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ABSTRACT: Transition-metal catalysis is a powerful tool for the 

construction of chemical bonds. Here we show that a non-heme 

iron enzyme can catalyze olefin aziridination and nitrene C–H in-

sertion, and that these activities can be improved by directed evo-

lution. The non-heme iron center allows for facile modification of 

the primary coordination sphere by addition of metal-coordinating 

molecules, enabling control over enzyme activity and selectivity 

using small molecules. 

Over the last century, chemists have developed myriad synthetic 

transition-metal catalysts to access new chemical transformations 

and modes of reactivity. Nature has been developing catalysts for 

far longer: over billions of years, she has evolved a rich repertoire 

of proteins that perform most of the chemical reactions of life. But 

nature’s inventions do not include many of the best inventions of 

human chemists. Our efforts to merge abiological transition-metal 

chemistry with nature’s vast toolbox of metalloproteins have fo-

cused on heme-binding proteins1, as the heme cofactor and its ana-

logues are well-studied in synthetic transition-metal chemistry. 

However, heme-binding proteins represent only a small fraction of 

the chemical diversity present in natural metalloproteins. Metallo-

proteins comprise greater than 30% of all proteins2 and are respon-

sible for some of the most fundamental chemical reactions in biol-

ogy, including nitrogen fixation, photosynthesis, and DNA synthe-

sis. Natural metalloproteins bind a variety of metals in a wide range 

of metal-binding sites, either coordinating the metal ion itself or a 

more complex metal-containing cofactor. Nearly any heteroatom-

containing side chain can coordinate to a metal, in addition to the 

peptide backbone, allowing myriad possible coordination environ-

ments3. Many coordination environments in non-heme metalloen-

zymes have multiple open coordination sites at the metal center, a 

key feature of numerous synthetic transition-metal catalysts. Ex-

panding new-to-nature catalysis to non-heme metalloenzymes 

would open a new world of transition-metal biocatalysis.  

For decades, humans have used small-molecule ligands to un-

derstand and control Nature’s catalysts. Nature employs allostery 

to regulate enzyme activity with small molecules (Figure 1A). Al-

losteric regulation of enzymes has been studied at length4 and there 

have been successful examples of engineered5 or designed6 allo-

steric enzyme regulation, but allostery is still challenging to under-

stand or adapt to engineered systems. Cofactor-dependent en-

zymes, in which a small molecule is directly involved in catalysis, 

are often more readily understood and more easily manipulated by 

small molecules. Biochemists have knocked out catalytic activity 

via mutagenesis and restored it with exogenous effectors7 and sub-

stituted native cofactors with synthetic analogues with altered prop-

erties8. In the case of heme-binding proteins, scientists have substi-

tuted the metal ion9 or modified the porphyrin prosthetic group10 to 

modulate or expand enzymatic activity. A non-heme metallopro-

tein, in which a metal ion is coordinated directly by the protein and 

by exogenous small molecules, would allow for direct manipula-

tion of the primary metal coordination environment. 

 
Figure 1. Examples of enzyme activity control using small mole-

cules. (A) ADP acts as a natural allosteric regulator of phosphofruc-

tokinase (PDB ID: 4PFK). (B) Non-natural analogues of ATP act 

as competitive inhibitors of ATP-dependent enzymes (PDB ID: 

1I5A).  (C) This work: small-molecule activation of a non-heme 

iron center for nitrene transfer.   



 

To search for abiological catalytic promiscuity among natural 

metalloproteins, we looked at α-ketoglutarate (αKG)-dependent 

iron enzymes, a family of enzymes which features a conserved 

metal-binding active site with iron coordinated by two histidines 

and one aspartate or glutamate11. In nature, these enzymes perform 

similar chemistry to the heme-binding cytochrome P450 family, in 

which a high-valent iron-oxo intermediate performs C–H hydrox-

ylation, olefin epoxidation, or other oxidative transformations12. 

Though members of this enzyme family have been reported to cat-

alyze reactions beyond their native functions, all the reactions re-

ported proceed through the native iron-oxo mechanism13. We hy-

pothesized that non-heme iron enzymes might also be able to cata-

lyze abiological transformations similar to heme-binding proteins 

through a non-natural mechanistic pathway. 

We screened a set of seven purified α-ketoglutarate (αKG)-de-

pendent iron dioxygenases against the intermolecular aziridination 

reaction of styrene 1 and p-toluenesulfonyl azide 2. Aziridination14 

and carbon–hydrogen (C–H) bond insertions of nitrenes15 have 

been reported using engineered heme-binding proteins and were 

subsequently proposed in a natural product biosynthetic pathway16. 

Chang et al. speculated the existence of a transient iron-nitrene in-

termediate in their report of the transformation of alkyl azides to 

nitriles by an αKG-dependent iron dioxygenase, but this reaction 

still proceeds through the canonical iron-oxo catalytic cycle13b. To 

date, no reported non-heme iron enzyme, natural or engineered, has 

been reported to catalyze productive nitrene transfer.  

From the set of enzymes we tested, only Pseudomonas savas-

tanoi ethylene-forming enzyme (PsEFE, UniProt ID P32021), 

formed aziridine 3 significantly above background (Supplementary 

Table S2). Compared to other members of the αKG-dependent iron 

dioxygenase family PsEFE is mechanistically and structurally dis-

tinct. While most enzymes of this family catalyze the oxidation of 

a substrate, often C–H hydroxylation, PsEFE natively catalyzes the 

fragmentation of the usual co-substrate α‑ketoglutarate to ethylene, 

as well as the hydroxylation of L-arginine17. Structurally, PsEFE 

possesses a hybrid fold, combining elements of both type I and 

type II αKG-dependent iron enzymes. It binds α-ketoglutarate in a 

strained conformation in an unusually hydrophobic pocket, which 

is likely responsible for the atypical catalytic activity18. 

As the iron-binding site in PsEFE is quite unlike that of the 

heme-binding proteins that perform nitrene-transfer chemistry, we 

sought to characterize the necessary components of the reaction. 

Iron is required, with a single added equivalent of iron(II) sufficient 

to fully restore catalytic activity of the wild-type apoenzyme.  

PsEFE has three coordination sites filled by amino-acid side chains 

(two histidines and one aspartate), leaving up to three additional 

sites open for binding. In the native catalytic mechanism of PsEFE 

and other members of its family, α-ketoglutarate occupies two of 

these sites and is required for activity, as it is oxidatively decarbox-

ylated to succinate to generate the reactive iron-oxo intermediate. 

PsEFE has been shown to catalyze arginine hydroxylation with α-

ketoadipate instead of α-ketoglutarate, but with 500-fold lower ac-

tivity. Other α-ketoacids were reported to give no activity19. 

Nitrene transfer, however, does not proceed through the native cat-

alytic cycle and therefore does not require αKG as a co-substrate; 

the αKG is now more a cofactor and as such could potentially be 

replaced by different small-molecule ligands. Intrigued by the pos-

sibility of modulating enzyme activity by changing the primary co-

ordination sphere of the catalytic iron, we tested PsEFE for aziridi-

nation with a set of α-ketoglutarate mimics and related molecules 

as additives. We found that whereas addition of a carboxylate is 

beneficial for activity (though not required), the wild-type enzyme 

is significantly more active for aziridination with added acetate or 

N-oxalylglycine (NOG, a general αKG-dependent enzyme compet-

itive inhibitor11) compared to α-ketoglutarate (Table 1). 

Table 1. Aziridination catalyzed by wild-type PsEFE 

 

Deviation from standard conditions1 Relative activity 

None 1.00 

No iron 0.08 

No αKG 0.52 

Acetate2 instead of αKG 6.72 

N-oxalylglycine3 instead of αKG 7.75 

Acetate instead of αKG, no ascorbic acid 6.01 

1Standard conditions: Reactions were performed in MOPS 

buffer (20 mM pH 7.0) with 5% ethanol co-solvent, with 20 μM 

apoenzyme, 1 mM Fe(NH4)2(SO4)2, 1 mM αKG (as disodium 

salt), 1 mM L-ascorbic acid, and 10 mM 1 and 2. 2Sodium salt. 
3Free acid. 

We then sought to improve PsEFE for aziridination via directed 

evolution, targeting active-site residues with site-saturation muta-

genesis and screening for enhanced activity. During directed evo-

lution, we screened with added acetate, as it enhanced the activity 

of the wild-type enzyme significantly more than the native α-ke-

toglutarate, it is biologically ubiquitous, and it is inexpensive. Alt-

hough α-ketoglutarate is the native cofactor and is naturally present 

at near-millimolar intracellular concentration in Escherichia coli20, 

we reasoned that by supplementing the reaction medium with ace-

tate we could evolve PsEFE to be dependent on acetate instead.  

After two rounds of site-saturation mutagenesis and one round 

of recombination, we found a variant with five mutations from the 

wild type (T97M R171L R277H F314M C317M, PsEFE 

MLHMM) which catalyzed the formation of 3 with 120 total turn-

over number (TTN) and 88% enantiomeric excess (ee) favoring the 

(R)-enantiomer (Figure 2A). Four of the five introduced mutations 

are in the binding pocket of the native substrate arginine and pre-

sumably are involved in substrate binding. The fifth beneficial mu-

tation is at Arg-277, the residue whose guanidino group natively 

binds the distal carboxylate of α-ketoglutarate (Figure 2B). The 

R277H mutation presumably abolishes binding of the native cofac-

tor α-ketoglutarate; as a result, PsEFE MLHMM shows no signifi-

cant increase in aziridination activity when α-ketoglutarate is 

added, but an 11-fold increase when acetate is added (Supplemen-

tary Table S4). Thus the evolved MLHMM variant is more acti-

vated by acetate than the wild type and is no longer activated by α-

ketoglutarate at all, demonstrating the tunability of the cofactor de-

pendence of PsEFE. 



 

     

Figure 2. Directed evolution of PsEFE for aziridination. (A) Evolutionary lineage. Reactions were performed in triplicate anaerobically with 

acetate and quantified by analytical HPLC-UV. Full experimental details are given in the Supporting Information. (B) Structural representa-

tion of PsEFE with mutated sites highlighted in orange; metal-coordinating residues H189, D191, and H268 are represented in sticks and 

Mn (the metal with which the protein was crystallized) is represented as a purple sphere (PDB ID: 6CBA). 

We reasoned that variants of PsEFE generated by directed evo-

lution for aziridination could exhibit promiscuous activity for addi-

tional nitrene-transfer reactions beyond aziridination. Screening a 

panel of variants for the intramolecular C–H bond insertion reac-

tion of 2-ethylbenzenesulfonyl azide 4 to form sultam 5, we identi-

fied multiple variants that perform this reaction with good TTN, 

excellent chemoselectivity, and moderate enantioselectivity. Re-

markably, PsEFE R171V F314M C317M (PsEFE VMM) is signif-

icantly more active and more chemo- and enantioselective with N-

oxalylglycine added than with either acetate or α-ketoglutarate, 

forming 5 with up to 730 TTN and greater than 100:1 selectivity 

for insertion over reduction (Table 2). This chemoselectivity is 

much higher than that of the heme proteins previously reported to 

catalyze similar reactions15a,b. To probe the specific effect of cofac-

tor binding on activity, we tested PsEFE R171V R227H F314M 

C317M (PsEFE VHMM), a variant in which αKG and NOG bind-

ing are disrupted by the R277H mutation. Whereas PsEFE 

VHMM’s activity is still enhanced nearly ten-fold with acetate, 

there is no significant difference between its activity with no addi-

tive, αKG, or NOG added to the reaction (Table 2). αKG or its an-

alogues therefore appear to bind within the native αKG binding 

site, activating the protein through the primary metal coordination 

sphere. 

Aziridination with PsEFE is reasonably oxygen tolerant, with the 

MLHMM variant maintaining 20% activity for aziridination when 

performed in air. C–H insertion, however, does not proceed detect-

ably in aerobic conditions with any variant tested. These observa-

tions suggest that formation of the putative iron-nitrene intermedi-

ate is not significantly inhibited by oxygen, but that a subsequent 

mechanistic step in the C–H insertion reaction is inhibited aerobi-

cally. Unlike nitrene transfer with heme proteins15a, an additional 

reductant is not required when reactions are performed anaerobi-

cally (Supplementary Table S4).  

 

Table 2. Nitrene C–H insertion catalyzed by PsEFE 

 

PsEFE variant Additive TTN (5) ee (%) 5/6 

Wild type Acetate 12 n.d.1 1.6 

VHMM None 27 n.d.1 3.4 

VHMM αKG 31 n.d.1 3.8 

VHMM Acetate 240 7.3 32 

VHMM NOG 33 n.d.1 4.1 

VMM None 25 n.d.1 0.9 

VMM αKG 130 61 9.0 

VMM Acetate 310 9.4 24 

VMM NOG 450 48 105 

VMM2 NOG 730 47 100 

Reactions were performed anaerobically in MOPS buffer 

(20 mM pH 7.0) with 2.5% ethanol co-solvent, 20 μM apoenzyme, 

1 mM Fe(NH4)2(SO4)2, 1 mM additive, 1 mM L-ascorbic acid, and 

10 mM 4 (maximum 500 TTN). Reactions were quantified by ana-

lytical HPLC-UV. TTNs are shown for 5 only. 1Not determined due 

to low conversion. 210 μM enzyme concentration (max. 1000 

TTN). 

PsEFE is highly expressed (>200 mg/L E. coli culture) and is 

catalytically active in whole E. coli cells and in cell lysate. We ob-

serve that in cell lysate the enzyme maintains high activity with no 

external additive; the enzyme presumably retains a cofactor from 

the intracellular environment during lysis. Addition of N-oxalylgly-

cine nevertheless enhances C–H insertion yield and chemoselectiv-

ity when PsEFE VMM is in cell lysate. In whole cells, however, 

A B 



 

there is no significant change upon addition of N-oxalylglycine 

(Supplementary Table S6). This is unsurprising as N-oxalylglycine 

is not reported to be cell-permeable. Future biochemical studies and 

further mutagenesis will likely enhance the selectivity for cofactor 

analogues and impart in vivo activation to PsEFE variants. 

In conclusion, we have discovered a non-heme iron enzyme ca-

pable of performing nitrene-transfer chemistry and enhanced that 

activity via directed evolution. This is the first example of enzy-

matic nitrene transfer catalyzed by a non-heme metalloprotein. 

PsEFE features a metal center whose primary coordination sphere 

can be altered by simple reaction additives, allowing for modula-

tion of catalytic activity and selectivity. We anticipate that this bi-

ocatalytic system will lead to discovery of new metalloenzymatic 

transformations not possible with previously reported enzymes. 
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MATERIALS AND METHODS 

Synthetic chemistry 

All manipulations were performed using oven-dried glassware (130 °C for a minimum of 12 hours) and standard 

Schlenk techniques under an atmosphere of argon, unless otherwise stated.  

Solvents 

ACS- and HPLC-grade solvents were purchased from Fisher Chemical. Anhydrous tetrahydrofuran was 

obtained by filtration through a drying column and a deoyxgenation column on a Pure Process Technologies 

solvent system. High-purity water for PCR and HPLC was distilled after filtration through a deionizing column 

and organic removal column. Deuterated solvents were purchased from Cambridge Isotope Laboratories. 

Chromatographic materials  

Thin layer chromatography (TLC) was performed using EMD TLC plates pre-coated with 250 μm thickness 

silica gel 60 F254 and visualized by fluorescence quenching under UV light and staining with potassium 

permanganate or cerium ammonium molybdate. Preparative flash chromatography was performed using a 

Biotage Isolera automated chromatography instrument using columns hand-packed with silica gel (230–

400 mesh, Silicyle Inc.). 

Starting materials 

All compounds were used as received from commercial suppliers, unless otherwise stated.  

Analytical instrumentation 

HPLC-MS analysis for initial activity determination was performed on an Agilent 1290 UPLC-MS equipped with 

a C18 silica column (1.8 μm packing, 2.1×50 mm). HPLC-MS analysis of site-saturation mutagenesis libraries 

was performed on an Agilent 1260 Infinity HPLC with an Agilent 6120 quadrupole mass spectrometer. Reverse-

phase HPLC-UV analysis was performed with an Agilent 1200 series HPLC or an Agilent 1260 Series Infinity 

II HPLC using an Agilent Poroshell 120 EC-C18 column (4 μm packing, 2.1×50 mm) fitted with a Poroshell 120 

guard column (1.7 μm packing, 2.1×5 mm). Normal-phase HPLC-UV analysis for chiral separations was 

performed with a Hewlett Packard Series 1100 HPLC instrument using a Daicel Chiralcel OJ-H column, (5 μm 

packing, 4.6×250 mm) or a Daicel Chiralpak IB column (5 μm packing, 4.6×250 mm). 

NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer operating at 500 MHz and 125 MHz for 

1H and 13C respectively, or a Bruker Avance 400 spectrometer operating at 400 MHz and 100 MHz for 1H and 

13C respectively. NMR data were analyzed in MestReNova (MestreLab Research). Chemical shifts are reported 

in ppm with the solvent resonance as the internal standard. For 1H NMR: CDCl3,  7.26. For 13C NMR: CDCl3, 

 77.16. Data are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, spt = septet, m = multiplet, 

br = broad; coupling constants in Hz; integration. 
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Biology and biocatalytic reactions 

Materials 

Oligonucleotides were purchased from IDT DNA. PCRs were run with Phusion® High-Fidelity PCR Kit (New 

England Biolabs). Gibson assembly mix1 is prepared with isothermal master mix in-house and enzymes T5 

exonuclease, Phusion® DNA polymerase, and Taq DNA ligase purchased from New England Biolabs.   

Cloning 

Plasmids encoding Pseudomonas savastanoi ethylene-forming enzyme (Uniprot ID P32021), Streptomyces sp. 

2-aminobutyric acid chlorinase (UniProt ID D0VX22), and Arabidopsis thaliana anthocyanidin synthase 

(UniProt ID Q96323), with the coding sequences codon-optimized for Escherichia coli were purchased from 

Twist Biosciences. Plasmids encoding Gluconobacter oxydans leucine dioxygenase (UniProt ID Q5FQD2), 

Streptomyces vinaceus arginine hydroxylase (UniProt ID Q6WZB0), and Streptomyces muensis leucine 

hydroxylase (UniProt ID A0A0E3URV8) were obtained from the laboratory of Prof. Hans Renata (Scripps 

Research Institute). The plasmid encoding Escherichia coli taurine dioxygenase (UniProt ID P37610) was 

obtained from the laboratory of Prof. Harry Gray (Caltech). All genes were encoded with a C-terminal His6-tag 

for purification and inserted between the NdeI and XhoI cut sites in the pET-22b(+) vector (Novagen).  

Plasmids were used to transform E. cloni BL21(DE3) cells (Lucigen) by electroporation. SOC medium (0.75 mL) 

was added and the cells were incubated at 37 °C for 45 minutes before being plated on Luria-Bertani medium 

(Research Products International) supplemented with ampicillin (100 μg mL-1, LB-amp) agar plates. 

Protein expression and purification 

Starter cultures of LB-amp were inoculated from a single E. coli colony on an agar plate harboring a plasmid 

encoding the protein of interest and grown overnight to stationary phase at 37 °C. Expression cultures of Terrific 

Broth (Research Products International) supplemented with ampicillin (100 mg L-1, TB-amp) were inoculated 

from the starter cultures (1% v/v) and shaken at 37 °C and 160 rpm in a Multitron Infors incubator. When the 

expression cultures reached OD600 ~ 0.8 (typically 2–3 hours), they were cooled on ice for 20 minutes. Protein 

expression was induced by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG, 0.5 mM). Cultures were 

incubated at 22 °C and 110 rpm overnight (16–24 hours). Cells were pelleted by centrifugation (5000×g, 

10 minutes).  

For reactions with whole cells, cell pellets were resuspended in MOPS buffer (20 mM pH 7.0) to OD600 30. For 

reactions with cell lysate, the whole cell suspensions were lysed by sonication (QSonica Q500 sonicator, 25% 

amplitude, 33% duty cycle, 3 minutes). The lysate was clarified by centrifugation (20,817×g, 10 minutes). 

For purification, cell pellets were frozen at −20 °C for at least 24 hours. Cells were resuspended in binding 

buffer (20 mM Tris∙HCl, 100 mM sodium chloride, 20 mM imidazole, pH 7.0, ~5 mL/g wet cells) and lysed by 

 

1 Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A. III; Smith, H.O. Enzymatic assembly of DNA molecules up to 

several hundred kilobases. Nat. Methods 2009, 6, 343–345. 
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sonication (QSonica Q500 sonicator, 25% amplitude, 33% duty cycle, 4 minutes). The lysate was clarified by 

centrifugation (20,817 g, 10 minutes) followed by filtration (0.45 μm syringe filter). The protein was purified 

using an Äkta Purifier with a HisTrap HP column (GE Healthcare), eluting with a gradient of 20–500 mM 

imidazole. Fractions containing the protein of interest were pooled and dialyzed at 4 °C against MOPS buffer 

(20 mM pH 7.0) containing 1 mM EDTA (>100:1 v/v) (Spectrum Laboratories Spectra/Por 12–14 kD membrane) 

for four hours, then against MOPS buffer (20 mM pH 7.0) overnight (12–16 hours). The dialyzed protein was 

concentrated by centrifugal filtration (Amicon Ultra-15 10 kD MWCO) to a final concentration of 40–

100 mg mL−1. The concentrated protein was divided into aliquots (50–100 μL), flash-frozen on powdered dry 

ice, and stored at −80 °C. Protein concentration was determined by Bradford assay (Bio-Rad Quick Start 

Bradford). 

Site-saturation mutagenesis and library screening 

Site-saturation mutagenesis was performed using the 22-codon method2. Oligonucleotides including the three 

22-codon trick codons (NDT, VHG, TGG) and oligos within the ampicillin resistance cassette were used to 

amplify the plasmid in two pieces; oligo sequences are listed in Table S1. The two pieces were assembled via 

isothermal Gibson assembly (50 °C, 1 hour). The Gibson assembly product was used directly to transform E. 

cloni BL21(DE3) cells (Lucigen) by electroporation. SOC medium (0.75 mL) was added and the cells were 

incubated at 37 °C for 45 minutes before being plated on LB-amp agar plates. Single colonies from the agar 

plates were picked with sterile toothpicks and used to inoculate starter cultures (0.5 mL LB-amp) in 96 deep-

well plates. The starter culture plates were grown at 37 °C, 250 rpm, and 80% humidity in a Multitron Infors 

shaker overnight (14–16 hours). The starter cultures (50 μL) were used to inoculate expression cultures (1 mL 

TB-amp) in 96 deep-well plates. In parallel, glycerol stock plates were prepared for long-term storage by mixing 

starter culture (50 μL) with sterile glycerol (50% v/v, 50 μL) and frozen at −80 °C. The expression cultures were 

grown at 37 °C, 250 rpm, and 80% humidity for three hours, then cooled on ice for 20 minutes. Protein 

expression was induced by addition of IPTG (0.5 mM). Cultures were incubated at 22 °C and 220 rpm overnight 

(18–20 hours). Cells were pelleted (5000×g, 5 minutes) and the cell pellets were frozen at −20 °C for at least 

24 hours prior to use. 

Cells were resuspended in MOPS buffer (20 mM pH 7.0) containing 1 mM sodium acetate. Under air, ferrous 

ammonium sulfate (40 mM in water, 10 μL, 1 mM final concentration, prepared immediately before use), L-

ascorbic acid (40 mM in water, 10 μL, 1 mM final concentration, prepared immediately before use), styrene 

(400 mM in ethanol, 10 μL, 10 mM final concentration), and p-toluenesulfonyl azide (400 mM in ethanol, 10 μL, 

10 mM final concentration) were added to each well. The plates were sealed with foil covers and shaken at 

room temperature for two hours. To quench the reactions, acetonitrile (400 μL) was added and the reaction 

plate was shaken for an additional 30 minutes. Insoluble material was pelleted by centrifugation (6000×g, 

10 minutes) and 200 μL of the supernate was filtered through a 0.2 μm PTFE 96-well filter plate into a 96-well 

 

2 Kille, S.; Acevedo-Rocha, C.G.; Parra, L.P.; Zhang, Z.-G..; Opperman, D.J.; Reetz, M.T.; Acevedo, J.P. Reducing Codon Redundancy 

and Screening Effort of Combinatorial Protein Libraries Created by Saturation Mutagenesis. ACS Synth. Biol. 2013, 2, 83–92. 
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microplate (3000×g, 2 minutes). The microplate was sealed with a pierceable cover and analyzed via HPLC-

MS (Analytical instrumentation). 

Table S1. Oligonucleotides used for mutagenesis. Mutated codons are denoted here as NNN for simplicity; in 
practice they are a 12:9:1 ratio of NDT:VHG:TGG for site saturation or the appropriate single codon for site-
directed mutagenesis. 

Mutations 

relative to 

wild type Direction Sequence 

T97X Forward CCGACTTCCCCGAAATTTTCNNNGTCTGCAAAGATCTTTC 

T97X Reverse GAAAATTTCGGGGAAGTCGGGCTTTCCAGCAGTCACCTC 

R171X Forward GATGGATGGCACCACATGNNNGTGTTGCGTTTTCCGCC 

R171X Reverse CATGTGGTGCCATCCATCGCGGGTCAAATCTG 

R277X Forward GGTGAAACTTAATACACGTGAGNNNTTTGCTTGCGCGTACTTCCATGAGCCG 

R277X Reverse CACGTGTATTAAGTTTCACCTTATGCGGAGTGCTAAGTAACTGTCCCCCG 

F314X 

C317M 
Forward CACTATGGGGAACATTTCACGAACATGNNNATGCGTATGTATCCTGACCG 

F314X Reverse CATGTTCGTGAAATGTTCCCCATAGTGAATGCGCTCATTGGCC 

C317X Forward TCACGAACATGTTCATGCGTNNNTATCCTGACCGCATTACCACACAGC 

C317X Reverse CATGAACATGTTCGTGAAATGTTCCCCATAGTGAATGCGCTC 

Analytical-scale biocatalytic aziridination reactions 

Biocatalytic reactions were set up in 2-mL screw-cap vials (Agilent). Purified apoprotein (350 μL, 22.9 μM in 

20 mM MOPS pH 7.0, final concentration 20 μM) was added to the vial. Solutions of ferrous ammonium sulfate 

and L-ascorbic acid were prepared immediately prior to use. Reactions to be set up anaerobically were brought 

into a Coy vinyl anaerobic chamber (nitrogen atmosphere, 0–10 ppm oxygen). To each reaction was added in 

order ferrous ammonium sulfate (40 mM in water, 10 μL, 1 mM final concentration), sodium acetate or other 

additive (40 mM in water, 10 μL, 1 mM final concentration), and L-ascorbic acid (40 mM in water, 10 μL, 1 mM 

final concentration). Each reaction was then charged with styrene (400 mM in ethanol, 10 μL, 10 mM final 

concentration) immediately followed by p-toluenesulfonyl azide (400 mM in ethanol, 10 μL, 10 mM final 

concentration, 500 max. TTN). The reactions were sealed and shaken at room temperature for three hours 

unless otherwise noted. To quench the reactions, acetonitrile (350 μL) was added to each vial, followed by 

internal standard propiophenone (0.1% v/v in acetonitrile, 50 μL). The sample was transferred to a 1.7-mL 

Eppendorf tube, vortexed, and then centrifuged (20817×g, 5 minutes). 250 μL of the supernate was transferred 

to HPLC vial inserts for reverse-phase HPLC analysis. The remaining supernate was partially concentrated in 

vacuo to remove acetonitrile and ethanol. Cyclohexane (500 μL) was added to the resulting aqueous 

suspension. The mixture was thoroughly shaken and then centrifuged (20817×g, 5 minutes). 250 μL of the 

organic layer was transferred to HPLC vial inserts for normal-phase chiral HPLC analysis. 
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Analytical-scale biocatalytic C–H insertion reactions 

Biocatalytic reactions were set up in 2-mL screw-cap vials (Agilent). Purified apoprotein (360 μL, 22.2 μM in 

20 mM MOPS pH 7.0, final concentration 20 μM) was added to the vial. Solutions of ferrous ammonium sulfate 

and L-ascorbic acid were prepared immediately prior to use. Reactions to be set up anaerobically were brought 

into a Coy vinyl anaerobic chamber (nitrogen atmosphere, 0–10 ppm oxygen). To each reaction was added in 

order ferrous ammonium sulfate (40 mM in water, 10 μL, 1 mM final concentration), sodium acetate or other 

additive (40 mM in water, 10 μL, 1 mM final concentration), L-ascorbic acid (40 mM in water, 10 μL, 1 mM final 

concentration). Each reaction was then charged with 2-ethylbenzenesulfonyl azide (400 mM in ethanol, 10 μL, 

10 mM final concentration, 500 max. TTN). The reactions were sealed and shaken at room temperature for six 

hours unless otherwise noted. To quench the reactions, acetonitrile (350 μL) was added to each vial, followed 

by internal standard propiophenone (0.5% v/v in acetonitrile, 50 μL). The sample was transferred to a 1.7-mL 

Eppendorf tube, vortexed, and then centrifuged (20817×g, 5 minutes). 250 μL of the supernate was transferred 

to HPLC vial inserts for reverse-phase HPLC analysis. The remaining supernate was partially concentrated in 

vacuo to remove acetonitrile and ethanol. Hexanes (250 μL, HPLC grade) and ethyl acetate (250 μL, HPLC 

grade) were added. The resulting mixture was thoroughly shaken and then centrifuged (20817×g, 5 minutes). 

250 μL of the organic layer was transferred to HPLC vial inserts for normal-phase chiral HPLC analysis. 
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EXPERIMENTAL DATA 

Initial evaluation of α-ketoglutarate-dependent iron dioxygenases 

 

Reactions were performed as described above (Analytical-scale biocatalytic aziridination reactions) except 

enzyme concentrations were 50 μM, disodium α-ketoglutarate was used as the additive, and acetonitrile was 

used as the co-solvent. Activity was assayed by HPLC-MS (Analytical instrumentation). Activities are 

normalized to the negative control, bovine serum albumin. 

Table S2. Activities of α-KG-dependent iron enzyme towards aziridination to form 3. 

Enzyme Relative activity 

P. savastanoi ethylene-forming enzyme 12.0 

Streptomyces sp. 2-aminobutyric acid chlorinase 0.93 

A. thaliana anthocyanidin synthase 0.54 

G. oxydans leucine dioxygenase 1.11 

E. coli taurine dioxygenase 0.61 

S. vinaceus arginine hydroxylase 0.57 

S. muensis leucine hydroxylase 0.61 

Bovine serum albumin (negative control) 1.00 

 

Reaction condition controls 

Aziridination reaction 

 

Reactions were performed in triplicate as described above with acetate as additive (Analytical-scale biocatalytic 

aziridination reactions) except where noted. Yields given are the average of the triplicates. 
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Table S3. Aziridination reaction controls with wild-type PsEFE. 

Deviation from standard conditions Aziridine yield (%) 

None 0.56% 

No iron 0.01% 

No ascorbate 0.50% 

No acetate 0.04% 

αKG instead of acetate 0.08% 

Succinate instead of acetate 0.11% 

N-oxalylglycine instead of acetate 0.64% 

 

Table S4. Aziridination reaction controls with PsEFE T97M R171L R277H F314M C317M 

Deviation from standard conditions Aziridine yield (%) 

None 23.8 

No iron 0.1 

No ascorbate 15.2 

No acetate 2.1 

α-Ketoglutarate instead of acetate 2.6 

N-oxalylglycine instead of acetate 2.4 

Aerobic 4.7 

Aerobic, no ascorbate 2.9 

 

C–H insertion reaction 

 

Reactions were performed in triplicate as described above (Analytical-scale biocatalytic C–H insertion 

reactions) with acetate as the additive, except where otherwise noted. Data shown are the average of the 

triplicates. 

Table S5. C–H insertion reaction controls (max. 500 TTN) 

Variant Additive TTN (5) 5/6 

Wild type Acetate 12.3 1.6 

R171V F314M C317M Acetate 313 24 

R171V F314M C317M None 24.6 0.9 

R171V F314M C317M α-Ketoglutarate 130 9.0 

R171V F314M C317M N-Oxalylglycine 447 105 

R171V R277H F314M C317M Acetate 243 32 

R171V R277H F314M C317M None 27.0 3.4 

R171V R277H F314M C317M α-Ketoglutarate 30.8 3.8 

R171V R277H F314M C317M N-Oxalylglycine 33.3 4.1 
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C–H insertion reaction with whole cells and cell lysate 

Reactions were performed in triplicate as described above (Analytical-scale biocatalytic C–H insertion 

reactions), except whole cell suspensions and cell lysates were used instead of purified protein solutions. Data 

shown are the average of the triplicates. Note that the chemoselectivities are generally much lower than with 

purified protein; this is presumably due to increased reduction by the cellular background. 

Table S6. C–H insertion with whole cells and lysate 

Variant Formulation Additive % Yield (5) 5/6 

VMM Whole cells None 36% 1.6 

VMM Whole cells Acetate 37% 1.7 

VMM Whole cells αKG 36% 1.6 

VMM Whole cells NOG 30% 1.6 

VMM Lysate None 76% 7.7 

VMM Lysate Acetate 72% 7.0 

VMM Lysate αKG 69% 6.3 

VMM Lysate NOG 90% 12.7 

VHMM Whole cells None 33% 3.5 

VHMM Whole cells Acetate 34% 3.7 

VHMM Whole cells αKG 33% 3.4 

VHMM Whole cells NOG 27% 3.1 

VHMM Lysate None 73% 15.8 

VHMM Lysate Acetate 75% 16.9 

VHMM Lysate αKG 73% 14.3 

VHMM Lysate NOG 77% 17.0 

SDS-PAGE of PsEFE variants 

Large-scale protein expression, lysis, and purification was carried out as described in the methods section 

(Protein expression and purification). Whole-cell samples were taken after resuspension, clarified lysate 

samples were taken following sonication and centrifugation, and purified protein samples were taken after 

HisTrap purification. These samples were mixed 1:1 with 2X Laemmli loading buffer (Bio-Rad Laboratories, 

Inc.) with added 2-mercaptoethanol. Samples were heated to 95 °C in a thermomixer block, briefly centrifuged, 

and loaded on an Any kD™ Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad Laboratories, Inc.). Gels 

were run at 150 V for 30–45 minutes. Gels were washed with water, then stained by microwaving the gels with 

Coomassie solution. Gels were destained with successive rounds of microwaving with water, followed by gentle 

shaking overnight in water. 
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Aziridination variant protein purification 

  

Figure S1. SDS-PAGE of PsEFE aziridination variant T97M R171L R277H F314M C317M (PsEFE MLHMM). 
The protein is shown from left to right as whole-cell sample, clarified lysate sample, and purified protein 
sample. Whole cells and lysates were diluted 25-fold; purified protein was diluted 50-fold (each dilution is 
prior to addition of 2X Laemmli loading dye). The ladder and sample were run on the same gel; unrelated 
protein samples were cropped out for image clarity. The SDS-PAGE image brightness was increased in 
Microsoft Word for image clarity and is not being used for quantitation. 

C–H insertion variant protein purification 

 

Figure S2. SDS-PAGE of PsEFE C–H insertion variants. Each protein is shown from left to right as whole-cell 
sample, clarified lysate sample, and purified protein sample. Whole cells and lysates were diluted 25-fold; 
purified protein was diluted 50-fold (each dilution is prior to addition of 2X Laemmli loading dye). Protein 1: 
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R171V F314M C317M, Protein 2: R171V R277H F314M C317M. Protein 3: T97M R171V R277H F314L 
C317M. The SDS-PAGE image brightness was increased in Microsoft Word for image clarity and is not being 
used for quantitation.  

Reaction time courses 

Aziridination time course 

A time course was run with PsEFE WT and PsEFE MLLHMM, a variant with one additional mutation (I186L) 

relative to PsEFE MLHMM with decreased activity and slightly increased enantioselectivity. Purified protein 

reactions were set up in triplicate both anaerobically and aerobically, as described in the methods section above 

(Analytical-scale biocatalytic aziridination reactions). Time points were taken at 15 minutes, 30 minutes, 1 hour, 

2 hours, 3 hours, 4 hours, and 8 hours, at which point those reactions were quenched by addition of acetonitrile 

(350 μL) and the internal standard propiophenone (1 μL mL-1 in acetonitrile, 50 μL).  

As we see in Figure S3, the reaction with wild-type PsEFE is essentially done by the 15 minute mark, while the 

yield with MLLHMM continues to increase until approximately 2 hours. The reaction appears to proceed for a 

longer time anaerobically than aerobically for PsEFE MLLHMM; the low activity and fast reaction completion 

for wild-type PsEFE makes such comparisons challenging. 

 
Figure S3. Aziridination time course. Time courses denoted “air” were set up aerobically; time courses 
denoted “Coy” were set up anaerobically. 
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Evolved variant thermostability 

During our purified protein reactions, we do observe what is ostensibly protein precipitation over time. This 

visual observation, together with our time-course data, indicate that one possible reason for limited activity 

might be the protein’s stability to the reaction conditions over time. The thermostability of wild-type PsEFE has 

been measured with ITC3; not surprisingly, the protein is reported to have increased stability in the presence 

of iron and α-ketoglutarate. We used the thermal shift assay4 using SYPRO orange (Thermo Fisher Scientific). 

Thermal shift assay samples were prepared in triplicate anaerobically under similar conditions as described 

above (Reaction condition controls). To a PCR tube with purified PsEFE wild type or a PsEFE variant (stripped 

and dialyzed, 10–15 µM final concentration) was added (to a final concentration of 1.25 mM each) either: 

• ferrous ammonium sulfate 

• ferrous ammonium sulfate, L-ascorbic acid, and α-ketoglutarate 

• ferrous ammonium sulfate, L-ascorbic acid, and sodium acetate 

Following these additions, to each tube was added 5 µL SYPRO orange (25-fold diluted in water). The PCR 

tubes were sealed, brought out of the anaerobic chamber, and analyzed on an Stratagene Mx3005P qPCR 

machine (Agilent Technologies, Inc.). The temperature program ran from 25 °C to 99 °C, holding for 30 seconds 

per degree before measuring fluorescence on the SYPRO channel and increasing temperature. The melting 

temperature for a given temperature was taken as the maximum of the numerical first derivative, representing 

the inflection point of the protein’s melt curve.  

The data are presented in Figure S4. We can see that, even though beneficial mutations were only chosen 

based on activity and stereoselectivity, the protein’s stability improved from wild type to the final variants. We 

also see a significant enhancement in thermostability for early variants upon addition of α-ketoglutarate (noted 

as 2OG for 2-oxoglutarate), which is not observed in the later evolved variants. 

 

 

3 Li, M.; Martinez, S.; Hausinger, R. P.; Emerson, J. P. Thermodynamics of Iron(II) and Substrate Binding to the Ethylene-Forming 

Enzyme. Biochemistry 2018, 57, 5696-5705. 
4 Ericsson, U. B.; Hallberg, B. M.; DeTitta, G. T.; Dekker, N.; Nordlund, P. Thermofluor-based high-throughput stability optimization of 

proteins for structural studies. Anal. Biochem. 2006, 357, 289–298. 
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Figure S4. Thermostability of wild-type and evolved PsEFE variants for aziridination and intramolecular C-H 
insertion.  

Synthesis of sulfonyl azide substrates 

Safety statement 

Organic azides are potentially explosive compounds. We have not observed any problems in our handling of 

the compounds described, but care should be taken, especially on large scales. 

p-Toluenesulfonyl azide (2) 

 

Under air, p-toluenesulfonyl chloride (19.1 g, 100 mmol, 1.00 equiv.) was dissolved in acetone (200 mL) in a 

500 mL round-bottomed flask with a magnetic stir bar and cooled to 0 °C. A solution of sodium azide (9.75 g, 

150 mmol, 1.50 equiv.) in water (60 mL) was added dropwise over one hour with stirring. Once addition was 

complete, the reaction was allowed to warm to room temperature and stirred for 16 hours. The acetone was 

removed in vacuo, and the resulting mixture was extracted with diethyl ether (2×100 mL). The combined organic 

layers were washed with water (2×100 mL), saturated aqueous sodium bicarbonate (100 mL), and brine 

(100 mL), then dried over magnesium sulfate and concentrated in vacuo to afford the title compound as a 

colorless oil that solidified upon storage at −20 °C (19.1 g, 97%). 

NMR Spectroscopy:  

1H NMR (500 MHz, CDCl3, 23 ºC, ): 7.80 (d, J = 8.5 Hz, 2 H), 7.38 (d, J = 8.5 Hz, 2 H), 2.45 (s, 3 H) 

13C NMR (125 MHz, CDCl3, 23 ºC, ): 146.3, 135.3, 130.3, 127.4, 21.7 
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2-Ethylbenzenesulfonyl chloride (S1)5 

 

Under argon, 1-bromo-2-ethylbenzene (2.07 mL, 2.78 g, 15.0 mmol, 1.00 equiv.) was dissolved in anhydrous 

tetrahydrofuran (30 mL) in a 100 mL round-bottomed flask with magnetic stirring and cooled to −40 °C. 

n‑Butyllithium (2.5 M solution in hexanes, 7.20 mL, 18.0 mmol, 1.20 equiv.) was added dropwise by syringe 

over two minutes. The reaction was stirred at −40 °C for thirty minutes, then sulfuryl chloride (1.82 mL, 3.04 g, 

22.5 mmol, 1.5 equiv.) was added dropwise by syringe over two minutes. The reaction was allowed to warm to 

room temperature and stirred for 16 hours. The reaction was cooled to 0 °C, then carefully quenched by the 

addition of ice-cold water (50 mL). The resulting mixture was extracted with diethyl ether (2×50 mL). The 

combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was purified 

by flash column chromatography on silica (50 g), eluting with a gradient of 0 to 20% diethyl ether/hexanes, to 

afford the title compound as a slightly yellow oil (1.10 g, 36%). 

NMR Spectroscopy:  

1H NMR (400 MHz, CDCl3, 23 ºC, ): 8.07 (d, J = 8.1 Hz, 1 H), 7.66 (t, J = 7.5 Hz, 1 H), 7.49 (d, J = 

7.6 Hz, 1 H), 7.41 (t, J = 7.9 Hz, 1 H), 3.20 (q, J = 7.5 Hz, 2 H), 1.37 (t, J = 7.5 Hz, 3 H) 

2-Ethylbenzenesulfonyl azide (4)5 

 

Under air, 2-ethylbenzenesulfonyl chloride S1 (1.00 g, 4.89 mmol, 1.00 equiv.) was dissolved in acetone (8 mL) 

in a 20 mL scintillation vial with magnetic stirring and cooled to 0 °C. A solution of sodium azide (476 mg, 

7.33 mmol, 1.50 equiv.) in water (2.5 mL) was added dropwise over two minutes with stirring. Once addition 

was complete, the reaction was allowed to warm to room temperature and stirred for six hours. The acetone 

was removed in vacuo, and the resulting mixture was extracted with diethyl ether (2×15 mL). The combined 

organic layers were washed with water, saturated aqueous sodium bicarbonate, and brine (15 mL each), then 

dried over magnesium sulfate and concentrated in vacuo to afford the title compound as a yellow oil (1.01 g, 

98%). 

NMR Spectroscopy:  

1H NMR (500 MHz, CDCl3, 23 ºC, ): 8.01 (dd, J = 8.0, 1.3 Hz, 1 H), 7.62 (td, J = 7.6, 1.3 Hz, 1 H), 7.46 

 

5 Ichinose, M.; Suematsu, H.; Yasutomi, Y.; Nishioka, Y.; Uchida, T.; Katsuki, T. Enantioselective Intramolecular Benzylic C–H Bond 

Amination: Efficient Synthesis of Optically Active Benzosultams. Angew. Chem. Int. Ed. 2011, 50, 9884–9887. 
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(dd, J = 7.7, 0.7 Hz, 1 H), 7.37 (td, J = 8.0, 1.2 Hz, 1 H), 3.03 (q, J = 7.5 Hz, 2 H), 1.31 (t, J = 7.5 Hz, 

3 H) 

13C NMR (125 MHz, CDCl3, 23 ºC, ): 144.5, 136.3, 134.9, 131.4, 129.4, 126.4, 26.1, 15.2 

Synthesis of authentic product standards 

2-Phenyl-1-(p-toluenesulfonyl)aziridine (rac-3) 

 

Under argon, chloramine-T trihydrate (4.23 g, 15.0 mmol, 1.00 equiv.) and iodine (381 mg, 1.50 mmol, 

0.100 equiv.) were dissolved in acetonitrile (100 mL). Styrene (3.45 mL, 3.13 g, 30.0 mmol, 2.00 equiv.) was 

added dropwise, and the reaction was stirred at room temperature for 18 hours. The reaction mixture was 

partitioned between water (50 mL) and dichloromethane (100 mL), and the layers were separated. The 

aqueous layer was extracted with dichloromethane (2×100 mL). The combined organic layers were 

concentrated in vacuo and the residue was purified by flash column chromatography on silica (100 g) eluting 

with hexanes/ethyl acetate (6:1 v/v) containing 1% triethylamine to afford the title compound as a colorless 

solid (3.55 g, 87%). 

NMR Spectroscopy: 

1H NMR (500 MHz, CDCl3, 23 ºC, ): 7.87 (d, J = 8.3 Hz, 2 H), 7.33 (d, J = 8.3 Hz, 2 H), 7.30–7.25 (m, 

3 H), 7.24–7.20 (m, 2 H), 3.78 (dd, J = 7.2, 4.5 Hz, 1 H), 2.99 (d, J = 7.2 Hz, 1 H), 2.44 (s, 3 H), 2.40 (d, 

J = 4.4 Hz, 1 H) 

13C NMR (125 MHz, CDCl3, 23 ºC, ): 144.8, 135.1, 135.0, 129.9, 128.7, 128.4, 128.1, 126.7, 41.2, 36.1, 

21.8 

3-Methylbenzo[d]isothiazole 1,1-dioxide (S2)6 

 

Under argon, saccharin (1.00 g, 5.46 mmol, 1.00 equiv.) was dissolved in anhydrous tetrahydrofuran (25 mL) 

in a 100 mL round-bottomed flask with magnetic stirring and cooled to 0 °C. Methylmagnesium bromide (3 M 

solution in diethyl ether, 4.00 mL, 12.0 mmol, 2.20 equiv.) was added dropwise by syringe over 10 minutes. 

 

6 Li, B.; Chen, J.; Zhang, Z.; Gridnev, I.Y., Zhang. W. Nickel-Catalyzed Asymmetric Hydrogenation of N-Sulfonyl Imines. Angew. Chem. 

Int. Ed. 2019, 58, 7329–7334. 
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After addition, the reaction was stirred at 0 °C for five minutes, then slowly warmed to room temperature and 

stirred at room temperature for 16 hours. The reaction was then cooled to 0 °C and carefully poured into ice-

cold hydrochloric acid (1 M, 30 mL). The resulting mixture was extracted with dichloromethane (2×50 mL). The 

combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford the title compound 

as a colorless solid (crude yield 1.04 g, 105%) which was used in the next step without further purification. 

NMR Spectroscopy: 

1H NMR (400 MHz, CDCl3, 23 ºC, ): 7.94–7.90 (m, 1 H), 7.77–7.73 (m, 2 H), 7.71–7.67 (m, 1 H), 2.67 

(s, 3 H) 

3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (rac-5) 

 

Under air, 3-methyl-[d]isothiazole 1,1-dioxide S2 (500 mg, 2.76 mmol, 1.00 equiv.) was dissolved in methanol 

(20 mL) in a 50 mL round-bottomed flask with magnetic stirring. Sodium borohydride (522 mg, 13.8 mmol, 

5.00 equiv.) was slowly added over two minutes. The reaction mixture bubbled vigorously and became warm 

to the touch. The reaction was stirred at room temperature for thirty minutes to ensure complete reaction. The 

reaction was cooled to 0 °C, then poured carefully into cold hydrochloric acid (2.5 M, 40 mL). The methanol 

was removed in vacuo and the resulting mixture was extracted with dichloromethane (3×25 mL). The combined 

organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash 

column chromatography on silica (25 g), eluting with a gradient of 10 to 60% ethyl acetate/hexanes to afford 

the title compound as a colorless solid (378 mg, 75%). 

NMR Spectroscopy:  

1H NMR (500 MHz, CDCl3, 23 ºC, ): 7.74 (d, J = 8.0 Hz, 1 H), 7.61 (td, J = 7.6, 1.0 Hz, 1 H), 7.50 (t, J = 

7.6 Hz, 1 H), 7.38 (d, J = 7.7 Hz, 1 H), 5.15 (br d, J = 4.8 Hz, 1 H), 4.78 (qd, J = 6.7, 4.8 Hz, 1 H), 1.59 

(d, J = 6.7 Hz, 3 H) 

13C NMR (125 MHz, CDCl3, 23 ºC, ): 141.8, 135.4, 133.3, 129.2, 124.0, 121.2, 53.5, 21.5 

2-Ethylbenzenesulfonamide (6) 

 

Under air, 2-ethylbenzenesulfonyl chloride S1 (50.0 mg, 244 μmol, 1.00 equiv.) was dissolved in 

tetrahydrofuran (1 mL) in a 4 mL vial with magnetic stirring and cooled to 0 °C. Ammonia (28% w/v in water, 

149 μL, 2.44 mmol, 10.0 equiv.) was added dropwise over one minute. After stirring for five minutes, the 
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reaction mixture was partitioned between water and ethyl acetate (10 mL each). The layers were separated 

and the aqueous layer was extracted with ethyl acetate (2×10 mL). The combined organic layers were washed 

with brine (10 mL), dried over sodium sulfate, and concentrated in vacuo to afford the title compound as a 

colorless solid (41.8 mg, 92%). 

NMR Spectroscopy:  

1H NMR (500 MHz, CDCl3, 23 ºC, ): 7.99 (d, J = 8.0 Hz, 1 H), 7.51 (t, J = 7.5 Hz, 1 H), 7.39 (d, J = 7.6 Hz, 

1 H), 7.29 (t, J = 7.7 Hz, 1 H), 5.02 (br s, 2 H), 3.07 (q, J = 7.5 Hz, 2 H), 1.33 (t, J = 7.5 Hz, 3 H) 

13C NMR (125 MHz, CDCl3, 23 ºC, ):143.0, 139.6, 133.1, 130.7, 128.3, 126.2, 26.1, 15.3 

 

HPLC analytical methods and calibration curves 

Aziridination reaction 

 

Samples for HPLC calibration curves were prepared as simulated reaction samples. To MOPS buffer (20 mM 

pH 7.0, 380 μL) was added a solution of the appropriate reaction product in acetonitrile (0–100 μM, 20 μL, final 

concentration 0–5 mM). To this sample was added the internal standard propiophenone (0.1% v/v in acetonitrile, 

50 μL) and acetonitrile (350 μL). The product concentration in the curves below corresponds to the 

concentration in the reaction mixture; the final analytical sample is two-fold diluted. 

Analysis was performed on an Agilent 1200 series HPLC with water/acetonitrile mobile phase (1 mL min-1 flow), 

with an Agilent Poroshell 120 EC-C18 column (4 μm packing, 2.1×50 mm) fitted with a Poroshell 120 guard 

column (1.7 μm packing, 2.1×5 mm), injecting 5 μL. Detection was at 230 nm (16 nm bandwidth). The gradient 

program and retention times are given in Table S7 and Table S8, respectively. 

Table S7. HLPC gradient program for aziridination analysis 

Time (minutes) % Acetonitrile 

0.00 20 

0.50 20 

1.00 40 

5.00 65 

5.50 95 

6.00 95 

6.01 20 

7.00 20 
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Table S8. HPLC retention times for aziridination analysis 

Compound Retention time (minutes) 

p-Toluenesulfonamide 0.58 

Propiophenone 2.24 

p-Toluenesulfonyl azide 2.81 

Styrene 3.01 

2-Phenyl-1-(p-toluenesulfonyl)aziridine 3.45 

 

2-Phenyl-1-(p-toluenesulfonyl)aziridine (3) calibration curve 

 

p-Toluenesulfonamide (S3) calibration curve 
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C–H insertion reaction 

 

Calibration curve samples were prepared as described above for the aziridination reaction, except the internal 

standard used was propiophenone (0.5% v/v in acetonitrile, 50 μL) and the final product concentrations ranged 

from 1–10 mM. The product concentration shown corresponds to the concentration in the reaction mixture; the 

final analytical sample is twofold diluted. 

Analysis was performed on an Agilent 1260 Infinity II HPLC instrument with water/acetonitrile mobile phase 

(1 mL min-1 flow), with an Agilent Poroshell 120 EC-C18 column (4 μm packing, 2.1×50 mm) fitted with a 

Poroshell 120 guard column (1.7 μm packing, 2.1×5 mm), injecting 5 μL. Detection was at 220 nm (4 nm 

bandwidth). The gradient program and retention times are given in Table S9 and Table S10, respectively. 

Table S9. HPLC gradient program for C–H insertion analysis 

Time (minutes) % Acetonitrile 

0.00 12 

1.00 12 

3.50 95 

4.00 95 

4.01 12 

5.00 12 

 

Table S10. HPLC retention times for C–H insertion analysis 

Compound Retention time (minutes) 

3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide 1.05 

2-Ethylbenzenesulfonamide 2.38 

Propiophenone 3.00 

2-Ethylbenzenesulfonyl azide 3.48 
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3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (5) calibration curve 

 

2-Ethylbenzenesulfonamide (6) calibration curve 

 

Chiral analysis 

Chiral analysis was performed by HPLC with a chiral stationary phase, using a Hewlett Packard Series 1100 

HPLC instrument with hexanes/2-propanol mobile phase (1 mL min-1 flow). 

2-Phenyl-1-(p-toluenesulfonyl)aziridine (3) 

Analysis was performed with a Daicel Chiralcel OJ-H column, (5 μm packing, 4.6×250 mm), with an isocratic 

30% 2-propanol/70% hexanes mobile phase. The peak areas were analyzed at 235 nm (16 nm bandwidth). 

y = 0.469x
R² = 0.999

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

P
ro

d
u
c
t/
s
ta

n
d
a
rd

 p
e
a
k
 r

a
ti
o

Product concentration (mM)

y = 0.5414x
R² = 0.9978

0

1

2

3

4

5

6

0 2 4 6 8 10

P
ro

d
u
c
t/
s
ta

n
d
a
rd

 p
e
a
k
 r

a
ti
o

Product concentration (mM)



SUPPORTING INFORMATION  S22 

 

Figure S5. Chiral HPLC trace of rac-3. 

 

 

Figure S6. Chiral HPLC trace of PsEFE MLHMM-catalyzed product 3. 

 

 

3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (5) 

Analysis was performed with a Daicel Chiralpak IB column (5 μm packing, 4.6×250 mm), with an isocratic 25% 

2-propanol/75% hexanes mobile phase. The peak areas were analyzed at 220 nm (16 nm bandwidth). 
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Figure S7. Chiral HPLC trace of rac-5. 

 

 

Figure S8. Chiral HPLC trace of PsEFE VMM-catalyzed product 5.  

 



SUPPORTING INFORMATION   S24 

SPECTROSCOPIC DATA 

1H NMR spectrum of p-Toluenesulfonyl azide (2) 

500 MHz, CDCl3, 23 °C 
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13C NMR spectrum of p-Toluenesulfonyl azide (2)  

125 MHz, CDCl3, 23 °C 
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1H NMR spectrum of 2-Ethylbenzenesulfonyl chloride (S1) 

400 MHz, CDCl3, 23 °C 
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1H NMR spectrum of 2-Ethylbenzenesulfonyl azide (4) 

500 MHz, CDCl3, 23 °C 
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13C NMR spectrum of 2-Ethylbenzenesulfonyl azide (4) 

125 MHz, CDCl3, 23 °C 
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1H NMR spectrum of 2-Phenyl-1-(p-toluenesulfonyl)aziridine (rac-3) 

500 MHz, CDCl3, 23 ° C 
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13C NMR spectrum of 2-Phenyl-1-(p-toluenesulfonyl)aziridine (rac-3) 

125 MHz, CDCl3, 23 °C 
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1H NMR spectrum of 3-Methylbenzo[d]isothiazole 1,1-dioxide (S2) 

400 MHz, CDCl3, 23 °C 

 

  



SUPPORTING INFORMATION   S32 

1H NMR spectrum of 3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (rac-5) 

500 MHz, CDCl3, 23 °C 
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13C NMR spectrum of 3-Methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (rac-5) 

125 MHz, CDCl3, 23 °C 
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1H NMR spectrum of 2-Ethylbenzenesulfonamide (6) 

500 MHz, CDCl3, 23 °C 
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13C NMR spectrum of 2-Ethylbenzenesulfonamide (6) 

125 MHz, CDCl3, 23 °C 
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