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Abstract difficulties scaling to high-resolution data.
o Efficient and interpretable spatial analysis is cru- We are interested in learn-
S cial in many fields such as geology, sports, and ing high-dimensional ten-
~ climate science. Large-scale spatial data often sor latent factor models,
contains complex higher-order correlations across which have shown to be
8 features and locations. While tensor latent fac- a scalable alternative for
LL tor models can describe higher-order correlations, spatial analysis (Yu et al.,
o they are inherently computationally expensive to 2018; Litvinenko et al.,
train. Furthermore, for spatial analysis, these mod- 2019). High resolution ]
—i .. . . Figure 1. Latent factors: random
els should not only be predictive but also be spa- spatial data often contain ]
. . . vs. good initialization
— tially coherent. However, latent factor models are higher-order correlations
LD sensitive to initialization and can yield inexplica- between features and lo-
| ble results. We develop a novel Multi-resolution cations and tensors can naturally encode such multi-way
Ui Tensor Learning (MRTL) algorithm for efficiently correlations. For example, in competitive basketball play,
&) learning interpretable spatial patterns. MRTL ini- we can predict how each player’s decision to shoot is jointly
tializes the latent factors from an approximate full- influenced by their shooting style, his or her court posi-
i rank tensor model for improved interpretability tion and the position of the defenders by simultaneously
> and progressively learns from a coarse resolution encoding these features as a tensor. Using such represen-
E to the fine resolution for an enormous computa- tations, tensor learning can directly extract higher-order
LO tion speedup. We also prove the theoretical con- correlations.
vergence and computational complexity of MRTL. . . .
LO & . p P y A challenge in such models is high computational cost.
o When applied to two real-world datasets, MRTL £ & P
- pp . ’ High-resolution spatial data often requires discretization,
A demonstrates 4 ~ 5 times speedup compared to a . . . . .
. o . leading to high-dimensional tensors that are computation-
(@) fixed resolution while yielding accurate and inter- . . .
S cetable models ally expensive to train. Low-rank tensor learning (Yu et al.,
N P ) 2018; Kossaifi et al., 2019) reduces the dimensionality by

assuming low-rank structures in the data and uses tensor de-
composition to discovery latent semantics, see review papers
(Kolda & Bader, 2009; Sidiropoulos et al., 2017). However,

Spatial analysis seeks to explain patterns of geographic data ~ Mmany tensor learning methods have been shown to be sensi-
and analyzing such large-scale spatial data plays a critical tive to noise (Cheng et al., 2016) and initialization (Anand-
role in sports, geology and climate science. In spatial statis- ~ kumar et al., 2014). Other numerical techniques including
tics, kriging or Gaussian processes are popular tools for random sketching (Wang et al., 2015; Haupt et al., 2017)
spatial analysis (Cressie, 1992). Others have proposed vari- and parallelization (Austin et al., 2016; Li et al., 2017a) can
ous Bayesian methods such as Cox processes (Miller et al,, ~ Speed up training, but they often fail to utilize the unique
2014; Dieng et al., 2017) to model spatial data. However, properties of spatial data such as spatial auto-correlations.

while mathematically appealing, these methods often have

1. Introduction

arxXiv

Using latent factor models also gives rise to another issue:
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sity, Boston, MA, USA 2Salesforce Al Research, San Francisco, is not identifiable due to rotational indeterminacy. As the
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California Institute of Technology, Pasadena, CA, USA. Corre-  intuitive latent factors that do not offer insights to domain
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tial analysis, one of the unique properties of spatial patterns
is spatial auto-correlation: close objects have similar values
(Moran, 1950), which we use as criteria for interpretabil-
ity. As latent factors models are sensitive to initialization,
previous research (Miller et al., 2014; Yue et al., 2014) has
shown that random initialized latent factor models can lead
to spatial patterns that violate spatial auto-correlation and
hence are not interpretable (see Fig. 1).

In this paper, we propose a Multiresolution Tensor Learning
algorithm, MRTL, to efficiently learn accurate and inter-
pretable patterns in spatial data. MRTL is based on two key
insights. First, to obtain good initialization, we train a full-
rank tensor model approximately at a low resolution and
factorize it with tensor decomposition. Second, we exploit
spatial auto-correlation to learn models at multiple resolu-
tions: starting at a coarse resolution and iteratively finegrain
to the next resolution. We demonstrate that this approach
converges significantly faster than fixed resolution meth-
ods. We develop several fine-graining criteria based on loss
convergence and information theory to determine when to
finegrain. We also consider different interpolation schemes
and discuss how to finegrain in different applications.

In summary, our contributions are:

e We propose a Multiresolution Tensor Learning (MRTL)
optimization algorithm for large-scale spatial analysis

e We prove the rate of convergence for MRTL which de-
pends on the spectral norm of the interpolation operator.
We also show the exponential computational speedup
for MRTL compared with fixed resolution.

e We develop different criteria to determine when to
transition to a finer resolution and discuss different
finegraining methods.

e We evaluate on two real-world datasets and show MRTL
learns orders-of-magnitude faster than fixed-resolution
learning and can produce interpretable latent factors.

2. Related Work.

Spatial Analysis Discovering spatial patterns has signifi-
cant implications in scientific fields such as human behavior
modeling, neural science, and climate science. Early work
in spatial statistics has contributed greatly to spatial analysis
through the work in Moran’s I statistics (Moran, 1950) and
Getis-Ord general G statistics (Getis & Ord, 1992) for mea-
suring spatial auto-correlation. Geographically weighted
regression (Brunsdon et al., 1998) accounts for the spatial
heterogeneity with a local version of spatial regression but
fail to capture higher order correlation. Kriging or Gaus-
sian processes are popular tools for spatial analysis but they
often require carefully designed variograms (also known

as kernels) (Cressie, 1992). Other Bayesian hierarchical
models favor spatial point processes to model spatial data
(Diggle et al., 2013; Miller et al., 2014; Dieng et al., 2017).
These frameworks are conceptually elegant, but often com-
putationally intractable.

Tensor Learning Latent factor models utilize correlations
in the data to reduce the dimensionality of the problem and
have been used extensively in multi-task learning (Romera-
Paredes et al., 2013) and recommendation systems (Lee &
Seung, 2001). Tensor learning (Zhou et al., 2013; Bahadori
et al., 2014; Haupt et al., 2017) employs tensor latent factor
models to learn higher-order correlations in the data in a
supervised fashion. In particular, tensor latent factor models
aim to learn the higher-order correlations in spatial data by
assuming unknown low-dimensional representations among
features and locations. High-order tensor models are non-
convex by nature, suffer from the curse of dimensionality,
and are notoriously hard to train (Kolda & Bader, 2009;
Sidiropoulos et al., 2017). There are many efforts to scale
up tensor computation, e.g., parallelization (Austin et al.,
2016) and sketching (Wang et al., 2015; Haupt et al., 2017;
Li et al., 2017b). In this work, we propose an optimization
algorithm to learn tensor models at multiple resolutions that
is not only fast but can also generate interpretable factors.

Multiresolution Methods The idea of multiresolution
methods is well celebrated in machine learning, both in
latent factor modeling (Kondor et al., 2014; Ozdemir et al.,
2017) and deep learning (Reed et al., 2017; Serban et al.,
2017). For example, multi-resolution matrix factorization
(Kondor et al., 2014; Ding et al., 2017) and its higher order
extensions (Schifanella et al., 2014; Ozdemir et al., 2017;
Han & Dunson, 2018) applies multi-level orthogonal op-
erators with the goal to uncover the multiscale structure
in a single matrix. In contrast, our method aims to speed
up learning by exploiting the relationship among multiple
tensors of different resolutions. Our approach bears affinity
with the multigrid method in numerical analysis for solv-
ing partial differential equations (Trottenberg et al., 2000;
Hiptmair, 1998) where the idea is to accelerate iterative algo-
rithms by solving a coarse problem first and then gradually
fine-grain the solution.

3. Tensor Models for Spatial Data

We consider tensor learning in the supervised setting. We
will describe both models for the full-rank case and the low-
rank case. We use an order-3 tensor for ease of illustration
but our model can be readily extended to higher order cases.
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3.1. Full Rank Tensor Models

Given input data consisting of both non-spatial and spa-
tial features, we can discretize the spatial features at r =
1,..., R different resolutions, with corresponding dimen-
sions as D1,...,Dpg. Tensor learning parameterizes the
model with a weight tensor W) € RI*F*DPr gyer all fea-
tures, where I is number of outputs and F' is number of
non-spatial features. The input data is of the form X'(") ¢
RIXFxDr Note that both the input features and the learn-
ing model are resolution dependent. V; e R,i =1,...,1
is the label for output .

For resolution 7, the full rank tensor learning model can be
written as

Zzwzfd zfd+b) (1)

f=1d=1

where a is the activation function and b; is the bias for
output ¢. The weight tensor }V is contracted with X" along
the non-spatial mode f and the spatial mode d. In general,
Eqn. (1) can be extended to multiple spatial features and
multiple spatial modes, each of which can have its own
set of resolution-dependent dimensions. We use a sigmoid
activation function for classification and a linear activation
function for regression.

3.2. Low Rank Tensor Model

Low rank tensor models assume a low-dimensional struc-
ture in )V that can capture the inherent sparsity in the
data and also alleviate model overfitting. We use CANDE-
COMP/PARAFAC (CP) decomposition (Hitchcock, 1927)
as an example; our method can easily be extended for other
decompositions as well.

Let K be the CP rank of the tensor. The weight tensor W(")
is factorized into multiple factors matrices

K
W)y =" A1 ByiCY)
k=1
The tensor latent factor model is:

F D,

ZZZAZ,CBMC(T)X(T b)) @

f=1d=1k=1
where the columns of A, B, C" are latent factors for each
mode of W and C'(") is resolution dependent.
3.3. Spatial Regularization

Interpretability is in general hard to define or quantify
(Doshi-Velez & Kim, 2017; Ribeiro et al., 2016; Lipton,
2018; Molnar, 2019). In the context of spatial analysis, we

deem a latent factor as interpretable if it produces a spatially
coherent pattern that satisfies spatial auto-correlation. To
this end, we utilize a spatial regularization kernel (Lotte &
Guan, 2010; Miller et al., 2014; Yue et al., 2014) and extend
to the tensor case.

Letd =1,..., D, index all locations of the spatial dimen-
sion for resolution r. The spatial regularization term is:
D, D,
2
R= Z Kaa|W..a=W.ra % 3)
d=1d'=1
where || - || p denotes the Frobenius norm and Ky 4 is the

kernel that controls the degree of similarity between loca-
tions. We use a simple RBF kernel with hyperparameter o.

Ky g = e—lld=d'1?/o) (4)

These kernels can be precomputed for all spatial modes
for each resolution. If there are multiple spatial modes,
we apply spatial regularization across all different modes.
We additionally use L5 regularization to encourage smaller
weights. Any other L-norm can be used.

4. Multi-Resolution Tensor Learning

We now describe our algorithm MRTL that addresses both
the computation and interpretability issues. Two key con-
cepts of MRTL are learning good initializations and utilizing
multiple resolutions.

4.1. Initialization

In general, due to the nonconvex nature of various problems,
tensor latent factor models are sensitive to initialization and
lead to uninterpretable latent factors (Miller et al., 2014; Yue
et al., 2014). We use full-rank initialization in order to learn
latent factors that correspond to known spatial patterns.

We first train an approximate full-rank version of the tensor
model in Eqn. (1). The weight tensor is then decomposed
into latent factors and these values are used as initialization
of the low-rank model. The low-rank model in Eqn. (2)
is then trained to the final desired accuracy. As we use
approximately optimal solutions of the full-rank model as
initializations for the low-rank model, our algorithm pro-
duces interpretable latent factors in a variety of different
scenarios and datasets.

There is a trade-off in computation due to training of the full-
rank model. However, as the full-rank model is trained only
for a small number of epochs, the increase in computation
time is not substantial. We also train the full-rank model
only at lower resolutions to further reduce computation.

In our experiments, we find that spatial regularization alone
is not enough to learn spatially coherent factors, whereas
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Algorithm 1 Multiresolution Tensor Learning: MRTL

1: Input: initialization Wy, data X', ).

2: Output: latent factors F(™)

3: # full rank tensor model

4: for each resolutionr € {1,...,r} do
5:  Initialize t <— 0

6:  Get a mini-batch B from training set
7 while stopping criterion not true do
8 t<—t+1

9 W, « opt (Wf” | B)

10:  end while

11:  with =Finegrain(Wm)

12: end for

13: #tensor decomposition

14: F(r0) « cp_aLS W<T0>)
15: # low rank tensor model

16: for each resolution r € {ro, .
17:  Initialize ¢ < 0

18:  Get a mini-batch B from training set

19:  while stopping criterion not true do

20: t—t+1

21 FO, «opt (]—‘fr) | B)

22:  end while

23:  for each spatial factorn € {1,--- , N} do

.., R} do

24: Flrbn - Finegrain(f<r)’”)
25:  end for
26: end for

full-rank initialization, though computationally costly, is
able to fix this issue. Thus, full-rank initialization is critical
for spatial interpretability.

4.2. Multi-resolution

Learning a high-dimensional tensor model is generally com-
putationally expensive and memory inefficient. We utilize
multiple resolutions for this issue. We outline MRTL in Alg.
1 where we omit the bias in the description for simplicity.

We use superscripts to represent the weight tensor and factor
matrices at resolution 7 and subscripts to denote the iterate
at step t, i.e. th-) is WV at resolution r at step . W, is
the initial weight tensor at the lowest resolution. F(") =
(A, B,C() denotes all factor matrices at resolution  and
we use n to index the factor F(7)-,

To make training feasible, we train both the full rank and
low rank models at multiple resolutions, starting from a
coarse spatial resolution and progressively increase the reso-
lution. At each resolution -, we learn W(") using stochastic
optimization Opt (we used Adam (Kingma & Ba, 2014) in
our experiments). When the stopping criterion is met, we
transform W) to W("+1) in a process we call finegrain-
ing (Finegrain). Due to spatial auto-correlation, trained
model at the lower resolution will serve as a good initializa-
tion for the higher resolutions. For both models, we only

finegrain the factors that corresponds to the spatial mode.

Once the full rank resolution has been trained up to resolu-
tion 7y (chosen to fit GPU memory or time constraints), we
decompose W(") using CP_ALS, the standard alternating
least squares (ALS) algorithm (Kolda & Bader, 2009) for
CP decomposition. Then the low-rank model is trained at
resolutions 7, . . ., R to final desired accuracy, finegraining
between the resolutions.

MRTL is not specific to ALS and allows for any other CP
decomposition method, such as multiplicative updates for
nonnegative CP decomposition. While we can use tensor
nuclear norm regularization (Friedland & Lim, 2018), this
method was computationally infeasible for our datasets.

When to finegrain There is a tradeoff between training
times at different resolutions. While training for longer at
lower resolutions decreases computation significantly, we
do not want to overfit to the lower resolution data. On the
other hand, training at higher resolutions can yield more
accurate solutions using more finegrained information. We
investigate four different criteria to balance this tradeoff: 1)
validation loss, 2) gradient norm, 3) gradient variance, and
4) gradient entropy.

Increase in validation loss (Prechelt, 1998; Yao et al., 2007)
is a commonly used heuristic for early stopping. Another
approach is to analyze the gradient distributions during train-
ing. For a convex function f, stochastic gradient descent
will converge into a noise ball near the optimal solution as
the gradients approach zero. However, lower resolutions
may be too coarse to learn more finegrained curvatures and
the gradients will increasingly disagree near the optimal
solution. We quantify the disagreement in the gradients
with metrics such as norm, variance, and entropy. We use
intuition from convergence analysis for gradient norm and
variance (Bottou et al., 2018), and information theory for
gradient entropy (Srinivas et al., 2012).

Let w; and &; represent the weights and the random sam-
pling of minibatches at step ¢, respectively. Let f(wy; &) :=
f+ be the validation loss and g(wy; &) := g: be the stochas-
tic gradients at step ¢. The finegraining criteria are:

e Validation Loss: E[fi41] — E[f:] > 0

e Gradient Norm: E[||g¢+1]?] — E[|lg¢]|*] > 0

e Gradient Variance: V (E[g¢+1]) — V(E[g:]) > 0

e Gradient Entropy: S(E[g:+1]) — S(E[g¢]) > 0
where S(p) = >, —pi In(p;). One can also use thresholds,
ie. |fer1 — fi| < 7, but as these are dependent on the
dataset, we use 7 = 0 in our experiments. One can also

incorporate patience, i.e. setting the maximum number of
epochs where the stopping conditions was reached.
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How to finegrain We discuss different interpolation
schemes for different types of features.  Categori-
cal/multinomial variables, such as a player’s position on
the court, are one-hot encoded or multi-hot encoded onto
a discretized grid. Note that as we use higher resolutions,
the sum of the input values are still equal across resolutions,
5, X0 = 52 U Ag the sum of the features re-
mains the same across resolutions and our tensor models are
multilinear, nearest neighbor interpolation should be used
in order to produce the same outputs.

Z W(7 X(7

Z W("H)X("H)

as X (;) 4 = O for cells that do not contain the value. This
scheme yields the same outputs and the same loss values
across resolutions.

Continuous variables that represent averages over loca-
tions, such as sea surface salinity, often have similar val-
ues at each finegrained cell at higher resolutions (as the
values at coarse resolutions are subsampled or averaged
from values at the higher resolution). An example is Lapla-
cian/Gaussian pyramids for images (Burt & Adelson, 1983).
Then "2+ X1 ~ 92 5200y )d, where the approxi-
mation comes from the type of downsamplmg used. Using
a linear interpolation scheme,

7+1

Zw(T) X(T) ~ 92 Z W(r+1 X(’r:irl)

d=1 d=1

The weights are divided by the scale factor of ”"“ to keep
the outputs approximately equal. We use blhnear interpola-
tion, though any other linear interpolation can be used.

5. Theoretical Analysis.
5.1. Convergence

We prove the convergence rate for MRTL of a single spatial
mode. For a loss function f and stochastic variable &, the
optimization problem is:

w,, = argmin E[f(w; €)] 5)

We defer all proofs to the Appendix. For a fixed-resolution
miniSGD algorithm, under common assumptions in conver-
gence analysis:

e fis u- strongly convex, L-smooth

e (unbiased) gradient E[g(w¢;&:)] = V f(w) given {<¢

e (variance) for all the w, E[[[g(w;¢)[3] < o7 +

cgllV£(w)l3

Theorem 5.1. (Bottou et al., 2018) If the step size 1y =
n < 7, then a fixed resolution solution satisfies
—Bl+8

Eflwe1 — wll3] <9 (Elwo — w.ll3)

2
where v = 1 — 2nu, B = % and wy is the optimal
solution.

which gives O(1/t) + O(n) convergence.

Denote the number of total iterations for resolution r as
t., and the weights as w() . We let D, denote the num-
ber of dimensions at r and we assume a dyadic scaling
between resolutions such that D,.; = 2D,. We define
finegraining using an interpolation operator P such that
W(()T_H) = ng) as in (Bramble, 2019). For the simple

case of a 1D spatial grid where W,ET) has spatial dimension

D,., P would be of a Toeplitz matrix of dimension 2D,. X D,..
For example, for linear interpolation of D, = 2,

10 (r—',—l)/2
() (T+1)
PW(T) = 1 2 O Wl = 1 1
211 1 Wg) (r+ )/2 +w r+ )/2
0 2 éﬂ-l)

Any interpolation scheme can be expressed in this form.

The convergence of multiresolution learning algorithm de-
pends on the following property of spatial data:

Definition 5.2 (Spatial Autocorrelation). The difference be-
tween the optimal solutions of consecutive resolution is
upper bounded by ¢

Iwi™* — Pw(”| < e

with P being the interpolation operator.

Theorem 5.3. If the step size iy = n < +—, then MRTL

solution satisfies

E[|wi” — w.|l3] < vtllPHﬁZ]E[HWo = w3+ Ol Pllop)

where v =1 —2nu, f =
norm of the interpolation operator P.

This gives similar convergence rate as the fixed resolution
algorithm, with a constant that depends on the operator norm
of the interpolation operator P.

5.2. Computational Complexity

To analyze computational complexity, we resort to fixed
point convergence (Hale et al., 2008) and the multi-grid
method (Stiiben, 2001). Intuitively, as most of the training
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iterations are spent on coarser resolutions with fewer number
of parameters, multi-resolution learning is more efficient
than fixed-resolution training.

Assuming that V f is Lipschitz continuous, we can view
gradient-based optimization as a fixed-point iteration oper-
ator F' with a contraction constant of v € (0, 1) (note that
stochastic gradient descent converges to a noise ball instead
of a fixed point):

w + F(w),
[ (w) = F(w'

be the optimal estimator at resolution 7 and w(") be
—w(|| < ¢/2. The algorithm
(1 )2 The
following lemma describes the computational cost of the
fixed-resolution algorithm.

F:=1-nVf,
) < Allw —w']l.

Let WY)

a solution satisfying ||w!"
terminates when the estimation error reaches

Lemma 5.4. Given a fixed point iteration operator F' with
contraction constant of v € (0, 1), the computational com-
plexity of fixed-resolution training for tensor model of order

p and rank K is
1 1 Kp
Cz(’)( -log ( )) (6)
| log 7| (1=7)e \(1—=7)%

where € is the terminal estimation error.
The next theorem 5.5 characterizes the computational speed-
up gained by multi-resolution learning compared to fixed-
resolution learning, with respect to the contraction factor y
and the terminal estimation error €.

Theorem 5.5. If the fixed point iteration operator (gradi-
ent descent) has a contraction factor of vy, multi-resolution
learning with the termination criteria of (16710;)2 at resolu-
tionr is faster than fixed-resolution learning by a factor of
log T 7)6 with the terminal estimation error e.

Note that the speed-up using multi-resolution learning uses
a global convergence criterion ¢ for each r.

6. Experiments

We apply MRTL to two real-world datasets: basketball track-
ing and climate data.

6.1. Datasets

Tensor classification: Basketball tracking We use a
large NBA player tracking dataset from (Yue et al., 2014;
Zheng et al., 2016) consisting of the coordinates of all play-
ers at 25 frames per second, for a total of approximately
6 million frames. The goal is to predict whether a given
ball handler will shoot within the next second, given his
position on the court and the relative positions of the de-
fenders around him. In applying our method, we hope to

obtain common shooting locations on the court and how a
defender’s relative position suppresses shot probability.

oz = (34.1,40.7)
Figure 2. Left: Discretizing of a continuous-valued position of
a player (red) via a spatial grid. Right: sample frame with a
ballhandler (red) and defenders (green). Only players close to the
ballhandler are used.

We have two spatial modes: the ball handler’s position
and the relative defender positions around the ball handler.
We instantiate the tensor classification model in Eqn (1) as
follows:

D D?

=2 > ol

dl=1d2=1

ldl d? z(d)l d? +b)

where i € {1,...,I} is the ballhandler ID, d' indexes the
ballhandler’s position on the discretized court of dimension
{D}}, and d? indexes the relative defender positions around
the ballhandler in a discretized grid of dimension { D?}. As
shown in Fig. 2, we orient the defender positions so that
the direction from the ballhandler to the basket points up.
Y; € {0, 1} is the binary output equal to 1 if player 7 shoots
within the next second.

We use a weighted cross entropy loss (due to imbalanced
classes) and nearest neighbor interpolation for finegraining.

T 0 ' T
114.3 142.9 1714 200.0
Monthly precipitation (mm)

' ' v 0
0.0 286 571 857

Figure 3. Left: precipitation over continental U.S. Right: regions
considered in particular.

Tensor regression: Climate Recent research (Li et al.,
2016a;b; Zeng et al., 2019) shows that oceanic variables
such as sea surface salinity (SSS) and sea surface tempera-
ture (SST) are significant predictors of the variability in rain-
fall in land-locked locations, such as the U.S. Midwest. We
aim to predict the average monthly precipitation variability
in U.S Midwest using SSS and SST to identify meaningful
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Figure 4. Basketball: F1 scores of MRTL vs. the fixed-resolution
model for the full rank (left) and low rank model (right). The
vertical lines indicate finegraining to the next resolution.

latent factors underlying the large-scale processes linking
the ocean and precipitation on land (Fig. 3)

Let X be the historical oceanic data with input features SSS
and SST across D, locations, using the previous 6 months
of data. We consider the lag as a non-spatial feature so that
F1 = 6 and F, = 2 as there are two spatial features. We
instantiate the tensor regression model in Eqn (1) as follows:

F, F, D,

V=3 S W X a

f1=1 f2=1d=1

We use difference detrending for each timestamp due to
non-stationarity of the inputs, and deasonalize by standard-
izing each month of the year. The features are normalized
using min-max normalization. We also normalize and de-
seasonalize the outputs in order to model variability. We
use mean square error (MSE) and bilinear interpolation for
finegraining.

Implementation Details For both datasets, we discretize
the spatial features into D, cells and use a 60-20-20 train-
validation-test set split. We use Adam (Kingma & Ba, 2014)
for optimization as it was empirically faster than SGD in
our experiments. We use both Lo and spatial regularization
as described in Section 3. We selected optimal hyperparam-
eters for all models via random search. We use a stepwise
learning rate decay with stepsize of 1 with v = 0.95. We
perform ten trials for all experiments. All other details are
provided in the Appendix.

6.2. Accuracy and Convergence

We compare MRTL against a fixed-resolution model on ac-
curacy and computation time. The fixed-resolution model
uses the same full-rank initialization as MRTL but utilizes
the highest resolution only. The results of all trials are listed
in Table 1. Other results are provided in the Appendix.

Fig. 4 shows the F1 scores of MRTL vs a fixed resolution
model for the basketball dataset (validation loss was used
as the finegraining criterion for both models). For the full
rank case, MRTL converges 9 times faster than the fixed
resolution case. The fixed-resolution model is able to reach

0600 0.48
0.575 7Y 74

0.550 [; — 0.47
- T

—— Validation Loss
Gradient Norm
Gradient Variance

-~ Gradient Entropy

i
0.525 —— Validation Loss

0.5001 /
| Gradient Variance

- Gradient Entropy

Gradient Norm 0.46 / <

0.475 j

0 1000 2000 3000 4000 5000 200 400 600 800 1000

Timel[s] Timel[s]

Figure 5. Basketball: F1 scores different finegraining criteria for
the full rank (left) and low rank (right) model

a higher F1 score for the full rank case, as it uses a higher
resolution and is able to learn more finegrained information.
This advantage does not transfer to the low rank model.

For the low rank model, the training times are comparable
and both reach a similar F1 score. There is decrease in the
F1 score going from full rank to low rank for both MRTL
and the fixed resolution model due to approximation error
from CP decomposition. Note that this is dependent on the
choice of K, specific to each dataset. We see a similar trend
for the climate data, where MRTL converges faster than the
fixed-resolution model. Overall, MRTL is approximately 4
~ 5 times faster than a fixed-resolution model and we get a
similar speedup in the climate data.

6.3. Finegraining Criteria

We compared the performance of different finegraining cri-
teria in Fig. 5. Validation loss converges much faster than
other criteria for the full rank model while the other fine-
graining criteria converge slightly faster for the low rank
model. In the classification case, we observe that the full
rank model spends many epochs training when we use
gradient-based criteria, suggesting that they can be too strict
for the full rank case. For the regression case, we see all
criteria perform similarly for the full rank model, and valida-
tion loss converges faster for the low rank model. As there
are differences between finegraining criteria for different
datasets, one should try all of them for fastest convergence.

6.4. Interpretability

We now demonstrate that MRTL can learn semantic repre-
sentations along spatial dimensions. For all latent factor
figures, the factors have been normalized to (—1, 1) so that
reds are positive and blues are negative.

Figs. 7, 8 visualize some latent factors for ballhandler po-
sition and relative defender positions, respectively (see Ap-
pendix for all latent factors). For the ballhandler position
in Fig. 7, coherent spatial patterns (can be both red or blue
regions as they are simply inverses of each other) can corre-
spond to common shooting locations. These latent factors
can represent known locations such as the paint or near the
three-point line on both sides of the court.
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Table 1. Runtime and prediction performance comparison of a fixed-resolution model vs MRTL for datasets

Dataset | Model | Full-Rank | Low-Rank
| | Time[s] | Loss | F1 | Time [s] | Loss | F1
Basketball ‘ Fixed ‘ 11462 +565 | 0.608 +£0.00941 ‘ 0.685 +£0.00544 | 2205 +£841 | 0.849 +0.0230 ‘ 0.494 +0.00417
MRTL 1230 +74.1 | 0.699 +0.00237 | 0.607 +o.00182 | 2009 +715 0.868 +0.0399 0.475 +o.0121
Climate ‘ Fixed ‘ 12.5+0.0112 | 0.0882 +0.0844 ‘ - ‘ 269 +319 | 0.0803 +o0.0861 -
MRTL 1.11 +o0.180 | 0.0825 +o0.0856 - 67.1 +31.8 | 0.0409 +0.00399 -

A

Figure 6. Climate: Some latent factors of sea surface locations. The red areas in the northwest Atlantic region (east of North America and
Gulf of Mexico) represent areas where moisture export contributes to precipitation in the U.S. Midwest.

b - e - I._.-

Figure 7. Basketball: Latent factors heatmaps of ballhandler posi-
tion after training MRTL for k = 1, 3, 20. They represent common
shooting locations such as the right/left sides of the court, the paint,
or near the three point line.

A

Figure 8. Basketball: Latent factors heatmaps of relative defender
positions after training MRTL for £ = 1,3,20. The green dot
represents the ballhandler at (6, 2). The latent factors show spatial
patterns near the ballhandler, suggesting important positions to
suppress shot probability.

For relative defender positions in Fig. 8, we see many con-
centrated spatial regions near the ballhandler, demonstrating
that such close positions suppress shot probability (as ex-
pected). Some latent factors exhibit directionality as well,
suggesting that guarding one side of the ballhandler may
suppress shot probability more than the other side.

Fig. 6 depicts two latent factors of sea surface locations. We
would expect latent factors to correspond to regions of the
ocean which independently influence precipitation. The left
latent factor highlights the Gulf of Mexico and northwest
Atlantic ocean as influential for rainfall in the Midwest,
consistent with findings from (Li et al., 2018; 2016a).

Random initialization We also perform experiments us-
ing a randomly initialized low-rank model in order to verify
the importance of full rank initialization. Fig. 9 compares
random initialization vs. MRTL for the ballhandler posi-
tion (left two plots) and the defender positions (right two
plots). We observe that even with spatial regularization,
randomly initialized latent factor models can produce noisy,
uninterpretable factors and thus full-rank initialization is
essential.

Figure 9. Latent factor comparisons (k = 3, 10) of randomly ini-
tialized low-rank model (1st and 3rd) and MRTL (2nd and 4th) for
ballhandler position (left two plots) and the defender positions
(right two plots). Random initialization leads to uninterpretable
latent factors.

7. Conclusion and Future Work

We presented a novel algorithm for tensor models for spatial
analysis. Our algorithm MRTL utilizes multiple resolutions
to significantly decrease training time and incorporates an
full-rank initialization strategy that promotes spatially coher-
ent and interpretable latent factors. MRTL is generalized to
both the classification and regression cases. We proved the
theoretical convergence of our algorithm for stochastic gradi-
ent descent and compared the computational complexity of
MRTL to a single, fixed-resolution model. The experimental
results on two real-world datasets support its computational
efficiency and interpretability.
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Future work includes 1) develop other stopping criteria in
order to enhance the computational speedup, 2) apply our
algorithm to more higher-dimensional spatial data, and 3)
study the effect of varying batch sizes between resolutions
asin (Wu et al., 2019).
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A. Appendix
A.1. Convergence Analysis

Theorem A.1. (Bottou et al., 2018) If the step size n: =n < ﬁ then a fixed resolution solution satisfies
9

Ellwerr — wil3] < 7' [Ell[wo — W3] — 8] + 5

where vy =1—2nu, = is the optimal solution.

Proof. For a single step update,

[Wet1 — Will3 = |we — mg(wes &) — w3

= |lwy — Wi |13 + [mg(we; &)113 — 2mg(we; &) (wy — W) (7

by the law of total expectation

E[g(xﬁft)(wt - W*)]

E[E[g(we; &) (Wi — W) [§<]]
= E[(w; — wo)E[g(wy; &) |€<t]]
= E[(w; — w,) 'V f(wy)] (8)

From strong convexity,
(VF(Wi) = V(W) we = W) = (V(We), we — W) 2> pllwy — w.f3 9

which implies E[(w; — w,) "V f(w;)] > pE[||w; — w,||3] as V f(w,) = 0. Putting it all together yields

E[|w™ —w. ]3] < (1 = 20)E[|wy — w[[3] + (1:04)° (10)
As n; = 1, we complete the contraction, by setting 5 = ((7722-‘;2;

E[wii1 — wil3] = 8 < (1 = 20.) (B[ w; — w,[[3] = 5) (11)
Repeat the iterations

Ell[wi 1 — w3 = 8 < (1= 2n)" (E[[lwo — w.[13] - 8) (12)

Rearranging the terms, we get

2
ag
Bllwiss —wal3] < (1 = 200 B{lwo — wa] = (1~ 200) + 1) {72 (13)
O
Theorem A.2. [fthe step size ny =1 < 1, then MRTL solution satisfies
T * r 1
Ewwi D= w3 < A PG, Ellw — w 3]
=PI+ (I1PI5,8 — B) +O(1)
where vy =1 — 2nu, B = 52, and || P||op is the operator norm of the interpolation operator P.
Consider a two resolution case where R = 2 and wﬁz) = w,. Let ¢,. be the total number of iterations of resolution . Based

on Eqn. (10), for a fixed resolution algorithm, after ¢; + ¢ number of iterations,

El|we, e, — wall3] = 8 < (1= 20)" " (E[||wo — w*[13] = B)
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For multi-resolution, where we train on resolution r» = 1 first, we have

1 1 1 1
Elw) — w2 = 8 < (1 - 2pu) (B]|wS” —wi|3] - 8)
At resolution r = 2, we have
2 2
Eflw(® —w,|3] - 8 < (1 — 2yp)" (E[|w? — w, ]3] - 8) (14)

(2)
0

Using interpolation, we have w;~’ = ngll). Given the spatial autocorrelation assumption, we have

lwi? = Pwilz < e
By the definition of operator norm and triangle inequality,
Ellwg” —wi |3 < E[|Pw,) —wi?|3] < | PIZ,E[Iwi, —wiV[3] + ¢
Combined with eq. (14), we have

Elflw.? — w,|[3] = 8 <(1 — 2nu)2(| P12, E[lw." — w2 + € — B) (15)
=(1 = 2nu) 2 | P2 (Ew) — w13 = 8) + (1 = 20w) 2 (| P28+ = B)  (16)

If we initialize w( and w(()l) such that ||w(()1) —w |2 = ||wo — w,]||3, we have MRTL solution
Ellwy, 1, = Wall3] = a < (1= 20)" 72| P2, (B[ wy — w. 3] — ) (17)
for some « that completes the contraction. Repeat the resolution iterates in Eqn. (16), we reach our conclusion. O

A.2. Computational Complexity Analysis

In this section, we analyze the computational complexity for MRTL (Algorithm 1). Assuming that V f is Lipschitz continuous,
we can view gradient-based optimization as a fixed-point iteration operator F' with a contraction constant of v € (0, 1) (note
that stochastic gradient descent converges to a noise ball instead of a fixed point).

w F(w), Fi=I—nqVf|F(w)—Fw)|<ylw—w].

Let wy’) be the optimal estimator at resolution . Suppose for each resolution r, we use the following fine-grain criterion:

(18)

where ¢, is the number of iterations taken at level r. The algorithm terminates when the estimation error reaches (1Cf fzg .

The following main theorem characterizes the speed-up gained by multi-resolution learning MRTL w.r.t. the contraction
factor - and the terminal estimation error e.

Theorem A.3. Suppose the fixed point iteration operator (gradient descent) for the optimization algorithm has a contraction
factor (Lipschitz constant) of vy, the multi-resolution learning procedure is faster than that of the fixed resolution algorithm
by a factor of log ﬁ with € as the terminal estimation error.

We prove several useful Lemmas before proving the main Theorem A.3. The following lemma analyzes the computational
cost of the fixed-resolution algorithm.

Lemma A.4. Given a fixed point iteration operator with a contraction factor -y, the computational complexity of a
fixed-resolution training for a p-order tensor with rank K is

_ 1 1 Kp
C‘O<|logv '1°g<1—v>e'<<1—w>ze)>' 19
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Proof. At a high level, we can prove this by choosing a small enough resolution r such that the approximation error is
bounded with a fixed number of iterations. Let W,(f) be the optimal estimate at resolution r and w; be the estimate at step .
Then

Iwa = wel| < [[we — Wi+ [l — wy|| < e (20)

We pick a fixed resolution r small enough such that

€
w. —wi| < 3, @1)
then using the termination criteria ||w, — wi I < (10_05)’2 gives D, = Q((1 — 7)?¢) where D,. is the discretization size at

resolution r. Initialize wg = 0 and apply F' to w for ¢ times such that

t

Y
m“F(WO)” <

€
3 (22)

Aswg =0,

F(wy)|| < 2C, we obtain that

1 2C

t < -1 23
= Togn] ‘BT —7)e’ =

Note that for an order p tensor with rank K, the computational complexity of every iteration in MRTL is O(Kp/D,.) with
D, as the discretization size. Hence, the computational complexity of the fixed resolution training is

C=0 <|101g’Y| '10g (1 _17)5 . (I-gsz)
) 1
=0 (g e (o)) ©

Given a spatial discretization r, we can construct an operator F,. that learns discretized tensor weights. The next lemma
relates the estimation error with resolution. The following lemma relates the estimation error with resolution:

Lemma A.5. (Nash, 2000) For each resolution level r = 1, - - - | R, there exists a constant C and Cs, such that the fixed
point iteration with discretization size D, has an estimation error:

1E(w) = FO (W)l < (C1+7Callw]) Dy (24)

Proof. See (Nash, 2000) for details.

‘We have obtained the discretization error for the fixed point operation at any resolution. Next we analyze the number of
iterations ¢, needed at each resolution r before finegraining.

Lemma A.6. For every resolutionr = 1,..., R, there exists a constant C' such that the number of iterations t,. before
finegraining satisfies:

t, < C'/log|v] (25)

Proof. According to the fixed point iteration definition, we have for each resolution r:

1Fr(we,) =W < A YIEA(w ) —wl| (26)
D

< At oDy (27)
L=

< C/,ytr—l (28)
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using the definition of the finegrain criterion. O

By combining Lemmas A.6 and the computational cost per iteration, we can compute the total computational cost for our
MRTL algorithm, which is proportional to the total number of iterations for all resolutions:

S
=
S

L
_l’_
o
=
=
S

L
_|_
=
=
=
S

L
+

=

1
|logy
1 K
= (gt (@ 27)) ®
[logy[ \ (1 — )%
where the last step uses the termination criterion in (18). Comparing with the complexity analysis for the fixed resolution
algorithm in Lemma A.4, we complete the proof. O

B. Experiments

Basketball We list implementation details for the basketball dataset. We focus only on half-court possessions, where all
players have crossed into the half court as in (Yue et al., 2014). The ball must also be inside the court and be within a 4 feet
radius of the ballhandler. We discard any passing/turnover events and do not consider frames with free throws.

For the ball handler location { D!}, we discretize the half-court into resolutions 4 x 5,8 x 10,20 x 25,40 x 50. For the
relative defender locations, at the full resolution, we choose a 12 x 12 grid around the ball handler where the ball handler is
located at (6, 2) (more space in front of the ball handler than behind him/her). We also consider a smaller grid around the
ball handler for the defender locations, assuming that defenders that are far away from the ball handler do not influence
shooting probability. We use 6 x 6, 12 x 12 for defender positions.

Let us denote the pair of resolutions as (D}, D?). We train the full-rank model at resolutions (4 x 5,6 x 6), (8 x 10,6 x
6), (8 x 10,12 x 12) and the low-rank model at resolutions (8 x 10, 12 x 12), (20 x 25,12 x 12), (40 x 50,12 x 12).

There is a notable class imbalance in labels (88% of data points have zero labels) so we use weighted cross entropy loss
using the inverse of class counts as weights. For the low-rank model, we use tensor rank K = 20. The performance trend of
MRTL is similar across a variety of tensor ranks. K should be chosen in appropriately to the desired level of approximation.

Climate We describe the data sources used for climate. The precipitation data comes from the PRISM group, which
provides estimates monthly estimates at 1/24 spatial resolution across the continental U.S from 1895 to 2018. For oceanic
data we use the EN4 reanalysis product, which provides monthly estimates for ocean salinity and temperature at 1 spatial
resolution across the globe from 1900 to the present (see Fig. 3). We constrain our spatial analysis to the range [-180W, OW]
and [-20S, 60N], which encapsulates the area around North America and a large portion of South America.

The ocean data is non-stationary, with the variance of the data increasing over time. This is likely due to improvement in
observational measurements of ocean temperature and salinity over time, which reduce the amount of interpolation needed
to generate an estimate for a given month. After detrending and deseasonalizing, we split the train, validation, and test sets
using random consecutive sequences so that their samples come from a similar distribution.

We train the full-rank model at resolutions 4 x 9 and 8 x 18 and the low-rank model at resolutions 8 x 18, 12 x 27, 24 x 54,
40 x 90, 60 x 135, and 80 x 180. For finegraining criteria, we use a patience factor of 4, i.e. training was terminated when a
finegraining criterion was reached a total of 4 times. Both validation loss and gradient statistics were relatively noisy during
training (possibly due to a small number of samples), leading to early termination without the patience factor.

During fine-graining, the weights were upsampled to the higher resolution using bilinear interpolation and then scaled by
the ratio of the number of inputs for the higher resolution to the number of inputs for the lower resolution (as described in
Section 4) to preserve the magnitude of the prediction.
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Details We trained the basketball dataset on 4 RTX 2080 Ti GPUs, while the climate dataset experiments were performed
on a separate workstation with 1 RTX 2080 Ti GPU. The computation times of the fixed-resolution and MRTL model were
compared on the same setup for all experiments.

B.1. Hyperparameters

Hyperparameter Basketball Climate
Batch size 32 — 256 8 — 128
Full-rank learning rate n 1073 —10"" | 107* —107"!
Full-rank regularization A | 1075 — 10° 107 —107"
Low-rank learning rate 7 107 —107* | 107* — 107!
Low-rank regularization A | 107° — 10° 107 —107"
Spatial regularization o 0.03 —-0.2 0.03 -0.2
Learning rate decay ~y 0.7—-0.95 0.7—-0.95

Table 2. Search range for Opt hyperparameters

Table 2 show the search ranges of all hyperparameters considered. We performed separate random searches over this search
space for MRTL, fixed-resolution model, and the randomly initialized low-rank model. We also separate the learning rate n
and regularization coefficient A between the full-rank and low-rank models.

B.2. Accuracy and Convergence

1.6-
1.4
—— MRTL — MRTL
Fixed Fixed
. | | :I : \
2000 4000 6000 8000 10000 0 500 1009 1500 2000
Time[s] Time[s]

Figure 10. Basketball: Loss curves of MRTL vs. the fixed-resolution model for the full rank (left) and low rank model (right). The vertical
lines indicate finegraining to the next resolution.

Fig. 10 shows the loss curves of MRTL vs. the fixed resolution model for the full rank and low rank case. They show a
similar convergence trend, where the fixed-resolution model is much slower than MRTL.

B.3. Finegraining Criteria

Table 3 lists the results for the different finegraining criteria. In the classification case, we see that validation loss reaches
much faster convergence than other gradient-based criteria in the full-rank case, while the gradient-based criteria are faster
for the low-rank model. All criteria can reach similar F1 scores. For the regression case, all stopping criteria converge to a
similar loss in roughly the same amount of time for the full-rank model. For the low-rank model, validation loss appears to
converge more quickly and to a lower loss value. Thus one should try all of the finegraining criteria in order to reach the
fastest convergence.
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Table 3. Runtime and prediction performance comparison of different finegraining criteria

Dataset | Model | Full-Rank | Low-Rank
| |  Time [s] Loss Fl1 | Time [s] | Loss F1
Validation loss 1230 +74.1 0.699 +0.00237 | 0.607 +0.00182 | 2009 +715 0.868 +0.0399 0.475 +o.0121
Basketball Grad%ent norm 7029 +759 0.703 +0.00216 | 0.610 +0.00149 | 912 +281 0.883 +0.00664 | 0.476 +0.00270
Gradient variance 7918 +1949 0.701 +0.00333 | 0.609 +0.00315 | 933 +240 0.883 +0.00493 | 0.476 +0.00197
Gradient entropy 8715 +o957 0.697 +0.00551 | 0.597 +0.00737 | 939 +259 0.886 +0.00248 | 0.475 +0.00182
Validation loss 1.04 +o.115 0.0448 +o0.0108 - 37.4 +258.7 | 0.0284 +o.00171 -
Climate Gradient norm 1.11 +0.0413 | 0.0506 +0.00853 - 59.1 +16.9 | 0.0301 +o0.00131 -
Gradient variance 1.14 +o0.0596 | 0.0458 +0.00597 - 62.9 +14.4 | 0.0305 +0.00283 -
Gradient entropy | 0.984 +o.0848 | 0.0490 +0.0144 - 48.4 +21.1 | 0.0331 +0.00949 -

B.4. Random initialization

Fig. 11 shows all latent factors after training MRTL vs a randomly initialized low-rank model for ballhandler position. We
can see clearly that full-rank initialization produces spatially coherent factors while random initialization can produce some
uninterpretable factors (e.g. the latent factors for & = 3,4, 5,7, 19, 20 are not semantically meaningful). Fig. 12 shows
latent factors for the defender position spatial mode, and we can draw similar conclusions about random initialization.

Figure 11. Basketball: Latent factors of ball handler position after training MRTL (left) and a low-rank model using random initialization
(right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The latent factors are numbered left to

right, top to bottom.

Figure 12. Basketball: Latent factors of relative defender positions after training MRTL (left) and a low-rank model using random
initialization (right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The green dot represents
the ballhandler at (6, 2). The latent factors are numbered left to right, top to bottom.



