section 2, we review some elementary facts

about pin structures on closed surfaces and cobordisms and their relation to codimension

one immersions and quadratic enhancements. Diffeomorphism classes of these objects and

their classification by the Arf-Brown-Kervaire invariant are discussed. We also derive a

simple expression for the evaluation of the quadratic enhancement on an embedded curve in

2The path integral on nonorientable spacetimes computes the time-reversal symmetry protected trivial

(SPT) order [2, 3].
3As discussed below, the state sums for the non-central algebras describe the two symmetry-broken

theories.
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terms of its ribbon diagram. In section 3, we show how to construct a ribbon diagram from

an immersed surface and evaluate its state sum. Imposing invariance under re-triangulation

and regular homotopy, we derive the defining axioms of a half twist algebra. The state

spaces of the associated pin−-TQFT are constructed as well. In section 4, we specialize to a

class of half twist algebras related to real superalgebras. Decomposability and stacking are

understood on the level of these algebras, and it is shown that Morita equivalent algebras

define the same theory. We explicitly compute the path integrals for the Euler and Arf-

Brown-Kervaire theories and discuss the classification of invertible pin−-TQFTs.

2 Pin geometry in two dimensions

2.1 Pin structures, immersions, and quadratic enhancements

The goal of this section is to review the following equivalences:

pin− structures / isom.

/

pin−-diffeomorphism

=

pin−-diffeo. classes



↔

↔

↔



quadratic enhancements

/

lin. aut. with q′ = q ◦ α
=

quadratic enh. / equiv.



↔

↔

↔



immersions / reg. homot.

/

diffeo. with f = g ◦ φ
=

imm. surf. / reg. homot.


Pin structures generalize spin structures to unoriented smooth manifolds. The struc-

ture group O(n)4 of an unoriented manifold has two double covers Pin−(n) and Pin+(n),

which differ in the behavior of the lifts r̃ of odd reflections r ∈ O(n): in Pin±(n), they

square to r̃2 = ±1 [13]. A pin± structure on an unoriented manifold is a principal Pin±(n)

bundle with a 2-fold covering of the orthogonal frame bundle that restricts to the double

cover ρ : Pin±(n)→ O(n) on fibers. The following discussion of pin± structures is adopted

from ref. [14]. In terms of an open cover on M , it is a global lift of the O(n)-valued tran-

sition functions tij to sij ∈ Pin±(n). The triple overlap condition tijtjktki = 1 ensures

that any local lifts ρ : sij 7→ tij satisfy sijsjkski = oijk ∈ ker ρ ' Z/2. By looking at the

quadruple overlap, one sees that the signs oijk form a Čech 2-cocycle. Local lifts are acted

on transitively by ker ρ-valued 1-cochains A as sij 7→ sijAij , which shifts o by the cobound-

ary δA. The class [o] ∈ H2(M ;Z/2) is the obstruction to a global lift, or pin± structure,

and is w2 + w2
1 for pin− and w2 for pin+, where the wi denote the Stiefel-Whitney classes

of the tangent bundle of M . Two pin± structures are regarded as isomorphic if they are

related by a transformation sij 7→ λisij(λj)
−1, λi ∈ Pin±(n). If A is closed5 and s is a

pin± structure, the lift sA is again a pin± structure, and the two are isomorphic iff A is a

coboundary δλ; thus, assuming [o] vanishes, isomorphism classes of pin± structures on M

form a torsor for H1(M ;Z/2). Our focus will be on surfaces and their pin− structures, or

simply “pin structures.” The obstruction class vanishes in two dimensions, so each surface

supports exactly |H1(M ;Z/2)| pin structures, up to isomorphism.

Another characterization of pin structures on a surface M can be given in terms of

immersions of M into R3. Two immersions are said to be regular homotopic if they are

4A Riemannian metric is required to reduce the structure group from GLnR to O(n).
5Čech cocycles A ∈ Z1(M ;Z/2) are often referred to as Z/2-gauge fields.
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connected by a smooth 1-parameter family of immersions [15]. Immersions of a surface M

into R3 fall into |H1(M ;Z/2)| regular homotopy classes [15–17], one for each isomorphism

class of pin structure on M . The pin structure corresponding to an immersion is obtained

by pulling back the standard pin structure on R3 by the immersion [14]. Two immersions

f, g are equivalent if there exists a diffeomorphism φ of M such that f = g ◦ φ, and

these equivalence classes, called immersed surfaces, are said to be regular homotopic if

their representative immersions are [15]. Equivalence of immersions corresponds to pin

diffeomorphism of the corresponding pin surfaces.

Pin structures on surfaces have a third characterization: their isomorphism classes are

in bijective correspondence with quadratic enhancements of the intersection form [14]; that

is, functions

q : H1(M ;Z/2)→ Z/4 (2.1)

such that

q(x+ y) = q(x) + q(y) + 2 · 〈x, y〉, (2.2)

where 2· embeds Z/2 into Z/4 as a subgroup and 〈·, ·〉 denotes the intersection form on M .

In ref. [14] Kirby and Taylor demonstrate how to build a quadratic enhancement from a

pin structure, while in ref. [15] Pinkall does the same from its associated immersion. Since

the constructions are similar, below we will focus solely on the latter. Every quadratic

enhancement arises from both a pin structure and an immersion, and the constructions

are isomorphism and regular homotopy invariant, respectively. We say that two quadratic

enhancements q, q′ are equivalent if they are related as q′ = q ◦α by a linear automorphism

α of H1(M ;Z/2). As all linear automorphisms α that preserve the intersection form are

induced by diffeomorphisms of M [15, 18], all equivalences of quadratic enhancements arise

from equivalences of immersions. A pin diffeomorphism that covers a diffeomorphism φ of

the base space M induces an equivalence q′ = q ◦ φ∗ on the associated quadratic forms.

Quadratic enhancements form a torsor for H1(M ;Z/2) by the action q 7→ q + 2 · A, with

respect to which the correspondence with pin structures is equivariant [14].

2.2 The quadratic enhancement as a self-linking number

Let us now follow ref. [15] in constructing a quadratic enhancement from an immersion.

Begin by defining a function q̃f that takes closed loops in M to their self-linking numbers.

To be precise, q̃f is defined on smooth embeddings γ : S1 →M such that f ◦ γ : S1 → R3

is also an embedding. Images of such embeddings have embedded tubular neighborhoods

(“ribbons”) Nγ . The self-linking number is given by the linking number of the loop f ◦ γ
with the loop obtained by pushing f ◦ γ along Nγ :

q̃f (γ) = link(f ◦ γ, f(∂Nγ)). (2.3)

Under regular homotopy, q̃f is stable only modulo 4; moreover, it depends only on the

Z/2-homology class [γ] ∈ H1(M ;Z/2) and defines a map qf on H1(M ;Z/2) satisfying the

quadratic enhancement condition (2.2).

By projecting a ribbon onto R2 and obtaining a ribbon diagram, its self-linking number

may be computed by a local algorithm. As is discussed in greater detail in section 3.1,

– 4 –
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Figure 1. Following Pinkall [15], give the core (red) and edges (black) of the ribbon a particular

orientation. Then compute the linking number of the red lines with the black lines. The crossing

has four red-black intersections, all of the same parity. The half twist has two red-black intersections

of the same parity.

one may use regular homotopy so that the projection R3 → R2 onto the xy-plane is an

immersion of Nγ at all but finitely many points where the ribbon makes a half twist (left or

right handed). The image of the curve γ may be taken to cross itself transversely and away

from these points. Away from the twists and crossings, the self-linking number is zero. As

demonstrated in figure 1, each right handed half twist contributes +1 to q̃f (γ); likewise,

each left handed half twist contributes −1. Each crossing contributes ±2. In total,

q̃f (γ) = (# r.h. twists)− (# l.h. twists) + 2 · (# crossings) mod 4. (2.4)

2.3 The Arf-Brown-Kervaire invariant

The Arf-Brown-Kervaire (ABK) invariant of a surface M with quadratic enhancement q is

defined as

ABK(M, q) =
1√

|H1(M ;Z/2)|

∑
x∈H1(M ;Z/2)

eiπq(x)/2. (2.5)

It is valued in eighth roots of unity and has the nice property that two quadratic enhance-

ments on M have the same ABK invariant if and only if they are equivalent [19]. In other

words, the ABK invariant is well-defined on diffeomorphism classes of pin surfaces as well

as on immersed surfaces. The ABK invariant determines the pin bordism class of the pin

surface and so defines an isomorphism Ωpin
2 (pt)

∼−→ Z/8.

2.4 Decomposition of pin surfaces

Every closed unoriented surface may be decomposed as a connect sum of tori and real

projective planes. Each of these building blocks has two diffeomorphism classes of pin

structures. On the torus, there are four isomorphism classes of pin structures given by a

choice of NS (bounding, antiperiodic) or R (non-bounding, periodic) boundary conditions

around each independent 1-cycle. Pin diffeomorphisms covering Dehn twists relate the

NS-NS, NS-R, and R-NS classes. To see this, note that a Dehn twist induces a map

{x′, y′} = {x, x+ y} on a basis of H1(T 2;Z/2) = Z/2× Z/2. Then use the rule (2.2): the

– 5 –
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NS-NS pin structure q(x) = 0, q(y) = 0 becomes the NS-R pin structure

q(x′) = q(x) = 0, q(y′) = q(x+ y) = q(x) + q(y) + 2 · 〈x, y〉 = 2. (2.6)

These pin structures are not diffeomorphic to the R-R pin structure. One may also use (2.5)

to see that the NS-NS, NS-R, and R-NS pin structures have ABK invariant +1 (and so

are diffeomorphic to each other), while the R-R pin structure has ABK invariant −1.

Moreover, since the ABK invariant determines the bordism class, this calculation shows

that the NS-NS pin structure bounds a solid torus, while the R-R pin structure is non-

bounding. On the real projective plane, there are two isomorphism classes of pin structure.

To see this, note that H1(RP 2;Z/2) = Z/2, the generator z of which is represented by 1-

sided (i.e. orientation-reversing) curve and has self-intersection 〈z, z〉 = 1. Since q(0) = 0,

the rule (2.2) says

0 = q(z) + q(z) + 2 · 〈z, z〉 = 2q(z) + 2 mod 4, (2.7)

so there are two isomorphism classes of pin structures given by q(z) = 1 and q(z) = 3.

These are non-diffeomorphic since they have ABK invariants exp(iπ/4) and exp(7iπ/4),

respectively. Call them RP 2
1 and RP 2

7 .

The pin structures on other surfaces may be readily understood from their connect

sum decompositions. For example, the Klein bottle decomposes as K ' RP 2#RP 2. Let

z1, z2 denote the generating 1-(co)cycles of the real projective planes. In this basis, the

four quadratic enhancements are q = (1, 1), (1, 3), (3, 1), (3, 3). In the familiar basis of

H1(K;Z/2) given by the orientation-preserving curve x = z1 +z2 and orientation-reversing

curve y = z2, the possibilities are q = (2, 1), (0, 3), (0, 1), (2, 3). They have ABK invariants

+i, +1, +1, and −i, so there are three diffeomorphism classes of pin structures on K, one

of which is null-bordant.

2.5 Pin bordism and TQFT

Our discussion so far has focused on closed surfaces. To define pin TQFTs, it is necessary

to also understand pin one manifolds and the bordisms between them. There are two

connected one dimensional pin manifolds given by the NS and R spin structures on the

circle. A pin manifold with boundary induces a pin structure on its boundary, and a pin

bordism between pin one manifolds S0 and S1 is a pin surface M whose boundary, with

induced pin structure, is S0 t S1.

Each of the two pin structures on the circle is related to a class of immersed circles in

the plane, depicted in figure 2. Fix two planes R2
0,R2

1 normal to the y-axis. An immersion of

the cobordism (S0, S1,M) is an immersion of M such that S0, S1 lie in R2
0,R2

1, respectively.

A regular homotopy of the immersions of the cobordism is again a 1-parameter family of

immersions. We emphasize that at each value of the parameter, the boundaries S0, S1 are

pinned to the planes R2
0,R2

1.

The theory of quadratic enhancements associated to pin surfaces with boundary re-

quires more care than we will give it here. The idea is to extend the discussion of

ref. [20]. Choose a set of basepoints ∂0M — one on each connected component of

– 6 –
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Figure 2. Two examples of immersions of the circle in the plane, with turning numbers 1 (left)

and 0 (right) defined as the winding of a tangent frame (red) relative to a constant vector field

(blue). This number mod 2 determines the induced (s)pin structure on the circle: NS for odd, R

for even.

∂M , and let a pin structure on (M,∂0M) be a pin structure on M together with a

trivialization of the Pin−(1) = Z/4 bundle over ∂0M . Such pin structures should

be (non-canonically) identified with quadratic enhancements of the intersection form on

H1(M∗;Z/2) ' H1(M,∂0M ;Z/2), where M∗ is a closed pin surface obtained by sewing a

punctured sphere into M .

A pin TQFT assigns state spaces ANS ,AR to the circles S1
NS , S

1
R and linear maps

to the pin bordisms between them. In particular, the mapping cylinders associated to

elements of the pin mapping class group of the circles defines a supervector space structure

on the state spaces. A complete algebraic characterization of pin TQFTs would resemble

the discussions of refs. [9, 21, 22]. We will not give one here; instead our focus will be on

the pin TQFTs that arise from the diagrammatic state sum construction introduced below.

3 Ribbon diagrams and half twist algebras

A state sum model provides a combinatorial description of a theory like a TQFT or, in the

present case, a pin TQFT. Focusing first on defining partition functions of closed spacetime

manifolds, the idea is to define an invariant of discretized spacetimes, given as a weighted

sum over colorings of a discretization. The weight assigned to a coloring is computed

“locally” from contributions of local elements of the discretization. The requirement that

the invariant is independent of the discretization imposes structure on the weights.

For example, in ref. [23] Fukuma, Hosono, and Kawai study two-dimensional topo-

logical state sums, which are defined on triangulated surfaces and whose weights receive

contributions from the faces and edges of the triangulation. Topological invariance — that

is, lack of dependence on the triangulation — imposes Pachner move conditions on this

algebraic data. The result is that the local tensors assigned to faces and edges form a

separable algebra.

State sum models for pin TQFTs have a similar logic. A discretization of a pin sur-

face is a triangulation together with an additional combinatorial structure representing a

pin structure. Finding these structures and the equivalence relations under which they

represent the same continuum structure is not easy. One approach is to find a local com-

binatorial structure, or marking, as Novak and Runkel do for spin structures in ref. [8].

– 7 –
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This paper follows a different path, one based on the connection between pin structures

and immersions into R3. In the following, a discretization is a triangulation together with

a choice of immersed surface. The construction is automatically invariant under equiva-

lence of immersion, whereas invariance under regular homotopy is enforced by hand. The

weights are products of tensors assigned to elements of the discretization. The requirement

of invariance under change of discretization (Pachner moves and regular homotopy) means

that these tensors satisfy several relations. The resulting algebraic structure is what we

dub a half twist algebra and extends the separable algebras of ref. [23] to allow for the

theory’s sensitivity to pin structure.

3.1 Ribbon diagrams

We now construct a ribbon diagram from a triangulation of an immersed surface. Dual

to the triangulation of the surface is a graph, which may be enlarged to a ribbon graph

by taking a regular neighborhood, the compliment of which in M is one or more disks.

Any immersion of M is regular homotopic to one that is an embedding on the ribbon

graph [15]. This embedded ribbon graph is passed through the projection p : R3 → R2

onto the xy-plane.6 By regular homotopy, the projection can be made to satisfy certain

regularity conditions. First, the projection is an immersion of the ribbon graph at all but

finitely many points where the ribbon makes a half twist [24]. Second, the edges of the

graph intersect transversely in the image of p. Third, the graph is parallel to the x-direction

at only finitely many “critical points” (nodes, caps, cups) where either all legs exit above

the x-parallel or all legs exit below (no saddle points). Fourth, each node of the graph

is located at a critical point with its three legs exiting below. Fifth, at most one of the

following can occur at any point: a half twist, a crossing, and a critical point. In addition

to the image of the projection, the helicities of the half twists (right or left handed) are

recorded. Unlike diagrams typical in knot theory, ours do not record whether one strand

crosses over or under the other at a crossing, as these two configurations are related by

regular homotopy. A ribbon diagram satisfying the regularity conditions is composed of the

five building blocks — nodes, caps, cups, crossings, and half twists — depicted in figure 3.

If two ribbon diagrams are built from the same regular homotopy class of ribbon

graphs, they are related by the set of moves depicted in figure 4. Moves (a1) and (a7)–(a9)

are the ribbon Reidemeister moves7 [24, 25]. Moves (a2) and (a5)–(a6) are additional

moves for graphs with nodes [26–28]. The moves (a10)–(a13) involve half twists and have

been studied in ref. [29]. The moves8 show that a left handed twist is related by regular

homotopy to a sequence of three right handed twists. This means, by replacing each left

handed half twist by three right handed half twists, one obtains a ribbon diagram where

the half twists are all right handed. In the following, we simplify the algebra by assuming

6The ribbon diagrams associated to any two projections are related by rotation of the immersed surface

in R3, which is a regular homotopy. Since the state sum is, by construction, regular homotopy invariant,

the choice of p does not matter.
7Note that the first ribbon Reidemeister move (a7) is weaker than the first of the usual Reidemeister

moves for knots, which does not preserve the ribbon structure.
8Two half twists is a full twist, and the ribbon Reidemeister moves show that a pair of full twists can

be undone.
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Figure 3. The five building blocks of ribbon diagrams satisfying the regularity conditions.

that all half twists are right handed. Two of the moves, which may be more difficult to

visualize, are depicted in ribbon form in figure 5.

Any two triangulations on M are related by the 2-2 (a3) and 3-1 (a4) Pachner

moves [30–32], also depicted in figure 4.

3.2 Algebraic structure

We now show how to evaluate a partition function for a regular homotopy class of immersed

surfaces. Begin with a ribbon diagram, decomposed into the five building blocks. Color

the diagram by labeling the legs of each block by elements in a finite set I. The blocks are

assigned the following C-valued weights:

1. Nodes labeled left to right by a, b, c ∈ I receive a weight Cabc.

2. Caps labeled left to right by a, b ∈ I receive a weight Bab, while cups receive a

weight Bab.

3. Crossings labeled as in figure 3 by a, b, c, d ∈ I receive a weight λab
cd.

4. (Right handed) half twists labeled bottom to top by a, b ∈ I receive a weight τa
b.

5. Vertices9 of the triangulation receive a weight R.

The weight of the colored diagram is the product of the weights of the pieces in its de-

composition, and the partition function for a diagram is a sum of the weights of its colorings.

For the partition function to be independent of the discretization, it must be invariant

under the moves of figure 4. By evaluating them according to our procedure, we find the

9Surfaces with boundary are discussed in section 3.3. In this more general case, only internal vertices

receive a weight R.
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Figure 4. Ribbon diagrams for the conditions (a1)–(a13), each due to regular homotopy or Pachner

moves.

following algebraic conditions:

(Snake) define η BacB
cb = δba (a1)

(Cyclicity) define m CabdB
dc = BcdCdab (a2)

(Pachner 2-2) m associative CabeB
efCfcd = CbceB

efCafd (a3)

(Pachner 3-1) η special Cabc = RCadeB
dfCfbgB

ghCihcB
ei (a4)

(Crossing at a critical point) Baeλbc
ed = λab

deBec (a5)

(Crossing at a node) λab
efCfcd = Caegλbc

efλfd
ge (a6)

(Modified Reidemeister I) BcdBceλda
eb = λac

bdBceBde (a7)

(Reidemeister II) λab
efλef

cd = δcaδ
d
b (a8)

(Reidemeister III) λag
diλbc

ghλih
ef = λab

ghλhc
ifλgi

de (a9)

(Twist at a critical point) η(1⊗ τ) = η(τ ⊗ 1) Bacτb
c = τa

cBcb (a10)

(Twist at a node) τm = mλ(τ ⊗ τ) Cabdτc
d = τa

dτb
eλde

fgCfgc (a11)

(Twist at a crossing) λ(τ ⊗ 1) = (1⊗ τ)λ τa
eλeb

cd = λab
ceτe

d (a12)

(Two half twists) τ2 = φ τa
cτc

b = λac
bdBceBde

(= λac
bdσd

c = φa
b) (a13)

The conditions (a1)–(a4) define a special Frobenius algebra (A,m, η); that is, an a

unital, associative algebra (A,m) with a non-degenerate bilinear form η satisfying the
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Figure 5. The moves (a11) and (a13) as ribbon diagrams.

Frobenius condition η(xy, z) = η(x, yz), x, y, z ∈ A, and the specialness10 condition m ◦
η−1 = R−1 1. This algebra is defined on the vector space with basis {ea}, a ∈ I, has

product m(ea⊗eb) = Cab
cec given by associative structure coefficients Cab

c = CabdB
dc, unit

1 = BabCbcdB
cdea, and non-degenerate bilinear form η(ea, eb) = Bab. Ref. [7] shows that

the conditions (a1)–(a4) enforce the axioms of a special Frobenius algebra and, conversely,

that a special Frobenius algebra defines tensors Cabc and Bab that satisfy these conditions.

If η is taken to be the unique (up to R) symmetric special Frobenius form, this result

reduces to the familiar case studied by Fukuma, Hosono, and Kawai [23].

The conditions (a5)–(a9) imply other relations like Bbeλea
cd = λae

bcBed. The existence

of a symmetric structure λ : A⊗A→ A⊗A, satisfying the axioms, is also a constraint on

η. The Nakayama automorphism

σa
b = BacB

bc, η(a, b) = η(σ(b), a) (3.1)

measures the failure of η to be symmetric. Ref. [7] demonstrates that conditions (a1)–

(a9) imply

BacB
bc = BcaB

cb, σ2 = 1, (3.2)

equivalently, that η decomposes as a sum of symmetric and antisymmetric parts. Define

the full twist

φa
b = λac

bdBceBde = λac
bdσd

c. (3.3)

Ref. [7] argues from these conditions that φ is a Frobenius algebra automorphism; that is,

φ ◦m(a⊗ b) = m(φ(a)⊗ φ(b)), η(φ(a), φ(b)) = η(a, b). (3.4)

Moreover, φ is an involution and so defines a Z/2-grading on A: on homogeneous elements,

φ(a) = (−1)|a|a, |a| ∈ {0, 1}. (3.5)

The data (C,B, λ) satisfying these axioms is what ref. [7] use to define their spin state sums.

10Ref. [12] discusses a generalization of the oriented state sum construction to non-special Frobenius

algebras, where window elements a−1 � 1 are attached to vertices. In their language, we always take

a−1 = R 1 with R ∈ C.
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Figure 6. Ribbon diagrams for the projectors p and n. We have been careful to account for the

half twists that appear when the ribbon turns a “corner,” setting them up to cancel.

Other relations like Bcbτc
a = Badτd

b and τb
eλae

cd = λab
fdτf

c follow from the condi-

tions (a10)–(a13). We will refer to the data (C,B, λ, τ ) as a half twist algebra. It is the

input for our state sum construction.

3.3 State spaces and bordisms

The construction has so far focused on closed surfaces. In order to define a TQFT, it must

also assign state spaces A0,A1 to one dimensional closed pin manifolds S0, S1 and linear

maps Z(M) : A0 → A1 to the pin bordisms M between them. Given an immersion of M ,

set up according to section 2.5, form its ribbon diagram as usual. Suppose there are n edges

in the triangulation of S0 and m in that of S1. Then the state sum over internal colorings

defines a map ⊗nA → ⊗mA. This map has a clear dependence on the triangulation, as

re-triangulating may change n and m. It is also non-invariant under regular homotopy, as

crossing the external legs over each other introduces single factors of the crossing map λ.

The following discussion shows that both of these problems are solved by composing each

end with a certain projector.

Consider the ribbon diagrams depicted in figure 6, which arise from immersions of

cylindrical topologies. One diagram corresponds to a cylinder with boundary circles of NS

type, the other R.11 Since the cylinder defines a regular homotopy between the input and

output circles, they are immersed in the same way.

It has been argued by ref. [7] (see also [21]) that these diagrams define projectors p

and n onto subspaces

im p = ANS = {a ∈ A : m(b⊗ a) = m ◦ λ(b⊗ a), ∀b ∈ A} (3.6)

im n = AR = {a ∈ A : m(b⊗ a) = m ◦ λ(φ(b)⊗ a), ∀b ∈ A} (3.7)

The maps assigned to other ribbon diagrams with cylindrical topology are related to these

by composition with some power of τ , and we will not consider them here. By gluing a copy

of p into each NS-type connected component of S0, S1 and a copy of n into each R-type

11The ribbon diagrams for cylinders of circles with rotation numbers n, n + 2 are related by the ribbon

Reidemeister moves.
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Figure 7. Gluing independence. Since p and n project onto certain twisted centers of A, according

to (3.6) and (3.7), an external leg may be pulled around the circle without affecting the state sum.

component, the map ⊗nA→ ⊗mA becomes

Z(M) : Z(S0)→ Z(S1), (3.8)

where Z(S0) consists of a copy of ANS ,AR for each NS-type component and R-

type component, respectively, and likewise for Z(S1). This solves the problem of

triangulation-dependence.

One must check whether composition with p and n is independent of the way in which

the cylindrical ribbon diagrams are glued into the cobordism. Regular homotopy has

been used to push the legs of the cylindrical ribbon diagrams to the “front” (positive z-

coordinate) side of the cylinders, so it must also be checked that our construction of Z(M)

is independent of the way in which this was done. Both of these checks follow from (3.6)

and (3.7), which show that p and n are unchanged by cyclic permutation of the legs, as in

figure 7. The only ambiguity that remains is due to reordering the boundary components,

which introduces factors of λ. These terms reflect the fact that the product assigned to the

pair-of-pants cobordism is not commutative, but twisted-commutative. To obtain a definite

Z(M), one must fix an ordering of the boundary components; this is a characteristic of

the continuum pin TQFT and not a relic of the state sum construction. For the special

class of theories discussed in section 4, the product is graded-commutative with respect to

the supervector structure on ANS ,AR. In this case, Z(M) may be interpreted as a map

∧iZ(S1
0,i)→ ∧iZ(S1

1,i) of exterior algebras, where S1
0,i, S

1
1,i denote boundary components.

An axiom of (pin) TQFT requires that gluing two bordisms M1,M2 along their cut

boundaries amounts to composing the linear maps assigned to them. This is true of the

present construction. To see this, start by leaving off the projectors p and n, so that the

bordisms — for some fixed discretizations — are assigned matrices z(M1) : ⊗nA → ⊗mA
and z(M2) : ⊗mA→ ⊗lA. The amplitude for the composite bordism is a sum over colorings

of the internal edges of M1,M2 as well as the edges of the glued boundary, weighted

the product of the weights for M1,M2. This is matrix multiplication, so z(M2 ◦M1) =

z(M2)z(M1). To complete the argument, add back the projectors P = p · · · p ⊗ n · · ·n.

By re-triangulation invariance, the insertion of the projectors at the glued boundary must

have no effect on the state sum, so

Z(M2)Z(M1) = Pz(M2)PPz(M1)P

= Pz(M2)z(M1)P = Pz(M2 ◦M1)P = Z(M2 ◦M1). (3.9)
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A Hermitian structure on a pin TQFT is a sesquilinear form 〈·, ·〉 on Z(S) for each

closed one dimensional pin manifold S, with respect to which Z(M) and Z(−M) are adjoint

for any cobordism (M,S0, S1) [33, 34]. Here, −M denotes the “opposite” pin cobordism

from S1 to S0. In terms of immersed surfaces, −M is obtained from M by reflecting over

an xz-plane. A unitary structure is a Hermitian structure for which the sesquilinear form

is positive definite (an inner product).

4 Real superalgebras and the Arf-Brown-Kervaire TQFT

The remainder of this paper focuses on a special class of half twist algebras closely related to

separable real superalgebras, the state sum models associated to which constitute a broad

class of interesting examples such as the Arf-Brown-Kervaire theory. To be precise, these

state sums take as a input a symmetric special Frobenius real superaglebra or, equivalently,

a separable real superalgebra with a continuous parameter α.12

4.1 Real superalgebras

A real superalgebra is an algebra (Ar,m) over R with a linear involution φ : a 7→ (−1)|a|a,

with respect to which the product m is equivariant, as in (3.4). Superalgebras inherit the

natural symmetric structure

λ : a⊗ b 7→ (−1)|a||b|b⊗ a (4.1)

from the symmetric monoidal category of supervector spaces sVect. Separability13 means

there is a symmetric14 special Frobenius inner product η, unique up the nonzero real scalar

α, given by the trace form

η(x, y) = αTr[L(x)L(y)], (4.2)

where L : A→ End(A) denotes left multiplication. The real algebra Ar is equivalent to its

complexification A = Ar ⊗R C together with an antilinear automorphism T of A, called a

real structure, that fixes Ar.

By virtue of being special Frobenius, the complex algebra A is separable as a super-

algebra. This means it is a direct sum of simple superalgebras (“blocks”), of which there

are two types: matrix algebras C(p|q) and odd algebras C(n)⊗C`(1) [35]. Each block has

an involutive antilinear anti-automorphism given by conjugate transposition of C(p|q) or

the C(n) factor.15 The direct sum of these is a map ∗ on A. Its composition with the real

structure is a linear involutive anti-automorphism t = ∗T .

The structures m, η, λ, and φ of Ar extend linearly onto A, where the map t satisfies

η(tx, ty) = η(x, y), tm(x⊗y) = m(ty⊗ tx), λ(t⊗1) = (1⊗ t)λ, t2 = 1. (4.3)

12Sometimes we neglect α and speak only of the superalgebra; this is because α’s contribution is just an

Euler term.
13We are conflating separability and strong separability, which are equivalent conditions over R or C.
14Here we mean “symmetric” in the usual sense, as a Frobenius algebra object in the symmetric monoidal

category of vector spaces Vect, not that of supervector spaces sVect.
15There may exist other such maps, but our construction uses this canonical one. In any basis {eij}

where eijejk = + eik, “conjugate transposition” is unambiguously defined as the map eij 7→ eji.
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These relations resemble the four half twist axioms (a10)–(a13) but are not quite the same:

while t is η-orthogonal, τ is η-symmetric; while t is an anti-automorphism, τ is a λ-twisted-

automorphism; while t is an involution, τ squares to φ. Outside of these differences, A is

much like a half twist algebra: its involution φ is determined by the symmetric structure

λ as φa
b = λac

bc, and it is straightforward to verify that m, η, and λ are compatible in the

sense that they satisfy the first nine axioms (a1)–(a9).

To make A into a genuine half twist algebra, we would like to construct a half twist τ ,

satisfying (a10)–(a13), out of the involutive linear anti-automorphisms t (associated with

T ), satisfying (4.3). If s(x) ∈ {0, 1} is any grading of the algebra that shares an eigenbasis

with φ (such as s = 0), we may define

τ : x 7→ (−1)s(x)i|x|t(x). (4.4)

It is straightforward to verify that τ squares to φ and is η-symmetric. Moreover, t is a

λ-twisted-automorphism:

m ◦ λ(τ(x)⊗ τ(y)) = (−1)|x||y|m(τ(y)⊗ τ(x))

= (−1)s(x)+s(y)i|x|+|y|−2|x||y|m(t(y)⊗ t(x))

= (−1)s(m(x⊗y))i|m(x⊗y)|t ◦m(x⊗ y)

= τ ◦m(x⊗ y).

(4.5)

The choice of s has to do with the decomposability of the state sum and is discussed in

section 4.4. A half twist algebra constructed from a real superalgebra is not generic. In

particular, its crossing map is given by eq. (4.1) and its half twist satisfies ∗τ∗ = τ−1. The

symmetry of η is not an independent condition, as the special form of λ means that the

Nakayama automorphism (3.1) is trivial.

It is worth noting at this point that our separable superalgebras come with an sesquilin-

ear form

〈x, y〉 = η(∗x, y). (4.6)

In fact, if α is positive, 〈·, ·〉 is positive definite and so defines an inner product. By (4.2)

it is clear that η vanishes if x and y are supported on different blocks. On an even block,

〈M,N〉 = αTr
[
M †N

]
, which is positive definite. On an odd block, 〈M ⊗ γi, N ⊗ γj〉 =

α δij Tr
[
M †N

]
, which is also positive definite.

In any theory, the circles S1
NS and S1

R have macaroni bordisms,16 whose partition

functions define bilinear forms ηNS : ANS ⊗ANS → C and ηR : AR⊗AR → C. Evaluating

ribbon diagrams for the macaroni bordisms gives these maps in terms of the superalgebra

data: ηNS = η(p, p) and ηR = η(n, n). Inserting the map ∗, as in (4.6), one may define

sesquilinear forms 〈, 〉NS = ηNS(∗, ) and 〈, 〉R = ηR(∗, ). The form on an arbitrary closed

one dimensional pin manifold S is given as a tensor product of these forms.

We would like to show that state sum pin TQFTs associated with real separable

superalgebras are unitary in the sense of section 3.3. It remains to check adjointness.

16Macaroni bordisms are cylinders with two ingoing boundary components. Accounting for spin struc-

tures, there are two distinct such bordisms on S1
R. Choose one. The other is related by composition with

a cylinder.
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Due to the form of η (4.2), this condition reads ∗Z(M)∗ = Z(−M)T . In terms of ribbon

diagrams in R2, reflection across the y axis must have the effect of acting on each external

leg by ∗. The conditions on each building blocks read

∗m(∗a⊗ ∗b) = m(b⊗ a), η(∗a⊗ ∗b) = η(b⊗ a),

(∗ ⊗ ∗)λ(∗a⊗ ∗b) = λ(b⊗ a), ∗τ(∗a) = τ−1(a). (4.7)

The first condition follows from the fact that ∗ is an anti-automorphism, the second and

third from symmetry of η (4.2) and λ (4.1), and the fourth from the antilinearity of ∗ and

the i factor in (4.4). Unitarity also requires R ∈ R, which follows from α ∈ R. Therefore

theories associated to real separable superalgebras are unitary.

A useful construction on superalgebras A,B is the supertensor product A ⊗̂ B. This

superalgebra has underlying vector space A⊗B with grading φA⊗̂B = φA ⊗̂ φB and asso-

ciative product

(a ⊗̂ b)(a′ ⊗̂ b′) = (−1)ba
′
aa′ ⊗̂ bb′, i.e. mA⊗̂B = (mA ⊗̂mB)(1 ⊗̂ λBA ⊗̂ 1), (4.8)

where λAB : A ⊗̂ B → B ⊗̂ A is the symmetric structure of sVect (4.1). The special

symmetric Frobenius form is ηA⊗̂B = (ηA ⊗̂ ηB)(1 ⊗̂ λ ⊗̂ 1). It is helpful to interpret the

product rule (4.8) diagrammatically. In figure 8, the products on A and B are represented

by trivalent nodes of red and blue lines, respectively. The product on A ⊗̂B has a red-blue

crossing, contributing the sign λ. More generally, one may consider diagrams that consist of

a red ribbon diagram superimposed on a blue ribbon diagram such that the usual regularity

conditions are met. Color the red diagram by basis elements ea of A and the blue diagram

by basis elements fi of B. The weight of this double coloring is the weight of the red

coloring, according to A, times the weight of the blue coloring, according to B, times signs

|ea||fi| at each red-blue crossing. It is invariant under the usual moves (a1)–(a13) of each

of the red and blue diagrams. Due to the graded products on A and B, the weight is also

invariant under these same moves where some of the ribbons are red and some are blue. In

particular, the weight is unchanged by pulling a red-blue crossing across a critical point,

node, or half twist, and satisfies colored versions of the ribbon Reidemeister moves. This

sort of representation will prove useful in section 4.4 when we discuss the state sum for

A ⊗̂ B. It is worth mentioning that the supertensor product is the monoidal product of

superalgebras when they are regarded as algebra objects in sVect. In this language, the

colored moves are related to the graphical calculus of symmetric monoidal categories.

4.2 Example: Clifford algebras

In this section, we define the Clifford algebras C`p,qR and C`nC and discuss their associated

half twist algebras, from which one can extract the state sum data (C,B, λ, τ ). As will be

shown in section 4.4, the significance of these examples is that they generate all theories

associated to separable real superalgebras.17

17We leave open the question of whether there exist pin-TQFTs that do not arise via our state sum

construction.

– 16 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
9

Figure 8. A diagrammatic representation of the supertensor product of superalgebras A and B.

The real Clifford algebra A = C`p,qR is generated by anticommuting elements

γ1, . . . , γp with γ2
j = +1 and γp+1, . . . , γp+q with γ2

j = −1. It has a basis {γN1
1 · · · γNnn } for

Nj = 0, 1, n = p+ q. The form η = ε ◦m given by the counit

ε(γN1
1 · · · γ

Nn
n ) =

{
α 2n/2 Nj = 0, ∀j
0 else

(4.9)

is Frobenius, symmetric, and special with R = α 2−n/2. The grading is given by the

standard involution

φ(γN1
1 · · · γ

Nn
n ) = (−1)

∑
j NjγN1

1 · · · γ
Nn
n . (4.10)

For the element x = γN1
1 · · · γNnn , let {x} =

∑
j Nj , which is to say |x| = {x} mod 2.

The corresponding half twist algebra is defined on the complexification C`p+qC =

C`p,qR ⊗R C, which comes with a real structure T that fixes the γ-basis and complex

conjugates its coefficients. Let us define new generators Γj = γj for 1 < j ≤ p and Γj = iγj
for p < j ≤ p + q, so that Γ2

j = +1. The basis element x = ΓN1
1 · · ·ΓNnn has T -eigenvalue

(−1)|x|q , where |x|q =
∑

i>pNi mod 2. It remains to construct the half twist τ . The

Clifford algebra has a natural Hermitian structure given by the conjugate transpose map

∗ (ΓN1
1 · · ·Γ

Nn
n ) = ΓNnn · · ·Γ

N1
1 = (−1){x}({x}−1)/2ΓN1

1 · · ·Γ
Nn
n . (4.11)

The composition t = ∗T fails the condition (a13); however, it can be corrected, as in

eq. (4.4) with s = 0. Define

τ(x) = i|x|t(x) = i|x|(−1)|x|q(−1){x}({x}−1)/2x = i{x}(−1)|x|qx. (4.12)

The general discussion in section 4.1 shows that the half twist axioms are satisfied.

The complex Clifford algebra C`nC also appears as a real superalgebra generated by

anticommuting elements Γ1, · · · ,Γn with Γ2
j = +1 and central element ı with ı2 = −1.18

On basis elements ΓN1
1 · · ·ΓNnn ıM, the counit is α 2(n+2)/2 if Nj =M = 0 and 0 otherwise.

The form η = ε ◦m is Frobenius, symmetric, and special with R = α 2−n/2. The central

element ı is φ-even, while the Γj are φ-odd, so |x| = {x} mod 2 where {x} =
∑

j Nj . The

complexification C`nC⊗RC has real structure T that fixes the Γj and ı. The structure ∗ is

again given by conjugate transposition. According to (4.4) with s(x) =M, the half twist

is the composition τ(x) = (−1)Mi{x}x.

18This algebra is graded-isomorphic to one with Γ̃2
j = −1 for some j by the identification Γ̃j = Γjı.
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Figure 9. If B is symmetric, any coloring of the cap that has nonzero amplitude arises from a

coloring of an edge in the ribbon graph. Likewise, if λ is of the form λ : a ⊗ b 7→ λ(a, b)b ⊗ a,

any coloring of the crossing that has nonzero amplitude arises from a coloring of two edges in the

ribbon graph.

4.3 State sum for the Arf-Brown-Kervaire TQFT

The pin state sum construction discussed in section 3 amounts to choosing a discretization

of a pin surface M , building an associated ribbon diagram, and performing a weighted sum

over colorings of the ribbon diagram. While this construction bears some resemblance to

the state sums of Novak and Runkel [8], our approach to discretizing the (s)pin structure —

based on immersions rather than markings — introduces a crucial difference: the existence

of crossing elements means that a coloring of the ribbon diagram (in the plane) is not in

general realized by a coloring of the ribbon graph (in the surface) projected onto the plane.

For the present purpose of computing the state sum of the Arf-Brown-Kervaire theory, this

difference is an obstacle, though one that can be avoided by restricting to the special class

of half twist algebras discussed earlier in this section.

The state sum associated to a separable real superalgebra has the special property

that it can be written as a sum over colorings of the graph dual to the triangulation of M .

These colorings are a special type of coloring of the ribbon diagram where all segments of

a ribbon from node to node have the same label, as in figure 9. A pin state sum localizes

to these colorings if the amplitudes for all other colorings vanish. This means that B is

symmetric and there is a basis of τ eigenstates in which λab
cd = λ(a, b)δdaδ

c
b for some values

λ(a, b) ∈ C. By (a5) and (a8), λ(a, b) = λ(b, a) ∈ {±1}, and by definition of the full twist

λ(a, a) = (−1)|a|. The half twist algebra associated to separable real superalgebra satisfies

these conditions with λ(a, b) = (−1)|a||b|. The collection of edges labeled by φ-odd basis

elements forms a 1-chain x with Z/2 coefficients for the triangulation of M . Since the

product m is φ-equivariant (3.4), a coloring contributes zero amplitude to the state sum

unless the number of odd labels surrounding each node of the graph is even; that is, unless

x is a cycle. Thus the sum over colorings reduces to a sum over cycles x:

Z =
∑

x∈Z1(M ;Z/2)

Z(x). (4.13)

Consider the half twist algebra A corresponding to C`1,0R. It is spanned by 1 and

the φ-odd generator Γ with Γ2 = +1. In this basis, the tensor Bab is α
√

2 δab, while
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Cabc = Cab
dBdc is α

√
2 if an |a|+ |b|+ |c| = 0 mod 2 and 0 otherwise. The half twist has

τ(1) = 1, τ(Γ) = iΓ. The constant R is α/
√

2.

Each cycle x is represented by a collection {γi}i of disjoint loops in the graph. Let us

first consider the case of a single loop γ. Form a ribbon diagram and assign a weight to γ

using the data of the half twist algebra. Without loss of generality, take the legs of each

C to point downward and those of each B upward. The tensors Cabc and Bab contribute

α
√

2 and (α
√

2)−1, respectively, since there are an even number of Γ labels at each node,

cap, and cup. Since the number of C’s is the number |V | of vertices of the graph and

the number of B’s is the number |E| of edges, these contributions give an overall factor

of (α
√

2)|V |−|E|. Each half twist traversed by γ contributes i, while each self-crossing of γ

contributes λΓΓ
ΓΓ = −1. Therefore, the contribution of γ to the state sum is iq̃(γ), where

q̃ counts the number of half twists plus twice the number of crossings. It was observed

in section 2.2 eq. (2.4) that this q̃ is the quadratic enhancement associated to the pin

structure on M . Now allow for multiple loops. If the images of distinct loops intersect,

they must do so at an even number of points, so the factor due to their crossing vanishes.

The contribution to the state sum is i
∑
j q̃(γj). Since the loops are disjoint and so have

intersection number zero, it follows from (2.2) that the exponent is
∑

j q̃(γj) = q(x), the

quadratic enhancement evaluated on the cycle x associated to {γj}j . The contributions

of two homologous chains differ by that of a boundary, which must be iq(x) = 1. This

means that the sum over x reduces to a sum over homology classes [x] times the number

of boundaries. This number is 2|F |−1 where |F | is the number of faces of the graph.19 The

full state sum is

ZC`1,0R(M, s) =
(
α/
√

2
)|F | (

α
√

2
)|V |−|E| ∑

x∈Z1(M ;Z/2)

eiπqs(x)/2

=
αχ(M)

√
22−χ(M)

∑
[x]∈H1(M ;Z/2)

eiπqs([x])/2

= αχ(M)ABK(M, s),

(4.14)

since |V | − |E|+ |F | is the Euler characteristic χ(M) and 22−χ(M) = |H1(M ;Z/2)|.
Using the expressions (3.6) and (3.7), we find ANSC`1,0R = C1|0, spanned by 1, while

ARC`1,0R = C0|1, spanned by Γ. In other words, the NS sector is even (as always), while the

R sector is odd (unlike the trivial theory).

Here is a good place to discuss the theory associated to the real superalgebra C`1C.

It is convenient to work in a basis of complex central idempotents E± = (1 ± iı)/2 and

elements ΓE±. In this basis, Bab is α
√

2 δab, while Cabc vanishes if the three ± indices

do not agree or if there are an odd number of Γ’s and is otherwise α
√

2. The half twist

exchanges E+ with E− and ΓE+ with ΓE− while multiplying the latter two by i. This

means that, if any loop in the ribbon diagram has an odd number of half twists, there is

no way to color the edges such that the amplitude is nonzero. This happens if and only

if M is nonorientable; thus, the partition function vanishes on nonorientable surfaces. For

19Assuming M is connected, the boundary map on 2-cells has a two element kernel.
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orientable surfaces, it is always possible to remove all half twists from the ribbon diagram.

Then, for colorings with nonzero amplitude, either all of the edges are labeled by E+,ΓE+

or they are all labeled by E−,ΓE−. In each case, such colorings are given by disjoint loops

labeled by ΓE with all other edges labeled by E. As above, these configurations contribute

factors of iq(x). The contributions of the B and C tensors are the same as before. In total,

ZC`1C(M, s) =

{
2αχ(M)Arf(M, s) M orientable

0 M nonorientable
(4.15)

The factor of 2 comes from the equal contributions of the E+,ΓE+ sector and the E−,ΓE−
sector, and Arf(M, s) denotes the Arf invariant for the spin structure induced by the

orientations and pin structure on M [38, 39]; it is the restriction of the ABK invariant to

orientable surfaces. One may compute the state spaces ANC`1CS = C2|0, spanned by 1 and

ı, and ARC`1C = C0|2, spanned by Γ and Γı.

The vanishing of the partition function on nonorientable surfaces reflects the fact that

the time reversal symmetry of the corresponding lattice model has been broken. This

interpretation is also compatible with the two dimensional state spaces, which appear as

ground state degeneracies in the lattice model.

4.4 Decomposability, stacking, and Morita equivalence

A TQFT Z is said to be decomposable if there exist TQFTs Z1,Z2 such that Z ' Z1⊕Z2

on all spaces and cobordisms. The previous subsection demonstrated how the data of a

separable real superalgebra A defines a pin TQFT ZA. We now argue that if A decomposes

as A1 ⊕ A2 the TQFT ZA decomposes as ZA1 ⊕ ZA2 . This result motivates us to restrict

our attention to indecomposable separable (a.k.a. simple) algebras.

It is clear that the circle state spaces, found in section 3.3 to be certain twisted centers

of A, decompose as ANS = ANS,1 ⊕ANS,2 and AR = AR,1 ⊕AR,2. Thus Z(S) ' Z1(S)⊕
Z2(S). A coloring of a ribbon diagram by elements in a basis of A1⊕A2 has zero amplitude

unless either all of the labels (internal and external) are from A1 or they are all from A2.

This is the case because it holds for the building blocks C, B, and τ . Therefore, Z acts as

Z1(M) on the subspaces Z1(S) and as Z2(M) on Z2(S), so Z(M) ' Z1(M) ⊕ Z2(M), as

claimed. In particular, when M is a closed surface, Z(M) = Z1(M) + Z2(M) ∈ C.

The converse — that indecomposability of A implies that of ZA — of the statement

above is not generally true for ZA built out of A with a half twist of the form of eq. (4.4);

however, it holds for the examples considered in section 4.3 due to our careful choices of

the grading s. The careful choice of s for generic A is the following. Decompose Ar as a

direct sum of Clifford algebras tensored with matrix algebras and choose s = 0 on each

real Clifford algebra, s =M on each complex Clifford algebra, and s = 0 on each matrix

algebra. The complex algebra A splits into blocks by orthogonal central idempotents Ei.

With these choices, τ fixes an Ei if and only if T does.20 The meaning of T fixing an

Ei is that Ar decomposes along this block, while the meaning of τ fixing an Ei is that

20In the example of C`1C, the elements E± are fixed by neither τ nor T when s = M but are fixed by τ

when s = 0.
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the state sum decomposes. This is because, for colorings with nonzero weight, each of the

three edges at a node must be colored in a single block, and so, unless τ exchanges blocks

between nodes, the coloring of all edges of the ribbon diagram must be in a single block.

There is another operation on pin TQFTs called stacking. The result of stacking Z1

with Z2 is the theory defined by the graded tensor product Z ' Z1 ⊗̂ Z2. We now argue

that ZA⊗̂B ' ZA ⊗̂ ZB.

Recall that ANS = im p (3.6) and AR = im n (3.7). If a ∈ ANS , b ∈ BNS , then for all

a ∈ A, b ∈ B,

(a ⊗̂ b)(a′ ⊗̂ b′) = (−1)ba
′
aa′ ⊗̂ bb′

= (−1)ba
′+aa′+bb′a′a ⊗̂ b′b

= (−1)(a+b)(a′+b′)(a′ ⊗̂ b′)(a ⊗̂ b), (4.16)

so a ⊗̂ b ∈ im pA⊗̂B. The same argument shows the converse. Similarly, if a ∈ AR, b ∈ BR,

(a ⊗̂ b)(a′ ⊗̂ b′) = (−1)(a+b)(a′+b′)+(a′+b′)(a′ ⊗̂ b′)(a ⊗̂ b). (4.17)

Therefore, ZA⊗̂B(S1
α) ' ZA(S1

α) ⊗̂ ZB(S1
α) for α = NS, R. On a one dimensional closed

pin manifold,

ZA⊗̂B(S) =
⊗̂

i
ZA⊗̂B(S1

i ) =
⊗̂

i
ZA(S1

i ) ⊗̂ ZB(S1
i ), (4.18)

which is isomorphic to ZA(S) ⊗̂ ZB(S) by a sign arising from the rule (4.1). Therefore

ZA⊗̂B ' ZA ⊗̂ ZB on the level of state spaces. Note that this argument demonstrates that

the supertensor product, rather than the ordinary tensor product, is the correct stack-

ing operation.

The state sum for ZA⊗̂B is given by a sum over colorings of a ribbon diagram by basis

elements ea ⊗̂ fi. One may represent these colorings as follows. Add to the ribbon diagram

(in red) a copy of itself (in blue), shifted a small distance in the x-direction, as in figure 10.

The weight of this red-blue diagram, discussed in section 4.1, reproduces the weight (4.8)

at nodes as well as the correct weights for the other building blocks in A ⊗̂B. Now observe

that the two diagrams may be pulled apart. This is allowed due to red-blue versions of

the half twist axioms leaving the weight invariant. If M is closed, we are done, as the

weights for the A ⊗̂ B theory are the products of those of the A and B theories. If M

has cut boundaries, we may assume that each connected component of the boundary has

a single leg. Pulling apart the diagrams costs signs due to the crossings of these external

legs, but these signs are precisely those in the isomorphism ZA⊗̂B(S) ' ZA(S) ⊗̂ ZB(S).

We conclude that ZA⊗̂B ' ZA ⊗̂ ZB on the level of amplitudes as well.

Two superalgebras A,B are said to be (graded) Morita equivalent if their categories

of graded modules are equivalent. When A,B are simple, they each have a unique simple

graded module (up to isomorphism, including parity change) [35], and so Morita equiv-

alence means that the superalgebras of module endomorphisms (the “commutants”) of

these modules are isomorphic. This relation between simple superalgebras is known as

Brauer-Wall equivalence [35, 36]; another formulation, more useful for our purposes, says

that A,B are equivalent if they are related by stacking with matrix algebras; that is, if
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Figure 10. A ribbon diagram for the supertensor product algebra A ⊗̂ B (purple) may be split

into a ribbon diagram for A (red) superimposed on a ribbon diagram for B (blue). Then they may

be separated.

A⊗̂R(p|q) ' B ⊗̂R(p′|q′) for some p, q, p′, q′ ∈ N [37]. It is easy to see that the operation of

stacking is compatible with this equivalence, so that one may speak of stacking equivalence

classes: [A] ⊗̂ [B] ' [A ⊗̂B]. It is worth emphasizing that the state sum construction takes

as input a real superalgebra; forgetting the graded structure identifies many of these (and

their Morita classes), as does complexifying and forgetting the real structure.

It will be shown in section 4.5 that the pin TQFT corresponding to the algebras R(p|q),
with α = 1, is the unit in the monoid of pin TQFTs under stacking; in particular, it has

state spaces Z(S1
NS) = Z(S1

R) = C1|0 and partition function Z(M) = 1 for any closed pin

surface M . This fact justifies the conclusion that Morita equivalent algebras A ∼ B define

the same TQFT, ZA ' ZB, up to an Euler term.

The Morita-invariance of the state sum construction motivates us to focus on certain

convenient representatives from each Morita class. There are ten Morita classes of simple

real superalgebras [36]. Eight of them are central simple and form a group Z/8 under

stacking. The real Clifford superalgebra C`p,qR — discussed in section 4.2 — lives in the

class labeled by its signature p− q mod 8 [13]. The remaining two Morita classes are non-

central and do not have inverses under stacking. They are represented by the complex

Clifford superalgebras C`nC, with n mod 2 being Morita invariant. In light of the result of

section 4.3 that the C`1,0R theory has partition function ABK, our discussion of stacking

and Morita equivalence means that the algebra C`p,qR has partition function ABKp−q.

4.5 Invertible pin TQFTs

An invertible pin TQFT is one whose state spaces are one dimensional and whose parti-

tion functions on closed pin spacetimes are nonzero. Unitary21 invertible theories22 have

a special property [40, 41]: not only are they completely determined by their partition

functions on closed pin manifolds, these partition functions must be a cobordism invariant

— a power of the ABK invariant — times an Euler term αχ for α ∈ R>0.23 In particular, if

21The assumption of unitarity is crucial. The non-unitary theory built from A = R with α = −1 has the

same cobordism-invariant partition functions (−1)χ = (−1)w2 = (−1)w
2
1 = ABK4 as the unitary theory

built from A = C`4,0R with α = +1; the two theories are distinguished on the macaroni cobordism.
22To be precise, we mean unitary invertible theories with values in supervector spaces.
23Invertible pin TQFTs do not generate a complete set of pin diffeomorphism invariants, as the bounding

torus and bounding Klein bottle cannot be distinguished: they have both ABK and χ trivial.
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Z(S2) = α2 = 1, the partition functions are cobordism-invariant and multiplicative under

the appropriate notion of connect sum. These theories have been constructed as extended

TQFTs in ref. [9]. Since ABKk(RP 2
1 ) = exp(kπi/4) and ABK8 = 1, the partition function

on RP 2
1 (alternatively, RP 2

7 ) determines k and therefore the full pin TQFT. In the follow-

ing, we will compute the partition functions of RP 2
1 for the theories associated to the real

superalgebras R(p|q) and C`p,qR and find that they are +1 and exp((p− q)πi/4), respec-

tively, up to Euler terms. Since these theories are invertible and unitary, this demonstrates

that the state sum for matrix algebras is trivial — as claimed in section 4.4 — while that

for C`p,qR is the ABKp−q theory — in agreement with the findings of section 4.3.

A ribbon diagram for RP 2
1 is depicted in figure 11. It evaluates to

Z(RP 2
1 ) = Rη(1⊗ τ)η−1. (4.19)

The matrix algebra R(p|q) is spanned by a basis of matrices eij with 0 < i, j ≤ p+ q = n.

The trace form is

η(eij , ekl) = αTr[eijekl] = α δjkδil, η−1 = α−1
∑
i,j

eij ⊗ eji, R = α/n. (4.20)

Let |i| be 1 if i > p and 0 otherwise. The grading on R(p|q) is given by |eij | = |i|+|j|−|i||j|.
T acts trivially in this basis, and R(p|q) has a Hermitian structure given by conjugate

transposition: ∗eij = eji. Therefore, by the discussion in section 4.1, the half twist is

τ(eij) = i|i|+|j|+|i||j|eji. Then compute

ZR(p|q)(RP 2
1 ) =

1

n

∑
i,j

η(eij ⊗ τ(eji)) =
1

n

∑
i,j

i|i|+|j|+|i||j|η(eij ⊗ eij)

=
α

n

∑
i,j

i|i|+|j|+|i||j|δij = α, (4.21)

as claimed. Meanwhile C`p,qR was discussed in section 4.2. Let |x|p = |x| − |x|q mod 2.

Then compute

ZC`p,qR(RP 2
1 ) =

1

2(p+q)

∑
Ni

η(1⊗ τ)
(

ΓN1
1 · · ·Γ

Nn
n ⊗ ∗(Γ

N1
1 · · ·Γ

Nn
n )
)

=
1

2(p+q)

∑
Ni

i|x|(−1)|x|qη
(

ΓN1
1 · · ·Γ

Nn
n ⊗ ΓN1

1 · · ·Γ
Nn
n

)
=

α

2(p+q)/2

∑
Ni

i|x|(−1)|x|q(−1){x}({x}−1)/2

=
α

2(p+q)/2

∑
Ni

i{x}(−1)|x|q

=
α

2(p+q)/2

∑
Ni

i|x|p(−i)|x|q

= α

(
1

2p/2

p∑
k=0

(
p

k

)
ik

)(
1

2q/2

q∑
l=0

(
q

l

)
(−i)l

)

= α exp((p− q)πi/4).

(4.22)
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Figure 11. A ribbon diagram for RP 2 is obtained from the graph dual to a triangulation of its

fundamental square and then simplified using the moves (a11) and (a4).

This completes our argument. As a consistency check, one may evaluate the state sums

on other closed pin manifolds and verify that they yield powers of the ABK invariant. This

was done in ref. [7] for orientable pin (spin) surfaces. They show that C`1,0R yields partition

function Z(Mor) ∼ Arf(Mor) = ABK(Mor) ∈ {±1}.
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