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Abstract

We study the effects of quenched disorder and a dissipative Coulomb interaction on

an anyon gas in a periodic potential undergoing a quantum phase transition. We use a

(2+1)d low-energy effective description that involves Nf = 1 Dirac fermion coupled to

a U(1) Chern-Simons gauge field at level (θ− 1/2). When θ = 1/2 the anyons are free

Dirac fermions that exhibit an integer quantum Hall transition; when θ = 1 the anyons

are bosons undergoing a superconductor-insulator transition in the universality class

of the 3d XY model. Using the large Nf approximation we perform a renormalization

group analysis. The dissipative Coulomb interaction allows for two classes of IR stable

fixed points: those with a finite, nonzero Coulomb coupling and dynamical critical

exponent z = 1 and those with an effectively infinite Coulomb coupling and 1 < z < 2.

We find the Coulomb interaction to be an irrelevant perturbation of the clean fixed

point for any θ. At θ = 1/2 the clean fixed point is stable to charge-conjugation

preserving (random mass) disorder, while a line of diffusive fixed points obtains when

the product of charge-conjugation and time-reversal symmetries is preserved. At θ =

1 we find a finite disorder fixed point with unbroken charge-conjugation symmetry

whether or not the Coulomb interaction is present. Other cases result in runaway

flows. We comment on the relation of our results to other theoretical studies and the

relevancy to experiment.

ar
X

iv
:1

91
2.

12
30

3v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

 J
an

 2
02

0



Contents

1 Introduction 2

2 Setup 5

2.1 Mean-Field Phase Diagram at Nf = 1 . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Discrete Symmetry at Nf = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Dissipative Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Quenched Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Renormalization Group Analysis 12

3.1 Large Nf Expansion and Renormalization Group Scheme . . . . . . . . . . . 12

3.2 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Finite Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Infinite Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Discussion 27

A Calculation Overview 29

B Counterterms 31

C Feynman Rules for Disorder and Screening 36

D Fermion Self-energy 40

E 3-point Vertex ū(q) δΓµ u(p) 41
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1 Introduction

Delocalization transitions determine the phase diagrams of various electronic systems [1–

3]. In three spatial dimensions, such transitions can occur between a diffusive metal and a

localized insulator. In two dimensions (and fewer), localization generally relegates T = 0

metallic states to isolated critical points. The integer quantum Hall transition (IQHT)

and the superconductor-insulator transition (SIT) are prototypical examples of such two-

dimensional diffusive quantum critical points, having been well characterized by extensive

experimental and numerical work over the past 30 years (see [4–7] and references therein).

Nevertheless, our understanding of these quantum states remains incomplete.

Theories of noninteracting electrons have provided valuable insight to the IQHT [8]. As

the critical point is approached by tuning the external magnetic field or electron density to

criticality δ → 0, the localization length is found to diverge as |δ|−ν with ν = 2.593(5) [9],

while νexpt ≈ 2.38 experimentally [5, 6]. On the other hand, a diverging timescale ξt ∼ ξ−νz

is also expected near the quantum critical point. Theories of noninteracting electrons yield

a dynamical critical exponent z = 2 [8, 10, 11]; zexpt ≈ 1 [4, 6] (although see [12]).1 The

challenge is to develop a framework that combines the effects of electron interactions with

those of disorder [14].

Duality is a powerful tool for understanding the behavior of strongly interacting systems.

Recent work has uncovered a duality web that relates various (2+1)d relativistic quantum

field theories (see [15] and references therein). Included in this set are simple, toy models for

integer quantum Hall and superconductor-insulator transitions. In this paper, we study the

combined effects of quenched disorder and a dissipative Coulomb interaction on the critical

properties of two such models. The hope is to abstract lessons that may be valid more

generally. As we discuss, these theories have a rich set of random critical behaviors.

For the first member of the duality web, consider a system of spinless electrons hopping

on a square lattice with a half-unit of magnetic flux penetrating each plaquette [16] ([17]

may alternatively be considered). An IQHT obtains as the ratio of the (staggered) chemical

potential to next-neighbor hopping is varied. The critical properties of the transition are

controlled by a free Dirac fermion Ψ with Lagrangian,2

LDirac = Ψi /DAΨ−MΨΨ +
1

2

1

4π
AdA, (1.1)

whereAµ is a non-dynamical U(1) gauge field and the Chern-Simons termAdA = εµνρAµ∂νAρ.

The mass M vanishes at criticality. In the presence of an external magnetic field, (1.1)

describes the particle-hole symmetric limit of the half-filled zeroth/lowest Landau level of

1For the magnetic field-tuned SIT, νexpt ≈ 4/3 or νexpt ≈ 7/3 and zexpt ≈ 1 experimentally [13].
2Additional details for the Lagrangians appearing in this section are given in §2.
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Dirac/nonrelativistic electrons [18]. In this paper, we consider vanishing magnetic field. A

dual effective theory to (1.1) consists of a Dirac fermion ψ coupled to a dynamical (emergent)

U(1) gauge field aµ,

LF = ψi /Daψ −mψψ −
1

2

1

2π
adA+

1

2

1

4π
AdA− 1

4
f 2
µν , (1.2)

where the mass m ∝M and the field strength fµν = ∂µaν−∂νaµ.3 (1.2) was first introduced

as a dual description of the half-filled Landau level [18] or the gapless surface state of a time-

reversal invariant topological insulator [20, 21] (when the AdA term is absent) with ψ being

the Dirac composite fermion; its inclusion in the duality web was explained in [19, 22, 23].

When the external magnetic field is zero, the Dirac composite fermion chemical potential

sits at the Dirac point.

For the second member of the duality web, consider a collection of repulsive bosons in a

periodic potential [24]. For commensurate filling, the system exhibits a superfluid to Mott

insulator transition with a charge-conjugation symmetry as the ratio of the boson hopping

strength to repulsion is tuned. The long wavelength critical properties are described by the

3d XY model,

LXY = |DAΦ|2 −M |Φ|2 − |Φ|4. (1.3)

(Broken charge-conjugation symmetry generally results in a term proportional to Φ∗i∂tΦ.)

In mean-field theory, the M < 0 region is a superfluid, while the M > 0 region is an insulator;

we’ll view (1.3) as describing a SIT. A dual effective theory [25–27] to (1.3) is

LB = ψi /Daψ −mψψ +
1

2

1

4π
ada− 1

2π
adA+

1

4π
AdA− 1

4
f 2
µν . (1.4)

The statistics of the particles that (1.2) and (1.4) describe is controlled by the coefficient of

the ada term.

Quenched disorder can have a profound effect on the nature of the above critical points

and lead to new universality classes. Ref. [16] considered the effects of quenched randomness

on the free Dirac fermion fixed point in (1.1). While for generic disorder the theory flows

to strong coupling, if only a random vector potential A(x) is present the theory features

a line of diffusive fixed points characterized by a continuously variable dynamical exponent

z; the clean fixed point is stable to random mass disorder M(x). Sachdev and Ye [28, 29]

generalized this study to fractional quantum Hall transitions in the presence of an unscreened

Coulomb interaction using a model closely related to (1.4). Recently, Goswami, Goldman,

and Raghu [30] and Thomson and Sachdev [31] considered the effects of randomness on (1.2)

3We use “condensed matter” notation when writing these Lagrangians; see [19] for a precise explanation

of the meaning of, e.g., Chern-Simons terms with half-integer levels.
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with 2Nf fermion flavors. We use the large Nf expansion and the dimensional reduction

renormalization group (RG) scheme4 to reexamine these works and extend them to include

the effects of “topological disorder” (§2.4) and a dissipative Coulomb interaction, generally

finding agreement with this prior work that found interacting, diffusive fixed points. Related

work studying the effects of quenched randomness on theories of Dirac fermions coupled to

a fluctuating boson include [32, 33].

In contrast to the fermion models, only random mass disorder M(x) has resulted in

accessible diffusive fixed points of the XY model. Early work [34–37] studying the O(2Nf )

generalization of (1.3) used a double-ε expansion to find an interacting, finite disorder fixed

point. However, the nature of the renormalization group flow in the vicinity of the fixed

point is peculiar, exhibiting an anomalously long “time” to achieve criticality. Recently,

this problem was reexamined within a large Nf expansion by Goldman, Thomson, Nie, and

Bi [38], where it was argued that the anomalous renormalization group trajectories [34–37]

are a relic of the double-ε expansion. Furthermore, [38] find remarkable agreement with

the critical exponents of the dirty XY model calculated by numerical simulation [39–42].

We consider this analysis from the perspective of the “fermionic dual” of the XY model in

1.4, providing qualitative confirmation of the renormalization group flow found in [38]. To

O(1/Nf ), we find a finite-disorder fixed point with critical exponents,

ν−1 = 1 and z = 1 +
1.411

Nf

; (1.5)

ν = 1 and z = 1 + .54/Nf is reported in [38]. We also consider other types of disorder that

is sourced by the random gauge field Aµ(x).

The important influence of a Coulomb interaction on the critical properties of the above

transitions was stressed long ago [43], where it was argued that an unscreened Coulomb

interaction generically results in a dynamical critical exponent z = 1. In addition, the

observed IQHT and SIT appear to be sensitive to the precise nature of the Coulomb in-

teraction ([44, 45] and references therein). For example, a capacitively-coupled screening

plane has been found to affect the metallic behavior in thin films [46], lifting an anoma-

lous low-temperature metallic regime that intervenes a direct magnetic field-tuned SIT. To

investigate such effects, we consider a Coulomb interaction that is screened by a diffusive

two-dimensional Fermi gas [47]. The dissipative Coulomb interaction that results allows for

two types of fixed points: those with a finite, nonzero Coulomb coupling and z = 1 and those

with an effectively infinite Coulomb interaction and z 6= 1 [48]. For the “fermionic dual” of

4This scheme is valid for theories with or without Chern-Simons terms and is closely related to the

approach in [28, 29, 31].
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the XY model with random mass disorder, we find critical exponents,

ν−1 = 1 and 1 ≤ z < 2, (1.6)

with z saturating the lower bound for the unscreened Coulomb interaction and varying

continuously with an effective dissipation parameter for z > 1. In our approach, we’re

unable to access the “infinite z” fixed point found in the study of the dissipative XY model

in [49]. Our result differs from that of Vishwanath, Moore, and Senthil [47] who studied the

effects a dissipative Coulomb interaction on the dirty XY model using the double-ε expansion

and found a line of fixed points with z = 1 and continuously varying ν. We also consider

the effects of other types of disorder on the theories in (1.4) (and (1.2)) when a dissipative

Coulomb interaction is present.

2 Setup

In this section, we introduce the effective model that realizes an IQHT/SIT and whose critical

properties we’ll analyze in §3.

Consider the (2 + 1)d theory of Nf Dirac fermions ψI coupled to a U(1) Chern-Simons

gauge field aµ at level (θ − 1/2)5

L(1) =

Nf∑
I=1

ψI(i /Da −m)ψI −
1

2

1

4π
ada+

θ

4π
(a− A)d(a− A)− 1

4
f 2
µν . (2.1)

When Nf = 2θ = 1, we recover (1.2), the dual of a free Dirac fermion; when Nf = θ = 1,

we find the dual (1.4) to the 3d XY model. Reminiscent of conventional flux attachment

[50, 51], θ−1 quantifies the number of attached flux quanta; for general θ, L(1) is the model for

an anyon gas introduced by Chen, Fisher, and Wu [25]. We refer to ψI as a Dirac composite

fermion. Aµ is a nondynamical U(1) gauge field that we identify with electromagnetism.6

In §2.1 and §2.2, where we discuss the phase diagram and symmetry of (2.1), we take

Nf = 1. Otherwise, Nf is an arbitrary parameter that allows for analytic control as Nf →∞.

5The notation in (2.1) is as follows: ψ̄ = ψ†γ0; /Da = (∂µ − iaµ)γµ with µ ∈ {0, 1, 2} = {t, x, y}; and a

Chern-Simons term AdA = εµνρAµ∂νAρ. For the purpose of discussing the symmetries of (2.1) later in this

section, we choose Minkowski signature ηµν = diag(+1,−1,−1) and γ-matrices (γ0, γ1, γ2) = (σ3, iσ1, iσ2)

where σj are the Pauli σ-matrices; in the renormalization group analysis in §3, we’ll work in Euclidean

signature.
6In §2.3 we give A0 dynamics to discuss the Coulomb interaction.
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2.1 Mean-Field Phase Diagram at Nf = 1

For a given θ, the mean-field phase diagram of (2.1) at Nf = 1 is parameterized by the

Dirac composite fermion mass m. At energies less than |m|, we may integrate out7 the Dirac

composite fermion to obtain the effective Lagrangian,

Leff =
sign(m)− 1 + 2θ

2

1

4π
ada− θ

2π
adA+

θ

4π
AdA− 1

4
f 2
µν . (2.2)

Higher-order terms in aµ can be ignored as |m| → ∞. The Maxwell term f 2
µν can also be

dropped in this long wavelength analysis.

θ = 1/2

Setting θ = 1/2, there are two phases. For m > 0 we find the effective Lagrangian for an

insulator at zero temperature,

LINS =
1

2

( 1

4π
ada− 1

2π
adA+

1

4π
AdA

)
= 0, (2.3)

where the second equality follows from integrating out aµ. For m < 0 we find the long

wavelength Lagrangian for an integer Hall state,

LIQH =
1

2

(
− 1

4π
ada− 1

2π
adA+

1

4π
AdA

)
=

1

4π
AdA. (2.4)

θ = 1

Next set θ = 1. We again find the insulator when m > 0,

LINS =
1

4π
ada− 1

2π
adA+

1

4π
AdA = 0. (2.5)

To identify the m < 0 phase, it’s helpful to include the charge e∗ = q (measured in units of

the electric charge e) carried by the boson Φ in (1.3) by substituting Aµ → qAµ:

LSC = − q

2π
adA+

q2

4π
AdA. (2.6)

(2.6) describes a Z/q gauge theory, the long wavelength description of a superconductor with

charge-q condensate [52, 53].

7By “integrate out,” we refer to path integral relations of the form:
∫
Dφ ei

∫
( 1
2φKφ+φJ) ∝ ei

∫
(− 1

2JK
−1J),

where φ and J are real fields and K is some kernel, e.g., a kinetic term for φ. Thus, we equate the Lagrangians
1
2φKφ + φJ = − 1

2JK
−1J upon integrating out φ. Such identities follow directly from the φ equation of

motion when φ appears quadratically in the Lagrangian.
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2.2 Discrete Symmetry at Nf = 1

The types of randomness that can be added to (2.1) are characterized by charge-conjugation

C and time-reversal T symmetries. (Parity, i.e., spatial reflection, is necessarily broken

in the presence of quenched disorder.) These symmetries are defined with respect to the

electron and boson Lagrangians in Eqs (1.1) and (1.3). We discuss their implementation

[18, 19, 54–56] in the dual Lagrangian (2.1) at Nf = 1 at criticality m = 0.

θ = 1/2

The free Dirac Lagrangian in (1.1) is invariant under charge-conjugation C,

Ψ 7→ σ1Ψ∗, Aµ 7→ −Aµ. (2.7)

The presence of the Chern-Simons term for Aµ reflects the violation of time-reversal T :

t 7→ −t, Ψ 7→ −iσ2Ψ, (A0, Ai) 7→ (A0,−Ai), (2.8)

which is anti-unitary (i 7→ −i). On the surface of a time-reversal invariant topological

insulator, this Chern-Simons term is absent and so T can be preserved.

The dual Lagrangian (2.1) at θ = 1/2 is also invariant under C:

ψ 7→ σ1ψ, aµ 7→ −aµ, Aµ 7→ −Aµ. (2.9)

Identifying the electromagnetic currents across the duality between (1.1) and (2.1), δLDirac

δAµ
=

δL(1)

δAµ
, we equate

Ψ̄γµΨ =
1

4π
εµνρ∂νaρ. (2.10)

Similarly, the a0 equation of motion relates

1

4π
εµνρ∂νAρ = ψ̄γµψ. (2.11)

Eqs. (2.10) and (2.11) imply that in (2.1), CT :

t 7→ −t, ψ 7→ −iσ2ψ∗, (a0, ai) 7→ (a0,−ai), (A0, Ai) 7→ (−A0, Ai). (2.12)

Thus, T and CT are exchanged across the duality: the T transformations on Ψ and Aµ

is identical to the CT transformations on ψ and aµ, and vice versa. In the absence of the

Chern-Simons term for Aµ, (2.1) is time-reversal invariant.

While the dual Lagrangians in (1.1) and (2.1) violate time-reversal invariance as (2+1)d

theories, they do preserve a “non-local” particle-hole (PH) transformation. To define this,
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consider the following transformations of a general Lagrangian L(A) which has a U(1) sym-

metry current that is coupled to a non-dynamical field Aµ [57]:

T : L(A) 7→ L(A) +
1

4π
AdA; (2.13)

S : L(A) 7→ L(c) +
1

2π
cdA. (2.14)

T shifts the Hall conductivity by a unit; S converts Aµ into a dynamical U(1) gauge field

cµ and adds a BF term, which couples the field strength dc to a new external field Aµ.

(2.13) and (2.14) implement modular transformations on the conductivity tensor of the U(1)

symmetry current coupling to Aµ. The PH transformation is defined as T followed by the

modular T transformation (2.13). Notice that the Dirac masses Ψ̄Ψ and ψ̄ψ are odd under

PH symmetry and even under C. The S transformation will play a role in our discussion of

the SIT theory.

θ = 1

The XY model in (1.3) is invariant under charge-conjugation C,

Φ 7→ Φ∗, Aµ 7→ −Aµ, (2.15)

and time-reversal T ,

t 7→ −t, Φ 7→ Φ, (A0, Ai) 7→ (A0,−Ai). (2.16)

The dual Lagrangian in (2.1) at θ = 1 is only invariant under C defined in (2.9); it isn’t

invariant under T ,

t 7→ −t, ψ 7→ −σ3ψ∗, (a0, ai) 7→ (−a0, ai), (A0, Ai) 7→ (A0,−Ai), (2.17)

with i 7→ −i. Instead, time-reversal is an emergent symmetry of the long wavelength physics

[19, 54]. In addition, (2.1) is invariant under a “non-local” particle-vortex (PV) transforma-

tion:

t 7→ −t, ψ 7→ −iσ2ψ, (a0, ai) 7→ (a0,−ai), (A0, Ai) 7→ (−A0, Ai), (2.18)

followed by the modular S transformation (2.14). The PV transformation is analogous to

the PH transformation of the previous section [58]; it maps the 3d XY model to its scalar

quantum electrodynamics dual [59, 60], and vice versa.

Duality maps |Φ|2 ↔ ψ̄ψ. While it’s clear that the Dirac mass is even under C, it’s less

obvious that perturbation by ψ̄ψ is time-reversal invariant. This can be understood in the

following sense: Perturbation of (2.1) by ψ̄ψ and its time-reversal, obtained using (2.17), by

−ψ̄ψ result in identical phases.
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Symmetry Assignment Summary

Table 1 summarizes the transformations of the operators that appear in (2.1) under charge-

conjugation C and time-reversal T symmetries. We use these transformation assignments to

characterize the types of randomness that may be added to L(1) for general Nf .

C T
ψψ + -

ψγ0ψ - -

ψγjψ - +

a0 - -

aj - +

b = ∂xay − ∂yax - +

ej = ∂0aj − ∂ja0 - -

Table 1: Charge-conjugation C and time-reversal T symmetry assignments of various oper-

ators.

2.3 Dissipative Coulomb Interaction

Dualizing the Coulomb Interaction

The Coulomb interaction between fermions/bosons carrying charge e∗ arises from the ex-

change of a dynamical (3 + 1)d electromagnetic scalar potential A0. In Fourier space, we

consider the action that couples a (2+1)d charge density J0(k0, k) to the scalar potential

A0(k0, ~k):

− 1

2e2
∗

∫
d4k A0(k0, ~k)

(
~k2
)
A0(−k0,−~k)−

∫
d3kJ0(k0, k)

∫
dk3A0(−k0,−~k), (2.19)

where k = (k1, k2) and ~k = (k1, k2, k3). J0(k0, k) is the Fourier transform of Ψ̄γ0Ψ(x) for the

free Dirac fermion (1.1) or iΦ∗∂0Φ(x)− i(∂0Φ∗)Φ(x) for the XY model (1.3). The absence of

an A0k
2
0A0 term means that A0 mediates an instantaneous interaction for particles moving

at speeds much less than the photon velocity. Integrating out the A0 field we find the

unscreened Coulomb interaction,

Sunscreened = −π
2

∫
d3k J0(k0, k)

e2
∗
|k|
J0(−k0,−k), (2.20)

between (2+1)d particles. It’s convenient to interpret Sunscreened as arising from the exchange

of a purely (2 + 1)d gauge field Ã0 with kinetic term and coupling to J0 as

SÃ0
= −

∫
d3k

(
Ã0(k0, k)

|k|
πe2
∗
Ã0(−k0,−k) + J0(k0, k)Ã0(−k0,−k)

)
. (2.21)
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The electromagnetic charge density J0(x) dualizes in (2.1) according to

J0(x) =
δL(1)

δA0

= − θ

2π
εij∂iaj, (2.22)

for vanishing Aj. Decomposing the gauge field ai(k0, k) = i ki|k|aL(k0, k) − i kj|k|εjiaT (k0, k) in

terms of its longitudinal and transverse components, the (unscreened) Coulomb interaction

becomes a kinetic term for aT [61]:

Sunscreened = −e
2
∗θ

2

8π

∫
d3k aT (k0, k)|k|aT (−k0,−k). (2.23)

A similar transformation of the Coulomb interaction occurs in nonrelativistic composite

fermion theories [62]. Notice that the unscreened Coulomb interaction results in a kinetic

term that dominates a possible Maxwell coupling for aµ at long wavelengths.

Dissipation

To model dissipation following [47], we consider an auxiliary system consisting of a parallel

two-dimensional electron gas (2DEG) that is coupled to (2.1) through the Coulomb interac-

tion, specifically, through Ã0. The spatial separation between the system (2.1) and electron

gas is assumed negligible. The electron Green’s function is assumed to take a diffusive form,

G−1
2D(ik0, k) = ik0 − (

k2

2m
− εF ) +

i

2τ
sign(k0). (2.24)

The dissipative effects arising from the coupling to the two-dimensional electron gas are

encoded in a correction to the Ã0 kinetic term in SÃ0
[63, 64],

δSÃ0
=

∫
d3k Ã0(k0, k)

σek
2

|k0|+Dek2
Ã0(−k0,−k), (2.25)

where the Drude conductivity σ̃e = q2
eNDe with N the density of states at Fermi energy εF

of the two-dimensional electron gas and De its diffusivity. Higher-order corrections due to

the two-dimensional electron gas will be ignored. Including δSÃ0
we obtain the dissipation-

corrected density-density (2.22) interaction upon integrating out Ã0:

S(2) = −e
2
∗θ

2

8π

∫
d3k aT (k0, k)

( k2

|k|+ f(k0, k)

)
aT (−k0,−k), (2.26)

where

f(k0, k) =
σek

2

|k0|+Dek2
, σe = e2

∗σ̃e. (2.27)

We recover the dual of an unscreened Coulomb interaction when qe = 0, as expected, or as

|k|/|k0| → 0. The Coulomb interaction is shortranged as De →∞ at finite density of states

N or when |k0|/|k| → 0; in either of these limits, we find a Maxwell-like kinetic term for aT

(albeit with inverted charge 1/e∗).
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2.4 Quenched Randomness

We consider the effects of quenched disorder that’s induced by random Aµ(x) and M(x). In

this discussion, we assume the Coulomb interaction has been included via (2.26) and Aµ(x)

is a non-dynamical quenched random variable. Since m(x) ∝ M(x), these perturbations

readily map across the duality to

δL = −m(x)ψψ(x)− θ

2π
A(x)da(x), (2.28)

where x = (x1, x2) and x = (x0, x1, x2). The second term in Eq. (2.28) is “topological

disorder,” i.e., a random source to the field strength or “topological” current da. We have

dropped a possible term proportional to εijA0(x)∂iAj(x) arising from the Chern-Simons term

for A in (2.1).

Interactions generate additional operators with random couplings, consistent with the

symmetries of Aµ(x) and m(x). The Harris criterion [65] (for Gaussian-correlated ran-

domness) implies the relevant terms at low energies correspond to operators with scaling

dimensions ∆ ≤ z + 1. At large Nf [25, 66, 67] the most generic random terms to include

are [31]

Ldis = m(x)ψ̄ψ(x) + iã0(x)ψ̄γ0ψ(x) + iãj(x)ψ̄γjψ(x)− A0(x)b(x) + εjkAj(x)ek(x), (2.29)

where b = εij∂iaj and ek = ∂0ak−∂ka0. The random couplings are assumed to be independent

Gaussian-correlated quenched random variables with zero mean:

〈m(x)m(x′)〉dis = gmδ
(2)(x− x′),

〈ã0(x)ã0(x′)〉dis = g0δ
(2)(x− x′),

〈ãk(x)ãk(x
′)〉dis = gjδ

(2)(x− x′), k ∈ {x, y},
〈A0(x)A0(x′)〉dis = ∆0δ

(2)(x− x′),

〈Ak(x)Ak(x
′)〉dis = ∆jδ

(2)(x− x′), k ∈ {x, y}, (2.30)

where 〈 · 〉dis indicates a disorder average and there is no sum over k. The disorder variances

gm, g0, gj,∆0,∆j are positive constants.

We study the effects of the randomness in (2.29) using the replica trick, which enables

the calculation of the disorder-averaged free energy and all observables that derive from it.

To this end, we introduce nr replicas ψI,` and aµ,` with ` ∈ {1, . . . , nr} and consider the

replicated partition function,

Znr =
∏
`

(∫
Dψ`Dψ̄`Da`

)
e
i
∑
`

(
S(1)[ψ`,a`]+S

(2)[a`]+Sdis[ψ`,a`]

)
, (2.31)
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where S(1)[ψ`, a`] =
∫
d3xL(1)(ψ`, a`) with L(1) given in (2.1), S(2)[a`] is given in (2.26), and

Sdis[ψ`, a`] =
∫
d3xLdis(ψ`, a` with Ldis given in (2.29). Using the identity,

logZ = lim
nr→0

Znr − 1

nr
, (2.32)

the disorder-averaged free energy, proportional to 〈logZ〉dis, is found upon disorder-averaging.

Using (2.30):

〈Znr〉dis =
∏
`

(∫
Dψ`Dψ̄`Da`

)
e
i
∑
`

(
S(1)[ψ`,a`]+S

(2)[a`]+iS
(3)[ψ`,a`]

)
, (2.33)

where

S(3)[ψ`, a`] = −1

2

∑
k

∫
dtdt′d2x

[
gm

(
ψ̄`ψ`

)
(t)
(
ψ̄kψk

)
(t′) + g0

(
ψ̄`γ

0ψ`

)
(t)
(
ψ̄kγ

0ψk

)
(t′)

+ gj

(
ψ̄`γ

jψ`

)
(t)
(
ψ̄kγ

jψk

)
(t′) + ∆0b`(t)bk(t

′) + ∆je`(t) · ek(t′)
]
,

(2.34)(
ψ̄

(I)
` ψ

(I)
`

)
(t)
(
ψ̄

(J)
k ψ

(J)
k

)
(t′) ≡ ψ̄

(I)
` (x, t)ψ

(I)
` (x, t)ψ̄

(J)
k (x, t′)ψ

(J)
k (x, t′) and similarly for the other

terms appearing in S
(3)
E .

3 Renormalization Group Analysis

We now study the critical properties of the model introduced in §2. Details of our calculations

are presented in Appendix A.

3.1 Large Nf Expansion and Renormalization Group Scheme

The Euclidean effective action in D + 1 dimensions is

SE = S
(1)
E + S

(2)
E + S

(3)
E (3.1)

12



where8:

S
(1)
E =

∫
dτdDx

[
ψ̄

(I)
`

(
γτ (∂τ + i

g√
Nf

aτ,`) + vγj(∂j + i
g√
Nf

aj,`)
)
ψ

(I)
` +mψ̄

(I)
` ψ

(I)
`

+
iκ

2
a`da`

]
, (3.2)

S
(2)
E =

∫
dωdDk

wx
2
a`,T (ω, k)

k2

|k|+ f(ω, k)
aT,`(−ω,−k), (3.3)

S
(3)
E = −1

2

∫
dτdτ ′dDx

[
gm

(
ψ̄

(I)
` ψ

(I)
`

)
(τ)
(
ψ̄

(J)
k ψ

(J)
k

)
(τ ′) + g0

(
ψ̄

(I)
` γ0ψ

(I)
`

)
(τ)
(
ψ̄

(J)
k γ0ψ

(J)
k

)
(τ ′)

+ gj

(
ψ̄

(I)
` γjψ

(I)
`

)
(τ)
(
ψ̄

(J)
k γjψ

(J)
k

)
(τ ′) + ∆0b`(τ)bk(τ

′) + ∆je`(τ) · ek(τ ′)
]
. (3.4)

We’ve set the longitudinal component of ai to zero (Coulomb gauge): ai(ω, k) = i
kj
|k|εjiaT (ω, k).

The gauge coupling is g/
√
Nf with g fixed and Nf → ∞ [68], v is the Dirac compos-

ite fermion velocity, and the Dirac mass m vanishes at criticality. The disorder variances

gm, g0, gj,∆0,∆j are assumed to scale as 1/Nf . The Chern-Simons level is controlled by

κ = 2θ−1
4π

: κ = 0 gives an IQHT and κ = 1/4π gives a SIT. wx = e2∗
4π

parameterizes the

strength of the dissipative Coulomb interaction and f(ω, k) = σek2

|ω|+Dek2 . The non-dynamical

(electromagnetic) field Aµ = 0. In the remainder, we’ll often leave replica and flavor indices,

as well as the spacetime dependence of fields implicit.

We regularize UV divergent integrals that appear in our renormalization group analysis of

SE using dimensional reduction [25, 69, 70]. This is the standard approach (e.g., [25, 70–73]

and references therein) used in the study of theories of Chern-Simons gauge fields coupled

to matter and, in contrast to dimensional regularization, has been shown to preserve gauge

invariance at least to 2-loop order in the perturbative analysis of S
(1)
E [70]. We assume without

proof that this regularization procedure maintains gauge invariance in our large Nf study

of SE, which involves 3-loop integrals. We consider a slight variation of the conventional

dimensional reduction approach. First, all vector, tensor, and spinor algebra is performed in

3d; in particular, the antisymmetric symbol εµνρ obeys the usual 3d identities. Second, loop

integrals are analytically continued to general (Euclidean) spatial dimension D ≤ 2:∫
dωd2k

(2π)3
→ µε

∫
dωdDk

(2π)D+1
, (3.5)

where ε = 2 − D and µ is the renormalization group scale.9 Simple poles proportional to

2/ε are identified with logarithmic divergences proportional to log(Λ2/µ2) in a theory with

momentum cutoff Λ; power-law divergences are set to zero.

8Replica indices `, k ∈ {1, . . . , nr} and flavor indices I, J ∈ {1, . . . , Nf} with repeated indices summed. In

Euclidean signature (+,+,+), the coordinates (τ, xj) = (it, xj), Fourier space variables (ω, kj) = (−ik0, kj),
and the γ-matrices (γ0, γ1, γ2) = (σ3, σ1, σ2).

9Typically in dimensional reduction the spacetime dimension is analytically continued.
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Figure 1: Feynman rules of SE. The wavy line denotes the effective gauge field propagator

and the directed solid line indicates the fermion propagator with m = 0. Disorder is rep-

resented by a solid line without an arrow and specified by its disorder variance (gm, g0, gj).

Screening of the disorder (g0, gj) and topological disorder (∆0,∆j) are discussed in the Ap-

pendix C.

The large Nf Feynman rules that derive from SE at m = 0 are given in Fig. 1. We’ve

summed once and for all the geometric series of fermion bubble diagrams in Fig. 2 and

replaced the bare gauge field propagator by the effective propagator,

Gmn =

(
g2

16
k2

√
ω2+v2k2 iκ|k|
iκ|k| wx

k2

|k|+f(ω,k)
+ g2

16

√
ω2 + v2k2

)−1

mn

, (3.6)

where m,n ∈ {0, T} correspond to the zeroth and transverse components of aµ. At large Nf

this resummation is equivalent to the random phase approximation. The same effect also

leads to a screening of the g0 and gj disorders (see Appendix C) [29, 30]. Aside from a few

exceptions that we’ll discuss, we’ve found disorder screening to be a subleading effect in our

analysis.

We use minimal subtraction [74, 75] to renormalize SE. In this scheme, simple poles in

ε appear in counterterms bλa(~λ
R)/ε that relate bare (B) and renormalized (R) couplings:

λBa µ
−∆a(ε) = λRa (µ, ε) +

bλa(~λ
R(µ, ε))

ε
, (3.7)
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Figure 2: The effective gauge field propagator G. The dotted line G0 represents the bare

gauge field propagator and Πµν is the 1-loop gauge field self-energy. Each term in this

geometric series of diagrams produces an O(N0
f ) correction to the gauge field propagator,

since each fermion loop contributes a factor of Nf and the two vertices associated to each

loop contribute an additional factor of g2/Nf .

where the vector of coupling constants (either B or R)

~λ =
( g2

Nf

, v,m, κ, wx, σe, De, gm, g0, gj,∆0,∆j

)T
. (3.8)

The renormalized couplings λRa (µ, ε) and residues bλa(~λ
R(µ, ε)) are analytic in ε. The higher-

order poles that generally occur on the right-hand side of Eq. (3.7) can be set to zero. The

bare couplings λBa have engineering dimensions equal to ∆λa(ε) while the renormalized cou-

plings are dimensionless. Appendix A details the calculation of the counterterms bλa(~λ
R)/ε.

λa ∆λa(ε) ∆̄λa ρλa
g2

Nf
ε 0 1

{v, wx, σe} z − 1 z − 1 0

m z z 0

{κ,∆j} 0 0 0

De z − 2 z − 2 0

{gm, g0, gj} 2z −D 2z − 2 1

∆0 2z − 2 2z − 2 0

Table 2: Engineering dimension ∆λa(ε) = ∆̄λa + ρλaε of bare coupling λBa (B superscript

omitted in the table), where ∆̄λa is independent of ε = 2 − D and ρλa is the constant

coefficient of ε.

The engineering dimensions ∆λa(ε) of the bare couplings are given in Table 2. These

dimensions are determined as follows. Each term in S
(1)
E is dimensionless with the assign-

ments:

∆τ = −∆ω = −z, ∆x = −∆k = −1, (3.9)
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∆ψ(τ,x) =
1

2
− ε

2
, ∆aE0 (τ,x) = z − ηε, ∆aEj (τ,x) = 1− ηε, (3.10)

and

∆g2/Nf = 2ηε, ∆v = z − 1, ∆m = z, ∆κ = (2η − 1)ε, (3.11)

where η is an arbitrary constant. We’ve introduced the dynamical critical exponent z with a

value to be determined later; in the absence of S
(2)
E and S

(3)
E , relativistic symmetry requires

that v be dimensionless and z = 1. In the large Nf expansion, g is fixed and we formally

take ∆Nf = −2ηε. The effective gauge field propagator is consistent with the engineering

dimensions ∆aE0 (ω,k) = −D− ηε and ∆aEj (ω,k) = (1− z)−D− ηε if η = 1/2. The dimensions

of the remaining couplings ensure the terms in S
(2)
E and S

(3)
E are dimensionless.

The beta functions βλa at ε = 0 are read off from the residues bλa(~λ
R) using

βλa(~λ
R) ≡ −µ∂λ

R
a

∂µ
= ∆̄λaλ

R
a + ρλabλa(~λ

R)−
∑
c

ρλcλ
R
c

∂bλa(~λ
R)

∂λRc
. (3.12)

There is no sum over a in Eq. (3.12). The minus sign in front of µ∂λ
R
a

∂µ
means that a

relevant/irrelevant coupling has a positive/negative beta function. Notice that only g2/Nf

and the variances gm, g0, gj can contribute to the derivative term on the right-hand side of

Eq. (3.12).

We characterize any fixed points βλa(~λ
R) = 0 by the dynamical critical exponent z and

correlation length exponent ν, evaluated at the fixed point. The dynamical critical exponent

enters the beta functions (3.12) via ∆̄λa (see Table 2) and we determine its value by the

condition of vanishing velocity beta function βv(~λ
R) = 010:

z = 1 +
1

vR

∑
c

ρλcλ
R
c

∂bv(~λ
R)

∂λRc
. (3.13)

Since the transitions we consider in this paper are tuned by the Dirac mass, we define the

correlation length ξ as the inverse momentum scale µ−1
0 at which vR(µ0)/mR(µ0) = 1.11 We

write the mass beta function as

βm(~λR) =
(
z − γψ̄ψ(~λR)

)
mR, (3.14)

10Nonzero βv implies a quantum correction to the tree-level dynamical exponent, i.e., the engineering

dimension −∆τ . This follows from the fermion dispersion relation |ω| = v|k| (see, e.g., [48]). We’ve chosen

to introduce an arbitrary z in Table 3 with a value to be determined by vanishing renormalization of the

velocity. An equivalent choice is to take engineering dimensions consistent with conformal invariance and

infer any correction to the tree-level dynamical scaling from a nonzero velocity beta function.
11The factor of vR(µ0) accounts for possible running of the velocity in the equivalent approach where z = 1

is chosen in Table 2 and the nonzero velocity beta function determines the correction z − 1 to dynamical

scaling.
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where the anomalous dimension γψ̄ψ controls the asymptotic scaling of the correlation func-

tion 〈ψ̄ψ(τ, x)ψ̄ψ(0)〉 ∼ |v2τ 2 + x2|−(D+γψ̄ψ). Using Eqs. (3.12) - (3.14), we find

ξ = Λ−1
(mΛ/vΛ

Λ

)−ν
(3.15)

where Λ is an arbitrary momentum cutoff defining the “initial conditions,” mR(Λ) = mΛ/Λ
z

and vR(Λ) = vΛ/Λ
z−1, and the inverse correlation length exponent

ν−1 = z − γψ̄ψ. (3.16)

Note that mR does not enter the residues bλa(~λ
R) with λRa 6= mR and only appears linearly

in bm(~λR).

In the remainder of the main text, we drop the B and R superscripts for notional clarity.

3.2 General Analysis

We now present the results of our renormalization group calculation, which is valid to order

1/Nf in the large Nf expansion. See Appendix A for details.

Vanishing velocity beta function determines the dynamical critical exponent to be

z = 1 + gm + g0 + 2gj − Fw(wx, κ, σe), (3.17)

where g1 = g2/16, the rescaled couplings are

m =
m

v
,wx =

wx
v
, σe =

σe
v
, gm =

gm
2πv2

, g0 =
g0

2πv2
, gj =

gj
2πv2

,∆0 = ∆0,∆j = ∆j v
2, (3.18)

and

Fw(wx, κ, σe) =
1

4π2Nf

∫ ∞
−∞

dy
g1(−1 + 2y2)(σe + |y|) + wx|y|

√
1 + y2

(1 + y2)2
(√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

) .(3.19)
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The beta functions βλa = −µ∂λa
∂µ

for the remaining couplings take the form:

βwx = wx
(
z − 1

)
, (3.20)

βσe = σe
(
z − 1

)
, (3.21)

βDe = De

(
z − 2

)
, (3.22)

βm = m
(
z − γψ̄ψ

)
, (3.23)

βgm = 2gm
(
z − 1 +

2g0 gj
gm

− γψ̄ψ
)
, (3.24)

βg0 = 2g0

(
z − 1 +

2gj gm
g0

)
, (3.25)

βgj = 2gj
(
z − 1 +

gm g0

gj
− gm − g0 − 2gj + Fw(wx, κ, σe)

)
, (3.26)

β∆0
= ∆0(2z − 2) +

gm
(
∆j(g1 + wx)

2 + ∆0κ
2
)

64
(
g1(g1 + wx)

)2 +
g0 gmNf π v

2

32
, (3.27)

β∆j
=

gm (g2
1 ∆0 + κ2 ∆j)

128
(
g1(g1 + wx) + κ2

)2 +
gj gmNfπv

4

64
, (3.28)

where z is given in Eq. (3.17), the mass anomalous dimension

γψ̄ψ = 2gm + 2g0 −
g0g1 − gj(g1 + wx)

g2
1 + g1wx + κ2

+ Fm(wx, κ, σe)− Fw(wx, κ, σe), (3.29)

and

Fm(wx, κ, σe) =
1

4π2Nf

∫ ∞
−∞

dy
[ g1(σe + |y|)(−2y2 − 3)− wx

√
1 + y2|y|

(1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

]

+

(σe + |y|)
(√

1 + y2(g2
1 − κ2)(σe + |y|) + g1wx|y|

)
2(1 + y2)

[√
1 + y2(g2

1 + κ2)(σe + |y|) + g1wx|y|
]2

]
. (3.30)

To simplify the above expressions, we have ignored terms that arise from the screening of the

g0, gj disorders (see Appendix C); our detailed analysis below includes such effects whenever

relevant. The gauge coupling g/
√
Nf is marginal once the large Nf effective gauge field

propagator in Fig. 2 is adopted and so its beta function is not included.

Let’s make a few additional comments about these expressions.

1. In general, the above beta functions don’t have an IR stable solution at m = 0, even

when disorder screening is included. In the remaining sections, we analyze cases for

which we have found fixed points when a symmetry is present.
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2. We’ve taken the variances to scale as 1/Nf for Nf →∞. The beta functions have terms

that scale as 1/Nf and 1/N2
f . The “classical” contributions to the beta functions arising

from the engineering dimensions of couplings scale as 1/Nf ; the “quantum” corrections

generally scale as 1/N2
f . The exception to the latter appears in the third term in β∆0

and the second term in β∆j
.

3. The first three beta functions βwx , βσe , βDe characterize the dissipative Coulomb in-

teraction. In our analysis, we consider z < 2 and so the diffusion constant De is an

irrelevant parameter that will be set to zero. A nonzero Coulomb interaction allows for

two classes of fixed points: (1) a finite Coulomb interaction either with wx, σe 6= 0 and

z = 1 or with wx = σe = 0 and z determined by Eq. (3.17); (2) an infinite Coulomb

interaction with wx →∞, σe →∞, and 1 < z < 2 that is controlled by the dissipation

parameter σe/wx.

4. Whenever two of the three disorder variances gm, g0, gj are considered, the third vari-

ance is radiatively generated. When all three variances gm, g0, gj are present, both

types of topological disorder ∆0,∆j are generated. This is consistent with the symme-

try assignments in Table 1.

3.3 Finite Coulomb Interaction

No Disorder

In the absence of any disorder, the only nontrivial beta functions are associated to the

Coulomb interaction,

βwx = −wx Fw(wx, κ, σe). (3.31)

Since 1
σe
βσe = 1

wx
βwx , it’s sufficient to consider the behavior of wx when studying a finite

Coulomb interaction. The integral that defines Fw in Eq. (3.19) can only be evaluated numer-

ically for general σe. We’ve found that Fw is positive for any κ when wx 6= 0. Consequently,

the clean fixed point with wx = σe = 0 is perturbatively stable to the addition of a Coulomb

interaction and z = 1. Two examples for the behavior of βwx are displayed in Fig. 3.

In particular, in the limit of σe = 0 the beta function for wx is always negative for any

Chern-Simons coupling κ. This result should be contrasted with earlier work [28] where

a critical value of |κ| was reported above which the Coulomb interaction was found to be

19



Figure 3: βwx as a function of wx and κ

relevant.12 As a check on our calculation, we find the mass anomalous dimension is given by

γψ̄ψ =
128

3π2Nf

1− 512κ2

(1 + 256κ2)2
(3.32)

in agreement with [25, 67, 76, 77] for general κ. For the IQHT (κ = 0), ν−1 ≈ 1 − 4.3/Nf ;

for the SIT (κ = 1/4π), ν−1 ≈ 1 + 1.4/Nf .

C Symmetry

According to Table 1, the Coulomb couplings and random mass disorder (gm) are allowed

when there is charge-conjugation symmetry. The beta functions are

βwx = wx

(
gm − Fw(wx, κ, σe)

)
, (3.33)

βgm = −2gm

(
gm + Fm(wx, κ, σe)

)
, (3.34)

where Fw and Fm are defined in Eqs. (3.19) and (3.30). The flow of the random mass is

controlled by the mass anomalous dimension γψ̄ψ = 2gm − Fw(wx, κ, σe) + Fm(wx, κ, σe).

Within the large Nf approximation, random mass disorder is only a relevant perturbation to

the clean fixed point of the previous section (wx = σe = 0) when γψ̄ψ < 0, i.e., when 1 < 512κ2

(see Eq. (3.32)), in agreement with [31]. The presence of a Coulomb interaction does not

appear to alter this conclusion within our analysis. For κ = 1/4π (or any κ2 > 1/512), there

exists a line of fixed points with finite disorder and Coulomb interaction parameterized by

σe. Fig. 4 shows a few examples of this behavior. Since βwx ∝ z − 1 and βgm ∝ −γψ̄ψ when

z = 1, any fixed point with finite disorder and Coulomb interaction has

ν−1 = z = 1. (3.35)

12The discrepancy seems to arise from assigning the Chern-Simons coupling κ an engineering dimension

proportional to ε = 2 − D. This choice, which appears to be inconsistent with the scaling of the effective

gauge field propagator in the large Nf expansion, results in additional derivatives with respect to κ in the

beta function in (3.12).
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Figure 4: RG flow of wx vs. gm.

At the (generally unstable) fixed point with nonzero random mass disorder and vanishing

Coulomb interaction,

ν−1 = 1 and z = 1− 128

3π2Nf

1− 512κ2

(1 + 256κ2)2
, (3.36)

where κ2 > 1/512. For κ = 1/4π, z ≈ 1 + 1.4/Nf .

It’s interesting to compare our results for the critical exponents with recent analytic

and numerical studies of the dirty XY model. In a large Nf expansion [38] report ν = 1

and z = 1 + .5/Nf ; numerics [42] directly probes Nf = 1 with the result ν = 1.16(5) and

z = 1.52(3). In [30], a finite disorder fixed point of quantum electrodynamics without Chern-

Simons term was found using an ε expansion about (3+1)d. Since our approximation schemes

are different, there is no contradiction with our conclusion that random mass disorder is

irrelevant when κ = 0. Nevertheless, it would be interesting to consider this issue further.

CT Symmetry

According to Table 1, the Coulomb coupling, random scalar potential g0, and topological

disorder ∆j are allowed by CT symmetry. Because a nonzero Chern-Simons term is odd

under time-reversal symmetry, we only consider κ = 0 in the next two subsections that

study CT and T preserving disorder. The beta functions are

βwx = wx

(
g0(1− φ1)− Fw(wx, κ = 0, σe)

)
, (3.37)

βg0 =
2g0

wx
βwx , (3.38)

β∆j
= 0, (3.39)
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where φ1 isolates any terms that arise from the screening of the disorder: φ1 = 0 means

disorder screening is ignored; φ1 = 1 means that disorder screening is included. While we’re

unaware of a general reason to exclude disorder screening, we’ll discuss the behavior of the

above beta functions both with and without screening to illustrate its effect.

As mentioned previously, Fw in Eq. (3.19) is positive for any κ when wx is nonzero; in

particular when σe = 0, Fw(wx, 0, 0) is a monotonically increasing function that approaches
8

Nfπ2 for wx → ∞. When disorder screening is ignored (φ1 = 0), there is a fixed surface

defined by g0 = Fw, which is parameterized by (wx, g0,∆j), in agreement with [31]. This

fixed surface is unstable, e.g., consider perturbation to g0 at fixed wx and ∆j. When dis-

order screening is included (φ1 = 1), there is a line of stable fixed points parameterized by

(wx, g0,∆j) = (0, 0,∆j). This result is consistent with [30]. This behavior is illustrated in

Fig. 5. The corresponding critical exponents at the stable fixed point (φ1 = 1) reduce to

Figure 5: RG flow of wx vs. g0.

those of the clean theory without Coulomb interactions. Recall that g0 and ∆j disorders

are generated by random electrical vector potential Aj(x) in the free Dirac fermion dual at

Nf = 1 for which a line of diffusive fixed points was found in [16]. It’s unclear to what extent

the line of fixed points parameterized by ∆j is related.

If CT and T are emergent symmetries of the SIT theory we consider, then the beta

functions should only have fixed point solutions respecting these symmetries at κ = 1/4π.

Unfortunately, the leading terms in the large Nf beta functions don’t produce any such

nontrivial fixed points. Even if gm is initially tuned to zero, the random mass beta function

receives a positive correction from disorder screening equal to

δβgm =
8g0

2g2
1κ

4

(g2
1 + g1wx + κ2)4

. (3.40)

Nonzero g0 and gm then results in the generation of all couplings, for which we find runaway

flow.
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T Symmetry

According to Table 1, the Coulomb coupling, random vector potential gj, and topological

disorder ∆0 are allowed by T symmetry. The beta functions are

βwx = wx
(
2gj

(
1− φ1

g1 (g1 + 2wx)

(g1 + wx)2

)
− Fw(wx, κ = 0, σe)

)
, (3.41)

βgj = 0, (3.42)

β∆0
=

2∆0

wx
βwx , (3.43)

where we continue to use φ1 to isolate terms that arise from the screening of the disorder.

If screening is ignored (φ1 = 0), there is a surface of fixed points defined by 2gj =

Fw(wx, 0, σe) and parameterized by (wx, gj,∆0) with gj < 4/Nfπ
2 and non-negative ∆0. On

this surface z = 1 and ν−1 = 1 + 2gj − gj
g1
− Fm(wx, 0, σe); Fm is a monotonically decreasing

function of wx when κ = σe = 0: 128
3π2Nf

≥ Fm(wx) ≥ − 8
π2Nf

. For fixed gj, this surface is

stable to small deformation by wx since Fw is an increasing function of wx. For gj > 4/Nfπ
2,

we find runaway flows. This behavior is shown in Fig. 6. If screening is included (φ1 = 1),

Figure 6: RG flow of wx vs. ∆0.

the fixed points are determined by the equation,

gj
∗ =

Fw(wx)

2[1− φ1
g1(g1+2wx)
(g1+wx)2 ]

≡ fs(wx) (3.44)

where fs(wx) monotonically decreases from fs(wx = 0) = ∞ to fs(wx → ∞) = 4
Nfπ2 . If gj

is chosen to be smaller than 4
Nfπ2 , then the RG flows to (wx

∗,∆0
∗
) = (0, 0) because βwx is

nonnegative and only vanishes when wx = 0. If gj >
4

Nfπ2 , then there exists a finite value of

wx for which the beta function vanishes, however, the resulting fixed point is IR unstable.
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3.4 Infinite Coulomb Interaction

Dissipation has played only a minor role in the above analysis. We’ll now discuss how

dissipation allows for fixed points with z 6= 1 in the presence of a nonzero Coulomb interaction

[48].

The runnings of the Coulomb interaction parameters wx and σe are determined by their

engineering dimensions, which are both equal to z − 1 (see Eqs. (3.20) and (3.21)), in the

large Nf expansion. Any situation with nonzero Coulomb interaction and z > 1 necessarily

requires wx and σe individually flowing to strong coupling. Note, however, that it is their

dimensionless ratio σe/wx that appears in the action SE in the limit wx, σe → ∞. Con-

sequently, we can parameterize this infinite Coulomb interaction limit with the marginal

parameter α = σe/wx. We refer to α as the dissipation strength. z > 1 is required for any

fixed point with infinite Coulomb interaction to be IR attractive; treating α as a tuning

parameter, we’ll view any infinite Coulomb interaction fixed point with 0 < z < 1 as an IR

unstable fixed point.

For wx →∞, Fw in (3.19) reduces to

F∞(κ, α) ≡
∫ ∞
−∞

dy
g1

√
1 + y2(−1 + 2y2)α + (1 + y2) |y|

4π2Nf (1 + y2)
5
2

(√
1 + y2(g2

1 + κ2)α + g1 |y|
) (3.45)

For any κ and α ≥ 0, 0 ≤ F∞(κ, α) ≤ 8
Nf π2 . In this limit, the dynamical critical exponent

at infinite Coulomb coupling is

z∞ = 1 + gm + g0 + 2gj − φ1 g0 − F∞(κ, α), (3.46)

where we’ve explicitly indicated how screening appears in z∞.

C Symmetry

At infinite Coulomb coupling and in the presence of charge-conjugation symmetry, there

exist nontrivial fixed points for any κ. These occur at small values of gm and are found by

solving βgm = 0 from (3.24) using Eq. (3.46):

gm
∗(α) = Fm(α, κ)

≡
∫ ∞
−∞

dy

√
1 + y2 |y|+ g1 α (3 + 2y2)

4Nfπ2(1 + y2)2
[
g1|y|+ α

√
1 + y2(g2

1 + κ2)
]

−
α
[
g1

√
1 + y2 |y|+ (1 + y2)(g2

1 − κ2)α
]

8Nfπ2(1 + y2)
3
2

[
g1|y|+ α

√
1 + y2(g2

1 + κ2)
]2 . (3.47)

Fig. (7) shows the behavior of the renormalization group flows for κ = 0 and κ = 1/4π.
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Figure 7: RG flow of α vs. gm. The dissipation parameter α is exactly marginal, so it’s a

free parameter that can be tuned.

Note that the beta functions for wx → ∞ are different from the case of finite wx, even

when α = 0: nontrivial fixed points exist for any value of κ. The correlation length exponent

ν−1 = 1 because the fixed points are solved from βgm = 0 (see Eq. (3.29)). The dynamical

critical expoennt z∞ is found using (3.46):

z∞(α) = gm
∗(α)− F∞(κ, α). (3.48)

To guarantee the irrelevancy of the diffusion constant De of the 2DEG bath, z∞ < 2 is

required. Fortunately, z∞ does not exceed two for the values of α we’ve considered—see

Fig. (8).

CT Symmetry

As with finite Coulomb coupling, we focus on κ = 0 in this and the next subsection because

the Chern-Simons term is odd under CT and T .

In the wx →∞ limit, only βg0 = 0 is nontrivial:

2g0
2(−1 + φ1) + 2 g0 F∞(κ = 0, α) = 0 (3.49)

Including disorder screening (φ1 = 1), g0 is marginally irrelevant. If disorder screening is

ignored, an unstable fixed point lies at g0
∗ = F∞(κ = 0, α). Perturbation by g0 about this

fixed point results either in flow (along the g0 direction) towards strong coupling or towards
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Figure 8: Dynamical critical exponent z∞ versus effective dissipation strength α evaluated

on the fixed points when Nf = 3. The green line corresponds to a z∞ < 1, which is an

unstable wx →∞ fixed point. When κ = 1/4π, 1 < z∞ < 2 for α ≥ 1.47.

the infinite Coulomb interaction clean fixed point with critical exponents:

z∞(α) = 1− F∞(κ = 0, α) < 1, (3.50)

ν−1 = 1− Fm(α, κ = 0). (3.51)

Since z∞ < 1, these infinite Coulomb coupling fixed points are IR unstable. This renormal-

ization group flow is shown in Fig. 9.

Figure 9: The RG flow of g0 with respect to α.

T Symmetry

When time-reversal symmetry is preserved and κ = 0, the only nontrivial beta function is

β∆0
. In the limit of strong Coulomb coupling, the disorder screening terms vanish. Solving
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β∆0
= 0 gives the condition

gj
∗ =

1

2
F∞(α, κ = 0) (3.52)

on the marginal couplings gj and α. The resulting fixed point is IR unstable along the ∆0

direction and, depending on the values of gj and α, flows either to strong coupling or to zero

when perturbed about this fixed point. This is shown in Fig. 10. Using Eq. (3.46), we see

ΒD0 >0 , strong-coupled

ΒD0 <0 , irrelevant ΒD0 =0

0 2 4 6 8 10
Α

0.04

0.06

0.08

0.10

0.12

0.14

0.16

gj

Figure 10: In the case of wx → ∞, the fixed point solution for ∆0 is obtained by tuning gj

and α so as to sit on the curve above.

that z∞ = 1 at the fixed point defined by β∆0
= 0. The correlation length exponent is given

by ν−1 = 1 + 2gj −Fm(α, κ = 0)− gj
g1

= 1− 7F∞(α, κ = 0)−Fm(α, κ = 0), where the second

equality is obtained after evaluating on the fixed point defined by Eq. (3.52).

4 Discussion

In this paper, we studied the influence of quenched disorder and a dissipative Coulomb

interaction on two different quantum phase transitions: an integer quantum Hall transition

(IQHT) and a superconductor-insulator transition (SIT). We considered both transitions

using effective theories that consist of a Dirac fermion coupled to a U(1) Chern-Simons

gauge field at level (θ − 1/2): θ = 1/2 corresponds to the IQHT, while θ = 1 corresponds

to the SIT. We performed a renormalization group analysis using a large Nf expansion in

which the number fermion flavors Nf →∞ to study the critical properties of these theories.

We found both theories to be stable to the addition of a Coulomb interaction. The IQHT

was stable to C preserving disorder and exhibited a line of diffusive fixed points with CT
disorder. (C is charge-conjugation symmetry and T is time-reversal symmetry.) The SIT

exhibited a line of fixed points parameterized by the Coulomb coupling when C is preserved.

Other cases resulted in runaway flow.

Without disorder, the free Dirac fermion in (1.1) has a correlation length exponent

ν−1
Dirac = 1, while the 3d XY model in (1.3) has a correlation length exponent ν−1

Bose ≈ 3/2. In
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the large Nf expansion, we find ν−1(θ = 1/2) ≈ 1− 4.3/Nf and ν−1(θ = 1) ≈ 1 + 1.4/Nf , in

agreement with [25, 67, 76, 77]. Evidently the leading order term in the large Nf expansion

provides a poor approximation to the critical exponents of the clean fixed points [25]. Com-

paring our results (ν−1 = 1, z = 1+1.4/Nf ) for the correlation length and dynamical critical

exponents with recent numerical (ν ≈ 1.2, z ≈ 1.5) [39–42] and analytic (ν = 1, z ≈ 1+.5/Nf )

[38] studies (without a Coulomb interaction) suggests this may also be the case for the dirty

3d XY model. Higher-order O(1/N2
f ) terms may improve the comparison. Interestingly,

the free Dirac fermion and 3d XY model admit duals involving a Dirac fermion coupled to

a non-Abelian U(N) Chern-Simons gauge field for any N > 1 [78, 79]. Such formulations

suggest alternative approximation schemes. For instance, without disorder, these theories

have a correlation length exponent equal to unity at 2-loop order in the planar limit [72].

Might the planar limit furnish better approximations to such theories, compared with the

large Nf expansion?

There are a variety of other observables and generalizations to consider. For example,

scaling dimensions of the lowest dimension monopole operators in the Chern-Simons theories

we studied should correspond to the η exponents of the Dirac and XY models. In (2+1)d, the

dc T → 0 conductivity tensor can be universal [43, 80]; it would be interesting to calculate

and compare across the duality [81]. Perhaps considering the effects of finite density is most

pressing, given that the electronic systems inspiring this work have a finite density of states.

One of the motivations of the current work was to better understand the emergent sym-

metries that are found at IQHTs and SITs via electrical transport experiments. For concrete-

ness, consider the magnetic field-tuned SIT at which a “self-duality”13 with dc σxx ≈ (2e)2/h

and σxy ≈ 0 is found at low temperatures [83]. It was argued in [27] that PV symmetry (see

§2.2) of the “fermionic dual” to the XY model in 2.1 results in self-dual transport. How this

symmetry might be preserved quantum mechanically is unclear [55]. This question is related

to the emergent time-reversal symmetry of this “fermionic dual” at zero Dirac composite

fermion density. Perhaps unsurprisingly, the leading order large Nf beta functions that we

studied do not appear to respect the emergent time-reversal symmetry; at least, we haven’t

found nontrivial solutions with an emergent time-reversal invariance at κ = 1/4π. It would

be interesting to further understand this apparent shortcoming.
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A Calculation Overview

In this appendix we derive the residues bλa(~λ
R(µ, ε)) in Eq. (3.7),

λBa µ
−∆a(ε) = λRa (µ, ε) +

bλa(~λ
R(µ, ε))

ε
, (A.1)

that determine the beta functions at ε = 0 via Eq. (3.12):

βλa(~λ
R) ≡ −µ∂λ

R
a

∂µ
= ∆̄λaλ

R
a + ρλabλa(~λ

R)−
∑
c

ρλcλ
R
c

∂bλa(~λ
R)

∂λRc
. (A.2)

After establishing notation, we’ll list the main results used in the main text. Later sections

provide algebraic details.

Setup

Identify SE in Eqs. (3.2) - (3.4) with the bare action SB by endowing all fields and couplings

with bare (B) subscripts/superscripts. To simplify notation, we’ll leave replica and flavor

indices implicit. Define renormalized (R) fields and couplings,

ψB = Z
1/2
f ψR, a0

B = Z
1/2
a,0 a

0
R, ajB = Z

1/2
a,j a

j
R, λBc = Z−1/2

c λRc (A.3)

where the vector of couplings (either B or R)

~λ =
( g2

Nf

, v,m, κ, wx, σe, De, gm, g0, gj,∆0,∆j

)T
. (A.4)

Separate SB into physical and counterterm actions:

SB = S
(1)
phys + S

(2)
phys + S

(3)
phys + S

(1)
CT + S

(2)
CT + S

(3)
CT (A.5)

with

S
(1)
phys =

∫
dτdDx

[
ψ̄R

(
γτ (∂

τ + i
gRµ

ε/2√
Nf

aτR) + vRµ
z−1γj(∂

j + i
gRµ

ε/2√
Nf

ajR)
)
ψR

+ µzmRψ̄RψR +
iκR
2
aRdaR

]
, (A.6)

S
(2)
phys =

∫
dωdDk

wRµ
z−1

2
aTR(−ω,−k)

k2

|k|+ fR(ω, k)
aTR(ω, k), (A.7)

S
(3)
phys = −1

2

∫
dτdτ ′dDx

[
(gm)Rµ

2z−D(ψ̄RψR)(ψ̄RψR) + (g0)Rµ
2z−D(ψ̄Rγ

0ψR)(ψ̄Rγ
0ψR)

+ (gj)Rµ
2z−D(ψ̄Rγ

jψR)(ψ̄Rγ
jψR) + (∆0)Rµ

2z−2bRbR + (∆j)ReR · eR
]
, (A.8)
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S
(1)
CT =

∫
dτdDx

[
ψ̄R

(
γτ (∂

τ + i
gRµ

ε/2√
Nf

aτR)δ1 + vRµ
z−1γj(∂

j + i
gRµ

ε/2√
Nf

ajR)δ2

)
ψR

+ µzmRψ̄RψRδm +
iκR
2
aRdaRδκ

]
, (A.9)

S
(2)
CT =

∫
dωdDk

wRµ
z−1δw
2

aTR(−ω,−k)
k2

|k|+ fR(ω, k)
aTR(ω, k), (A.10)

S
(3)
CT = −1

2

∫
dτdτ ′dDx

[
(gm)Rµ

2z−Dδgm(ψ̄RψR)(ψ̄RψR) + (g0)Rµ
2z−Dδg0(ψ̄Rγ

0ψR)(ψ̄Rγ
0ψR)

+ (gj)Rµ
2z−Dδgj(ψ̄Rγ

jψR)(ψ̄Rγ
jψR) + (∆0)Rµ

2z−2δ∆0bRbR + (∆j)Rδ∆j
eR · eR

]
, (A.11)

fR =
e2
∗(σe)Rµ

z−1

|ω|+ (De)Rµz−2k2
, (A.12)

and the renormalization group scale µ enters in accord with the engineering dimensions

listed in Table 2. The counterterms δX have poles in ε with coefficients determined by the

requirement that correlation functions of physical fields have no divergences as ε → 0. We

focus exclusively on the terms in δX proportional to 1/ε. Using Eq. (A.3) to impose Eq. (A.5),

we relate the bare and renormalized couplings:

vBµ1−z = vR(1 + δ2 − δ1), (A.13)

mBµ−z = mR(1 + δm − δ1), (A.14)

κB = κR(1 + δκ), (A.15)

wBx µ
1−z = wRx (1 + δw), (A.16)

gBXµ
D−2z = gRX(1− 2δ1 + δgX ), gX ∈ {gm, g0, gj}, (A.17)

∆B
0 µ

2−2z = ∆R
0 (1 + δ∆0), (A.18)

∆B
j = ∆R

j (1 + δ∆j
), (A.19)

σBe µ
1−z = σRe (1 + δσe), (A.20)

DB
e = DR

e (1 + δD). (A.21)

(A.22)
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Thus, we can read off the residues:

bv = vR(δ2 − δ1)ε (A.23)

bm = mR(δm − δ1)ε (A.24)

bκ = κRδκε (A.25)

bw = wRx δwε (A.26)

bgX = −gRX(2δ1 − δgX )ε, gX ∈ {gm, g0, gj}, (A.27)

b∆X
= ∆R

Xδ∆X
ε, ∆X ∈ {∆0,∆j}, (A.28)

bσe = σRe δσε, (A.29)

bDe = DR
e δDε. (A.30)

B Counterterms

As discussed in the main text, we choose the dynamical critical exponent z in such a way

that the fermion velocity v does not run, i.e., the velocity beta function is zero. In the

expressions below, it’s convenient to redefine couplings to absorb the velocity dependence as

follows:

gm =
gm

2πv2
, g0 =

g0

2πv2
, gj =

gj
2πv2

, ∆0 = ∆0 , ∆j = ∆j v
2 ,

wx =
wx
v
, σe =

σe
v
,

∫ ∞
−∞

dzF (z) =

∫ ∞
−∞

v dy F (y =
z

v
), (B.1)

where the function F (z) is introduced below. We also define g1 = g/16 and m = m/v.

Let us make a few remarks about the expressions below.

• We use φ1 to parameterize the screening of the disorder described in Appendix C.

φ1 = 0 means the screening is ignored; φ1 = 1 means the screening is included.

• Terms proportional to ξ are divergent. However, this is an unphysical divergence due

to our gauge choice: This divergence does not appear in physical quantities such as

critical exponents.

• The Ward identity guarantees the gauge field corrections to δ1 and δg0 cancel; the

ones in δ2 and δgj likewise cancel. In the absence of the Coulomb interaction, the

equality of the gauge corrections in δ1 and δ2 is a coincidence, which makes βg0 , βgj
independent of the gauge corrections. When the Coulomb interaction is included, βg0

receives corrections from the gauge field, while βgj does not.
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δκ, δw, δσ, and δD Counterterms

Quantization of the Chern-Simons level and finiteness of the gauge field self-energy in 3d

implies

δκ = δw = δσ = δD = 0. (B.2)

Consequently, renormalizations of κ,wx, σe, and De are controlled by their engineering di-

mensions.

δ1 Counterterm

The diagrams that contribute to δ1 are given by taking the temporal component of Fig. 11:

δ1 ε = −(gm + g0 + 2gj) + φ1

[
g2

1wx (g1gj − g1g0 − g0 wx)

(g2
1 + g1wx + κ2)2

+
g1 (g1gj + g1g0 + 2g0 wx)

g2
1 + g1wx + κ2

]
+

∫ ∞
−∞

1

4π2Nf

(1− y2)(g1 σe y
2 + wx

√
1 + y2 |y| ) + g1 |y| y2 (1− y2 ξ)

(1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

] . (B.3)

δ2 Counterterm

The diagrams that contribute to δ2 are given by taking the spatial component of Fig. 11:

δ2 ε = −φ1

g2
1

[
g2

1gj + 2g1gj wx − (g0 − 2gj)κ
2
]

(g2
1 + g1wx + κ2)2

+

∫ ∞
−∞

dy
1

4π2Nf

g1(1− y2 − y4)σe − (wx y
2
√

1 + y2) |y|+ g1(1− y2 − y4ξ) |y|

(1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

] .

(B.4)

Figure 11: Diagrams contributing to δ1, δ2.
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Figure 12: 2-PI diagrams contributing to δgm , δg0 , δgj .

δgm Counterterm

δgm is extracted from the diagrams in Figs. 12 and 13:

δgmε =

[
2(g0 + gm)(gm − 2gj)

gm
+ 2

g1(gj − g0) + gj wx
g2

1 + g1wx + κ2

]
+φ1

[
4g1

g1κ
2(−g0

2 − gj2) + gj g0

[
2g3

1 + 4g2
1wx + 2wxκ

2 + g1(wx
2 + 4κ2)

]
gm [g2

1 + g1wx + κ2]2

]
+φ1

[
g5

1(g0 − gj) + g4
1 wx (2g0 − 3gj) + g3

1 (g0wx
2 − 2gj wx

2 + 3g0 κ
2 − 3gj κ

2 )

[g2
1 + g1wx + κ2]3

+
g2

1κ
2(3g0wx) + 2g1κ

4(gj − g0)

[g2
1 + g1wx + κ2]3

]
+φ1

[
2g4

1(gj − g0) + 4g3
1 wx(gj − g0) + g2

1(−2g0wx
2 − 6g0κ

2 + 6gj κ
2)− 4g1 g0wx κ

2

[g2
1 + g1wx + κ2]2

]
+φ2

1

[
4g2

1gj
2κ2[g2

1(g2
1 + 2g1wx − wx2) + 2g1(g1 − wx)κ2 − κ4 ]

gm[g2
1 + g1wx + κ2]4

+
4g2

1g0
2κ2[g2

1(g2
1 + 2g1wx + wx

2) + 2g1(g1 + wx)κ
2 − κ4]

gm[g2
1 + g1wx + κ2]4

+
4g0 gjg

2
1

[
− g3

1(g1 + wx)
2(g1 + 2wx)− 2g2

1(g1 + wx)(2g1 + 3wx)κ
2 − g1(5g1 + 2wx)κ

4 + 2κ6
]

gm[g2
1 + g1wx + κ2]4

]

−
∫ ∞
−∞

dy
g1(y2 + 2)(1 + y2)σe +

(
wx (1 + y2)

√
1 + y2 + g1(2 + 3y2 + y4ξ)

)
|y|

2π2Nf (1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

]

+

∫ ∞
−∞

dy

(σe + |y|)
(

(1 + y2)(g2
1 − κ2) (σe + |y| ) + (g1wx

√
1 + y2) |y|

)
4π2Nf (1 + y2)

3
2

[√
1 + y2(g2

1 + κ2)(σe + |y|) + g1wx |y|
]2 . (B.5)
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Figure 13: The mass vertex contributions to δgm

δm Counterterm

δm is extracted from the diagrams in 13:

mε δm =
1

2
gm ε

(
δgm − [2-PI boxes]

)
= g0 − 2gj + gm −

g1(g0 − gj)− gj wx
2(g2

1 + g1wx + κ2)
+ φ1

(
− g1(g0 − gj) + 3g1(g0 − gj) + 2g0wx

g2
1 + g1wx + κ2

− g2
1

gj[4g
2
1 + 4wx + g1(7 + 2wx) ]− g0[4g2

1 + wx(7 + 2wx) + g1(7 + 6wx)]

2(g2
1 + g1wx + κ2)2

− −2g3
1(g1 + wx)[−g1gj + g0(g1 + wx) ]

(g2
1 + g1wx + κ2)3

)
−
∫ ∞
−∞

dy
g1(y2 + 2)(1 + y2)σe +

(
wx (1 + y2)

√
1 + y2 + g1(2 + 3y2 + y4ξ)

)
|y|

4π2Nf (1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

]

+

∫ ∞
−∞

dy

(σe + |y|)
(

(1 + y2)(g2
1 − κ2) (σe + |y| ) + (g1wx

√
1 + y2) |y|

)
8π2Nf (1 + y2)

3
2

[√
1 + y2(g2

1 + κ2)(σe + |y|) + g1wx |y|
]2 , (B.6)

where [2-PI boxes] refers to the contributions to δgm from the diagrams in Fig. 12.

δg0 Counterterm

δg0 is extracted from the diagrams in Figs. 12 and 14:

δg0ε =
−2(g0 + 2gj) (g0 + gm)

g0

+φ1

[
4g2

1 gj gm (g2
1 + 2g1wx + 2κ2)

g0 [g2
1 + g1wx + κ2]2

+
2g2

1

(
g2

1gj + 2g1gj wx + (gj − 2gm)κ2
)

[g2
1 + g1wx + κ2]2

+
2g0g1

(
g3

1 + 2g2
1wx + 2κ2wx + g1wx

2 + g1κ
2
)

[g2
1 + g1wx + κ2]2

]
+

∫ ∞
−∞

dy
g1 y

2(1− y2)σe + g1 y
2(1− y2 ξ) |y|+ (1− y2)wx

√
1 + y2 |y|

2π2Nf (1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

] . (B.7)
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Figure 14: γµ=0 vertex component contributions to δg0

Figure 15: γµ=j vertex component contributions to δgj

δgj Counterterm

δgj is extracted from the diagrams in Figs. 12 and 15:

δgjε =
−2g0 gm

gj
+ φ1

[
2g2

1(g0 − gm)κ2

[g2
1 + g1wx + κ2]2

]

+φ1

[2g1 g0 gm

(
g3

1 + 2g2
1 wx + 2wx κ

2 + g1wx
2 + 2g1κ

2
)

[g2
1 + g1wx + κ2]2

]
+

∫ ∞
−∞

dy
1

2π2Nf

g1(1− y2 − y4)σe − (wx y
2
√

1 + y2) |y|+ g1(1− y2 − y4ξ) |y|

(1 + y2)2
[√

1 + y2(g2
1 + κ2)(σe + |y|) + g1wx |y|

] . (B.8)

Figure 16: Diagrams contributing to δ∆0 , δ∆j
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δ∆0 Counterterm

δ∆0 is extracted from the diagram in Fig. 16:

δ∆0ε =
−gm (g2

1 ∆j + 2g1wx ∆j + wx
2 ∆j + ∆0 κ

2)

64∆0 (g2
1 + g1wx + κ2)2

+
[ −g0 gmNf π v

2

32∆0

+ φ1
g1gmNf π v

2[−g1gjκ
2 + g0(g1 + wx)(g

2
1 + g1wx + 2κ2) ]

32∆0 (g2
1 + g1wx + κ2)2

]
.(B.9)

δ∆j
Counterterm

δ∆j
is extracted from the diagram in Fig. 16:

δ∆j
ε =

−gm(g2
1∆0 + ∆j κ

2)

128∆j (g2
1 + g1wx + κ2)2

+
[ −gj gmNf πv

2

64 ∆j

+ φ1
g2

1 gmNf πv
2[g2

1 gj + 2g1 gj wx − (g0 − 2gj)κ
2 ]

64∆j (g2
1 + g1wx + κ2)2

]
. (B.10)

C Feynman Rules for Disorder and Screening

Feynman Rules for Disorder Vertices

From the action (A.8), we can read the Feynman rules for the various types of disorder.

4-fermion mass vertex:

1

2
(ψ̄ψ)(ψ̄ψ) ⇒ +gm 2πδ(ω = 0) . (C.1)

4-fermion density vertex:

1

2
(ψ̄γ0ψ)(ψ̄γ0ψ) ⇒ (g0)(γ0)(γ0)2πδ(ω = 0) . (C.2)

4-fermion current vertex along the k-direction, k = x or y:

1

2
(ψ̄iγkψ)(ψ̄iγkψ) ⇒ (+gj)(iγ

k) (iγk)2πδ(ω = 0) . (C.3)

b(τ)b(τ ′) disordered 2-pt vertex rule:

1

2
bz bz ⇒ ∆0 (δijk

2 − kikj)2πδ(ω)ai(k)aj(−k) . (C.4)

ej(τ)ej(τ
′) disordered 2-pt vertex:

1

2
(ex ex + ey ey) ⇒ (−∆j c

2) (k2
x + k2

y) 2πδ(ω) a0(k)a0(−k) . (C.5)

The factor of 1
2

factor is canceled by symmetry factor equal to two. The 2π factor always

cancels with the 1/2π that accompanies any frequency integral
∫

dω
2π

.
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Gauge Propagator

Vacuum Polarization Tensor

Πµν(k0,k) = (
−ig√
Nf

)2(
v

c
)2−δµ0−δν0 ×Nf × (−1)

∫
d2pE
(2π)3

Tr[γµSF (k + p)γνSF (p)] (C.6)

= (+g2)(−i)2 (
v

c
)2−δµ0−δν0

1

v2

∫
d2p̄Edp0

(2π)3
Tr[γµγαγνγβ]

(k̄ + p̄)α(p̄)β
[x(k̄ + p̄)2 + (1− x)p̄2]2

, (C.7)

Πµν(k0,k) =
−1

16

g2

v2
(
v

c
)2−δµ0−δν0

1

|k̄|
[δµν k̄

2 − k̄µk̄ν ] , k̄ = (ω, v k) , |k̄| =
√
ω2 + v2k2. (C.8)

The minus sign comes from the fermion loop. The ratio v/c can be set to v in future

equations.

“1-µ ”Vacuum Polarization Vector

Πµ(k0,k) =
√
gm(
−ig√
Nf

)(
v

c
)1−δµ0 ×Nf × (−1)

∫
d2pE
(2π)3

Tr[γµSF (k + p) 1 SF (p)] (C.9)

=
√
gm (+ig)(−i)2 (

v

c
)1−δµ0

1

v2

∫
d2p̄Edp0

(2π)3
Tr[γµγα γβ]

(k̄ + p̄)α(p̄)β
[x(k̄ + p̄)2 + (1− x)p̄2]2

= 0. (C.10)

The momentum part is proportional to δαβ p
2, while the trace is proportional to the εµαβ

tensor, and so it vanishes.

“1-1”Vacuum polarization scalar

Πm(k0,k) = (
√
gm)2Nf × (−1)

∫
d2pE
(2π)3

Tr[ 1 SF (k + p) 1 SF (p)] (C.11)

= gm
1

v2

∫
d2p̄Edp0

(2π)3
Tr[ γα γβ]

(k̄ + p̄)α(p̄)β
[x(k̄ + p̄)2 + (1− x)p̄2]2

=
−|k| gm

8v2
. (C.12)

Although nonzero, when connecting external fermion lines, the resulting diagram would be

proportional to the number of replicas nR and vanish in the nr → 0 limit.

Effective Gauge Propagator

In Coulomb gauge (longitundal component aL = 0), the kinetic term for the gauge field is

Sgauge =
1

2

∫
dk2dω

(
a0 aT

)(g2

16
k2

√
ω2+v2k2 iκ|k|
iκ|k| wx

k2

|k|+f(ω,k)
+ g2

16

√
ω2 + v2k2

)(
a0

aT

)
, (C.13)
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where (k2 ≡ |k|2). Recall that g1 ≡ g2

16
= 1

16
, the effective coulomb coupling wx ≡ +e2

4π2 , and

f(k, ω) ≡ σe k2

|ω|+Dek2 . The transverse component of the gauge field is aT (k, ω) ≡ ik̂xay(k, ω)−
ik̂yax(k, ω), where k̂j = kj/|k|.

When dealing with the gamma matrix contraction in Feynman diagram calculations,

we have to write the effective gauge propagator obtained from Sgauge in the a0, ax, ay basis

(i, j = x, y):

G00 =
1

k2

g1

√
ω2 + v2k2 + F (k, ω)

g2
1 + κ2 + g1 F (k,ω)√

ω2+v2k2

(C.14)

G0i =
κ

k2

−εijkj
g2

1 + κ2 + g1 F (k,ω)√
ω2+v2k2

, Gi0 = −G0i =
κ

k2

+εijkj

g2
1 + κ2 + g1 F (k,ω)√

ω2+v2k2

(C.15)

Gij = (δij −
kikj
k2

)

g1√
ω2+v2k2[

g2
1 + κ2 + g1 F (k,ω)√

ω2+v2k2

] (C.16)

where F (k, ω) ≡ +e2

4π2

|k|2

|k|+ f(k, ω)
=

+e2

4π2

|k|2

|k|+ σe k2

|ω|+Dek2

critical limit,De=0−−−−−−−−−−→ +e2

4π2

|k|2

|k|+ σe k2

|ω|

(C.17)

Screened Disorder Wµν

The disorders g0, gj are screened by the fermion polarization. The Feynman rules in (C.2)-

(C.3) have to be adjusted to account for this screening:

Wµν = W (0)
µν + φ1W

(sc)
µν , (C.18)

where W
(0)
µν = Diag (g0, i

2gj, i
2gj) is the bare part in (C.2),(C.3) and W

(sc)
µν is the screening

part from the summation of fermion bubbles.

The prefactor φ1 isolates the screened and un-screened contributions: φ1 = 0 means that

disorder screening is ignored; φ1 = 1 means that disorder screening is included. When dis-

order connects with the gauge propagator, we should set σe = 0 before setting ω = 0 (due

to the presence of the δ(ω)) factor. Otherwise, there is no disorder screening. Note that the

vertex factors are included in Wµν , so when applying the Feynman rules, we only need to

multiply by γµ without any constant or velocity factor.
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We separate the screening part into symmetric and antisymmetric components:

W (sc) = W sym +W as, (C.19)

W sym
00 = g1

−g1gjκ
2 + g0(g1 + wx) (g2

1 + g1wx + 2κ2)

(g2
1 + g1wx + κ2)2

, (C.20)

W sym
ij =

g2
1(g2

1gj + 2g1gjwx − (g0 − 2gj)κ
2)

(g2
1 + g1wx + κ2)2

1

k2
(k2δij − kikj), (C.21)

W as
0i =

g1κ (g1gjwx + (−g0 + gj)κ
2)

[g2
1 + g1wx + κ2]2

−εijkj
k

. (C.22)

Other components of W (sc) not included above vanish.

Effective Gauge Disorder Ddis
µν

The expressions in (C.4) and (C.5) 2-point vertex rules: each side of the vertex connects

with dressed propagator found in (C.14)-(C.16). The effective gauge disorder is defined by

Ddis
µν = GµαD

0,dis
αβ Gβν , (C.23)

where D0,dis
00 = −∆j k

2 defined in (C.5), D0,dis
ij = ∆0 (δijk

2 − kikj) defined in (C.4), and

D0,dis
0i = D0,dis

i0 = 0. We decompose Ddis
µν into symmetric and antisymmetric components:

Ddis
µν = DS

µν +DAS
µν , (C.24)

DS
00 = −g

2
1v

2∆j + 2g1v
2wx∆j + v2wx

2∆j + ∆0κ
2

(g2
1 + g1wx + κ2)2

, (C.25)

DS
ij =

(g12∆0 + v2∆jκ
2)

v2(g2
1 + g1wx + κ2)2

k2δij − kikj
k2

, (C.26)

DAS
0i =

κ (−g1∆0 + g1v
2∆j + v2wx∆j)

v (g2
1 + g1wx + κ2)2

εijkj
k

. (C.27)

Components of Ddis not listed above are zero.

Since Gµν is constructed by the RPA sum of fermion loops, Gµν can no longer connect

any more fermion loop. Consequently, Ddis
µν does not include any fermion loops. Note that

Ddis
µν generates

∆0,j

Nf
. This disorder renormalizes ∆0,∆j at 3-loop order.
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D Fermion Self-energy

Self-energy—Screened Disorder Correction Wµν

Σd(p0,p) =

∫
d2k

(2π)2
(12×2) SF (p0 − 0,p− k) (12×2)gm +

∫
d2k

(2π)2
γνSF (p0 − 0,p− k)γµWµν(k)

=

∫
d2k

(2π)2
(12×2) SF (p0 − 0,p− k) (12×2)gm +

∫
d2k

(2π)2
γν

[
(+i)

γ0p0 + v(p− k)iγi
p2

0 + v2(p− k)2

]
γµ Wµν(k)

=
+i

v2

p0γ0

2πε
[gm] +

∫
d2k

(2π)2
γν

[
(+i)

γ0p0 + v(p− k)iγi
p2

0 + v2(p− k)2

]
γµ Wµν(k) (D.1)

=
+ip0γ0

2πεv2
gm +

+ip0γ0

2πεv2
(g0 + 2gj)

+φ1

[
g2

1wx (g1gj − g1g0 − g0 wx)

(g2
1 + g1wx + κ2)2

+
g1 (g1gj + g1g0 + 2g0 wx)

g2
1 + g1wx + κ2

]
−i
ε
p0 γ0

+φ1

(−1)g2
1

[
g2

1gj + 2g1gj wx − (g0 − 2gj)κ
2
]

(g2
1 + g1wx + κ2)2

−i
ε
vpj γj. (D.2)

Self-energy—Gauge Correction

Only the symmetric part of the gauge propagator produces a divergence at O( 1
Nf

).

Σg(p0,p) = (
−ig√
Nf

)2
(v
c

)2−δµ0−δν0

∫
d3k

(2π)3
γνSF (p− k)γµ Gµν(k0,k) (D.3)

=
−g2

Nf

(+i)
(v
c

)2−δµ0−δν0 1

v2

∫
d2k̄ dk0

(2π)3

[
γν

(p0 − k0)γ0 + (p̄− k̄)aγa
(p0 − k0)2 + (p̄− k̄)2

γµ

]
Gµν(k0, k̄).(D.4)

Carrying out the momentum integral and setting c = 1:

− Σg(p0,p)

=

∫ ∞
−∞

dz

ig2

(
(v2 − z2)g1 z

2σe +
[
g1z

2v2 − g1z
4 × ξ + wx

√
v2 + z2(v2 − z2)

]∣∣z∣∣)(p0γ0)

4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)]

+

∫ ∞
−∞

dz

ig2

(
g1(v4 − v2z2 − z4)σe −

[
wxz

2
√
v2 + z2 + g1(−v4 + v2z2 + z4 × ξ)

]∣∣z∣∣)(vpjγj)

4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)]
(D.5)

To obtain the above expression, we first perform a gradient expansion of Σ(p0,p) around

p0 = p = 0. Next, focus on the linear term in p0,p and replace the frequency integral
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k0 → z |k|. When the 2d spatial momentum integral is done, the result is the expression

shown above. The above expression is integrable only at σe = 0. The ξ term is a divergent

integral that arises from the choice of Coulomb gauge. Physical observables are free from

any ξ dependence.

Self-Energy—Effective Gauge Disorder Ddis
µν , O(∆X

Nf
)

Σb(p0,p) = (
−i g√
Nf

)2
(v
c

)2−δµ0−δν0

∫
d2k

(2π)2
γνSF (p0 − 0,p− k)γµD

dis
µν (k) (D.6)

=
+i(∆0 + v2∆j)

2Nfπv2ε(g2
1 + κ2)

γ0p0 +
−i (g2

1∆0 + κ2v2∆j)

2Nfπv2ε(g2
1 + κ2)2

(v γjpj). (D.7)

E 3-point Vertex ū(q) δΓµ u(p)

Γµ—Gauge Correction

Γµ1 =
( −ig√

Nf

)3(v
c

)3−δα0−δβ0−δµ0

∫
d2kdω

(2π)3
γαSF (q − k)γµSF (p− k)γβGβα(k, ω) (E.1)

=
( −ig√

Nf

)3(v
c

)3−δα0−δβ0−δµ0 1

v2

×
∫
d2k̄dω

(2π)3
γα(+i)

γ0(q0 − k0) + γc(q̄ − k̄)c
(q0 − k0)2 + (q̄ − k̄)2

γµ(+i)
γ0(p0 − k0) + γd(p̄− k̄)d

(p0 − k0)2 + (p̄− k̄)2
γβGβα(k, ω) (E.2)
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To isolate the divergent part, one can set the external momentum p = q = 0. Following the

same steps we used in the self energy diagram evaluation, we obtain

Γµ1 =
−ig√
Nf

(−g2)

(
(v2 − z2)g1 z

2σe +
[
g1z

2v2 − g1z
4 × ξ + wx

√
v2 + z2(v2 − z2)

]∣∣z∣∣)
4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)](γ0)

+
−ig√
Nf

v

1

(−g2)

(
g1(v4 − v2z2 − z4)σe −

[
wxz

2
√
v2 + z2 + g1(−v4 + v2z2 + z4 × ξ)

]∣∣z∣∣)
4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)](γj).

(E.3)

As before, ξ labels the divergent part. Gauge invariance is easy to check by comparing with

Eq. (D.5): Γt1 = −g√
Nf

∂Σg
∂p0

, Γj1 = −g√
Nf

∂Σg
∂pj

.

Γµ—Effective Gauge Disorder Correction

Γµ2 =
( −ig√

Nf

)3(v
c

)3−δα0−δβ0−δµ0

∫
d2k

(2π)2
γαSF (q − k)γµSF (p− k)γβD

dis
βα (k) (E.4)

=
−i(∆0 + v2∆j)

2N
3/2
f πv2ε(g2

1 + κ2)
γ0 +

i(g2
1∆0 + v2κ2∆j)

2N
3/2
f πvε(g2

1 + κ2)2
γj. (E.5)

Γµ—Screened Disorder Correction Wµν

Γµ3 = (
−ig√
Nf

)
(v
c

)1−δµ0 ×
∫

d2k

(2π)2
γαSF (q − k)γµSF (p− k)γβWβα (E.6)

=
−ig√
Nf

1

ε

(
g0 + 2gj

2πv2
+ φ1

[g2
1wx (−g1gj + g1g0 + g0 wx)

(g2
1 + g1wx + κ2)2

− g1 (g1gj + g1g0 + 2g0 wx)

g2
1 + g1wx + κ2

])
γ0

+
−ig√
Nf

φ1
1

ε

(g2
1

[
g2

1gj + 2g1gj wx − (g0 − 2gj)κ
2
]

(g2
1 + g1wx + κ2)2

)
γj. (E.7)

Γµ-Random Mass Correction gm

Γµ4 = (
−ig√
Nf

)
(v
c

)1−δµ0 ×
∫

d2k

(2π)2
1 SF (q − k)γµSF (p− k) 1 gm =

−ig√
Nf

gm
2πv2ε

γ0 + 0 γj. (E.8)
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F 3-point Vertex ū(q) 12×2 u(p)

12×2—Gauge Correction

Γm1 = (
−ig√
Nf

)2(
v

c
)2−δα0−δβ0

1

v2
(+i)2

×
∫
d2k̄dω

(2π)3
γα
γ0(q0 − ω) + γc(q̄ − k̄)c

(q0 − ω)2 + (q̄ − k̄)2
1
γ0(p0 − ω) + γd(p̄− k̄)d

(p0 − ω)2 + (p̄− k̄)2
γβ Gαβ. (F.1)

Γm1 =

(v2 + z2) g2

[
g1(2v2 + z2)σe + wx

√
v2 + z2 + g1(2v2 + z2) |z|

]
4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)] 12×2

=

g2

[
g1(2v2 + z2)(v2 + z2) σe + wx (v2 + z2)

√
v2 + z2 + g1(2v4 + 3z2v2 + ξ z4) |z|

]
4 ε Nf π2 (v2 + z2)2

[√
v2 + z2

(
g2

1 + κ2
)
σe + |z|

(
(g2

1 + κ2)
√
v2 + z2 + g1wx

)] 12×2.(F.2)

12×2—Effective Gauge Disorder Correction

Γm2 =
( −ig√

Nf

)2(v
c

)2−δα0−δβ0

∫
d2k

(2π)2
γαSF (q − k) 1 SF (p− k)γβD

dis
βα (k)

=
(∆0 − v2∆j)(g

2
1 − c4κ2)

2πNfv2ε(g2
1 + c4κ2)2

12×2. (F.3)

12×2—Screened Disorder Correction Wµν

Γm3 =

∫
d2k

(2π)2
γαSF (q − k)1SF (p− k)γβWβα

=

[
−g0 + 2gj

2πv2ε
+ φ1

1

ε

(
− g2

1(2g1 + wx)(−g1gj + g0 g1 + g0wx
(g2

1 + g1wx + κ2)2
+
g1(3g0 g1 − 3g1gj + 2g0wx)

g2
1 + g1wx + κ2

)]
12×2.

(F.4)
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12×2—Random Mass Correction gm

Γm4 = (
−ig√
Nf

)×
∫

d2k

(2π)2
1 SF (q − k) 1 SF (p− k) 1 gm =

−gm
2πv2ε

12×2. (F.5)

G 4-point Fermion-Fermion Interaction

Define

Hµν ≡ Ddis
µν (
−ig√
Nf

)2(
v

c
)2−δµ0−δν0 . (G.1)

Note that Wµν ∼ O( 1
N0
f
) and Hµν ∼ O( 1

Nf
). Take the external three momenta to be

p1, p2, p3, p4, where pi = (ωi,pi). Schematically, the interaction has the form, [ψ(p3)...ψ(p1)] [ψ(p4)..ψ(p2)].

Define:

ΓA ≡ (γ7, γ0,+γx,+γy) , γ7 ≡ 12×2 , T
A1 = (1 gm,Wµν , Hµν) , T̃

A1 = (1 gm,W
(0)
µν , Hµν)(G.2)

W (0)
µν = Diag(g0, i

2gj, i
2gj) (G.3)

We use A,B,C,D = {1, 2, 3, 4} indices to label 1, γ0, γx, γy and number subscripts, e.g.,

A1, A2, to label which interaction we choose: A1 = 1 for the gm interaction; A1 = 2 for the

Wµν interaction; A1 = 3 for the Hµν interaction.

The diagrams below correspond to the following expressions:

B1 =

∫
d2k

(2π)2
ψ(p3)ΓBSF (p1 + k)ΓAψ(p1) ψ(p4)ΓDSF (p2 − k)ΓCψ(p2)

× TA1
CA(k, ω = 0) TA2

BD(p1 + k − p3, ω = 0), (G.4)

B2 =

∫
d2k

(2π)2
ψ(p3)ΓBSF (p1 + k)ΓAψ(p1) ψ(p4)ΓCSF (p4 + k)ΓDψ(p2)

× TA1
CA(k, ω = 0) TA2

BD(p1 − p3 + k, ω = 0), (G.5)

B3 =

∫
d2k

(2π)2
ψ(p3)ΓDSF (p3 − k)ΓASF (p1 − k)ΓBψ(p1)

× TA2
BD(k, ω = 0), ψ(p4)ΓCψ(p2) T̃A1

AC(p3 − p1, ω = 0), (G.6)

B4 =

∫
d2k

(2π)2
ψ(p3)ΓAψ(p1) T̃A1

AC(p3 − p1, ω = 0)

× ψ(p4)ΓDSF (p4 − k) ΓCSF (p2 − k)ΓBψ(p2) TA2
BD(k, ω = 0). (G.7)
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For diagrams B3, B4, the TA1 vertex is un-dressed, i.e., W 0
µν , which is directly related to the

random coupling being renormalized.

4-point Interaction—Boxes B3, B4

Diagrams of type B3, B4 can be directly obtained from the 3-point vertex corrections in

Appendices (E) and (F) with symmetry factor 2 (counting upper or lower vertices), so we

don’t have to recompute them at here. The terms in Γµ renormalize g0, gj and the terms in

Γm renormalize gm.

4-point Fermion Interaction—Boxes B1, B2

Diagrams for boxes B1, B2 are presented below.

The W -H diagrams are O(∆X gX
Nf

). The H-H diagrams are O(
∆2
X

N2
f

).

For each interaction, (ψ̄ψ)(ψ̄ψ), (ψ̄γ0ψ)(ψ̄γ0ψ), (ψ̄iγjψ)(ψ̄iγjψ), we sum all these dia-

grams with the help of computer software to O(g2
X ,

gX
Nf

). The contribution from diagrams
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B1, B2 are the following.

BOX11 =

[
2g0gj

πv2 ε gm
+ φ1(−4g1)

g1 g0 gj(2g
2
1 + 4g1wx + wx

2)− κ2[g0
2g1 + g1gj

2 − 2g0 gj(2g1 + wx)]

ε (g2
1 + g1wx + κ2)2

−φ
2
1

ε

(4g2
1gj

2κ2[g2
1(g2

1 + 2g1wx − wx2) + 2g1(g1 − wx)κ2 − κ4 ]

gm[g2
1 + g1wx + κ2]4

+
4g2

1g0
2κ2[g2

1(g2
1 + 2g1wx + wx

2) + 2g1(g1 + wx)κ
2 − κ4]

gm[g2
1 + g1wx + κ2]4

+
4g0 gjg

2
1

[
− g3

1(g1 + wx)
2(g1 + 2wx)− 2g2

1(g1 + wx)(2g1 + 3wx)κ
2 − g1(5g1 + 2wx)κ

4 + 2κ6
]

gm[g2
1 + g1wx + κ2]4

)]
×(ψ̄1ψ)(ψ̄1ψ). (G.8)

BOXγ0γ0 =

[
2gjgm
πv2 ε g0

− φ1
4g2

1 gm[g2
1gj + 2g1gj wx − (g0 − 2gj)κ

2]

g0 ε[g2
1 + g1wx + κ2]2

]
(ψ̄γ0ψ)(ψ̄γ0ψ). (G.9)

BOXγjγj =

[
2g0gm
πv2εgj

− φ1
g1gm[−g1gjκ

2 + g0(g3
1 + 2g2

1wx + 2wxκ
2) + g1(wx

2 + 2κ2) ]

gjε[g2
1 + g1wx + κ2]2

]
(ψ̄iγjψ)(ψ̄iγjψ).

(G.10)

As mentioned before, the index j = x or y; there is no index sum here. And we assume the

random current disorder variance gx = gy ≡ gj(isotropic).

H 2-loop Vertex Corrections

At leading order, the generic two-loop diagram has the form pictured below.

The interaction legs X1 and X2 can be chosen to be the gauge propagator Gµν or disorder

Eµν ∈ {Wµν , gm}. In principal there are four possibible choice: (X1, X2) = (G,G), (E,G), (G,E),

or (E,E). In the replica limit nr → 0, the (E,E) diagram vanishes because the fermion

bubble is proportional to nR. Also, (E,G) and (G,E) are the same diagrams so we only

need to compute one of them. The top vertex can be either γµ or 12×2. However, we’ll see

below that diagrams using the γµ vertex are zero.
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Mass Vertex u 12×2 u—one leg gauge, one leg disorder

ΓX1 =
1

v2

∫
d2q̄dq0

(2π)3

1

v2

∫
d2k̄

(2π)2
u(p3)

(
1

γβ

)
SF (p1 − k)[

−ig√
Nf

(
v

c
)1−δµ0γµ]u(p1) Gµν(k) (−1)×Nf

× Tr
[
[
−ig√
Nf

(
v

c
)1−δν0γν ]SF (q − p1 + p3) 1 SF (q)

(
1

γα

)
SF (k + q − p1 + p3)

](
gm

Wαβ(k − p1 + p3)

)
.

(H.1)

Γ̃X1 =
1

v2

∫
d2q̄dq0

(2π)3

1

v2

∫
d2k̄

(2π)2
u(p3)

(
1

γβ

)
SF (p1 − k)[

−ig√
Nf

(
v

c
)1−δµ0γµ]u(p1) Gµν(k) (−1)×Nf

× Tr
[
[
−ig√
Nf

(
v

c
)1−δν0γν ]SF (q − k)

(
1

γα

)
SF (q − p1 + p3) 1 SF (q)

](
gm

Wαβ(k − p1 + p3)

)
.

(H.2)

The direction of the fermionic loop momenta is different in Γ and Γ̃. We use the upper/lower

components to distinguish the diagrams that arise from either gm/Wµν .

To extract the UV divergence, we can set p1 = p3 = 0. For gm, the divergences in ΓX1

and Γ̃X1 cancel (upon changing variables q → −q in Γ̃X1 and using basic properties of the

trace). For Wαβ, ΓX1 and Γ̃X1 have identical divergences.

ΓX1 =
−g2

1
(
v

c
)2−δµ0−δν0

∫
d3k

(2π)3
ū(p3)

[
γβ

k0γ0 + v kcγc
k2

0 + v2k2
γµ

]
u(p1)

× Gµν(k) ×Wαβ(k)×
∫

d3q

(2π)3
Tr

[
γν

q0γ0 + v qdγd
q2

0 + v2q2
1
q0γ0 + v qeγe
q2

0 + v2q2
γα

(k0 + q0)γ0 + v (kf + qf )γf
(k0 + q0)2 + v2(k + q)2

]
. (H.3)

Refer to the calculations in (H.15) to compute∫
d3q

(2π)3
Tr

[
γν

q0γ0 + v qdγd
q2

0 + v2q2

q0γ0 + v qeγe
q2

0 + v2q2
γα

(k0 + q0)γ0 + v (kf + qf )γf
(k0 + q0)2 + v2(k + q)2

]
=
i ενασ (k0, v k)σ

8v2
√
k2

0 + v2k2
. (H.4)

47



After setting g = c = 1,

ΓX1 =
−g2

1
(
v

c
)2−δµ−δν0

∫
d3k

(2π)3
ū(p3)

[
γβ

k0γ0 + v kcγc
k2

0 + v2k2
γµ

]
u(p1)×Gµν(k)×Wαβ(k)× i ενασ (k0, v k)σ

8v2
√
k2

0 + v2k2

=
(g0 g1 − gjg1 − gjwx)

4πv2ε(g2
1 + g1wx + κ2)

+φ1

[
2g3

1(g1 + wx)(−g1 gj + g1g0 + g0wx)

ε (g2
1 + g1wx + κ2)3

− g2
1[7g0(g1 + wx)− gj(7g1 + 4wx)]

2ε (g2
1 + g1wx + κ2)2

+
g1(g0 − gj)

ε (g2
1 + g1wx + κ2)

]
.

(H.5)

In total, we need to multiply by a factor of 4 to count the clockwise/counterclockwise fermion

loops and the exchange of W ↔ G in the diagrams.

ΓX1 + Γ̃X1 +
(

ΓX1 + Γ̃X1

)
W↔G

= 4ΓX1 (H.6)

Vector Vertex u γρ u—one leg gauge, one leg disorder

Replace the mass-vertex expressions 1 by γρ

ΓXρ =
1

v2

∫
d2q̄dq0

(2π)3

1

v2

∫
d2k̄

(2π)2
u(p3)

(
1

γβ

)
SF (p1 − k)[

−ig√
Nf

(
v

c
)1−δµ0γµ]u(p1) Gµν(k) (−1)×Nf

× Tr
[
[
−ig√
Nf

(
v

c
)1−δν0γν ]SF (q − p1 + p3) γρ SF (q)

(
1

γα

)
SF (k + q − p1 + p3)

](
gm

Wαβ(k − p1 + p3)

)
.

(H.7)

Γ̃Xρ =
1

v2

∫
d2q̄dq0

(2π)3

1

v2

∫
d2k̄

(2π)2
u(p3)

(
1

γβ

)
SF (p1 − k)[

−ig√
Nf

(
v

c
)1−δµ0γµ]u(p1) Gµν(k) (−1)×Nf

× Tr
[
[
−ig√
Nf

(
v

c
)1−δν0γν ]SF (q − k)

(
1

γα

)
SF (q − p1 + p3) γρSF (q)

](
gm

Wαβ(k − p1 + p3)

)
.

(H.8)
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By similar argument, the term with an even number of γ’s in the trace would cancel between

Γ and Γ̃, so in this case we only need to compute upper component (gm). Set p1 = p3 = 0,

straightforward calculation gives

ΓXρ = (−Nf )(−i)4(
−ig√
Nf

)2(
v

c
)2−δµ0−δν0

1

v2

∫
d3q

(2π)3

1

v2

∫
d2k

(2π)2

×
[
ū(p3)

(−k)c

k2
γcγµ u(p1)

]
Tr[γν/qγρ/q(/q + /k)]

1

q2 q2(k + q)2
Gµν(k, ω = 0) gm

= 0. (H.9)

So there is no contribution from ΓXρ , Γ̃Xρ

Mass Vertex u 12×2 u—both legs are gauge propagators

ΓZ1 = (
−ig√
Nf

)4 (
v

c
)4−δµ0−δν0−δα0−δβ0 × (−1)× (Nf )

∫
d3kd3q

(2π)3(2π)3
u(p3) γβ SF (p1 − k) γµ u(p1)

×Gµν(k)Tr

[
γνSF (q − p1 + p3) 1 SF (q) γα SF (k + q − p1 + p3)

]
Gαβ(k − p1 + p3).

(H.10)

Γ̃Z1 = (
−ig√
Nf

)4 (
v

c
)4−δµ0−δν0−δα0−δβ0 × (−1)× (Nf )

∫
d3kd3q

(2π)3(2π)3
u(p3) γβ SF (p1 − k) γµ u(p1)

×Gµν(k)Tr

[
γνSF (−k + q + p1 − p3) γα SF (q) 1 SF (q + p1 − p3)

]
Gαβ(k − p1 + p3).

(H.11)

Upon taking the external momenta to zero,

ΓZ1 =
g4

Nf

(
v

c
)4−δµ0−δν0−δα0−δβ0

∫
d3k

(2π)3
ū(p3)

[
γβ

k0γ0 + v kcγc
k2

0 + v2k2
γµ

]
u(p1)

×Gµν(k) Gαβ(k)×
∫

d3q

(2π)3
Tr

[
γν

q0γ0 + v qdγd
q2

0 + v2q2
1
q0γ0 + v qeγe
q2

0 + v2q2
γα

(k0 + q0)γ0 + v (kf + qf )γf
(k0 + q0)2 + v2(k + q)2

]
.

(H.12)
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Perform the q integral first,

FΓz(k) ≡
∫

d3q

(2π)3
Tr

[
γν

q0γ0 + v qdγd
q2

0 + v2q2

q0γ0 + v qeγe
q2

0 + v2q2
γα

(k0 + q0)γ0 + v (kf + qf )γf
(k0 + q0)2 + v2(k + q)2

]
(H.13)

=
1

v2

∫
d3Q

(2π)3
Tr

[
γν

Qλγλ
Q2

Qργρ
Q2

γα
(K +Q)σ γσ

(K +Q)2

]
. (H.14)

Here we define Q ≡ (q0, v q) , d3Q ≡ dq0d
2(vq) , K ≡ (k0, v k)

Standard Feynman tricks give

FΓz(k) =
i ενασ (k0, v k)σ

8v2
√
k2

0 + v2k2
. (H.15)

So we have (k0 = ω)

ΓZ1 =
g4

Nf

(
v

c
)4−δµ0−δν0−δα0−δβ0

∫
d3k

(2π)3
ū(p3)

[
γβ

k0γ0 + v kcγc
k2

0 + v2k2
γµ

]
u(p1)

×Gµν(k) Gαβ(k)

(
i ενασ (k0, v k)σ

8v2
√
k2

0 + v2k2

)
= ū(p3) 12×2 u(p1)

×
∫ ∞
−∞

dz

−g4v2(σe + |z|)
[
(v2 + z2)(g2

1 − κ2)σe + |z|
(
g1wx

√
v2 + z2 + (g2

1 − κ2) (v2 + z2)
) ]

16 εNf π2(v2 + z2)
3
2

[√
v2 + z2(g2

1 + κ2)σe + |z|
(
g2

1

√
v2 + z2 + (g1wx +

√
v2 + z2 κ2)

)]2 .

(H.16)

The same manipulations are used in the computations of δ1, δ2. Note that unlike the case of

δ1, δ2, this term renormalizes gm without any divergent integration, labeled by ξ.

Taking the limit σe = wx = 0, the expression reduces to

ΓZ1

∣∣∣
σe=wx=0

= ū(p3) 12×2 u(p1) × −g4 (g2
1 − κ2)

8 εNf π2(g2
1 + κ2)2

, (H.17)

which agrees with the result in [25] Unlike the case of ΓX1 , the two legs are identical so the

symmetry factor is 2:

ΓZ1 + Γ̃Z1 = 2ΓZ1 . (H.18)

Vector Vertex u γρ u— both legs are gauge propagators

Replace 1 by γρ to obtain the vector counterparts
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ΓZρ = (
−ig√
Nf

)4 (
v

c
)4−δµ0−δν0−δα0−δβ0 × (−1)× (Nf )

∫
d3kd3q

(2π)3(2π)3
u(p3) γβ SF (p1 − k) γµ u(p1)

×Gµν(k)Tr

[
γνSF (q − p1 + p3) γρ SF (q) γα SF (k + q − p1 + p3)

]
Gαβ(k − p1 + p3).

(H.19)

Γ̃Zρ = (
−ig√
Nf

)4 (
v

c
)4−δµ0−δν0−δα0−δβ0 × (−1)× (Nf )

∫
d3kd3q

(2π)3(2π)3
u(p3) γβ SF (p1 − k) γµ u(p1)

×Gµν(k)Tr

[
γνSF (−k + q + p1 − p3) γα SF (q) γρ SF (q + p1 − p3)

]
Gαβ(k − p1 + p3).

(H.20)

By the same argument as before, there are six γ’s in the trace, so ΓZρ and Γ̃Zρ cancel one

another:

ΓZρ + Γ̃Zρ = 0. (H.21)

I 3-loop Corrections of Disorders ∆0,∆j
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With Ddis
αβ Propagator

πµν1 =

∫
d3k

(2π)3

∫
d3q

(2π)3

∫
d2QdQ0

(2π)2

( −ig√
Nf

)4(v
c

)4−δµ0−δν0−δα0−δβ0 (−1)2(Nf )
2

× Tr
[
γµ SF (k − p) 1SF (k −Q)γα SF (k)

]
× gm δ(p0 −Q0)δ(Q0)Ddis

αβ (Q, Q0 = 0) × Tr
[
γνSF (q)γβSF (q −Q) 1SF (q − p)

]
(I.1)

(flipping the signs for k and q variables )

=

∫
d2Q

(2π)2

[ ∫
d3k

(2π)3

(v
c

)2−δµ0−δα0Tr
[
γµ SF (k + p) 1SF (k +Q)γα SF (k)

]]
×
[ ∫

d3q

(2π)3

(v
c

)2−δν0−δβ0Tr
[
γνSF (q)γβSF (q +Q) 1SF (q + p)

]]
×
[
gm
( −ig√

Nf

)4
N2
f D

dis
αβ (Q, Q0 = 0) δ(p0 = 0)

]
. (I.2)

Naively evaluating this diagram is problematic because the Feynman parameter integrals are

not doable. To extract the divergence, we Taylor expand the expression to second order in

p. First, we define

T µα(Q, p) =

[ ∫
d3k

(2π)3

(v
c

)2−δµ0−δα0Tr
[
γµ SF (k + p) 1SF (k +Q)γα SF (k)

]]
. (I.3)

By reversing the trace order , we have[ ∫
d3q

(2π)3

(v
c

)2−δν0−δβ0Tr
[
γνSF (q)γβSF (q +Q) 1SF (q + p)

]]
(I.4)

= (−1)5

[ ∫
d3q

(2π)3

(v
c

)2−δν0−δβ0Tr
[
γν SF (q + p)S(q +Q)γβSF (q)

]]
= −T νβ(Q, p). (I.5)

Let

πµν1 =

∫
d2Q

(2π)2
[T µα(Q, p)] [−T νβ(Q, p)]×

[
gm
( −ig√

Nf

)4
N2
f D

dis
αβ (Q, Q0 = 0) δ(p0 = 0)

]
(I.6)

and

T2(Q, p) ≡ T µαT νβ (I.7)

T2(Q, p) = T2(Q, 0) +
∂T2

∂px
px +

∂T2

∂py
py +

1

2

[
∂2T2

∂p2
x

p2
x +

∂2T2

∂p2
y

p2
y + 2

∂2T2

∂pxpy
px py

]
+O(p3). (I.8)

=

(
∂T µα

∂px

∂T νβ

∂px

)∣∣∣∣
p=0

p2
x +

(
∂T µα

∂py

∂T νβ

∂py

)∣∣∣∣
p=0

p2
y +

(
∂T µα

∂px

∂T νβ

∂py
+
∂T µα

∂py

∂T νβ

∂px

)∣∣∣∣
p=0

px py +O(p3)

(I.9)
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Straightforward calculation gives

T µα(Q, p = 0) = 0. (I.10)

For first order derivatives, we can also obtain (after lengthy algebra)

∂T µα

∂pj
=
(v
c

)2−δµ0−δα0 1

v2

i(−i)3

32|Q̄|

(
εµαj +

1

Q̄2

[
εµατ Q̄τ Q̄j + εαjτ Q̄τ Q̄µ − εjµτ Q̄τ Q̄α

])
. (I.11)

Notice that this result is true in 3d with general temporal component Q0

Plugging into Eq. (I.2) and taking the four diagrams into consideration (each triangle has

either clockwise or counterclockwise flowing momenta), the total result is

πtotµν = 4πµν , (I.12)

where

π11 = (−1)
gm(g2

1∆0 + v2∆jκ
2)

1024πv4ε(g2
1 + g1

wx
v

+ κ2)2
(p̄2
y + p̄2

x), (I.13)

πij = (+1)
gm(g2

1v
2∆j + 2g1v wx∆j + w2

x∆j + ∆0κ
2)

512πv4ε(g2
1 + g1

wx
v

+ κ2)2
(δijp̄

2 − p̄ip̄j), (I.14)

and p̄i = v pi. π11 renormalizes ∆j and πij renormalizes ∆0. This diagram scales as 1/N2
f if

gm,∆0,∆j scale as 1/Nf .

With Wαβ Propagator

Replace the internal propagator with Wαβ, the remaining calculations are the same:

π̃totµν = 4π̃µν , (I.15)

where

π̃11 = (−1)
gm gj Nf

1024πv4ε
(p̄2
y + p̄2

x) + φ1

g2
1gmNf (g2

1gj + 2g1gj
wx
v

+ (2gj − g0)κ2 )

1024πv4 ε (g2
1 + g1

wx
v

+ κ2)2
(p̄2
y + p̄2

x)(I.16)

π̃ij = (+1)
g0gmNf

512πv4ε
(δijp̄

2 − p̄ip̄j)

+φ1

g1gmNf

[
g1gjκ

2 − g0(g1 + wx
v

) (g2
1 + g1

wx
v

+ 2κ2)
]

512πv4 ε (g2
1 + g1

wx
v

+ κ2)2
(δijp̄

2 − p̄ip̄j)

(I.17)
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and p̄i = v pi. π̃11 renormalizes ∆j, and π̃ij renormalizes ∆0. This diagram scales as 1/Nf if

gm, gj scale as 1/Nf .

With Gauge Propagator Gαβ

By dimensional analysis, this term should be UV finite,

∼
∫
d2Q

1

Q

1

Q
p2 1

Q

∣∣∣∣
Q0=p0

.

J Summary

δ̄1 p0γ
0 + δ̄2 v pjγ

j = Σd + Σg + Σb (J.1)

δgm (ψ̄1ψ) (ψ̄1ψ) = BOX11 + 2
(

Γm1 + Γm3 + Γm4 + 4ΓX1 + 2ΓZ1

)
+ 2Γm2 (J.2)

δg0 (ψ̄γ0ψ) (ψ̄γ0ψ) = BOXγ0γ0 + 2
(

Γµ1 + Γµ3 + Γµ4

)
µ=1

(
−ig√
Nf

)−1 + 2Γµ=1
2 (

−ig√
Nf

)−1 (J.3)

δgj (ψ̄iγjψ) (ψ̄iγjψ) = BOXγjγj + 2
(

Γµ1 + Γµ3 + Γµ4

)
µ=j

(
−ig√
Nf

v)−1 + 2Γµ=j
2 (

−ig√
Nf

v)−1(J.4)

where Σb, Γm2 , Γµ=1
2 , Γµ=j

2 are the subleading order terms in the above expressions.

δ̄∆0(δijp
2 − pipj) = 4πij + 4π̃ij (J.5)

δ̄∆j
(p2
x + p2

y) = 4π11 + 4π̃11 (J.6)
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