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Determining sequencing depth in a single-cell
RNA-seq experiment
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An underlying question for virtually all single-cell RNA sequencing experiments is how to

allocate the limited sequencing budget: deep sequencing of a few cells or shallow sequencing

of many cells? Here we present a mathematical framework which reveals that, for estimating

many important gene properties, the optimal allocation is to sequence at a depth of around

one read per cell per gene. Interestingly, the corresponding optimal estimator is not the

widely-used plug-in estimator, but one developed via empirical Bayes.
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S ingle-cell RNA sequencing (scRNA-seq) technologies have
revolutionized biological research over the past few years by
providing the tools to simultaneously interrogate the tran-

scriptional states of thousands of cells in a single experiment. In
contrast to bulk RNA-Seq, which probes the average gene
expression in a cell population, single-cell RNA-seq has unlocked
the potential of extracting higher-order information, granting us
access to the underlying gene expression distribution. Indeed, this
unprecedented look into population-level heterogeneity has been
vital in the success of scRNA-seq, leading up to new biological
discoveries1,2.

Although early single-cell RNA-seq assays were labor intensive
and initially constrained by the small number of cells that could
be processed in a single experiment, recent technological
advances have allowed hundreds of thousands of cells to be
assayed in parallel3, eliminating the otherwise prohibitive per cell
cost overhead. From a sequencing budget perspective, however,
this seemingly unconstrained increase in the number of cells
available for scRNA-seq introduces a practical limitation in the
total number of reads that can be sequenced per cell. More reads
can significantly reduce the effect of the technical noise in esti-
mating the true transcriptional state of a given cell, whereas more
cells can provide us with a broader view of the biological varia-
bility in the cell population. A natural experimental design
question arises (Fig. 1a): how many cells should we choose to
profile for a given study, and at what sequencing depth?

The experimental design question has attracted a lot of atten-
tion in the literature4–8, but as of now, there has not been a clear
answer. Several studies provide evidence that a relatively shallow
sequencing depth is sufficient for common tasks such as cell type
identification and principal component analysis (PCA)9–11,
whereas others recommend deeper sequencing for accurate gene
expression estimation12–15. Despite the different recommenda-
tions, the approach to providing experimental design guidelines is
shared among all: given a deeply sequenced dataset with a pre-
defined number of cells, how much subsampling can a given
method tolerate? An example of this conventional approach is
also evident in the mathematical model used in a recent work11 to
study the effect of sequencing depth on PCA. Although practi-
cally relevant, this line of work does not provide a comprehensive
solution to the underlying experimental design question because
of three reasons: (1) the number of cells is fixed and implicitly
assumed to be enough for the biological question at hand; (2) the
deeply sequenced dataset is considered to be the ground truth; (3)
the corresponding estimation method is chosen a priori and is
tied to the experiment.

In this work, we propose a mathematical framework for single-
cell RNA-seq that fixes not the number of cells but the total
sequencing budget, and disentangles the biological ground truth
from both the sequencing experiment as well as the method used
to estimate it. In particular, we consider the output of the
sequencing experiment as a noisy measurement of the true
underlying gene expression and evaluate our fundamental ability
to recover the gene expression distribution using the optimal
estimator. The two design parameters in our proposed framework
are the total number of cells to be sequenced ncells and the
sequencing depth in terms of the total number of reads per cell
nreads, both affecting the optimal estimation error. Now, the
experimental design tradeoff becomes apparent when these two
quantities are tied together under a total sequencing budget
constraint B ¼ ncells ´ nreads (Fig. 1a, sequencing budget allocation
problem). The sequencing budget B corresponds to the total
number of reads that will be generated and is directly propor-
tional to the sequencing cost of the experiment (see Methods).

More specifically, we consider a hierarchical model16–18 to
analyze the tradeoff in the sequencing budget allocation problem

(see Methods). At a high level, we assume an underlying high-
dimensional gene expression distribution PX that carries the
biological information of the cell population we are interested in
and is independent of the sequencing process (Fig. 1a top). The
cells 1; 2; � � � in the experiment are described by gene expressions
X1;X2; � � � sampled from PX , whereas we can only observe the
read counts Y1;Y2; � � � that are generated from the corresponding
gene expressions via sequencing (Fig. 1a bottom). In this context,
it is clear that with many cells ncells we can estimate the read
count distribution PY accurately, whereas with more reads per cell
nreads we can make sure that the individual (normalized) obser-
vations Y1=nreads;1;Y2=nreads;2; � � � are much closer to the ground
truth expressions X1;X2; � � � of the cells (here, nreads;c represents
the total number of reads for cell c and the average of nreads;c over
all cells is nreads). The optimal tradeoff is then derived to reconcile
the two.

Results
Model overview. The gene expression levels of each cell, denoted
by Xc ¼ ½Xc1; � � � ;XcG� for c ¼ 1; ¼ ; ncells, can be viewed as
independent samples from the gene expression distribution PX ,
where G denotes the number of genes. More specifically, we
assume that Xcg represents the true relative abundance of the
mRNA molecules originating from a gene g in cell c, so thatPG

g¼1Xcg ¼ 1. To model the sequencing process, we assume that
after a particular cell Xc has been sampled from PX, its corre-
sponding gene counts Yc ¼ ½Yc1; � � � ;YcG� are generated via
Poisson sampling of γc � nreads reads from Xc, where γc is a size
factor that is cell-specific but not gene-specific. Overall, our
hierarchical model is given by (here, we simplified the model by
fixing γc; see Eq. (2) in the Methods section for the complete
model and Supplementary Note 1 for more details): for cells
c ¼ 1; 2; � � � ; ncells,
Xc � PX; and Ycg jXcg � PoiðγcnreadsXcgÞ for g ¼ 1; 2; � � � ;G:

ð1Þ
Under this framework, the ultimate goal of a single-cell RNA-seq
experiment would be to estimate quantities related to the
(unknown) ground truth distribution PX from the noisy mea-
surements Yc. Fixing the total sequencing budget
B ¼ ncells ´ nreads, we aim to characterize the optimal experimental
design tradeoff between the number of cells ncells and the number
of reads per cell nreads that can minimize the corresponding
estimation error.

Although our framework is non-parametric—in the sense that
no particular prior is assumed for the underlying gene
distribution PX, it is instructive to illustrate the framework in
the context of the widely used overdispersion model, where for
each gene g, the read counts Ycg are assumed to follow a negative
binomial distribution19–21. As the negative binomial distribution
can be derived as a gamma–Poisson mixture, the resulting model
can be viewed as a special case of Eq. (1) in which the underlying
gene expression marginals follow gamma distributions. In that
case, one would be interested in estimating the marginals
Xg � Gammaðrg ; θgÞ, effectively decoupling the true biological
variability from the technical noise that was introduced during
sequencing via Poisson sampling (see Relation to the over-
dispersion model in Supplementary Note 4).

As a technical remark, for assuming the gamma–Poisson
mixture, we dropped two constraints without loss of generality,
i.e., Xcg < 1 and

PG
g¼1Xcg ¼ 1. The former is because the relative

expression Xcg is of the order of 1=G, which is much smaller
than 1. With a mean much smaller than 1, the truncated
gamma distribution with truncation at 1 is very close to
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the corresponding untruncated distribution. The latter is
because that the number of genes G is large, and therefore,PG

g¼1Xcg concentrates around its mean, which is 1.

Optimal sequencing budget allocation. For our main results, we
focused on 3’-end sequencing technologies22–24 and used the
above framework to study the experimental design tradeoff for
estimating several important quantities of the underlying gene
distribution, such as the CV and the Pearson correlation (see the
Methods section). In the context of 3’-end sequencing, PX
naturally models the unknown high-dimensional distribution of
mRNA abundances across cells, whereas the read counts for the
cells, Y1;Y2; � � �, correspond to the number of unique molecular
identifiers (UMIs) observed via sequencing. Our main result
states that the optimal budget allocation (i.e., the one that

minimizes the estimation error) is achieved by maximizing the
number of cells while making sure that at least ~1 UMI per cell
will be observed on average for all genes of primary biological
interest in the experiment.

As a demonstrating example, in Fig. 1b we consider the
memory T-cell marker gene S100A4 to be of primary biological
interest and evaluate the optimal tradeoff in the context of the
overdispersion model for the total sequencing budget used to
generate the 10x Genomics’ pbmc_4k dataset (4340 cells, total
41.7 k reads for S100A4); our analysis suggests that the optimal
tradeoff would have been attained by sequencing 10 times
shallower using 10 times more cells, reducing the error by
twofolds. Of course, the recommended sequencing depth depends
on the genes under consideration. For example, the sequencing
depth of pbmc_4k dataset is optimal when the B-cell marker gene
MS4A1 is considered, and it should be sequenced four times
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Fig. 1 Optimal sequencing budget allocation. a Description of the sequencing budget allocation problem. Consider estimating the underlying gene
distribution (top) from the noisy read counts obtained via sequencing (bottom). With a fixed number of reads to be sequenced, deep sequencing of a few
cells accurately estimates each individual cell but lacks coverage of the entire distribution (left), whereas a shallow sequencing of many cells covers
the entire population but introduces a lot of noise (right). b Optimal tradeoff. The memory T-cell marker gene S100A4 has 41.7k reads in the pbmc_4k
dataset. For estimating the underlying gamma distribution Xg � Gammaðrg; θgÞ, the relative error is plotted as a function of the sequencing depth, where
the optimal error is obtained at a depth of one read per cell (orange star) and is two times smaller than that at the current depth of pbmc_4k (red triangle).
c Experimental design. To determine the sequencing depth for an experiment, first the relative gene expression level can be obtained via pilot experiments
or previous studies (top left). Then the researcher can select a set of genes of interest (i.e., some marker genes highlighted as black dots), of which the
smallest relative expression level p� (MS4A1) defines the reliable detection limit. Finally, the optimal sequencing depth is determined as n�reads ¼ 1=p� (top
right). The errors under different tradeoffs are visualized as a function of the genes ordered from the most expressed to the least (bottom). The optimal
sequencing budget allocation (orange) minimizes the worst-case error over all the genes of interest (left of the red dashed line), whereas both the
deeper sequencing (green) and the shallower sequencing (blue) yield worse results.
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deeper with 1/4 cells when the T-helper marker gene CD4 is
considered (Fig. 1c top, Supplementary Fig. 2a, b). The latter
arguably has reached saturation for the 10x Genomics’ technol-
ogy. Hence, the guidance there is to sequence until saturation, i.e.,
sequence until no more new UMIs are observed (see Experi-
mental design in the Methods section as well as Supplementary
Note 3).

As the example indicates, an important aspect of our
framework is to allow flexible experimental design at a single-
gene resolution. The researcher can thus design the experiment
based on the mean expression level of a set of important genes
related to the biological question, where the mean expression
level can be obtained via pilot experiments or previous studies
(see Experimental design in the Methods section). We illustrate
the proposed experimental design procedure by considering
peripheral blood mononuclear cells (PBMCs) with the corre-
sponding marker genes (Fig. 1c). The goal is to ensure reliable
estimation for all these genes that are above a certain expression
level, say that of MS4A1. Hence, the expression level of the gene
of interest, i.e., MS4A1, naturally defines the reliable detection
limit p� at which we should guarantee observation of one
average UMI per cell. Thus, given a budget B, choosing n�reads ¼
1=p� and n�cells ¼ B=n�reads achieves the optimal tradeoff for
reliable detection at p�. In this example, MS4A1 will be
sequenced ~1 UMI per cell on average. Interestingly, this
approach suggests a slightly deeper sequencing for current 10x
datasets (Supplementary Figs. 1 and 2).

Unlike estimating the gamma distribution parameters for the
overdispersion model, we considered estimating other quantities
in a non-parametric setting (see also a non-parametric inter-
pretation of the overdispersion model in Relation to the
overdispersion model in Supplementary Note 4). Although the
exact optimal depth is task-dependent, our empirical evaluations
have shown that the above recommendation is remarkably
consistent across all quantities considered in this paper—typically
lying in a narrow range between 0.2 and 1 (Fig. 2a, Supplemen-
tary Fig. 4). Last but not the least, our tradeoff analysis can also
provide a post hoc guidance for reliable estimation for existing
datasets, namely for certain quantities, to determine which genes
can be reliably estimated and which cannot, based on their mean
expression level (Fig. 2b, see also post hoc guidance for reliable
estimation in Methods).

Optimal estimator. Another important result arising from our
experimental design framework is the fundamental role of the
estimator in the optimal tradeoff. A very common—almost rou-
tine—practice in the literature is to use the so-called plug-in
estimator, which, as a general recipe, blindly uses the scaled
(relative) read counts Y1=nreads;1;Y2=nreads;2; � � � as a proxy for the
true relative gene expression levels X1;X2 � � �, effectively esti-
mating the corresponding distributional quantities by plugging-in
the observed values. For example, the plug-in estimator naturally
estimates the mean of the gene expression distribution PX by that
of PY=nreads

, the variance of PX by that of PY=nreads
, etc. This

approach, although very accurate for deeply sequenced datasets,
becomes increasingly problematic in the limit of shallow
sequencing; overdispersion and inflated dropout levels in lowly
expressed genes, typically associated in the literature with scRNA-
seq, are some of the more pronounced consequences.

For the sequencing budget allocation problem, we did not
restrict our results to any particular estimator; our analysis
suggested that the optimal tradeoff cannot be achieved by the
conventional plug-in approach but with another class of
estimators developed via empirical Bayes modeling16–18,25,26

(see Methods). Such estimators are inherently aware of the

Poisson sampling noise introduced by sequencing, and therefore
can adapt to various sequencing depths. As they estimate the
prior gene distribution PX in the hierarchical model (2) from
the observed data Yc, sometimes by estimating the moments of
the prior distribution PX, they are usually associated with the
names empirical Bayes, moment matching, or density deconvolu-
tion. Here, we use the term EB to refer to them in general.

In Figs. 3 and 4 (also Supplementary Figs. 7–12), we provide a
comprehensive evaluation of the performance of EB estimators in
several key applications and show that they provide remarkably
consistent estimates across varying sequencing depths and
different datasets. Also, they are shown to be biologically
meaningful (Fig. 4c, Supplementary Fig. 12). In contrast, the
plug-in approach, being sensitive to the sequencing depth,
significantly overestimates the variability in gene expression
(CV) owing to the inevitable zero-inflation occurring at shallow
sequencing (Fig. 3a), and subsequently limits the performance of
common downstream tasks such as PCA and gene network
analysis (Methods, Fig. 3b, Fig. 4).

Validation against the gold standard smFISH. In order to fur-
ther validate our results that the optimal sequencing depth is
attained at ~1 average UMI per cell, and that the EB estimates are
indeed close to the ground truth, we considered two additional
datasets15,27, accompanied by the single-molecule fluorescent
in situ hybridization (smFISH) data, which is regarded as the gold
standard for measuring the number of mRNAs in a cell. The
libraries for the two scRNA-seq datasets were generated by Drop-
seq23 and CEL-seq28, respectively, two UMI-based technologies.

We first compared the estimated CV and inactive probability
against the smFISH estimates. The EB estimates agree well with
the smFISH data while there is clear inflation for the plug-in
estimates (Fig. 5a, Supplementary Fig. 13). Furthermore, we
investigated the optimal sequencing depth by fixing the budget B
and varying the sequencing depth, as we did in Fig. 2a. The
critical difference here is that the error is evaluated against the
smFISH data, which serves as a proxy for the ground truth. Two
genes, MITF and VGF, were considered that have relatively more
UMIs to subsample. The tradeoff curves (Fig. 5b, Supplementary
Fig. 14) are qualitatively similar to the simulation studies (Fig. 2a,
Supplementary Fig. 4), showing an optimal depth between 0.1
and 0.6. This is consistent with the experimental design guidelines
that we provided in our earlier analysis.

See also Supplementary Figs. 15–17 and the Details of the
ERCC experiments subsection in Supplementary Note 6 for
additional validations using datasets with ERCC synthetic spike-
in RNAs and pure RNA controls.

Discussion
A natural yet challenging experimental design question for single-
cell RNA-seq is how many cells should one choose to profile and
at what sequencing depth to extract the maximum amount of
information from the experiment. In this paper, we introduced
the sequencing budget allocation problem to provide a precise
answer to this question; given a fixed budget, sequencing as many
cells as possible at approximately one read per cell per gene is
optimal, both theoretically and experimentally.

Conceptually, there are three important aspects of our mathe-
matical framework that enabled our theoretical analysis and led to
the development of the corresponding sequencing-depth-aware EB
estimators. First, we explicitly incorporated the notion of an
unknown ground truth distribution PX that describes the under-
lying single-cell population of interest. From this perspective, a
single-cell RNA-seq experiment can be naturally seen as an
attempt to extract information about this distribution. Second, we
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disentangled this biological ground truth not only from the
sequencing process but also from the method used to estimate it.
Considering the output of the sequencing experiment as a noisy
measurement PY of the true underlying distribution, we were able
to mathematically evaluate our fundamental ability to recover PX
and identify the corresponding tradeoff-optimal estimators for
several quantities of interest by essentially optimizing over all
possible methods and experimental design parameters. Finally, to
provide practical experimental design guidelines, we considered
how different biological questions could be incorporated within our
framework. Assuming that a biological question can be defined in
terms of a set of genes of interest (e.g., associated with a particular
pathway), we were able to provide sequencing depth recommen-
dations by minimizing the worst-case error within that set.

Our experimental results showed that the proposed EB esti-
mators could achieve significantly better performance compared
with the conventional plug-in approach that is commonly used by
existing single-cell analysis methods. Importantly, we demon-
strated that the proposed estimators produce unbiased results
across deep and shallow datasets obtained from the same
underlying population of cells and validated their ability to pro-
duce estimates that are very close to the ground truth as measured
by smFISH. We also provided post hoc guidance for reliable
estimation by evaluating our results on multiple genes from dif-
ferent biological samples. Apart from providing cost-efficient data
generation guidelines for future experiments, we believe that our
results are also going to be useful in assessing the quality and
statistical interpretability of existing datasets, particularly in the
context of global collaborative initiatives such as the Human Cell
Atlas29.

Methods
Model. For a scRNA-seq experiment, let ncells be the number of cells and nreads be
the average UMIs per cell. The total number of UMIs B ¼ ncells ´ nreads is used to
denote the available budget for this experiment. Given a fixed budget, we are
interested in the optimal allocation between ncells and nreads for estimating certain
distributional quantities that are important to the scRNA-seq analysis.

We adopt a hierarchical model for the analysis. Let G be the number of genes
and for each cell c ¼ 1; � � � ; ncells , let Xc ¼ ½Xc1; � � � ;XcG� be the relative gene
expression level satisfying

PG
g¼1Xcg ¼ 1. The relative expression levels are assumed

to be drawn i.i.d. from some unknown cell distribution PX , which is defined with
respect to the cell population under investigation—it may be cells from a certain
tissue or some isolated cell sub-populations. This is quite a general model. For
example, cells coming from several sub-populations can be modeled by letting PX
be a mixture distribution. The gene expression level Xc is measured by the observed
UMIs Yc 2 NG via sequencing, of which the stochastic process is modeled using
Poisson noise; such noise model has been extensively validated by previous
works16,30. In addition, we assume a size factor γc for each cell that accounts for the
variation in cell sizes. To summarize, for gene g ¼ 1; � � � ;G in cell
c ¼ 1; � � � ; ncells , we have assumed

Xc �i:i:d: PX; γc �i:i:d: Pγ;Ycg jXcg ; γc � PoiðγcnreadsXcgÞ: ð2Þ

Quantities to estimate. We study the optimal sequencing budget allocation for
estimating the following distributional quantities of PX that are commonly used in
scRNA-seq analysis. See Supplementary Note 2 for more details.

● The marginal gene moments Mk;g ¼ E½Xk
cg �, g ¼ 1; � � � ;G; k ¼ 1; 2; � � �. The

marginal gene moments can be used to compute quantities like the mean
expression, CV, the Fano factor, or the parameters for the overdispersion
model (assuming that Xcg follows a gamma distribution), which play an
important role in data pre-processing, feature selection, and gene-type
identification31,32.

● The gene expression covariance matrix K 2 RG ´G, which also gives rise to
the Pearson correlation matrix. Both quantities can be used to study the
dependency structure of genes, e.g., via spectrum methods33–35 or gene
network analysis36,37.
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Fig. 2 Empirical quantification of the optimal sequencing depth. a Simulations of error under different budget allocation. 3-std confidence intervals are
provided. The top panel simulates the error for estimating the first principal direction using the plug-in estimator (blue) and the EB estimator (orange),
respectively. Three budgets are considered, i.e., B1 = 0.6 k per gene, B2 = 3k per gene, B3 = 15k per gene. The depth (mean reads per cell per gene) ranges
from 0.02 to 10. The result indicates that the optimal depth for the EB estimator is the same (~0.1) for all three budgets, validating the theory that the
optimal depth is independent of the budget. The cases for the coefficient of variation and the Pearson correlation (bottom) also show similar qualitative
behaviors. b Post hoc guidance for reliable estimation. We visualized the top 4k genes of some representative datasets (top), where a triangle residing in
the green region means the Pearson correlation of corresponding genes can be reliably estimated (relative error < 10%). For example, we can reliably
estimate the first 2k genes for the brain_1k dataset and all 4k genes for the brain_9k dataset. A more comprehensive result is summarized in the bottom
table. For example, the first element (mean, 1k) shows that with 1k cells, a gene needs to have at least 0.1 reads per cell for reliably estimating the mean.
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● The inactive probability of a gene g with the definition p0;gðκÞ ¼
E½exp �κXcg

� �
�. It also has the interpretation of the proportion of zero-

UMI cells for gene g when the cell population is sequenced κ=nreads times
deeper. As special cases, κ = 1 corresponds to the probability that Xcg is zero,
whereas κ = nreads corresponds to the proportion of cells whose observed
counts Ycg are zero. The latter was also considered in a recent work38.

● The inactive probability of a gene pair g1; g2 with the definition p0;g1g2 ðκÞ ¼
E½expð�κðXcg1

þ Xcg2
ÞÞ� that quantifies the change that both genes are

inactive. This quantity can be used to analyze the gene co-expression
network38.

● The marginal gene distribution PXg
(also considered in a recent work16).

Optimal sequencing budget allocation. We considered a single gene and derived
the optimal budget allocation for estimating all the above quantities of its dis-
tribution PXg

(see Supplementary Note 5 for more details). As the mean relative

expression level of a gene pg is relatively stable within a specific tissue/sample (see
Experimental design subsection below for more details), one can safely estimate
that for an experiment with budget B, the total number of reads for gene g is
around pgB. Then the tradeoff with respect to gene g can be written as
pgB ¼ nreads;g ´ ncells , where nreads;g is the mean reads per cell for gene g, satisfying
the relation nreads;g ¼ pgnreads .

Theorem 1. (Optimal budget allocation, informal) For estimating moments,
covariance matrix, inactive probability, pairwise inactive probability, and
distribution, the optimal budget allocation is

n�reads ;g � 1; n�cells � Bpg : ð3Þ
The optimality is in the sense of minimizing the worst-case error over a family of
distributions PXg

with mild assumptions and the optimal error rate is achieved by

the EB estimators.

The expression n�reads;g � 1 in Theorem 1 implies that the optimal sequencing
depth (mean reads per cell per gene) is given by some constant independent of the
sequencing budget (see the formal statement in Supplementary Note 5). Therefore,
for a scRNA-seq experiment, we should aim at a certain sequencing depth; when
the budget increases, we should keep the same depth and allocate the additional
budget toward collecting more cells. In other words, after having achieved a certain
sequencing depth, deeper sequencing does not help as much as having more cells.
We also note that the actual value of this optimal sequencing depth may be
different for estimating different quantities, which is further investigated in the
following section. In addition, Theorem 1 suggests that the EB estimators should be
used for optimal estimation, whose effectiveness is demonstrated in Figs. 3–4.

Experimental design. The exact values of the optimal sequencing depth n�reads;g for
estimating different quantities were investigated both theoretically and via simu-
lations. First, the closed-form expressions of the optimal depth n�reads;g were derived
for estimating the mean, the second moment, and the gamma parameters (of
overdispersion model), which depend on the distribution PXg

but are nonetheless

~1 for typical cases (Supplementary Notes 3 and 5). Second, estimation errors
under different budget splits were simulated by subsampling from a real dataset
with deeply sequenced genes and many cells (top 72 genes of brain_1.3m, Fig. 2a).
See details of the subsampling procedure in Subsampling experiment in Supple-
mentary Note 6). Third, a more controlled simulation that assumes the Poisson
model was conducted to provide a more comprehensive evaluation (Supplementary
Fig. 4). Both simulations exhibit similar qualitative behaviors and imply that the
optimal sequencing depths n�reads;g for estimating different quantities are between
0.2 and 1. Therefore, we reached the conclusion that the optimal budget allocation
for a single gene is to have ~1 UMI per cell on average.

When there are many genes of primary biological interest, the gene
among them with the smallest relative mean expression level becomes the
bottleneck, as it has the fewest number of reads on average (Fig. 1c, top). We call
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its relative mean expression level p� the reliable detection limit, below which the
estimation performance cannot be guaranteed. The optimal sequencing depth
for the entire experiment n�reads is chosen so that the gene at the reliable detection
limit has one read per cell (in expectation), which minimizes the worst-case
error for all genes of interest. Compared with this optimal allocation,
deeper sequencing (green) gives a homogeneous error across genes but at a much
higher level, whereas a shallower sequencing (blue) gives a small error for a few
highly expressed genes but its performance quickly deteriorates (Fig. 1c,
bottom).

The recommended budget allocation in general suggests a slightly
deeper sequencing depth as compared with existing datasets, e.g., 7k UMIs per cell
for the pbmc_4k dataset considering MS4A1 and 14k UMIs per cell for the
brain_9k dataset considering S100a10 (Supplementary Fig. 2). Such a depth is
feasible for the current 10x Genomics’ technology, which is estimated to be able to
sequence 10–45k UMIs per cell where the actual values depend on different tissues

(Feasibility of the recommended sequencing depth in Supplementary Note 3).
In addition, under such a sequencing depth, all analyses are valid as the Poisson
model is still a good approximation of the sequencing process. Regarding the rare
genes, since the UMI efficiency for the 10x technology is estimated to be 10–15%,
in order to achieve one read per cell, the gene needs to have at least 1/0.15�7
transcripts in the cell. The gene CD4 (Supplementary Fig. 2b) seems to be below
this limit. For such genes, the recommendation should be sequencing until
saturation.

The input parameter to the proposed experimental design approach, i.e., the
detection limit p� , corresponds to the smallest mean expression level among the list
of genes of interest. Therefore, to carry out the proposed experimental design
procedure, it is important to have an estimate of the mean expression levels for
these genes. Such information may come from various sources whose data closely
matched the system under study. First, researchers usually conduct pilot
experiments before conducting the main experiment; the data from the pilot
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Fig. 4 Gene module and gene network analysis. a Top: the EB-estimated Pearson correlation for some marker genes in pbmc_4k are visualized, ordered by
different cell populations (top). The clear block-diagonal structure implies that the EB estimator is capable of capturing the gene functional groups. As a
comparison, the plug-in estimator also recovers those modules but with a weaker contrast (bottom left panel, plug-in with 100%). Bottom: a subsample
experiment further shows that the EB estimator can recover the module with 5% of the data. For the plug-in estimator, the first block (T cells) is blurred
with 25% of the data, and the entire structure vanishes with 10% of the data. b Gene network based on the EB-estimated Pearson correlation using the
pbmc_4k dataset. Most gene modules correspond to important cell types or functions, including T cells, B cells, NK-cells, myeloid-derived cells,
megakaryocytes/platelets, ribosomal protein genes, and mitochondrially encoded protein-coding genes. c Left: the estimated Pearson correlations between
all genes and LCK (1st panel) and CD3D (2nd panel), two known T-cell markers. There are three modes for the EB-estimated values, where the positive
mode, the zero mode, and the negative mode correspond to genes in the same module, different modules, and irrelevant genes, respectively. The plug-in
estimated values are nonetheless much closer to zero even for the truly correlated ones, indicating an artificial shrinkage of the estimated values. Right: two
instances where the EB estimates are significantly different from the plug-in estimates. The axes represent read counts, and the color codes the number of
cells. Both gene pairs are biologically validated (see Gene network analysis in Methods). See also Supplementary Figs. 11–12 for more examples.
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experiment can be used to provide such an estimate. Also, data from past studies or
public databases, either scRNA-seq or bulk RNA-Seq, can be used to provide the
estimate. Some popular databases include Tabula Muris (scRNA-seq)39 for
different mouse tissues, Human Cell Atlas29 (scRNA-seq) and GTEx40 (bulk RNA-
Seq) for different human tissues, TCGA41 (bulk RNA-Seq) for human cancer data,
and GEO42 (bulk/single-cell RNA-seq) for past studies. One caveat here is that
different datasets may have different covariate compositions, like sex, age, or
demographic factors. To evaluate the sensitivity of using reference data to estimate
p� for the proposed experimental design procedure, we consider four different
types of reference data in Supplementary Figs. 18–19: in-sample bulk RNA-Seq or
scRNA-seq, where the corresponding reference data were obtained from the same
biological sample as the data for the current study, and their out-of-sample
counterparts obtained from independent biological replicates. Our results suggest
that although all four types of reference data can be used to determine the optimal
sequencing depth accurately, in-sample scRNA-seq and out-of-sample bulk RNA-
Seq should be considered as the most and least preferable sources of reference data
respectively.

In practice, there is enough experimental flexibility to choose both the total
sequencing budget B as well as the total number of cells ncells to achieve the
recommended allocation. The budget B is typically specified in terms of the total
number of lanes that will be used for sequencing and is directly proportional to the
sequencing cost of the experiment. For example, the 10x Genomics’ pbmc_4k
dataset was sequenced on one Illumina Hiseq4000 lane yielding a total of ~350
million reads, whereas the brain_1.3m data set was sequenced on 88 Hiseq4000
lanes (11 flow cells) yielding ~30 billion reads. Sample multiplexing can also be
utilized to achieve fractional lane occupancies for smaller experiments. Now, given
a fixed budget B, one can adjust the desired sequencing depth (nreads ¼ B=ncells) by
selecting the total number of cells at the library preparation stage of the
experiment. Although all single-cell RNA-seq assays rely on the Illumina platform
for sequencing, the library preparation stage (e.g., single-cell isolation, mRNA
capture, and barcoding) is technology-specific22–24,28,43. Nevertheless, it is possible
to accurately choose the total number of cells by adjusting the cell concentration
(cells/μl) and the final cell suspension volume that is going to be used in the
process. For example, the 10x Genomics Chromium platform can be adjusted to
yield from 500 to 10K cells per lane in a single run (10× user manual: https://
support.10xgenomics.com/permalink/3vzDu3zQjY0o2AqkkkI4CC). For larger
experiments, multiple lanes can be used (e.g., the brain_1.3m dataset was prepared
on 133 10x Genomics Chromium lanes, each optimized to capture ~10k cells).
Even though the library preparation stage can incur additional costs for a single-
cell RNA-seq experiment, these costs are independent of the sequencing process,
can vary significantly across different technologies44, and are in general decreasing
rapidly.

Empirical Bayes estimators. The EB estimators refer to the estimators that are
aware of the noise model (which is Poisson here) and correct for the noise
introduced by it. As they estimate the prior gene distribution PX in the hierarchical
model (2) from the observed data Yc, sometimes by estimating the moments of the
prior distribution PX , they are usually associated with the names empirical Bayes,
moment matching, or density deconvolution. Here, we use the term EB to refer to
them in general.

As an illustrating example, consider a simplified model that for cell c and gene
g:

Xcg � PXg
; Ycg jXcg � PoiðXcgÞ:

The plug-in estimator estimates the gene variance by the sample variance of UMIs,
i.e.,

cvarplug�in
g ¼ 1

ncells � 1

Xncells
c¼1

ðYcg � YcgÞ2;

where Ycg ¼ 1
ncells

Pncells
c¼1 Ycg is the empirical mean. However, the estimated value is

usually overly variable owing to the presence of the Poisson noise. Indeed,

E½cvarplug�in
g � ¼ Var½Ycg � ¼ Var½Xcg � þE½Xcg �;

where the second term E½Xcg � corresponds to the technical variation introduced by
the Poisson noise. Then, conceptually we can write:

plug-in variance ¼ biological truthþ Poisson noise;

from which we can see that the plug-in estimate is inflated by the Poisson noise. In
this case, this bias can be easily corrected by simply subtracting the mean, and the
corresponding EB variance estimator can be written as

cvarEBg ¼ 1
ncells � 1

Xncells
c¼1

ðYcg � YcgÞ2 �
1

ncells

Xncells
c¼1

Ycg :

The EB estimators considered in the paper are listed in Table 1, along with the
plug-in estimators for comparison. In literature, they are designed in a case-by-case
fashion16–18,24,45–47,47–50 (more details in Supplementary Note 4).

Empirical evaluation of the tradeoff. We conducted two sets of simulations to
evaluate the estimation error under different budget splits, which differ in how the
data are generated. The first simulation (Fig. 2a) subsampled from a high-budget
dataset consisting of the top 72 genes from the brain_1.3 m dataset. These genes
were chosen because they have at least 10 reads per cell, providing a deep dataset to
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Fig. 5 Validation using smFISH data. a The estimated CV (top) and inactive probability (bottom, κ ¼ 2:5nreads) from the Drop-seq data are compared with
the smFISH results. The EB estimates (right) are consistent with the smFISH results while there is a clear inflation for the plug-in estimates. b The
sequencing budget tradeoff for estimating CV (top) and inactive probability (bottom, κ ¼ 1, i.e., estimating the zero proportion at 1 read per cell) for the
gene MITF. The relative error is evaluated against the gold standard smFISH result. 3-std confidence intervals are provided.
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perform the subsample experiments. This simulation better matches the real data
as the subsampling procedure does not assume the Poisson model (see Sub-
sampling experiment in Supplementary Note 6). However, as we did not know the
true gene distribution, the plug-in estimates of the high-budget dataset that we
subsample from were used as proxies of the ground truth, against which we
evaluated the estimation error. The second simulation, corresponding to Supple-
mentary Fig. 4), generated the data according to model (2), where the true gene
distribution PX was obtained by using the empirical distribution of the first 100
highly expressed genes in the pbmc_4k dataset. This setting better validates the
theory as it assumes the same model. Moreover, the estimation error is exact as the
ground truth is available. Both simulations include many genes to address the
heterogeneity of the gene distribution, and the genes considered here, being top
genes in the dataset, have similar mean expression levels so that the mean reads
over all genes can well represent the mean reads for each gene. Both simulations
exhibit qualitatively the same behavior, validating the theory that the optimal depth
(mean reads per cell per gene) is a constant that does not depend on the budget.

Post hoc guidance for reliable estimation. The feasible region (top) and the post
hoc table (bottom) were obtained via simulation, where we fixed the number of
cells (1k, 5k, 10k, 30k, 70k) and studied how the error decreases as a function of
the sequencing depth (Supplementary Figs. 5–6). The data were generated
according to model (2) similar to the second tradeoff simulation, where the
empirical distributions of the marker genes in pbmc_4k and brain_9k were used as
the true gene distribution, respectively, to account for heterogeneity in different
tissues. The true gene distribution was normalized so that each gene has the same
mean expression level. As a result, the mean reads over all genes were the same as
mean reads for each gene, providing a single-gene level error characterization. The
post hoc table was obtained by finding the smallest sequencing depth such that the
relative error was smaller than 0.1 (−2 in the log10 scale for the relative squared
error and −1 for other errors, see Definition of errors in simulations in Supple-
mentary Note 6). The results for both simulations were qualitatively the same.
Hence, only the table for pbmc_4k was included.

Comparing the performance of plug-in and EB estimators. Figure 3a demon-
strates that the EB estimator is adaptive to different sequencing depths while the plug-
in estimator is not. The top panel shows the estimated CV using the plug-in and EB
estimators under different sequencing depths, where we can see clear inflation for the
plug-in estimates. The full data are from pbmc_4k, and the subsample rate ranges
from 0.2 to 1 (1 corresponds to the full data). The experiment was repeated five times,
and the 3-std confidence interval was provided. The results for other genes, as well as
for estimating the inactive probability, can be found in Supplementary Fig. 7. The
middle panel compares the estimated CV from two datasets of the same tissue. Genes
with at least 0.1 reads per cell were considered as our post hoc analysis showed that
CVs of genes below this level could not be reliably estimated. The EB estimator may
produce an invalid result when the plug-in variance is smaller than the plug-in mean
of a gene, which was not accounted for by the Poisson model. Such cases were not
common and were excluded while counting the number of genes that are above or
below the red line. Hence, the total number of genes for the two panels may slightly
differ. More results are in Supplementary Figs. 8–9. The bottom panel shows that the
EB estimator can recover the gene distribution from shallow sequencing data. The
shallow data were generated by subsampling to have 20% reads of the full data. For
error evaluation, the recovered distribution was rescaled to have the same mean as the
empirical distribution from the full data. See Supplementary Fig. 10 for more results.

Figure 3b investigates the common task where the most informative features
(genes) were selected based on CV, and PCA was then performed on the selected
features. The data were from pbmc_4k and was clipped at the 99th quantile to
remove outliers. Such a procedure was also used in previous works on applying PCA
to scRNA-seq data11. The top 500 genes with the highest CV were selected and the

PCA scores were plotted for the 2nd and 3rd PC direction. The first direction was
skipped because it corresponded to the variation in cell sizes. The results on the full
data and the subsampled data (three times shallower) were compared, showing that
the EB estimator is more consistent than the plug-in estimator.

Figure 4a considers recovering gene functional groups using Pearson correlation.
We used the pbmc_4k dataset here as the biological structure of the PBMCs is well-
understood. The major cell populations identified in this dataset are T cells (IL7R,
CD3D/E, LCK), NK-cells (NKG7, PRF1, KLRD1, GZMA, HOPX, CST7), B cells
(CD79A, BANK1, IGHD, LINC00926, MS4A1), myeloid-derived cells (S100A8/9,
MNDA, FGL2, CLEC7A, IFI30) and megakaryocytes/platelets (PF4, PPBP). The
heatmap of the EB-estimated Pearson correlation of those genes were visualized in
Fig. 4a top, which shows that the EB estimator can well capture the gene functional
groups. A subsample experiment was then conducted to investigate how well the
estimators can recover the modules from the shallow sequencing data. The data
were subsampled from the full data with rates 100% (full data), 25%, 10%, and 5%.
The EB estimator can recover the module at a much shallower depth as compared to
the plug-in estimator.

Gene network analysis of the pbmc_4k dataset. The gene network (Fig. 4b) was
constructed based on the EB-estimated Pearson correlation using the pbmc_4k
dataset. The genes were filtered to have the EB-estimated variance larger than 0.1,
resulting in 791 genes in total. A correlation larger than 0.8 was considered as a
gene–gene edge. We found that varying the threshold from 0.4 to 0.95 did not
significantly alter the result. The gene modules were identified based on knowledge
of marker genes and gene pathways, as well as previous studies on PBMCs (see
Gene module identification in Supplementary Note 6). We also note that the
existence of megakaryocytes/platelets may be due to the imperfection of PBMC
isolation, and since many genes were expressed in multiple cell populations (e.g.,
CD74, CD27), the resulting annotation only gives a rough picture of the underlying
gene functional groups.

Next, we considered some important genes and plot their correlations with all
other genes (Fig. 4c left, Supplementary Fig. 11). As a general phenomenon, the
EB-estimated values are more spread out and exhibit different modes
corresponding to genes that interact differently with the gene of interest. The plug-
in estimated values are nonetheless much closer to zero even for genes that are
known to be well-correlated.

Finally, we considered the gene pairs where the estimated values for the EB
estimator and the plug-in estimator differ significantly (>0.7). Out of 1054 such
pairs, 91 were also annotated based on STRING51, yielding a p value of 4.2e-11
while testing against the null hypothesis that the gene pairs were selected at
random based on a one-sided hypergeometric distribution test (see Gene module
identification in Supplementary Note 6). We plot the histograms of several such
pairs and show that all of them have clear biological interpretations (Fig. 4c right,
Supplementary Fig. 12). LY86 (also known as MD1) is a secreted protein that has
been shown to have an important role in T-cell activation, whereas CD3E is
expressed within T cells (see Gene module identification in Supplementary Note 6).
These two genes are not co-expressed and hence, are negatively correlated. POMP
encodes a chaperone for proteasome assembly, whereas PSMA7 is one of the 17
essential subunits for the complete assembly of the 20S proteasome complex.
Hence, the two genes work together for proteasome assembly and should be
positively correlated. The EB-estimated correlation is one and is probably an over-
estimate owing to the randomness of the estimator. However, the actual Pearson
correlation should not be much smaller than 1. In spite of the strong biological
evidence, the plug-in estimator gives very small values owing to the presence of
sequencing noise (See also Supplementary Fig. 12).

smFISH experiments for validation. For validation, we considered two datasets,
where both the scRNA-seq and the smFISH data are available. smFISH can be

Table 1 Comparison of the plug-in estimator and the EB estimator.

plug-in EB

1st moment M1;g 1
ncells

Pncells
c¼1

Ycg

γcnreads
same

2nd moment M2;g 1
ncells

Pncells
c¼1

Y2
cg

ðγcnreadsÞ2
1

ncells

Pncells
c¼1

Y2
cg�Ycg

ðγcnreadsÞ2

kth moment Mk;g 1
ncells

Pncells
c¼1

Yk
cg

ðγcnreadsÞk
1

ncells

Pncells
c¼1

Qk�1

r¼0
ðYcg�rÞ

ðγcnreadsÞk

1st pairwise moment M11;g1g2
1

ncells

Pncells
c¼1

1
n2readsγ

2
c
Ycg1

Ycg2
same

Inactively probability p0;gðκÞ 1
ncells

Pncells
c¼1 IfYcg¼0g

1
ncells

Pncells
c¼1 aYcg

Pairwise inactive probability
p0;g1g2 ðκÞ

1
ncells

Pncells
c¼1 IfYcg1

¼Ycg2
¼0g

1
ncells

Pncells
c¼1 aYcg1

aYcg2

Distribution PXg
Empirical distribution of Ycg (scaled by 1=nreads) P̂Xg

that most likely gives empirical distribution of Ycg via
model (2)

The two estimators are written in similar forms for better comparison. For the inactive probability (and the pairwise case), aYcg
is a coefficient that depends on Ycg , κ, and nreads . See Inactive probability in

Supplementary Note 5 for the exact expression and other details.
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regarded as the gold standard for measuring the number of mRNAs in a cell and
was used as a proxy for the ground truth (see Details of the smFISH experiments in
Supplementary Note 6 for more details).

In the first dataset, both Drop-seq and smFISH were applied to the same
melanoma cell line15. A total of 5763 cells and 12,241 genes were kept for analysis
from the Drop-seq experiment, with a median of 1473 UMIs per cell. Of these
genes, 24 were also profiled using smFISH. We further excluded genes with zero-
UMI count in >97% of the cells and one more gene, FOSL1, owing to its abnormal
behavior (FOSL1 was also excluded in a recent work16 analyzing the dataset). We
considered two distributional quantities, CV and inactive probability (with
κ ¼ 2:5nreads), where we note that the latter has the interpretation of the proportion
of zeros when the data were sequenced 2.5 times deeper. We compared the plug-in
and the EB-estimated results from the Drop-seq data against the corresponding
result from the smFISH data in Fig. 5a, where the smFISH estimates can be
considered as the ground truth. Here, the gene VCL was omitted in the experiment
of estimating the inactive probability because the corresponding smFISH data do
not have enough cells to subsample from (4691, fewer than the number of cells
captured by Drop-seq, which is 5763). The consistency between the EB estimates
and the smFISH result indicates that the EB estimates are close to the ground truth.
Furthermore, we investigated the optimal sequencing depth (Figure 5b and
Supplementary Fig. 14) by fixing the budget and varying the sequencing depth,
where the error was evaluated against the gold standard smFISH result. As this was
done by subsampling from the original dataset, to ensure a wide range, only two
genes with relatively more reads (MITF and VGF) were considered. Figure 5b and
Supplementary Fig. 14 are qualitatively similar to the simulation results in Fig. 2a
and Supplementary Fig. 4, showing an optimal depth between 0.1 and 0.6. This is
consistent with our previous experiments based on 10x Genomics’ data and the
experimental design guidelines we provide in this work, i.e., that the optimal depth
for estimating different quantities is 0.2–1 read per cell per gene.

In the second dataset, both CEL-seq and smFISH were applied to the same
mESC cell line and culture conditions27 (smFISH data from D. Grün, personal
communication). Again, the plug-in and the EB-estimated results from the CEL-
seq data were compared against the corresponding result from the smFISH data in
Supplementary Fig. 13 for nine genes measured by smFISH, where we observed a
good consistency between the EB and the smFISH results. As there are only 80
cells, we did not perform the subsampling experiment for this dataset.

Overall, the comparisons between the scRNA-seq and the smFISH results imply
that our model matches the real data well, and the proposed EB estimator is able to
provide estimates that are close to the ground truth. Also, the subsampling
experiments in Fig. 5b and Supplementary Fig. 14 indicate that the optimal depth,
evaluated using the smFISH data, is consistent with the main claim of the paper.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The 10× datasets were generated by 10x Genomics’ v2 chemistry22. They are publicly
available and can be downloaded via the following links:
pbmc_4k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

2.1.0/pbmc4k
pbmc_8k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

2.1.0/pbmc8k
brain_1k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/

neurons_900
brain_2k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/

neurons_2000
brain_9k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/

neuron_9k
brain_1.3m: https://support.10xgenomics.com/single-cell-gene-expression/datasets/

1.3.0/1M_neurons
293T_1k, 3T3_1k: https://support.10xgenomics.com/single-cell-gene-expression/

datasets/2.1.0/hgmm_1k
293T_6k, 3T3_6k: https://support.10xgenomics.com/single-cell-gene-expression/

datasets/2.1.0/hgmm_6k
293T_12k, 3T3_12k: https://support.10xgenomics.com/single-cell-gene-expression/

datasets/2.1.0/hgmm_12k
We note that pbmc_4k and pbmc_8k are from the same donor; brain_1k and brain_9k

are also from the same donor. Also, the following pairs of datasets are sequenced
together: 293T_1k and 3T3_1k, 293T_6k and 3T3_6k, 293T_12k and 3T3_12k. These six
datasets are from the same biological sample.
The Drop-seq dataset and the corresponding smFISH data can be found from the

original paper15 or a recent paper that analyzed the dataset16. The CEL-seq data can be
found from the original paper27. the smFISH data accompany the CEL-seq can be
obtained by contacting the author. The three ERCC datasets (Zheng, Klein, Svensson)
can be found in a recent paper that analyzed the data set16, where we have used the
2 × (control RNA + ERCC) data in the Svensson et al.52 paper. The Klein dataset with
the pure RNA controls (the Klein ERCC dataset being part of it) can be found from the
original paper24. The data for sensitivity analysis (Supplementary Figs. 18–19) can be
found from the original paper53.

Code availability
We developed the python package sceb (single-cell empirical Bayes) for the EB
estimators used in this paper (available on PyPI). The code to reproduce all experiments
and generate the figures presented in this paper can be found at https://github.com/
martinjzhang/single_cell_eb.
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