
COMPLEXITY OF SELF-ASSEMBLED SHAPES∗

DAVID SOLOVEICHIK† AND ERIK WINFREE‡

Abstract. The connection between self-assembly and computation suggests that a shape can be
considered the output of a self-assembly “program,” a set of tiles that fit together to create a shape.
It seems plausible that the size of the smallest self-assembly program that builds a shape and the
shape’s descriptional (Kolmogorov) complexity should be related. We show that when using a notion
of a shape that is independent of scale, this is indeed so: in the Tile Assembly Model, the minimal
number of distinct tile types necessary to self-assemble a shape, at some scale, can be bounded both
above and below in terms of the shape’s Kolmogorov complexity. As part of the proof of the main
result, we sketch a general method for converting a program outputting a shape as a list of locations
into a set of tile types that self-assembles into a scaled up version of that shape. Our result implies,
somewhat counter-intuitively, that self-assembly of a scaled-up version of a shape often requires fewer
tile types. Furthermore, the independence of scale in self-assembly theory appears to play the same
crucial role as the independence of running time in the theory of computability. This leads to an
elegant formulation of languages of shapes generated by self-assembly. Considering functions from
integers to shapes, we show that the running-time complexity, with respect to Turing machines, is
polynomially equivalent to the scale complexity of the same function implemented via self-assembly
by a finite set of tile types. Our results also hold for shapes defined by Wang tiling – where there
is no sense of a self-assembly process – except that here time complexity must be measured with
respect to non-deterministic Turing machines.

Key words. Kolmogorov complexity, scaled shapes, self-assembly, Wang tiles

AMS subject classifications. 68Q30, 68Q05, 52C20, 52C45

1. Introduction. Self-assembly is the process by which an organized structure
can spontaneously form from simple parts. The Tile Assembly Model [21, 20], based
on Wang tiling [19], formalizes the two-dimensional self-assembly of square units called
“tiles” using a physically plausible abstraction of crystal growth. In this model, a new
tile can adsorb to a growing complex if it binds strongly enough. Each of the four
sides of a tile has an associated bond type that interacts with a certain strength with
matching sides of other tiles. The process of self-assembly is initiated by a single seed
tile and proceeds via the sequential addition of new tiles. Confirming the physical
plausibility and relevance of the abstraction, simple self-assembling systems of tiles
have been built out of certain types of DNA molecules [22, 15, 14, 12, 10]. The
possibility of using self-assembly for nanofabrication of complex components such as
circuits has been suggested as a promising application [6].

The view that the “shape” of a self-assembled complex can be considered the
output of a computational process [2] has inspired recent interest [11, 1, 3, 9, 4]. While
it was shown through specific examples that self-assembly can be used to construct
interesting shapes and patterns, it was not known in general which shapes could
be self-assembled from a small number of tile types. Understanding the complexity
of shapes is facilitated by an appropriate definition of shape. In our model, a tile
system generates a particular shape if it produces any scaled version of that shape
(§3). This definition may be thought to formalize the idea that a structure can be
made up of arbitrarily small pieces. Computationally, it is analogous to disregarding
computation time and is thus more appropriate as a notion of output of a universal

∗The extended abstract version of this paper was published in the Proceedings of DNA Computing
10. This work was supported by NSF CAREER Grant No. 0093486.

†California Institute of Technology, Pasadena, CA 91125, USA dsolov@caltech.edu

‡California Institute of Technology, Pasadena, CA 91125, USA winfree@caltech.edu

1

2 D. SOLOVEICHIK AND E. WINFREE

computation process.1 Using this definition of shape, we show that for any shape S̃, if
Ksa(S̃) is the minimal number of distinct tile types necessary to self-assemble it, then
Ksa(S̃) log Ksa(S̃) is within multiplicative and additive constants (independent of S̃)
of the shape’s Kolmogorov complexity. This theorem is proved by construction (which
might be of independent interest) of a general method for converting a program that
outputs a fixed size shape as a list of locations into a tile system that self-assembles
a scaled version of the shape. Our result ties the computation of a shape and its
self-assembly, and, somewhat counter-intuitively, implies that it may often require
fewer tile types to self-assemble a larger instance of a shape than a smaller instance
thereof. Another consequence of the theorem is that the minimal number of tile types
necessary to self-assemble an arbitrary scaling of a shape is uncomputable. Answering
the same question about shapes of a fixed size is computable but NP complete [1].

2. The Tile Assembly Model. We present a description of the Tile Assembly
Model based on Rothemund and Winfree [11] and Rothemund [9]. We will be working
on a Z× Z grid of unit square locations. The directions D = {N, E, W, S} are used
to indicate relative positions in the grid. Formally, they are functions Z×Z→ Z×Z:
N(i, j) = (i, j + 1), E(i, j) = (i + 1, j), S(i, j) = (i, j − 1), and W (i, j) = (i − 1, j).
The inverse directions are defined naturally: N−1(i, j) = S(i, j), etc. Let Σ be a set
of bond types. A tile type t is a 4-tuple (σN , σE , σS , σW) ∈ Σ4 indicating the
associated bond types on the north, east, south, and west sides. Note that tile types
are oriented, so a rotated version of a tile type is considered to be a different tile type.
A special bond type null represents the lack of an interaction and the special tile type
empty = (null, null, null, null) represents an empty space. If T is a set of tile types, a
tile is a pair (t, (i, j)) ∈ T ×Z

2 indicating that location (i, j) contains the tile type t .
Given the tile t = (t, (i, j)), type(t) = t and pos(t) = (i, j). Further, bondD(t), where
D ∈ D, is the bond type of the respective side of t , and bondD(t) = bondD(type(t)).
A configuration is a set of non-empty tiles, with types from T , such that there is no
more than one tile in every location (i, j) ∈ Z×Z. For any configuration A, we write
A(i, j) to indicate the tile at location (i, j) or the tile (empty, (i, j)) if there is no tile
in A at this location.

A strength function g : Σ × Σ → Z, where null ∈ Σ, defines the interactions
between adjacent tiles: we say that a tile t1 interacts with its neighbor t2 with strength
Γ(t1, t2) = g(σ, σ′) where σ is the bond type of tile t1 that is adjacent to the bond
type σ′ of tile t2.

2 The null bond has a zero interaction strength (i.e. ∀σ ∈ Σ,
g(null, σ) = 0). We say that a strength function is diagonal if it is non-zero only for
g(σ, σ′) such that σ = σ′. Unless otherwise noted, a tile system is assumed to have
a diagonal strength function. Our constructions use diagonal strength functions with
the range {0, 1, 2}. We say that a bond type σ has strength g(σ, σ). Two tiles are
bonded if they interact with a positive strength. For a configuration A, we use the
notation ΓA

D(t) = Γ(t, A(D(pos(t)))).3 For L ⊆ D we define ΓA
L (t) =

∑

D∈L ΓA
D(t).

1The production of a shape of a fixed size cannot be considered the output of a universal com-
putation process. Whether a universal process will output a given shape is an undecidable question,
whereas this can be determined by exhaustive enumeration in the Tile Assembly Model.

2More formally,

Γ(t1, t2) =

g(bond
D−1 (t1), bondD(t2)) if ∃D ∈ D s.t. pos(t1) = D(pos(t2));

0 otherwise.

3Note that t 6= A(pos(t)) is a valid choice. In that case ΓA

D
(t) tells us how t would bind if it were

in A.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 3

A tile system T is a quadruple (T, ts, g, τ) where T is a finite set of non-empty tile
types, ts is a special seed tile with type(ts) ∈ T , g is a strength function, and τ is the
threshold parameter. Self-assembly is defined by a relation between configurations.
Suppose A and B are two configurations, and t is a tile such that A = B except at
pos(t) and A(pos(t)) = null but B(pos(t)) = t. Then we write A→T B if ΓA

D(t) ≥ τ .
This means that a tile can be added to a configuration iff the sum of its interaction
strengths with its neighbors reaches or exceeds τ . The relation →∗

T
is the reflexive

transitive closure of →T.

Whereas a configuration can be any arrangement of tiles (not necessarily con-
nected), we are interested in the subclass of configurations that can result from a
self-assembly process. Formally, the tile system and the relation →∗

T
define the par-

tially ordered set of assemblies: Prod(T) = {A s.t. {ts} →∗T A}, and the set of
terminal assemblies: Term(T) = {A ∈ Prod(T) and 6 ∃B 6= A s.t. A →∗

T
B}.

A tile system T uniquely produces A if ∀B ∈ Prod(T), B →∗
T

A (which implies
Term(T) = {A}).

An assembly sequence ~A of T is a sequence of pairs (An, tn) where A0 =
{t0} = {ts} and An−1 →T An = An−1 ∪ {tn}. Here we will exclusively consider finite

assembly sequences. If a finite assembly sequence ~A is implicit, A indicates the last
assembly in the sequence.

The tile systems used in our constructions have τ = 2 with the strength function
ranging over {0, 1, 2}. It is known that τ = 1 systems with strength function ranging
over {0, 1} are rather limited [11, 9]. In our drawings, the bond type σ may be
illustrated by a combination of shading, various graphics and symbols. Strength-2
bond type will always contain two dots in their representation. All markings must
match for two bond types to be considered identical. For example, the north bond
type of the following tile has strength 2 and the others have strength 1.

σN

σE

σS

σW

The constructions in this paper do not use strength-0 bond types (other than in
empty tiles); thus, there is no confusion between strength-1 and strength-0 bond
types. Zero strength interactions due to mismatches between adjacent tiles do occur
in our constructions.

2.1. Guaranteeing Unique Production. When describing tile systems that
produce a desired assembly, we would like an easy method for showing that this as-
sembly is uniquely produced. While it might be easy to find an assembly sequence
that leads to a particular assembly, there might be many other assembly sequences
that lead elsewhere. Here we present a property of an assembly sequence that guar-
antees that the assembly it produces is indeed the uniquely produced assembly of the
tile system.

Rothemund [9] describes the deterministic-RC property of an assembly that guar-
antees its unique production and that is very easy to check; however, this property
is satisfied only by assemblies that have no strength-0 interactions between neighbor-
ing non-empty tiles and is not directly applicable to the assemblies we will consider
here. A more general poly-time test for unique production was also shown by Rothe-
mund [9], but it can be difficult to prove that a particular assembly would satisfy
this test. On the other hand, the notion of locally deterministic assembly sequences
introduced here is easily checkable and sufficient for the constructions in this paper.

4 D. SOLOVEICHIK AND E. WINFREE

Definition 2.1. For an assembly sequence ~A we define the following sets of
directions for ∀i, j ∈ Z, letting t = A(i, j):

• inputsides
~A(t) = {D ∈ D s.t. t = tn and ΓAn

D (tn) > 0},

• propsides
~A(t) = {D ∈ D s.t. D−1 ∈ inputsides

~A(A(D(pos(t))))},

• termsides
~A(t) = D − inputsides

~A(t)− propsides
~A(t).

Intuitively, inputsides are the sides with which the tile initially binds in the process
of self-assembly; these sides determine its identity. propsides propagate information
by being the sides to which neighboring tiles bind. termsides are sides that do neither.
Note that by definition empty tiles have four termsides.

Definition 2.2. A finite assembly sequence ~A of T = (T, ts, g, τ) is called locally

deterministic if ∀i, j ∈ Z, letting t = A(i, j),
1. ΓA

inputsides
~A(t)

(t) ≤ τ

2. ∀t′ s.t. type(t′) ∈ T , pos(t′) = pos(t) but type(t′) 6= type(t),

ΓA

D−propsides
~A(t)

(t′) < τ.

We allow the possibility of < in property (1) in order to account for the seed and
empty tiles. Intuitively, the first property says that when a new tile binds a growing
assembly, it binds “just barely.” The second property says that nothing can grow from
non-propagating sides except “as desired.” We say that T is locally deterministic if
there exists a locally deterministic assembly sequence for it.

It is clear that if ~A is a locally deterministic assembly sequence of T, then A ∈
Term(T). Otherwise, the empty tile in the position where a new (non-empty) tile
can be added to A would violate the second property. However, the existence of a
locally deterministic assembly sequence leads to a much stronger conclusion:

Theorem 2.3. If there exists a locally deterministic assembly sequence ~A of T
then T uniquely produces A.

Proof. See Appendix A.

3. Arbitrarily Scaled Shapes and Their Complexity. In this section, we
introduce the model for the output of the self-assembly process used in this paper.
Let S be a finite set of locations on Z × Z. The adjacency graph G(S) is the graph
on S defined by the adjacency relation where two locations are considered adjacent
if they are directly north/south, or east/west of one another. We say that S is a
coordinated shape if G(S) is connected.4 The coordinated shape of assembly
A is the set SA = {pos(t) s.t. t ∈ A}. Note that SA is a coordinated shape because
A contains a single connected component.

For any set of locations S, and any c ∈ Z
+, we define a c-scaling of S as

Sc = {(i, j) s.t. (bi/cc, bj/cc) ∈ S} .

Geometrically, this represents a “magnification” of S by a factor c. Note that a
scaling of a coordinated shape is itself a coordinated shape: every node of G(S) gets
mapped to a c2-node connected subgraph of G(Sc) and the relative connectivity of the
subgraphs is the same as the connectivity of the nodes of G(S). A parallel argument
shows that if Sc is a coordinated shape, then so is S. We say that coordinated shapes
S1 and S2 are scale-equivalent if Sc

1 = Sd
2 for some c, d ∈ Z

+. Two coordinated

4We say “coordinated” to make explicit that a fixed coordinate system is used. We reserve the
unqualified term “shape” for when we ignore scale and translation.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 5

shapes are translation-equivalent if they can be made identical by translation.
We write S1

∼= S2 if Sc
1 is translation-equivalent to Sd

2 for some c, d ∈ Z
+. Scale-

equivalence, translation-equivalence and ∼= are equivalence relations (Appendix B).
This defines the equivalence classes of coordinated shapes under ∼=. The equivalence
class containing S is denoted S̃ and we refer to it as the shape S̃. We say that S̃
is the shape of assembly A if SA ∈ S̃. The view of computation performed by
the self-assembly process espoused here is the production of a shape as the “output”
of the self-assembly process, with the understanding that the scale of the shape is
irrelevant. Intuitively, this view is appropriate to the extent that a physical object
can be constructed from arbitrarily small pieces.

Having defined the notion of shapes, we turn to their descriptional complexity.
As usual, the Kolmogorov complexity of a binary string x with respect to a universal
Turing machine U is KU (x) = min {|p| s.t. U(p) = x}. (See the exposition of Li and
Vitanyi [13] for an in-depth discussion of Kolmogorov complexity.) Let us fix some
“standard” universal machine U . We call the Kolmogorov complexity of a coordinated
shape S to be the size of the smallest program outputting it as a list of locations:5,6

K(S) = min {|s| s.t. U(s) = 〈S〉}.

The Kolmogorov complexity of a shape S̃ is:

K(S̃) = min
{

|s| s.t. U(s) = 〈S〉 for some S ∈ S̃
}

.

We define the tile-complexity of a coordinated shape S and shape S̃ respectively
as:

Ksa(S) = min

{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S is the coordinated shape of A

}

Ksa(S̃) = min

{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S̃ is the shape of A

}

.

4. Relating Tile-Complexity and Kolmogorov Complexity. The essential
result of this paper is the description of the relationship between the Kolmogorov
complexity of any shape and the number of tile types necessary to self-assemble it.

Theorem 4.1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃) ≤ a1K(S̃) + b1.(4.1)

Note that since any tile system of n tile types can be described by O(n log n) bits,
the theorem implies there is a way to construct a tiling system such that asymptoti-
cally at least a constant fraction of these bits is used to “describe” the shape rather
than any other aspect of the tiling system.

5Note that K(S) is within an additive constant of KU (x) where x is some other effective descrip-
tion of S, such as a computable characteristic function or a matrix. Since our results are asymptotic,
they are independent of the specific representation choice. One might also consider invoking a two
dimensional computing machine, but it is not fundamentally different for the same reason.

6Notation 〈·〉 indicates some standard binary encoding of the object(s) in the brackets. In the
case of coordinated shapes, it means an explicit binary encoding of the set of locations. Integers,
tuples or other data structures are similarly given simple explicit encodings.

6 D. SOLOVEICHIK AND E. WINFREE

Proof. [of Theorem 4.1] To see that a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃), realize
that there exists a constant size program psa that, given a binary description of
a tile system, simulates its self-assembly, making arbitrary choices where multiple
tile additions are possible. If the self-assembly process terminates, psa outputs the
coordinated shape of the terminal assembly as the binary encoding of the list of
locations in it. Any tile system T of n tile types with any diagonal strength function
and any threshold τ can be represented7 by a string dT of 4ndlog 4ne+ 16n bits: For
each tile type, the first of which is assumed to be the seed, specify the bond types
on its four sides. There are no more than 4n bond types. In addition, for each tile
type t specify for which of the 16 subsets L ⊆ D,

∑

D∈L g(bondD(t)) ≥ τ . If T is a

tile system uniquely producing an assembly that has shape S̃, then K(S̃) ≤ |psadT|.
The left inequality in eq. 4.1 follows with the multiplicative constant a0 = 1/4− ε for
arbitrary ε > 0.

We prove the right inequality in eq. 4.1 by developing a construction (§5) showing

how for any program s s.t. U(s) = 〈S〉, we can build a tile system T of 15 |p|
log |p| +b tile

types, where b is a constant and p is a string consisting of a fixed program psb and s
(i.e. |p| = |psb|+ |s|), that uniquely produces an assembly whose shape is S̃. Program
psb and constant b are both independent of S. The right inequality in eq. 4.1 follows
with the multiplicative constant a1 = 15 + ε for arbitrary ε > 0.

Our result can be used to show that the tile-complexity of shapes is uncomputable:
Corollary 4.2. Ksa of shapes is uncomputable. In other words, the following

language is undecidable: L̃ =
{

(l, n) s.t. l = 〈S〉 for some S and Ksa(S̃) ≤ n
}

. Lan-

guage L̃ should be contrasted with L = {(l, n) s.t. l = 〈S〉 and Ksa(S) ≤ n} which is
decidable (but hard to compute in the sense of NP-completeness [1]).

Proof. [of Corollary 4.2] We essentially parallel the proof that Kolmogorov com-
plexity is uncomputable. If L̃ were decidable, then we can make a program that
computes Ksa(S̃) and subsequently uses Theorem 4.1 to compute an effective lower
bound for K(S̃). Then we can construct a program p that given n outputs some
coordinated shape S (as a list of locations) such that K(S̃) ≥ n by enumerating
shapes and testing with the lower bound, which we know must eventually exceed n.
But this results in a contradiction since p〈n〉 is a program outputting S ∈ S̃ and so
K(S̃) ≤ |p|+ dlog ne. But for large enough n, |p|+ dlog ne < n.

5. The Programmable Block Construction.

5.1. Overview. The uniquely produced terminal assembly A of our tile system
logically will consist of square “blocks” of c by c tiles. There will be one block for each
location in S. Consider the coordinated shape in Fig. 5.1(a). An example assembly
A is graphically represented in Fig. 5.1(b), where each square represents a block
containing c2 tiles. Self-assembly initiates in the seed block, which contains the seed
tile, and proceeds according to the arrows illustrated between blocks. Thus if there is
an arrow from one block to another, it indicates that the growth of the second block (a
growth block) is initiated from the first. A terminated arrow indicates that the block
does not initiate the self-assembly of an adjacent block in that direction – in fact, the
boundary between such blocks consists of strength-0 interactions (i.e. mismatches).
Fig. 5.1(c) describes our nomenclature: an arrow comes into a block on its input side,
arrows exit on propagating output sides, and terminated arrows indicate terminating

7Note that this representation could also be used in the case that negative bond strengths are
allowed so long as the strength function is diagonal.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 7

a) b) c)

(0,0)

seed block

Terminating output side

T
er

m
in

at
in

g
 o

u
tp

u
t

si
d
e

P
ro

p
ag

atin
g
 o

u
tp

u
t sid

e Input side

Fig. 5.1. Forming a shape out of blocks: a) A coordinated shape S. b) An assembly composed of
c by c blocks that grow according to transmitted instructions such that the shape of the final assembly
is S̃. Arrows indicate information flow and order of assembly. (Not drawn to scale.) The seed block
and the circled growth block are schematically expanded in Fig. 5.2. c) The nomenclature describing
the types of block sides.

output sides. The seed block has four output sides, which can be either propagating
or terminating. Each growth block has one input and three output sides, which are
also either propagating or terminating. The overall pattern of bonding of the finished
target assembly A is as follows. Tiles on terminal output sides are not bound to the
tiles on the adjacent terminal output side (i.e. there is no bonding along the dotted
lines in Fig. 5.8(a)), but all other neighboring tiles are bound. We will program the
growth such that terminating output sides abut only other terminating output sides
or empty tiles, and input sides exclusively abut propagating output sides and vice
versa.

The input/output connections of the blocks form a spanning tree rooted at the
seed block. During the progress of the self-assembly of the seed block, a computational
process determines the input/output relationships of the rest of the blocks in the
assembly. This information is propagated from block to block during self-assembly
(along the arrows in Fig. 5.1(b)) and describes the shape of the assembly. By following
the instructions each growth block receives in its input, the block decides where to
start the growth of the next block and what information to pass to it in turn. The
scaling factor c is set by the size of the seed block. The computation in the seed
block ensures that c is large enough that there is enough space to do the necessary
computation within the other blocks.

We present a general construction that represents a Turing-universal way of guid-
ing large scale self-assembly of blocks based on an input program p. In the following
section, we describe the architecture of seed and growth blocks on which arbitrary
programs can be executed. In §5.3 we describe how program p can be encoded using
few tile types. In §5.4 we discuss the programming of p that is required to grow the
blocks in the form of a specific shape and bound the scaling factor c. In §5.5 we
demonstrate that the target assembly A is uniquely produced.

5.2. Architecture of the Blocks.

5.2.1. Growth Blocks. There are four types of growth blocks depending upon
where the input side is, which will be labeled by ↑,→, ↓ or←. The internal structure
of a ↑ growth block is schematically illustrated in Fig. 5.2(a). The other three types

8 D. SOLOVEICHIK AND E. WINFREE

a) b)

halt

computation

…011S01...
input

o
u
tp

u
t

…
0

1
S

0
1…o

u
tp

u
t

n
o

 "
S

"

output
no "S"

seco
n

d
 p

h
ase:

p
rism

first p
h

ase:
T

M
 sim

u
latio

n

halt

computation

…011S01...
output

o
u
tp

u
t

…
0

1
S

0
1…o

u
tp

u
t

..
.0

0
1

S
0

1
..

.

output
no "S"

co
m

p
u
ta

ti
o
n co

m
p
u
tatio

n

computation

unpacking

seed frame
unpacking

u
n

p
ac

k
in

g u
n

p
ack

in
g

h
al

t

halt

h
alt

Fig. 5.2. Internal structure of a growth block (a) and seed block (b).

of growth block are rotated versions of the ↑ block. The specific tile types used for a ↑
growth block are shown in Fig. 5.3, and a simple example is presented in Fig. 5.4. The
first part is a Turing machine simulation, which is based on [18, 11]. The machine
simulated is a universal Turing machine that takes its input from the propagating
output side of the previous block. This TM has an output alphabet {0, 1, S}3 and an
input alphabet {(000), (111)} on a two-way tape (with λ used as the blank symbol).
The output of the simulation, as 3-tuples, is propagated until the diagonal. The
diagonal propagates each member of the 3-tuples crossing it to one of the three output
sides, like a prism separating the colors of the spectrum. This allows the single TM
simulation to produce three separate strings targeted for the three output sides. The
“S” symbol in the output of the TM simulation is propagated like the other symbols.
However, it acts in a special way when it crosses the boundary tiles at the three
output sides of the block, where it starts a new block. The output sides that receive
the “S” symbol become propagating output sides and the output sides that do not
receive it become terminating output sides. In this way, the TM simulation decides
which among the three output sides will become propagating output sides, and what
information they should contain, by outputting appropriate tuples. Subsequent blocks
will use this information as a program, as discussed in §5.4.

5.2.2. Seed Block. The internal structure of the seed block is schematically
shown in Fig. 5.2(b). It consists of a small square containing all the information
pertaining to the shape to be built (the seed frame), a larger square in which this
information is unpacked into usable form, and finally four TM simulations whose
computations determine the size of the seed block and the information transmitted
to the growth blocks. For simplicity we first present a construction without the
unpacking process (the simple seed block), and then we explain the unpacking process
separately and show how it can be used to create the full construction. The tile
types used for the simple seed block are presented in Fig. 5.5 and an example is
given in Fig. 5.6. While growth blocks contain a single TM simulation that outputs
a different string to each of the three output sides, the seed block contains four
identical TM simulations that output different strings to each of the four output
sides. This is possible because the border tile types transmit information selectively:
the computation in the seed block is performed using 4-tuples as the alphabet in a
manner similar to the growth blocks, but on each side of the seed block only one

COMPLEXITY OF SELF-ASSEMBLED SHAPES 9

a) Borders and basic info propagating tiles:

∀x ∈ {0, 1, λ} we add:

north-west: north: north-left:

B↑

B

B

B←

x↑

B
x

B

S↑

B

S

B

B↑
B→

B

B

west: east:

B
x

B

x←

B
e

B

λ←

B

S

B

S←

B
x→

B

x
B

S→
B

S

input-west: input: input-east:

B

B
B↑

B←

x

B
x↑

B
B

B→
B↑

B

Vertical and horizontal information propaga-
tion below the bottom-right/top-left diagonal:
∀x, y ∈ {0, 1, S, λ}3:

x

y

x

y

and above this diagonal: ∀x, y ∈ {0, 1, S, λ}:

x

y

x

y

b) Tile types for the diagonal:

TM section diagonal:

D3

D2

λ

e
λ

D1

λ

D2

λ

λ
D0

D1

D0

λ
D3

e

Initiation of TM diagonal (to bind to the north-east corner tile)
and to delay the upward continuation of the diagonal by one
(through the δ bond):

λ

δ

λ

D1

B
λ→

B
δ

The prism diagonal, ∀w, x, y, z ∈ {0, 1, S, λ}3:

xyz

w

xyz

w

y

z

xyz
x

In the row where the Turing machine halts, the λ symbol is
propagated from the left. This initiates the “prism” diagonal
with the following tile:

λ
λ

D3

λ

Termination of the prism diagonal (to bind to the north-west
corner tile):

B
λ

B

λ←

c) TM Simulation tile types:

For every symbol s in {0, 1, S, λ}3

the following tile types propagate the
tape contents:

s

e

s

e

For every symbol s and every state
q we add the following “read” tile
types:

R

qs

q

s

e R

qs

e

s

q For every symbol s and every state q
we add the following “copy” tile type: C

qs

e

qs

e

If in state q, reading symbol s, U
writes s′, goes to state q′, and moves
the head right, we add the following
“write” tile type:

W

s′

q′

qs

e

If in state q, reading symbol s, U
writes s′, goes to state q′, and moves
the head left, we add the following
“write” tile type:

W

s′

e

qs
q′

To start U in state q0 we add the fol-
lowing “start” tile type, which places
the head at the point at which the
“S” symbol initiates the block:

q0λ

B
S↑

B
If in state q, reading symbol s, U halts
writing s′ then we add the following
“halting” tile type:

H

s′

λ
qs

λ

Fig. 5.3. Growth block ↑ tile types. All bond types in which a block type symbol is omitted have
the block type symbol “↑” to prevent inadvertent incorporation of tiles from a different block type.
We assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet (xxx).
The tile types for other growth block types are formed by 90, 180, 270 degree rotations of the tile
types of the ↑ block where the block type symbols {↑, ↓,←,→} are replaced by a corresponding 90,

180, 270 degree rotation of the symbol: i.e.

B↑

B
→

B↑

B↑ (↑ growth block) ⇒

B
→

B
→

B↓

B
→ (→ growth block).

Looking at the border tile types, note that external sides of tiles on output sides of blocks have block
type symbols compatible with the tiles on an input side of a block. However, tiles on output sides
cannot bind to the tiles on an adjacent output side because of mismatching block type symbols.

10 D. SOLOVEICHIK AND E. WINFREE

B↑

B

B

B←

λ↑

B

λ

B

0↑

B

0

B

0↑

B

0

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

B↑
B→

B

B

B
λ

B

λ←

λ

λ

λ
λ

0

λ

0

λ

0

λ

0

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

1

B

1←

λ
1

λ

1

0

1

101

1

0

1

0

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

B
1→

B

1
...

B

1

B

1←

λ

1

λ

1
101

1

101

1

0

S

10S

1

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

B
S→

B

S

B→
q0λ
→

B→

S→

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ
10S

λ

10S

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ
...

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ
λ

λ
λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ

λ

λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ H

101

λ
q10

λ

10S

λ

10S

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ
λ

λ
D3

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e C

q10
e

q10

e
10S

e

10S

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D3

D2

λ

e
λ

D1

λ

D2

λ

λ
D0

D1

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e R

q10
q1

0

e W

10S
e

q0λ

q1

λ
e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D0

λ
D3

e
λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e
0

e

0

e C

q0λ
e

q0λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D3

D2

λ

e
λ

D1

λ

D2

λ

δ

λ

D1

B
λ→

B
δ

B

B
B↑

B←

λ

B
λ↑

B

0

B
0↑

B

q0λ

B
S↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B
B

B→
B↑

B

B↑ λ↑ 0↑ S↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ B↑

...
...

...
...

...
...

...
...

...
...

...
...

...

first p
h
ase: T

M
 sim

u
latio

n
seco

n
d
 p

h
ase: p

rism

Propagating output side of adjacent block

P
ro

p
ag

atin
g
 o

u
tp

u
t sid

e

Terminating output side

T
er

m
in

at
in

g
 o

u
tp

u
t

si
d
e

Fig. 5.4. A trivial example of a ↑ growth block. Here, the TM makes one state transition and
halts. All bond types in which a block type symbol is omitted have the block type symbol “↑”. We
assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet (xxx).
The natural assembly sequence to consider is adding tiles row by row from the south side (in which
a new row is started by the strength 2 bond).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 11

of the elements of the 4-tuple traverses the border. As with growth blocks, if the
transmitted symbol is “S”, the outside edge initiates the assembly of the adjoining
block. The point of having four identical TM simulations is to ensures that the seed
block is square: while a growth block uses the length of its input side to set the length
of its output sides (via the diagonal), the seed block does not have any input sides.
(Remember that it is the seed block that sets the size of all the blocks.)

The initiation of the Turing machine simulations in the seed block is done by
tile types encoding the program p that guides the block construction. The natural
approach to provide this input is using 4 rows (one for each TM) of unique tiles
encoding one bit per tile, as illustrated in Figs. 5.5 and 5.6. However, this method
does not result in an asymptotically optimal encoding.

5.3. The Unpacking Process. To encode bits much more effectively we follow
Adleman et al [3] and encode on the order of log n/ log log n bits per tile where n
is the length of the input. This representation is then unpacked into a one-bit-per-
tile representation used by the TM simulation. Adleman et al’s method requires
O(n/ log n) tiles to encode n bits, leading to the asymptotically optimal result of
Theorem 4.1.

Our way of encoding information is based on Adleman et al [3], but modified
to work in a τ = 2 tile system (with strength function ranging over {0, 1, 2}) and
to fit our construction in its geometry. We express a length n binary string using a
concatenation of dn/ke binary substrings of length k, padding with 0’s if necessary.8

We choose k such that it is the least integer satisfying n
log n ≤ 2k. Clearly, 2k < 2n

log n .
See Fig. 5.7 for the tile types used in the unpacking for the north TM simulation and
for a simple unpacking example (which for the sake of illustration uses k = 4).

Let us consider the number of tile types used to encode and unpack the n bit
input string for a single TM simulation (i.e. north). There are 2dn/ke ≤ 2d n

log n
log n

e =

2d n
log n−log log ne unique tile types in each seed row. This implies that there exists a

constant h such that 2dn/ke ≤ 3n
log n +h for all n. We need at most 2k+2k−1+· · ·+4 <

2k+1 “extract bit” tile types and 2k−1+2k−2+· · ·+4 < 2k “copy remainder” tile types.
To initiate the unpacking of new substrings we need 2k tile types. To keep on copying
substrings that are not yet unpacked we need 2(2k) tile types. The quantity of the
other tile types is independent of n, k. Thus, in total, to unpack the n bit input string
for a single TM simulation we need no more than 3n

log n + h + 2k+1 + 2k + 2k + 2(2k) ≤

15 n
log n +O(1) tile types. Since there are 4 TM simulations in the seed block, we need

60 n
log n + O(1) tile types to encode and unpack the n bit input string.

If the seed block requires only one propagating output side, then a reduced con-
struction using fewer tile types can be used: only one side of the seed frame is specified,
and only one direction of unpacking tiles are used. A constant number of additional
tile types are used to fill out the remaining three sides of the square. These additional
tile types must perform two functions. First, they must properly extend the diagonal
on either side of the unpacking and TM simulation regions. In the absense of the
other three unpacking and TM simulation processes, this requires adding strength-2
bonds that allow the diagonal to grow to the next layer. Second, the rest of the square
must be filled in to the correct size. This can be accomplished by adding tiles that
extend one diagonal to the other side of the seed frame (using the same logic as a
construction in [11].) Altogether, a seed block with only one propagating output side

8We can assume that our universal TM U treats trailing 0’s just as λ’s

12 D. SOLOVEICHIK AND E. WINFREE

a) Borders and half-diagonals:

The borders:
∀w, x, y, z ∈ {0, 1, λ}:

B w
x
y
z

B

z←

w↑

B
wxyz

B

B
x→

B

w
x
y
z

wxyz

B
y↓

B

B wx
y
SB

S←

S↑

B
Sxyz

B

B
S→

B

w
S
y
z

wxSz

B
S↓

B

Corner tile types:

B↑

B

B

B←

B↑
B→

B

B

B

B
B↓

B←

B
B→

B↓
B

The four half-diagonals to separate the TM sim-
ulations and augment the TM tape with blanks:

λ
e

e
λ

λ

λ
e

e

e

λ

λ

e

e

e

λ

λ

b) Seed frame for program p.

TM seed frame: for every symbol pi:

pi

i

�

i+1

i+1
pi

i

�

�

i+1
pi

i

i

�

i+1

pi

If pi is “U” then the corresponding bond type is strength 2, starting the
TM simulation with the head positioned at that point reading λ.

Corners of the seed frame: let im = |p|:

λ

λ

im

0 ts

0

λ

λ

im

im

0

λ

λ

λ

im

0

λ

We make the north-west corner the seed tile of our tile system.

To fill in the middle:

�

�

�

�

c) TM Simulation tile types (north only):

For every symbol s in {0, 1, S, λ}4

the following tile types propagate the
tape contents:

s

e

s

e

For every symbol s and every state
q we add the following “read” tile
types:

R

qs

q

s

e R

qs

e

s

q

If in state q, reading symbol s, U
writes s′, goes to state q′, and moves
the head left, we add the following
“write” tile type:

W

s′

e

qs
q′

If in state q, reading symbol s, U
writes s′, goes to state q′, and moves
the head right, we add the following
“write” tile type:

W

s′

q′

qs

e

To start U in state q0 we add the fol-
lowing “start” tile type, which places
the head at the point at which the
“S” symbol initiates the block:

q0λ
e

U

e

If in state q, reading symbol s, U halts
writing s′ = (wxyz) then we add the
following “halting” tile type, which
also starts the border:

H

w↑

B
qs

B

Fig. 5.5. Seed block tile types without unpacking. All bond types in which a block type symbol is

omitted have the block type symbol “ ” to prevent inadvertent incorporation of tiles from a different
block type. We assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the
tuplet (xxxx). Note that as with output sides of growth blocks, the external sides of seed block border
tiles have block type symbols compatible with the tiles on an input side of a growth block. The three
other TM simulations consist of tile types that are rotated versions of the north TM simulation
shown. The halting tile types propagate one of the members of the tuple on which the TM halts,
analogous to the border tile types. The bond types of TM tile types have a symbol from D which
indicates which simulation they belong to (omitted above).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 13

B↑

B

B

B←

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B H

0↑

B
q10

B

0↑

B

010S

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

B↑
B→

B

B

B

λ

B

λ←

λ
e

e
λ

λ
e

λ

e
λ

e

λ

e R

q10
q1

0

e W

010S
e

q0λ

q1

λ
e

λ

e
λ

e

λ

e
λ

λ
e

e
B

λ→
B

λ

B

λ

B

λ←

λ
e

e
λ

λ
e

λ

e
0

e

0

e
q0λ

e

U

e
λ

e

λ

e
λ

λ
e

e
B

λ→
B

λ

...
B

λ

B

λ← ts

λ

2

0

λ

0

1

�

2

U

0

�

1

λ

λ

2

0

B
λ→

B

λ

B←
S←

B

q0λ
←

B

010S

B

S←
...

...
0

�

1

U

�

�

�

�

�

�

�

�

2

0

1

�
...

... H

B
0→

B

q1
0

... H

B
q1
0

B

1←
...

...
1

�

2

0

�

�

�

�

�

�

�

�

1

U

0

�
...

...
B

1→
B

010S

B

λ

B

λ←

2

0

λ

λ

�

1

U

0

�

2

0

1

0

λ

λ

2

B
λ→

B

λ

B

λ

B

λ←

e

e

λ

λ · · · · · ·
e

λ

λ

e
B

λ→
B

λ

B

λ

B

λ←

e

e

λ

λ · · · · · ·
e

λ

λ

e
B

λ→
B

λ

B

B
B↓

B←

λ

B
λ↓

B

λ

B
λ↓

B

λ

B
λ↓

B

010S

B
0↓

B H

q10

B
1↓

B

λ

B
λ↓

B

λ

B
λ↓

B

λ

B
λ↓

B

B
B→

B↓
B

Fig. 5.6. A simple seed block without unpacking showing the north TM simulation and the
selective transmission of information through the borders. As shown, only the west side is a prop-
agating output side; the other three sides are terminating output sides. All bond types in which a

block type symbol is omitted have the block type symbol “ ”. We assume that in bond types above,
a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet (xxxx). The natural assembly sequence to
consider is growing the seed frame first and then adding tiles row by row from the center (where a
new row is started by the strength 2 bond).

14 D. SOLOVEICHIK AND E. WINFREE

a) Unpacking tile types for the north side of the seed frame:

We use n/k coding tiles in the input row, each encoding a binary
substring (wi) of length k. These tiles are interspersed with buffer
tiles holding the symbol “∗”. ∀0 ≥ i ≥ k/n − 1:

wi

2i+1

�

2i+2

∗

2i

�

2i+1

The last tile of the seed row has symbol “U” which indicates the end of the input
string.

To initiate the unpacking of new substrings: ∀x ∈ {0, 1}k−1, b ∈
{0, 1}:

b
x

bx

∗

The following “extract bit” tile types perform the actual unpacking:
∀j ∈ {1, . . . , k − 1} , ∀x ∈ {0, 1}j , b ∈ {0, 1}:

b
x

bx

e

The following “copy remainder” tile types pass the remaining bits to
the next extraction: ∀j ∈ {2, . . . , k − 1} , ∀x ∈ {0, 1}j :

x

∗

∗

x

To copy a single bit in the last step of the unpacking of a substring
and after unpacking every bit: b ∈ {0, 1}:

b

∗

∗

b

b
e

b

e

These tile types keep on copying substrings that are not yet being
unpacked: ∀x ∈ {0, 1}k:

∗

x

x

∗

x

∗

∗

x

Finally, the following tile types propagate the symbol “U”, which
indicates the end of the input string, and initiate the TM simulation
once the unpacking process finishes:

∗

U

U

∗
U

λ
e

U

q0λ

U

U

∗

λ

λ
e

U

b) North unpacking example:

se
ed

 r
o
w

TM simulation

· · ·
0

e

0

e
1

e

1

e
1

e

1

e
0

e

0

e
0

e

0

e
1

e

1

e
0

1

01

e
1

∗

∗

1

q0λ

U

U

∗

λ

λ
e

U

· · ·
0

e

0

e
1

e

1

e
1

e

1

e
0

e

0

e
0

e

0

e
1

01

101

e
01
∗

∗

01

∗

U

U

∗
U

λ
e

U
...

· · ·
0

e

0

e
1

e

1

e
1

0

10

e
0

∗

∗

0

0

101

0101

∗

101
∗

∗

101

∗

U

U

∗
U

λ
e

U
...

· · ·
0

e

0

e
1

10

110

e
10
∗

∗

10

∗

0101

0101

∗
0101
∗

∗

0101

∗

U

U

∗
U

λ
e

U
...

· · ·
0

110

0110

e
110
∗

∗

110

∗

0101

0101

∗
0101
∗

∗

0101

∗

U

U

∗
U

λ
e

U
...

ts

λ

4

0

U

0110

3

�

4

∗

2

�

3

0101

1

�

2

∗

0

�

1

U

λ

4

0
...

...
4

0110

3

�

terminating output side

term
in

atin
g
 o

u
tp

u
t sid

ete
rm

in
at

in
g
 o

u
tp

u
t

si
d
e

output
…011S01...

computation

unpacking

halt

seed row

Fig. 5.7. The unpacking for the north side of the seed frame. (a) The tile types used. (b)
An example showing the unpacking of the string 01100101 if k = 4 for a seed block with up to four
propagating output sides. Note that the unpacking process can be inserted immediately prior to the
TM simulation without modifying other tile types. (inset) Internal structure of a seed block with
only one propagating output side.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 15

requires only 15 n
log n + O(1) tile types. We will see in the next section that this is

sufficient for growing any shape.

5.4. Programming Blocks and the Value of the Scaling Factor c. In
order for our tile system to produce some assembly whose shape is S̃, instructions
encoded in p must guide the construction of the blocks by deciding on which side of
which block a new block begins to grow and what is encoded on the edge of each
block. For our purposes, we take p = psb〈s〉 (i.e. psb takes s as input), where s is a
program that outputs the list of locations in the shape S. psb runs s to obtain this
list and plans out a spanning tree t over these locations (it can just do a depth-first
search) starting from some arbitrarily chosen location that will correspond to the seed
block.9 The information passed along the arrows in Fig. 5.1(b) is pgb〈t, (i, j)〉 which
is the concatenation of a program pgb to be executed within each growth block, and
an encoding of the tree t and the location (i, j) of the block into which the arrow is
heading. When executed, pgb〈t, (i, j)〉 evaluates to a 3-tuple encoding of pgb〈t, D(i, j)〉
together with symbol “S” for each propagating output side D. Thus, each growth
block passes pgb〈t, D(i, j)〉 to its Dth propagating output side as directed by t. Note
that program psb in the seed tile must also run long enough to ensure that c is large
enough that the computation in the growth blocks has enough space to finish without
running into the sides of the block or into the diagonal. Nevertheless, the scaling
factor c is dominated by the building of t in the seed block, as the computation in
the growth blocks takes only poly(|S|).10 Since the building of t is dominated by the
running time of s, we have c = poly(time(s)).

5.5. Uniqueness of the Terminal Assembly. By Theorem 2.3 it is enough to
demonstrate a locally deterministic assembly sequence ending in our target terminal
assembly to be assured that this terminal assembly is uniquely produced. Consider
the assembly sequence ~A in which the assembly is constructed block by block such
that every block is finished before the next one started and each block is constructed
by the natural assembly sequence described in the captions to Figs. 5.4 and 5.6. It is
enough to confirm that in this natural assembly sequence every tile addition satisfies
the definition of local determinism (Def. 2.2). It is easy to confirm that every tile not
adjacent to a terminal output side of a block indeed satisfies these conditions. Other
than on a terminal output side of a block (and on null tiles) there are no termsides :
every side is either an inputside or a propside. In our construction, each new tile binds
through either a single strength 2 bond or two strength 1 bonds (thus condition 1 is
satisfied since τ = 2) such that no other tile type can bind through these inputsides
(condition 2 is satisfied if the tile has no termsides). Note that inadvertent binding
of a tile type from a different block type is prevented by the block type symbols.

Now let’s consider termsides around the terminal output sides of blocks (Fig. 5.8(a)).
Here block type symbols come to the rescue again and prevent inadvertent binding.
Let t ∈ A be a tile with a termside (t can be null). We claim that ∀t′ s.t. type(t′) ∈ T
and pos(t′) = pos(t), if ΓA

termsides
~A(t)

(t′) > 0 then ΓA

D−propsides
~A(t)

(t′) < τ = 2. In

other words, if t′ binds on a termside of t, then it cannot bind strongly enough to

9We can opt to always choose a leaf, in which case the seed block requires only one propagating
output side. In this case the multiplicative factor a1 is 15 + ε, although the tile set used will depend
upon the direction of growth from the leaf.

10Note that less than n rows are necessary to unpack a string of length n (§5.3). Since we can
presume that psb reads its entire input and the universal TM needs to read the entire input program
to execute it, the number of rows required for the unpacking process can be ignored with respect to
the asymptotics of the scaling factor c.

16 D. SOLOVEICHIK AND E. WINFREE

↑

↑Type of t's
block: seed ↑

b) c)

↑

↓

position
of tile t

↑
↑

↓

↑position
of tile t

↑ position
of tile t

a)

↑

↓

↑position
of tile t

↑

↑

↑position
of tile t

Fig. 5.8. (a) The target terminal assembly with the dotted lines indicating the edges that have
termsides with non-null bonds. (b) The block type symbols of adjacent tiles on two termsides of t

(west and south in this case). (c) The block type symbols of adjacent tiles on a termside (west side
in this case) and an inputside of t. If t is in the seed block or ← growth block, then the north, east,
south sides may be the inputsides. If t is in a ↑ block then the east and south sides may be the
inputsides. If t is in a ↓ block then the north and east sides may be the inputsides.

violate local determinism, implying we can ignore termsides. Figure 5.8(a) shows
in dotted lines the termsides that could potentially be involved in bonding. These
termsides cannot have a strength 2 bond because symbol “S” is not propagated to
terminal output sides of blocks. Thus t′ binding only on a single termside of t is not
enough. Can t′ bind on two termsides of t? To do so, it must be in a corner between
two blocks, binding two terminal output sides of different blocks. But to bind in this
way would require t′ to bond the block type symbol pattern11 shown in Fig. 5.8(b)
(or its rotation), which none of the tile types in our tile system can do. Can t′ bind
on one termside and one inputside of t? Say the termside of t that t′ binds on is the
west side (Fig. 5.8(c)). The tile to the west of t must be on the east terminal output
side of a block, and thus it has symbol “→” on its east side. So t′ must have “→”
on the west, and depending on the type of block t is in, one of the other block type
symbols as shown in Fig. 5.8(c). But again none of the tile types in our tile system
has the necessary block type symbol pattern.

11The block type symbol pattern of a tile type consists of the block type symbols among its four

bond types. For instance, the tile type

λ↑

λ↑

D3↑

λ↑ has block type symbol pattern

↑

↑

↑

↑ . If two bond

types do not have matching block type symbols then obviously they cannot bind.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 17

6. Discussion, Extensions and Open Questions. In this work we have es-
tablished both upper and lower bounds relating the descriptional complexity of a
shape to the number of tile types needed to self-assemble the shape within the stan-
dard Tile Assembly Model. The relationship is dependent upon a particular definition
of shape that ignores its size. Disregarding scale in self-assembly appears to play a
similar role as disregarding time in theories of computability and decidability. Those
theories earned their universal standing by being shown to be identical for all “reason-
able” models of computation. To what extent do our results depend on the particular
model of self-assembly? Can one define a complexity theory for families of shapes in
which the absolute scale is the critical resource being measured? In this section we
discuss the generality and limitations of our result.

6.1. Optimizing the Main Result (§4). Since the Kolmogorov complexity of
a string depends on the universal Turing machine chosen, the complexity community
adopted a notion of additive equivalence, where additive constants are ignored. How-
ever, Theorem 4.1 includes multiplicative constants as well, which are not customarily
discounted. It might be possible to use a more clever method of unpacking (§5.2) and
a seed block construction that reduces the multiplicative constant a1 of Theorem 4.1.
Correspondingly, there might be a more efficient way to encode any tile system than
described in the proof of the theorem, and thereby increase a0.

Recall that s is the program for U producing the target coordinated shape S
as a list of locations. For cases where our results are of interest, the scaling factor
c = O(time(s)) is extremely large since |S| is presumably enormous and s must
output every location in S. The program s′ that given (i, j) outputs 0/1 indicating
whether S contains that location may run much faster than s for large shapes. Can
our construction be adapted to use s′ in each block rather than s in the seed block
to obtain smaller scale? The problem with doing this directly is that the scale of the
blocks, which sets the maximum allowed running time of computation in each block,
must be set in the seed block. As a result, there must be some computable time bound
on s′ that is given to the seed block.

6.2. Strength Functions. In most previous works on self-assembly, as in this
work, strength functions are restricted with the following properties: (1) the effect
that one tile has on another is equal to the effect that the other has on the first, i.e.,
g is symmetric: g(σ, σ′) = g(σ′, σ); (2) the lack of an interaction is normalized to
zero, i.e., g(σ, null) = 0; (3) there are no “adverse” interactions counteracting other
interactions, i.e., g is non-negative; (4) only sides with matching bond types interact,
i.e., g is diagonal : g(σ, σ′) = 0 if σ 6= σ′.

Properties 1 and 2 seem natural enough. Our results are independent of property
3 because the encoding used for the lower bound of Theorem 4.1 is valid for strength
functions taking on negative values. Property 4, which reflects the roots of the Tile
Assembly Model in the Wang tiling model, is essential for the quantitative relationship
expressed in Theorem 4.1: recent work by Aggarwal et al [4] shows that permitting
non-diagonal strength functions allows information to be encoded more compactly.
Indeed, if property 4 is relaxed then replacing our unpacking process with the method
of encoding used in that work and using Aggarwal et al’s lower bound leads to the
following form of Theorem 4.1: Assuming the maximum threshold τ is bounded by a
constant, there exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤
(

Knd
sa (S̃)

)2

≤ a1K(S̃) + b1

18 D. SOLOVEICHIK AND E. WINFREE

where Knd
sa is the tile-complexity when non-diagonal strength functions are allowed.

It is an open question whether the constant bound on τ can be relaxed.

6.3. Wang Tiling vs Self-Assembly of Shapes. Suppose one is solely con-
cerned with the existence of a configuration in which all sides match, and not with
the process of assembly. This is the view of classical tiling theory [7]. Since finite tile
sets can enforce uncomputable tilings of the plane [8, 16], one might expect greater
computational power when the existence, rather than production, of a tiling is used
to specify shapes. In this section we develop the notion of shapes in the Wang tile
model [19] and show that results almost identical to the Tile Assembly Model hold.
One conclusion of this analysis is that making a shape “practically constructible” (ie
in the sense of the Tile Assembly Model) does not necessitate an increase in tile-
complexity.

We translate the classic notion of the origin-restricted Wang tiling problem12 as
follows. A (origin-restricted) Wang tiling system is a pair (T, ts) where T is
a set of tile types and ts is a seed tile with type(ts) ∈ T . A configuration A is a
valid tiling if all sides match and it contains the seed tile. Formally, A is a valid
tiling if ∀(i, j) ∈ Z

2, D ∈ D, (1) type(A(i, j)) ∈ T , (2) ts ∈ A, (3) bondD(A(i, j)) =
bondD−1(A(D(i, j))).

Since valid tilings are infinite objects, how can they define finite coordinated
shapes? For tile sets containing the empty tile type, we can define shapes analogously
to the Tile Assembly Model. However, we cannot simply define the coordinated shape
of a valid tiling to be the set of locations of non-empty tiles. For one thing, the set
of non-empty tiles can be disconnected, unlike in self-assembly where any produced
assembly is a single connected component. So we take the coordinated shape SA of
a valid tiling A to be the smallest region of non-empty tiles containing ts that can
be extended to infinity by empty tiles. Formally, SA is the coordinated shape of the
smallest subset of A that is a valid tiling containing ts. If SA is finite, then it is the
coordinated shape of valid tiling A.13 Shape S̃ is the shape of a valid tiling
A if SA ∈ S̃.

Produced assemblies of a tile system (T, ts, g, τ) are not necessarily valid tilings
of Wang tiling system (T, ts) because the Tile Assembly Model allows mismatch-
ing sides. Further, valid tilings of (T, ts) are not necessarily produced assemblies of
(T, ts, g, τ). Even if one considers only valid tilings that are connected components,
there might not be any sequence of legal tile additions that assembles these config-
urations. Nonetheless, if a tile system uniquely produces a valid tiling A, then all
valid tilings of the corresponding Wang tile system agree with A and have the same
coordinated shape as A:

Lemma 6.1. If empty ∈ T and the tile system T = (T, ts, g, τ) uniquely produces
assembly A such that A is a valid tiling of the Wang tiling system (T, ts) then for
all valid tilings A′: (1) ∀(i, j) ∈ Z

2, type(A(i, j)) 6= empty ⇒ A′(i, j) = A(i, j), (2)
SA′ = SA.

Proof. Consider an assembly sequence ~A of T ending in assembly A and let A′ be
a valid tiling of (T, ts). Suppose tn is the first tile added in this sequence such that
t′ = A′(pos(tn)) 6= tn. Since A′ is a valid tiling, t′ must match on all sides, including

inputsides
~A(tn). But this implies that two different tiles can be added in the same

12The unrestricted Wang tile model does not have a seed tile [19, 5, 18].
13SA can be finite only if empty ∈ T because otherwise no configuration containing an empty tile

can be a valid tiling.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 19

location in ~A which means that A is not uniquely produced. This implies part (1) of
the lemma. Now, to be a valid tiling, all exposed sides of assembly A must be null.
Thus if A′ and A agree on all places where A is non-empty, then SA′ = SA and part
(2) of the lemma follows.

Define the tile-complexity Kwt of a shape S̃ in the origin-restricted Wang tiling
model as the minimal number of tile types in a Wang tiling system with the property
that a valid tiling exists and there is a coordinated shape S ∈ S̃ such that for every
valid tiling A, SA = S.

Theorem 6.1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Kwt(S̃) log Kwt(S̃) ≤ a1K(S̃) + b1.

Proof. [Sketch] The left inequality follows in a manner similar to the proof of
Theorem 4.1. Suppose every valid tiling of our Wang tile system has coordinated shape
S. Any Wang tiling system of n tile types can be represented using O(n log n) bits.
Making use of this information as input, we can use a constant-size program to find,
through exhaustive search, the smallest region containing ts surrounded by null bond
types in some valid tiling. Thus, O(n log n) bits are enough to compute an instance of
S̃. To prove the right inequality, our original block construction almost works, except
that there are mismatches between a terminal output side of a block and the abutting
terminal output side of the adjacent block or the surrounding empty tiles (i.e. along the
dotted lines in Fig. 5.8(a)). Consequently, the original construction does not yield a
valid tiling. Nonetheless, a minor variant of our construction overcomes this problem.
Instead of relying on mismatching bond type symbols to prevent inadvertent binding
to terminal output sides of blocks, we can add an explicit capping layer that covers
the terminal output sides with null bond types but propagates information through
propagating output sides. This way, the terminal output sides of blocks are covered
by null bond types and match the terminal output sides of the adjacent block and
empty tiles. These modifications can be made preserving local determinism, which,
by Lemma 6.1, establishes that the coordinated shape of any valid tiling is an instance
of S̃.

There may still be differences in the computational power between Wang tilings
and self-assembly processes. For example, consider the smallest Wang tiling system
and the smallest self-assembly tile system that produce instances of S̃. The instance
produced by the Wang tiling system might be much smaller than the instance pro-
duced by self-assembly.

Keep in mind that the definition we use for saying when a Wang tiling system pro-
duces a shape was chosen as a natural parallel to the definition used for self-assembly,
but alternative definitions may highlight other interesting phenomena specific to Wang
tilings. For example, one might partition tiles into two subsets, “solution” and “sub-
stance” tiles, and declare shapes to be connected components of substance tiles within
valid tilings. In such tilings – reminiscent of “vicinal water” in chemistry – the so-
lution potentially can have a significant (even computational) influence that restricts
possible shapes of the substance, and hence the size of produced shapes needn’t be so
large as to contain the full computation required to specify the shape.

6.4. Sets of Shapes. Any coordinated shape S can be trivially produced by a
self-assembly tile system or by a Wang tiling of |S| tile types. Interesting behavior
occurs only when the number of tile types is somehow restricted and the system is
forced to perform some non-trivial computation to produce a shape. Previously in

20 D. SOLOVEICHIK AND E. WINFREE

this paper, we restricted the number of tile types in the sense that we ask what is the
minimal number of tile types that can produce a given shape. We saw that ignoring
scale in this setting allows for an elegant theory. In the following two sections the
restriction on the number of tile types is provided by the infinity of shapes they must
be able to produce. Here we will see as well that ignoring scale allows for an elegant
theory.

Adleman [2] asks “What are the ‘assemblable [sic] shapes?’ - (analogous to what
are the ‘computable functions’)?” While this is still an open question for coordinated
shapes, our definition of a shape ignoring scale and translation leads to an elegant
answer.

A set of binary strings L̃ is a language of shapes if it consists of (standard binary)
encodings of lists of locations that are coordinated shapes in some set of shapes:

L̃ =
{

〈S〉 s.t. S ∈ S̃ and S̃ ∈ R
}

for some set of shapes R. Note that every instance

of every shape in R is in this language. The language of shapes L̃ is recursively
enumerable if there exists a Turing machine that halts upon receiving 〈S〉 ∈ L̃, and
does not halt otherwise. We say a tile system T produces the language of shapes

L̃ if L̃ =
{

〈S〉 s.t. S ∈ S̃A for some A ∈ Term(T)
}

. We may want L̃ to be uniquely

produced in the sense that the A ∈ Term(T) is unique for each shape. Further, to
prevent infinite spurious growth we may also require T to satisfy the non-cancerous
property: ∀B ∈ Prod(T), ∃A ∈ Term(T) s.t. B →∗

T
A. The following lemma is valid

whether or not these restrictions are made.

Lemma 6.2. A language of shapes L̃ is recursively enumerable if and only if it is
(uniquely) produced by a (non-cancerous) tile system.

Proof. [Sketch] First of all, for any tile system T we can make a TM that given
a coordinated shape S as a list of locations, starts simulating all possible assembly
sequences of T and halts iff it finds a terminal assembly that has shape S̃. Therefore, if
L̃ is produced by a tile system, L̃ is recursively enumerable. In the other direction, if L̃
is recursively enumerable then there is a program p that given n outputs the nth shape
from L̃ (in some order) without repetitions. Our programmable block construction can
be modified to execute a non-deterministic universal TM in the seed block by having
multiple possible state transitions. We make a program that non-deterministically
guesses n, feeds it to p, and proceeds to build the returned shape. Note that since
every computation path terminates, this tile system is non-cancerous, and since p
enumerates without repetitions, the language of shapes is uniquely produced.

Note that the above lemma does not hold for languages of coordinated shapes,
defined analogously. Many simple recursively enumerable languages of coordinated
shapes cannot be produced by any tile system. For example, consider the language of
equilateral width-1 crosses centered at (0, 0). No tile system produces this language.
Scale equivalence is crucial because it allows arbitrary amounts of information to be
passed between different parts of a shape; otherwise, the amount of information is
limited by the width of a shape.

The same lemma can be attained for the Wang tiling model in an analogous
manner using the construction from §6.3. Let us say a Wang tiling system (T, ts)
produces the language of shapes L̃ if L̃ = {〈S〉 s.t. S ∈ S̃A for some valid tiling A of
(T, ts)}. Analogously to tile systems, we may require the unique production property
that there is exactly one such A for each shape. Likewise, corresponding to the non-
cancerous property of tile systems, we may also require the tiling system to have the
non-cancerous property that every valid tiling has a coordinated shape (i.e. is finite).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 21

Again, the following lemma is true whether or not these restrictions are made.
Lemma 6.3. A language of shapes L̃ is recursively enumerable if and only if it is

(uniquely) produced by a (non-cancerous) Wang tiling system.

6.5. Scale Complexity of Shape Functions. In this section we expand upon
the notion of a shape being the output of a universal computation process as mentioned
in the Introduction. Here we will think of tile systems as computing a function from
binary strings to shapes and show that the time complexity of this function in terms
of Turing machines is closely related to the total number of tiles used to assemble
the output shape (not tile types). The equivalent connection can be made between
non-deterministic Turing machines and the size of valid tilings in the Wang tiling
model.

Let f be a function from binary strings to shapes. We say that a Turing machine
M computes this function if for all x, f(x) = S̃ ⇔ ∃S ∈ S̃ s.t. M(x) = 〈S〉. The
standard notion of time-complexity applies: f ∈ TIMETM(t(n)) if there is a TM
computing it running in time bounded by t(n) where n is the size of the input.
In §5.2.2 we saw how binary input can be provided to a tile system via a seed frame
wherein all four sides of a square present the bitstring. Let us apply this convention
here.14 Extending the notion of the seed in self-assembly to the entire seed frame
and using this as the input for a computation[17], we say a tile system computes f
if: [starting with the seed frame encoding x the tile system uniquely produces an
assembly of shape S̃] iff f(x) = S̃. We say that f ∈ TILESSA(t(n)) if there is a
tile system computing it and the size of coordinated shapes produced (in terms of
the number of non-empty locations) for inputs of size n is upper bounded by t(n).
Similar definitions can be made for non-deterministic Turing machines and Wang
tiling systems. We say that a NDTM N computes f if: [every computation path of
N on input x ending in an accept state (as opposed to a reject state) outputs 〈S〉]
iff f(x) = S̃. For non-deterministic Turing machines, f ∈ TIMENDTM (t(n)) if there
is a NDTM computing f such that every computation path halts after t(n) steps.
Extending the notion of the seed for Wang tilings to the entire seed frame as well, we
say a Wang tiling system computes f if: all valid tilings containing the seed frame
have a coordinated shape and this coordinated shape is the same for all such valid
tilings, and it is an instance of the shape f(x). We say that f ∈ TILESWT (t(n)) if
there is a tiling system computing it and the size of coordinated shapes produced for
inputs of size n is upper bounded by t(n).

Theorem 6.4.

(a) If f ∈ TILESSA(t(n)) then f ∈ TIMETM (O(t(n)4))
(b) If f ∈ TIMETM (t(n)) then f ∈ TILESSA(O(t(n)3))
(c) If f ∈ TILESWT (t(n)) then f ∈ TIMENDTM(O(t(n)4))
(d) If f ∈ TIMENDTM (t(n)) then f ∈ TILESWT (O(t(n)3))
Proof. [Sketch] (a) Let T be a tile system computing f such that the total

number of tiles used on an input of size n is t(n). A Turing machine with a 2D tape
can simulate the self-assembly process of T with an input of size n in O(t(n)2) time:
for each of the t(n) tile additions, it needs to search O(t(n)) locations for the next
addition. This 2D Turing machine can be simulated by a regular Turing machine with
a quadratic slowdown.15

14Any other similar method would do. For the purposes of this section, it does not matter whether
we use the one bit per tile encoding or the encoding requiring unpacking (§5.3).

15The rectangular region of the 2D tape previously visited by the 2D head (the arena) is repre-
sented row by row on a 1D tape separated by special markers. The current position of the 2D head

22 D. SOLOVEICHIK AND E. WINFREE

(b) Let M be a deterministic Turing machine that computes f and runs in time
t(n). Instead of simulating a universal Turing machine in the block construction, we
simulate a Turing machine M ′ which runs M on input x encoded in the seed frame
and acts as program psb in §5.4. Then the scale of each block is O(t(n)), which implies
that each block consists of O(t(n)2) tiles. Now the total number of blocks cannot be
more than the running time of M since M outputs every location that corresponds
to a block. Thus the total number of tiles is O(t(n)3).

(c) A similar argument applies to the Wang tiling system as (a) with the following
exception. A Wang tiling system can simulate a non-deterministic Turing machine
and still be able to output a unique shape. The tiling system can be designed such
that if a reject state is reached, the tiling cannot be a valid tiling. For example, the
tile representing the reject state can have a bond type that no other tile matches.
Thus all valid tilings correspond to accepting computations.

(d) Simulation of Wang tiling systems can, in turn, be done by a non-deterministic
Turing machine as follows. Suppose every valid tiling of our Wang tile system has
coordinated shape S. The simulating NDTM acts similar to the TM simulating self-
assembly above, except that every time two or more different tiles can be added in
the same location, it non-deterministically chooses one. If the NDTM finds a region
containing the seed frame surrounded by null bond types, it outputs the shape of
the smallest such region and enters an accept state. Otherwise, at some point no
compatible tile can be added, and the NDTM enters a reject state. The running time
of accepting computations is O(t(n)2) via the same argument as for (b).

If, as is widely believed, NDTMs can compute some functions in polynomial time
that require exponential time on a TM, then it follows that there exist functions from
binary strings to shapes that can be computed much more efficiently by Wang tiling
systems than by self-assembly, where efficiency is defined in terms of the size of the
coordinated shape produced.

The above relationship between TIME and TILES may not be the tightest pos-
sible. As an alternative approach, very small-scale shapes can be created as Wang
tilings by using an NDTM that recognizes tuples (i, j, x), rather than one that gener-
ates the full shape. This will often yield a compact construction. As a simple example,
this approach can be applied to generating circles with radius x at scale O(n2) where
n = O(log x). It remains an open question how efficiently circles can be generated by
self-assembly.

6.6. Scale Complexity of Shape Languages. In discussing languages of
shapes, it should be possible to discuss complexity in a manner parallel to §6.5. In
particular, one may say that a language of shapes is poly-producible by a Turing
machine if there is a machine that enumerates it and produces the nth string in time
polynomial in n, for some ordering of the strings in the language. Similarly, a lan-
guage of shapes is poly-producible by a tile system if there is some ordering of shapes
such that the nth shape is uniquely produced with the total number of tiles used being
polynomial in n. Analogous definitions can be provided for Wang tiling systems. We
conjecture that a strictly smaller class of languages of shapes can be polynomially
produced by non-cancerous self-assembly tile systems than by Wang tiling systems.

is also represented by a special marker. If the arena is l×m, a single move of the 2D machines which
does not escape the current arena requires at most O(m2) steps, while a move that escapes it in the
worst case requires an extra O(ml2) steps to increase the arena size. We have m, l = O(t(n)), and
the number of times the arena has to be expanded is at most O(t(n)).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 23

6.7. Other Uses of Programmable Growth. The programmable block con-
struction is a general way of guiding the large scale growth of the self-assembly process
and may have applications beyond those explored so far. For instance, instead of con-
structing shapes, the block construction can be used to simulate other tile systems in
a scaled manner using fewer tile types. It is easy to reprogram it to simulate, using
few tile types, a large deterministic τ = 1 tile system for which a short algorithmic
description of the tile set exists. We expect a slightly extended version of the block
construction can also be used to provide compact tile sets that simulate other τ = 2
tile systems that have short algorithmic descriptions.

To self-assemble a circuit, it may be that the shape of the produced complex is
not the correct notion. Rather one may consider finite patterns, where each location
in a shape is “colored” (e.g. resistor, transistor, wire, etc.). Further, assemblies that
can grow arbitrarily large may be related to infinite patterns. What is the natural
way to define the self-assembly complexity of such patterns? Do our results (§4) still
hold?

Acknowledgements. We thank Len Adleman, members of his group, Ashish Goel, and

Paul Rothemund for fruitful discussions and suggestions. We thank Rebecca Schulman and

David Zhang for useful and entertaining conversations about descriptional complexity of tile

systems.

REFERENCES

[1] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M. de Espanes, and P. W. K.

Rothemund, Combinatorial optimization problems in self-assembly, in Proc. of STOC,
2002.

[2] L. M. Adleman, Toward a mathematical theory of self-assembly (extended abstract), tech. rep.,
University of Southern California, 1999.

[3] L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang, Running time and program size
for self-assembled squares, in ACM Symposium on Theory of Computing, 2001, pp. 740–
748.

[4] G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schweller, Complexities for generalized
models of self-assembly, in Symposium on Discrete Algorithms, 2004.

[5] R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical
Society, 66 (1966).

[6] M. Cook, P. W. K. Rothemund, and E. Winfree, Self-assembled circuit patterns, in DNA
Based Computers 9, 2004, pp. 91–107.

[7] B. Grunbaum and G. Shephard, Tilings and Patterns, W.H. Freeman and Company, 1986.
[8] W. Hanf, Nonrecursive tilings of the plane I, The Journal of Symbolic Logic, 39 (1974),

pp. 283–285.
[9] P. W. K. Rothemund, Theory and Experiments in Algorithmic Self-Assembly, PhD thesis,

University of Southern California, Los Angeles, 2001.
[10] P. W. K. Rothemund, N. Papadakis, and E. Winfree, Algorithmic self-assembly of DNA

Sierpinski triangles, PLoS Biology, 2 (2004), p. e424.
[11] P. W. K. Rothemund and E. Winfree, The program-size complexity of self-assembled squares

(extended abstract), in ACM Symposium on Theory of Computing, 2000, pp. 459–468.
[12] T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman,

Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes,
Journal of the Americal Chemical Society, 122 (2000), pp. 1848–1860.

[13] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications,
Springer, second ed., 1997.

[14] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules, Nature, 407 (2000), pp. 493–496.

[15] C. Mao, W. Sun, and N. C. Seeman, Designed two-dimensional DNA Holliday junction
arrays visualized by atomic force microscopy, Journal of the Americal Chemical Society,
121 (1999), pp. 5437–5443.

24 D. SOLOVEICHIK AND E. WINFREE

[16] D. Myers, Nonrecursive tilings of the plane II, The Journal of Symbolic Logic, 39 (1974),
pp. 286–294.

[17] J. H. Reif, Local parallel biomolecular computation, DNA-Based Computers: III Proceedings
of a DIMACS Workshop, 1997, pp. 217–254.

[18] R. M. Robinson, Undecidability and nonperiodicity of tilings of the plane, Inventiones Math-
ematicae, 12 (1971), pp. 177–209.

[19] H. Wang, Proving theorems by pattern recognition. II, Bell Systems Technical Journal, 40
(1961), pp. 1–42.

[20] E. Winfree, Simulations of computing by self-assembly, Caltech CS TR 1998.22.
[21] , Algorithmic Self-Assembly of DNA, PhD thesis, California Institute of Technology,

Pasadena, 1998.
[22] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two

dimensional DNA crystals, Nature, 394 (1998), pp. 539–544.

Appendix A. Local Determinism Guarantees Unique Production: Proof
of Theorem 2.3.

Lemma A.1. If ~A is a locally deterministic assembly sequence of T, then for
every assembly sequence ~A′ of T and for every tile t′ = t′n added in ~A′ the following
conditions hold, where t = A(pos(t′)).

(i) inputsides
~A′

(t′) = inputsides
~A(t),

(ii) t′ = t.
Proof. Suppose t′ = t′n is the first tile added that fails to satisfy one of the above

conditions. Consider any D ∈ inputsides
~A′

(t′). Tile tD = A′(D(pos(t′))) must have

been added before t′ in ~A′ and so D−1 6∈ inputsides
~A′

(tD) = inputsides
~A(tD). This

implies D 6∈ propsides
~A(t) and so,

inputsides
~A′

(t′) ∩ propsides
~A(t) = ∅.(A.1)

Now, ∀D, Γ
A′

n

D (t′) ≤ ΓA
D (t′) because A′n has no more tiles than A and except at pos(t)

they all agree. Equation A.1 implies

ΓA

inputsides
~A′

(t′)
(t′) ≤ ΓA

D−propsides
~A(t)

(t′) .

Therefore,

Γ
A′

n

inputsides
~A′

(t′)
(t′) ≤ ΓA

D−propsides
~A(t)

(t′) .

So by property (2) of definition 2.2, no tile of type 6= type(t) could have been suffi-

ciently bound here by inputsides
~A′

(t′) and thus t′ = t. Therefore, t′ cannot fail the
second condition (ii).

Now, suppose t′ fails the first condition (i). Because of property (1) of defi-

nition 2.2, this can only happen if ∃D ∈ inputsides
~A′

(t′) − inputsides
~A(t′). Since

D 6∈ inputsides
~A(t′)), tD must have been added after t′ in ~A. So since tD binds

t′, D−1 ∈ inputsides
~A(tD) and so D ∈ propsides

~A(t). But by equation A.1 this is
impossible. Thus we conclude A′ ⊆ A.

Lemma A.1 directly implies that if there exists a locally deterministic assembly
sequence ~A of T then ∀A′ ∈ Prod(T), A′ ⊆ A. Theorem 2.3 immediately follows:

If there exists a locally deterministic assembly sequence ~A of T then T uniquely
produces A.

Since local determinism is a property of the inputsides classification of tiles in a
terminal assembly, lemma A.1 also implies:

COMPLEXITY OF SELF-ASSEMBLED SHAPES 25

Corollary A.2. If there exists a locally deterministic assembly sequence ~A of
T then every assembly sequence ending in A is locally deterministic.

Appendix B. Scale-Equivalence and “∼=” are Equivalence Relations.

Translation-equivalence is clearly an equivalence relation. Let us write S0
tr
= S1 if

the two coordinated shapes are translation equivalent.
Lemma B.1. If S = Sd

0 and S0 = Sk
m then S = Sdk

m .
Proof. S(i, j) = S0(bi/dc, bj/dc) = Sm(bbi/dc/kc, bbj/dc/kc) = Sm(bi/dkc, bj/dkc).

Lemma B.2. If S0
tr
= S1 then Sd

0
tr
= Sd

1 .
Proof. Sd

0 (i, j) = S0(bi/dc, bj/dc) = S1(bi/dc+∆i, bj/dc+∆j) = S1(b
i+d∆i

d c, b j+d∆j
d c) =

Sd
1 (i + d∆i, j + d∆j).

To show that scale equivalence is an equivalence relation, the only non-trivial
property is transitivity. Suppose Sc

0 = Sd
1 and Sd′

1 = Sc′

2 for some c, c′, d, d′ ∈ Z
+.

(Sd
1)d′

= (Sd′

1)d = Sd′d
1 by lemma B.1. Thus, Sd′d

1 = (Sc
0)

d′

= (Sc′

2)d, and by
lemma B.1, Scd′

0 = Sc′d
2 .

To show that “∼=” is an equivalence relation, again only transitivity is non-trivial.

Suppose S0
∼= S1 and S1

∼= S2. In other words, Sc
0

tr
= Sd

1 and Sd′

1
tr
= Sc′

2 for some

c, c′, d, d′ ∈ Z
+. By lemma B.2, (Sc

0)
d′ tr

= (Sd
1)d′

and (Sd′

1)d tr
= (Sc′

2)d. Then by

lemma B.1, Scd′

0
tr
= Sd′d

1 and Sd′d
1

tr
= Sc′d

2 which implies Scd′

0
tr
= Sc′d

2 by the transitivity
of translation equivalence. In other words, S0

∼= S2.

