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1. INTRODUCTION 

 

Philippe de la Hire (1640-1718), a multi-disciplinary French scientist, is generally credited as 

being the first person to apply the principles of statics to the analysis and design of arches.  Prior 

efforts employed geometric design rules that were based on experience.  Thus, de la Hire plays 

an important role in the transition to scientifically based methods for civil engineering structures.  

Therefore, it is of historical interest to understand de la Hire’s approach and perspective. 

 

Proposition 125 of de la Hire’s Traité de Mécanique [1] deals with arches comprised of discrete 

stones that abut each other along joints that are considered smooth (frictionless). Each stone is 

subjected to three forces: the weight of the stone and the forces from the two neighboring stones 

that are oriented perpendicular to the respective joints.  For an arch of given shape, the stone-by-

stone analysis determines the weights of the stones that are required for equilibrium.  This is 

possible because the weight of the key stone is pre-determined.  The analysis works for all the 

stones except the two at the bottom of the arch (one on each side), for which an infinite weight is 

required to counter the lack of sliding resistance along the smooth horizontal base.  De la Hire 

salvages his analysis by saying that, in reality, sliding would not occur due to the stones being 

joined by mortar. 

 

Of interest in this report is another work by de la Hire, his 9-page Memoir of 1712, Sur la 

construction des voûtes dans les édifices [2] (On the construction of vaults in buildings).  

[Memoir in this usage means an essay on a learned subject.]  The work focuses on arch 

abutments, about which de la Hire says:  “C’est un problème des plus difficiles qu’il y ait dans 

l’architecture, …”  (It is a problem of the most difficult that there is in architecture, …)  De la 

Hire adds:  “Ce problème appartient à la mécanique, & c’est par son moyen que nous pouvons le 

résoudre, …”  (This problem belongs to mechanics, and it is by its means that we can solve it, 

…) 

 

In the Memoir, an abutment is a free-standing rectangular pier, and the object is to find the width 

of the pier sufficient to prevent overturning caused by the thrust of the arch.  Sliding of the pier 

on its foundation is assumed to be restrained.  De la Hire derives a quadratic equation in terms of 

the width of the abutment for a circular arch, and then he describes a graphical construction to 

solve the quadratic equation.  He does the same for a plate-bande (flat arch).   

 

De la Hire’s Memoir contains three figures, and these are copied here to the Appendix.  Figure 

A1 shows the geometry of the circular arch together with one of its abutments (the rectangle 

𝐵𝐻𝑆𝐼).  𝑀𝐿 represents a joint in the arch.  De la Hire’s graphical construction for finding the  

abutment width for the circular arch is shown in Figure A2, and that for the plate-bande appears 

in Figure A3.  The geometry of the plate-bande to the left of the centerline is also visible in 

Figure A3:  abutment 𝐵𝐻𝑆𝐿, flat half arch 𝑁𝐵𝐸𝐹 and joint 𝑀𝐿. 
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De la Hire’s Memoir has been discussed many times, for example, [3-9].  Nevertheless, there 

appear to be several areas for further inquiry.  In this report:  

• Comments are made about how de la Hire thought about the problem of determining 

abutment width, and a different interpretation is made compared to some other authors.  

• De la Hire’s method of analysis is reviewed, and a conclusion is reached about the 

generality of the location where the arch splits, again different compared to some others. 

• De la Hire’s graphical constructions are analyzed, and a possible discrepancy pointed out 

previously by Benvenuto [5] is identified and corrected. 

• De la Hire’s problem of determining abutment width is re-solved with friction included in 

the arch to assess the complexity added to the solution process and the effect on the 

answer.  Also, results using de la Hire’s assumed collapse mechanism are compared to 

the actual collapse mechanism, which depends on the coefficient of friction.  

 

In the report that follows, de la Hire’s original notation has been kept as much as possible.  

Dimensions are expressed in arbitrary length units, which can be uniformly scaled up or down 

using any desired length scale. 

 

 

2. HOW DE LA HIRE VIEWED THE CIRCULAR ARCH 

 

The circular arch considered by de la Hire is 2-dimensional and symmetric with no variations 

perpendicular to the plane.  His diagram from Figure A1 is redrawn in Figure 1.  The arch is of 

uniform thickness and subtends an angle of 180º.  The inner edge of each abutment is flush with 

the intrados of the arch, and the abutments are supported against horizontal displacement at their 

bases.  Self-weight only of the arch and abutments is applied, and the unit weight is uniform.  

Under these conditions, the weight of a piece can be replaced by its area for the purpose of 

calculating abutment width.  

 

De la Hire states that when the abutments are too weak to support the thrust from an arch, it is 

generally noticed that the arch splits at locations toward the middle of each side between the tops 

of the abutments and the key.  De la Hire supposes that the central portion of the arch, above the 

splits, is well connected and remains solid.  The same is assumed for the lower part of the arch 

on each side attached to the corresponding abutment.  Thus, there are three pieces, and one of the 

two containing an abutment is shown in Figure 2a.  The joint where splitting occurs is radial and 

designated 𝑀𝐿.  Through this joint acts the thrust from the weight of the half arch segment 

above, this weight designated here by 𝐴 (its area).  De la Hire places this thrust at the intrados 

(point 𝐿) “suivant la direction des corps pesants”, i.e., in the tangential direction, which is normal 

to the joint.   Thus, the magnitude of the thrust is 𝐴/sin(𝜃), which has a vertical component 
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equal to A and where 𝜃 is the angle the joint 𝑀𝐿 makes with vertical.  As mentioned later in 

Section 3, de la Hire never actually expresses the thrust in this form. 

 

De la Hire recognizes that each of the lower pieces resists the thrust by its own weight.  When an 

abutment is just wide enough, it is on the verge of rotating about its bottom outside corner.  

Thus, de la Hire thinks in terms of a bent lever 𝐿𝐻𝑇 with fulcrum located at point 𝐻; see Figure 

2b.  Moment equilibrium of the lever (known then as the law of the lever) leads to the equation 

from which the abutment width can be determined as explained in Section 3. 

 

The reason for placing the joint thrust at the intrados is not stated by de la Hire.  Neither does de 

la Hire explain why he orients the thrust normal to the joint; nowhere does he mention friction or 

the lack of it.  In proposition 125 of his Traité de Mécanique [1], he is explicit about the arch 

joints being smooth, and thus he uses normal thrusts.  By the time of his Memoir, de la Hire was 

aware of the basic concept of friction [10], including the friction force being proportional to the 

normal force.  But he again uses normal thrusts in his Memoir.  Neglect of friction makes the 

analysis easier, and the difficulty that de la Hire encountered in proposition 125 with the infinite 

stone weights does not arise in his determination of abutment width in the Memoir.  

 

Some authors have concluded that de la Hire based his analysis on a collapse mechanism in 

which the central part of the arch, acting as a wedge, slides down between the two levers on 

frictionless joints, rotating the abutments out as depicted in Figure 3 [5-8], “constituting a first 

example of ‘limit analysis’ of arches [7].”   While such a view is consistent with de la Hire’s 

analysis, including the placement of the joint thrust at the intrados, there is no direct evidence in 

his writing that he was thinking of the problem in terms of any collapse mechanism that involved 

the entire structure.  He never describes such a mechanism, nor does he ever mention a wedge or 

even sliding.  If de la Hire had a sliding system in mind, he likely would have said something 

about assumptions regarding friction.   

 

Of course, the abutments cannot rotate out without the central portion of de la Hire’s three-piece 

arch sliding down.  And it seems obvious that this rotation moves the contact in the arch joint to 

the intrados.  But, again, de la Hire does not indicate completeness of thought in terms of a 

collapse mechanism for the entire structure.  Kurrer [8] describes only one instance of a collapse 

mechanism being discussed that pre-dates de la Hire’s Memoir (attributed to Bernardino Baldi, 

an Italian mathematician), and he suggests this work may have been unknown to the French 

scientists.  Belidor [11], who followed de la Hire, places the arch thrust at the middle of the joint.  

So, if de la Hire was thinking in terms of a collapse mechanism, Belidor apparently never 

realized or accepted it. 
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Nevertheless, de la Hire succeeds in separating a complex structure into pieces, and then 

applying the principles of statics to obtain a design parameter, possibly the first ever such 

application for any type of structure, which is a significant accomplishment.   

  

 

3. EQUATION FOR ABUTMENT WIDTH FOR THE CIRCULAR ARCH 

 

De la Hire’s model involves three pieces:  the central portion of the arch above the joints 𝑀𝐿 and 

the two parts below these joints, each of which includes a lower part of the arch and one of the 

abutments.  One of these latter parts, shown in Figure 2, is supported at point 𝐻 about which it is 

on the verge of rotation.  The rectangular abutment has height 𝑏 and width 𝑦. 

 

Figure 2a shows the forces acting that arise from weight.  In terms of area, the weight of the 

abutment is the product of  𝑏 and 𝑦, and the weight of the part of the arch below 𝑀𝐿 and above 

the abutment is denoted by 𝐴’.  These weights act through their respective centers of gravity 𝑃 

and 𝐾, located by the dimensions 
𝑦

2
 and 

𝑦

2
+ ℎ, respectively.  The weight 𝐴 of the half arch 

segment above 𝑀𝐿 acts normal to joint 𝑀𝐿 in the amount 𝐴/sin(𝜃), as discussed previously.  

The point of application of the thrust 𝐴/sin(𝜃) is at 𝐿 on the intrados.  The abutment width 𝑦 is 

the desired quantity to be determined. 

 

De la Hire visualizes the part shown in Figure 2a as a bent lever, which is depicted by the heavy 

line 𝐿𝐻𝑇 in Figure 2b.  The fulcrum is point 𝐻, and the ends of the lever where loads are applied 

are point 𝑇 at mid-point of the base of the abutment and point 𝐿.  The load on 𝑇 is downward and 

comes from the weights 𝑏𝑦 and 𝐴’.  Because the line of action of weight 𝐴’ does not pass through 

𝑇, de la Hire adjusts 𝐴’ by a factor of (
𝑦

2
+ ℎ) / (

𝑦

2
), which gives the same moment about 𝐻 

when applied at 𝑇.  Thus, the total force on the lever at 𝑇 is 𝑏𝑦 + (1 +
2ℎ

𝑦
)𝐴′. 

 

At point 𝐿 of the lever, as shown in Figure 2b, de la Hire resolves the thrust into component 𝐷 

perpendicular to the lever arm 𝐿𝐻 and another component (not labelled in the figure) parallel to 

𝐿𝐻.  In this way, only 𝐷 needs to be considered in moment equilibrium of the lever. Thus, 

𝐷 · 𝐿𝐻̅̅ ̅̅ = [𝑏𝑦 + (1 +
2ℎ

𝑦
) 𝐴′] ·

𝑦

2
 ,    (1) 

where the overbar denotes length.  

 

The rest of the derivation makes use of Figure 1.  Point 𝐶 is on the intersection of the 

continuation of joint line 𝑀𝐿 and the centerline.  Line 𝐿𝐺 is perpendicular to the lever arm 𝐿𝐻.  

Line 𝐺𝑅 is perpendicular to line 𝐿𝐶.  Line 𝐿𝐽 is perpendicular to joint line 𝑀𝐿, and so it is on the 

line of action of the thrust.  Angle 𝐽𝐻𝐿 is a right angle.  Lengths 𝑦, 𝑎, 𝑏, 𝑔, 𝑒 and 𝑓 are as 
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labelled in the figure.  Some shortcuts will be taken below compared to de la Hire’s derivation, 

but the result will be the same. 

 

Triangles 𝐿𝐽𝐻 and 𝐿𝐺𝑅 in Figure 1 are similar.  Let line 𝐿𝐽 represent the thrust 𝐴/sin(𝜃), then 

line 𝐽𝐻 represents force 𝐷.  By similar triangles, 
𝐷

 𝐴/𝑠𝑖𝑛𝜃
=

𝐺𝑅̅̅ ̅̅

𝐿𝐺̅̅̅̅
  ,    (2) 

where 𝐺𝑅̅̅ ̅̅ = 𝐺𝐶̅̅ ̅̅ sin(𝜃).  Triangles 𝐿𝐻𝐴 and 𝐿𝐺𝐸 are also similar, so 𝐿𝐺̅̅̅̅ = 𝐿𝐻̅̅ ̅̅ 𝑓

𝑔
 and 𝐺𝐶̅̅ ̅̅ = 𝑒 −

𝐸𝐺̅̅ ̅̅ = 𝑒 −
𝑓

𝑔
(𝑦 + 𝑎).  Substitution into Equation 2 gives 

𝐷 · 𝐿𝐻̅̅ ̅̅ = 𝐴 (
𝑒𝑔

𝑓
− 𝑦 − 𝑎) .   (3) 

A further substitution into Equation 1 and grouping terms leads to  
 

1

2
𝑏𝑦2 + (

1

2
𝐴′ + 𝐴) 𝑦 + 𝐴′ℎ − 𝐴𝑔

𝑒

𝑓
+ 𝐴𝑎 = 0 ,    (4) 

which is quadratic in 𝑦.  Equation 4 is the same as de la Hire’s equation after dividing the latter 

through by 𝑓.  

 

In de la Hire’s treatment, he states that the weight A of the half arch above joint 𝑀𝐿 acts 

vertically on point L (which is confusing since he neglects to mention the horizontal component 

of the thrust), and then he says one knows from mechanics that 𝐷: 𝐴 = 𝐺𝐶̅̅ ̅̅ : 𝐿𝐺̅̅̅̅ .  Although he 

does not detail the process used to obtain this relation, it is equivalent to Equation 2. 

 

Instead of dealing with Equation 4, de la Hire makes a simplification and replaces the weight 𝐴’ 

by extending the rectangular abutment up to the level of point 𝐿, keeping the same abutment 

width 𝑦 and the same horizontal position.   Thus, 𝐴’ in Equation 4 is set to zero and 𝑏 is replaced 

by 𝑔: 
1

2
𝑔𝑦2 + 𝐴𝑦 − 𝐴𝑔

𝑒

𝑓
+ 𝐴𝑎 = 0 .    (5) 

According to the quadratic formula, the solution for the simplified geometry is given by 

𝑦 = −
𝐴

𝑔
± (

𝐴2

𝑔2
+ 2𝐴

𝑒

𝑓
− 2𝐴

𝑎

𝑔
)

1

2
.    (6) 

So, when 
𝑒

𝑓
>

𝑎

𝑔
, Equation 6 has one positive and one negative root, and the positive one is the 

desired abutment width 𝑦 (+ sign for the radical).  No explicit factor of safely is included by de 

la Hire.   

 

Nowhere in the derivation has any specific value been used for 𝜃.  Thus, a conclusion by others 

that de la Hire’s solution only applies for 𝜃 = 45 º [6] seems to be incorrect. 

 

Worth noting is that Equation 4 is not solvable because ℎ as it is defined in Figure 2a is a 

function of 𝑦.  This is not an issue for de la Hire because he focuses on Equation 5, but Equation 
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4 can be reformulated using an alternative to ℎ (Figure 2c).  The moment arm for the weight 𝐴’ 

about point 𝐻 is 𝑟𝑖 + 𝑦 − ℎ′, where 𝑟𝑖 is the radius of the intrados and ℎ′ is the horizontal 

distance of the center of gravity of 𝐴’ from the centerline given by 

ℎ′ =
1

3𝐴′
(𝑟𝑒

3 − 𝑟𝑖
3) sin (

𝜋

2
− 𝜃) .    (7) 

Use of the new expression for the moment arm of 𝐴’ results in 
 

1

2
𝑏𝑦2 + 𝐴half 𝑦 + 𝐴′𝑟𝑖 − 𝐴′ℎ′ − 𝐴𝑔

𝑒

𝑓
+ 𝐴𝑎 = 0 ,    (8)  

which replaces Equation 4 and where 𝐴half = 𝐴′ + 𝐴 is the weight of the complete half arch, not 

a function of 𝜃.   

 

The solutions for abutment width 𝑦 from Equation 5 (simplified geometry) and Equation 8 

(actual geometry) are compared in Figure 4, using the dimensions listed in the caption of Figure 

1.  These dimensions approximate de la Hire’s geometry shown in Figure A1.  In Figure 4, both 

abutment widths are shown as functions of the angle 𝜃 that locates the joint.  In each case, the 

abutment width increases monotonically as 𝜃 reduces, and greater width occurs for the case with 

the simplified geometry for a given value of 𝜃.  Thus, the choice of joint position angle 𝜃 makes 

a difference, as does the choice of Equation 5 or 8.  For 𝜃 = 45º, y = 31.7 units (simplified 

geometry) and y = 29.3 units (actual geometry), a difference of about 8%.  The dashed line in the 

figure marks a possible lower bound on the abutment width, taken as the arch thickness 𝑟𝑒 − 𝑟𝑖 = 

25 units, which could be imposed by architectural considerations.  

 

 

4. GRAPHICAL CONSTRUCTION TO DETERMINE ABUTMENT WIDTH FOR THE 

CIRCULAR ARCH 

 

Benvenuto [5] claims that de la Hire’s quadratic equation for abutment width in the case of the 

circular arch and the accompanying graphical construction give “quite different results”.  He also 

describes the graphical construction (Figure A2) as a “welter of lines, segments, circles and arcs” 

and as a “tangle of points and segments.”  The point Benvenuto makes is that the complexity of 

the graphical construction and the discrepancy with the theory led to confusion at the time, with 

the implication that it impeded acceptance of the scientific methods.  Benvenuto says that “not 

surprisingly, the contradiction has never been clarified.”  Whether or not this last statement was 

or is still true, no analysis of de la Hire’s graphical constructions, either for the circular arch or 

for the plate-bande (discussed later in Section 6) could be located.   

 

Benvenuto is correct in pointing out a discrepancy between de la Hire’s equation for abutment 

width and his graphical solution.  Below, a corrected version of de la Hire’s graphical 

construction is explained first, and then the error is identified and assessed. 
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Figure 5 is a graphical evaluation of Equation 6 for the positive root, which is the abutment 

width 𝑦.  It corresponds to a corrected version of de la Hire’s construction shown in Figure A2.   

The solid lines are drawn during the graphical solution, and the dotted lines show the half arch 

and one abutment for reference.  The dimensions used for Figure 5 are the same as those listed in 

the caption of Figure 1, which approximately match de la Hire’s geometry.  The angle 𝜃 for the 

joint 𝑀𝐿 is taken to be 45º.  Figure 5 has been drawn with the computer, so there are no drafting 

errors. 

 

The step-by-step process is given below, interspersed with some explanations. 

 

1. Compute area 𝐴 of the half arch segment above the joint 𝑀𝐿 and its square root √𝐴.   
 

De la Hire does not discuss this step, but for a circular arch of constant thickness, √𝐴 is 

proportional to (𝑟𝑒
2 − 𝑟𝑖

2)
1

2, which can be easily found graphically, and where 𝑟𝑒 and  𝑟𝑖 are the 

radii of the extrados and intrados, respectively. 
 

2. Plot points 𝑀, 𝐿, 𝑆 and 𝐹 and the vertical centerline through 𝐹. 
 

𝑀 and 𝐿 should define a radial joint at the desired angle 𝜃 from the centerline. 
 

3. Locate point 𝐶 where a line through 𝑀 and 𝐿 intersects the centerline. 
 

4. Locate point 𝐸 where a horizontal line through 𝐿 intersects the centerline. 
 

5. Locate point 𝐴 where a vertical line downward from 𝐿 intersects a horizontal line from 𝑆. 
 

The lengths 𝐿𝐸̅̅̅̅ , 𝐸𝐶̅̅ ̅̅ , 𝐿𝐴̅̅̅̅  and 𝑆𝐴̅̅̅̅  are denoted by 𝑓, 𝑒, 𝑔 and 𝑎, respectively. 
 

6. Locate point 𝑋 on an extension of line 𝐿𝐸 so that 𝐿𝑋̅̅̅̅ = √𝐴. 
 

7. Locate point 𝑍 on line 𝐿𝐴 so that 𝐿𝑍̅̅̅̅ = √𝐴. 
 

8. Locate point 4 on line 𝐿𝐴 by drawing line 𝑍𝐸 and then drawing line 4𝑋 parallel to it.   
 

Using the similar triangles 𝐿𝑍𝐸 and 𝐿4𝑋, 𝐿4̅̅ ̅: 𝐿𝑋̅̅̅̅  =  𝐿𝑍̅̅̅̅ : 𝐿𝐸̅̅̅̅ , and thus 𝐿4̅̅ ̅ =
𝐴

𝑓
. 

 

9. Locate point 𝑌 on line 𝐿𝐸 by drawing line 𝐴𝐸 and then drawing line 4𝑌 parallel to it.  
 

Using the similar triangles 𝐿4𝑌 and 𝐿𝐴𝐸, 𝐿𝑌̅̅̅̅ : 𝐿4̅̅ ̅ = 𝐿𝐸̅̅̅̅ : 𝐿𝐴̅̅̅̅ , and thus 𝐿𝑌̅̅̅̅ =
𝐴

𝑔
. 

 

10.  Locate point 𝑄 where a line from 𝐶 drawn perpendicular to line 𝐴𝐸 intersects a 

horizontal extension of the line 𝐿𝐸. 
 

Using the similar triangles 𝐸𝑄𝐶 and 𝐿𝐴𝐸, 𝑄𝐸̅̅ ̅̅ : 𝐿𝐴̅̅̅̅ = 𝐸𝐶̅̅ ̅̅ : 𝐿𝐸̅̅̅̅ , and thus 𝑄𝐸̅̅ ̅̅ =
𝑒𝑔

𝑓
. 
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11.  Locate point 7 on a horizontal extension of line 𝐿𝐸 by making the length of line 𝐿7 equal 

to 𝑄𝐸̅̅ ̅̅ − 𝑆𝐴̅̅̅̅ . 
  

Thus, 𝐿7̅̅ ̅ =
𝑒𝑔

𝑓
− 𝑎. 

 

12. Locate point 6 on the line 𝐿𝐸 extension so that 6𝐿̅̅ ̅ = 𝐿𝑌̅̅̅̅ .  
 

Thus, 6𝐿̅̅ ̅ =
𝐴

𝑔
. 

 

13. Locate point 8 where line 𝐿𝐴 intersects a circular arc with center at point 7 and drawn 

through point 6. 
 

Consider point 6’ one radius of the arc to the right of point 7.  (De la Hire does not mention this 

point, and it does not have to be plotted.)  Thus, 𝐿6’̅̅ ̅̅ = 6𝐿̅̅ ̅ + 2 · 𝐿7̅̅ ̅ =
𝐴

𝑔
+ 2

𝑒𝑔

𝑓
− 2𝑎.  Using the 

similar triangles 𝐿86 and 𝐿6’8 (neither drawn in the figure), 𝐿8̅̅ ̅: 6𝐿̅̅ ̅ = 𝐿6’̅̅ ̅̅ : 𝐿8̅̅ ̅, thus 

 𝐿8̅̅ ̅ = (
𝐴2

𝑔2 + 2𝐴
𝑒

𝑓
− 2𝐴

𝑎

𝑔
)

1

2
. 

 

14.  Locate point 9 on the line LA so that 𝐿9̅̅ ̅ = 𝐿𝑌̅̅̅̅ .  
 

Thus, 𝐿9 = 𝐴/𝑔.  The length of line 98 is equal to 𝐿8̅̅ ̅ − 𝐿9̅̅ ̅, thus  

98̅̅̅̅ = −
𝐴

𝑔
+ (

𝐴2

𝑔2 + 2𝐴
𝑒

𝑓
− 2𝐴

𝑎

𝑔
)

1

2
.  This is equal to the abutment width 𝑦 given by Equation 6 

after adjustment by whatever scale is being used for the plot. 

 

The above construction is the same as de la Hire’s except for Step 11 where de la Hire sets the 

length of 𝐿7 to 
1

2
𝐿𝑌̅̅̅̅ + 𝑄𝐸̅̅ ̅̅ − 𝑆𝐴̅̅̅̅ =

1

2

𝐴

𝑔
+

𝑒𝑔

𝑓
− 𝑎.   This mistake moves point 7 to the right, 

increasing the radius of the arc.  The result is that point 8 moves down, which increases the 

length of line 98, i.e., the abutment width.  Thus, the error is conservative.  

 

The insert in Figure 5 compares the corrected graphical solution (solid line) with de la Hire’s 

graphical solution (dashed line).  The increase in abutment width for the latter is slight for the 

particular geometry employed, about 4%, not “quite different” as Benvenuto [5] states.  But the 

error could be somewhat greater for a different selection of parameters.  If de la Hire had solved 

Equation 6 analytically and compared the resulting abutment width to that from his graphical 

solution, which he might have done, the small difference may not have suggested that the 

graphical solution contained an error.  
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5. DE LA HIRE’S CIRCULAR ARCH WITH FRICTION INCLUDED 

 

As mentioned previously, de la Hire’s solution for the circular arch is consistent with a collapse 

mechanism in which the top portion of the arch slides down and the abutments rotate out, as 

shown in Figure 3.  His solution applies to the case where the inclined joints in the arch are 

frictionless.  Even though de la Hire was familiar with the concept of friction, he neglects to even 

mention it in his Memoir.  It is of interest here to include the effect of friction in order to see 

what difference it makes in two respects:  How difficult is it to include friction?  How much does 

it affect the results? 

 

Before beginning, another aspect of de la Hire’s solution needs to be discussed.  He assumes that 

the central part of the arch between the two inclined joints remains as a single solid piece, same 

for each side below the joints.  This assumption requires the presence of strong grout between 

the joints of the stones within the three solid pieces so that separation and sliding do not occur 

there.  Since grout, if used, often had questionable quality, a more conservative approach would 

be to neglect its effect.  Therefore, two models are considered here.  First is the three-piece 

model as analyzed by de la Hire, but now including friction.  In the second model, separation 

without tensile resistance and sliding with frictional resistance are possible at any radial joint in 

the arch.  To facilitate the mathematics, the joint spacing in the arch is taken to be infinitesimal.  

This model is referred to as the continuum model. 

 

Both these analyses are made for de la Hire’s circular arch shown in Figure 1.  The actual 

geometry, i.e., using weight 𝐴’ rather than the extended abutment, is employed.  

 

Three-piece model 

 

Inclusion of friction alters both the magnitude and direction of the force acting at point 𝐿 as 

shown in Figure 6 for the circular arch.  The addition of a friction force component parallel to the 

joint 𝑀𝐿 changes the direction of the thrust from normal to the joint to having an angle 𝜙 with 

respect to the joint.  To maintain vertical equilibrium of the central portion of the arch, the 

magnitude of the thrust becomes 𝐴/sin(𝜃 + 𝜙).  The angle 𝜙 is the friction angle, where tan(𝜙) 

equals the friction coefficient 𝜇. 

 

Instead of resolving the thrust 𝐴/sin(𝜃 + 𝜙) into components along and perpendicular to de la 

Hire’s lever arm 𝐿𝐻, the moment about point 𝐻 will be taken using 𝐴/sin(𝜃 + 𝜙) itself and the 

perpendicular distance 𝑈𝐻̅̅ ̅̅ .  The dotted line in Figure 6 from point 𝐿 through point 𝑈 is on the 

line of action of 𝐴/sin(𝜃 + 𝜙).  Using some geometrical substitutions based on the figure: 
𝐴

sin(𝜃+𝜙)
· 𝑈𝐻̅̅ ̅̅ = 𝐴 · 𝑡 = 𝐴 (

𝑔

tan(𝜃+𝜙)
− 𝑦 − 𝑎).    (9) 
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This expression substitutes for the one in Equation 3, and thus inclusion of friction replaces 
𝑒

𝑓
 

with 
1

tan(𝜃+𝜙)
.  So, Equation 8 is modified to: 

1

2
𝑏𝑦2 + 𝐴half 𝑦 + 𝐴′𝑟𝑖 − 𝐴′ℎ′ − 𝐴

𝑔

tan(𝜃+𝜙)
+ 𝐴𝑎 = 0.    (10)  

As seen, including friction involves only a minor adjustment to the previous formulation.   

 

The abutment width from Equation 10 using de la Hire’s geometry (see caption of Figure 1 for 

dimensions) and 𝜃 equal to 45º is plotted in Figure 7 as a function of 𝜇 over the range from 0 to 

1.  The value at 𝜇 = 0 (𝑦 = 29.3 units) agrees with the result from Equation 8.  As seen in the 

figure, friction causes a significant reduction in 𝑦, even for low values of 𝜇.  The presumed 

architectural lower bound of 𝑟𝑒 − 𝑟𝑖 = 25 units (dashed line in the figure) controls over 

practically all the friction range. 

 

Continuum model 

 

The results below for the continuum model were obtained by a computerized process that 

examined many mechanisms of collapse and their dependence on locations of sliding planes and 

hinging joints and on the coefficient of friction.  This process was conducted using the 

dimensions listed in the caption of Figure 1.  For a different geometry, the set of mechanisms 

identified could be different. 

 

For wide, stable abutments, De la Hire’s cylindrical arch will collapse by sliding if the 

coefficient of friction 𝜇 is less than or equal to 0.309.  When 𝜇 = 0.309, the mechanism involves 

two pairs of sliding planes, as shown in Figure 8a.  When the ratio of the normal force to the 

friction force at the base of the arch (top of abutment) equals 0.309, the peak value of this ratio 

for joints above the base is also 0.309, and this joint occurs at 𝜃𝑆= ±28.6º.  Thus, the base of the 

arch and this joint are the sliding planes.  A line of thrust can be found which is contained 

entirely within the arch.  When 𝜇 exceeds 0.309, only the pair of inclined sliding planes stays 

active, and so the collapse mechanism shown in Figure 8a stabilizes. 

 

When 𝜇 exceeds 0.309, and for narrow enough abutments, a collapse mechanism of the type 

shown in Figure 8b occurs, consisting of an inclined sliding plane and a hinging joint on each 

side of the arch with the abutments rotating about their outside base corners.  The three 

parameters of the mechanism are all functions of the friction coefficient 𝜇:  the angle 𝜃𝑆 of the 

sliding joint, the angle 𝜃𝐻 of the hinging joint, and the abutment width 𝑦.  They are shown in 

Figure 8b for values of these parameters corresponding to 𝜇 = 0.60, and in Figure 9 as functions 

of 𝜇 (between values of 0.309 and 0.915).  No rotation occurs for the portion of the arch between 

the hinging joint and the sliding plane.  The line of thrust lies within the arch except where it 

touches the intrados at 𝜃𝐻, allowing the hinge to form.  The relatively narrow abutment width is 
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necessary to develop the hinge at the base of the abutment.  For a given value of 𝜇, an abutment 

width exceeding the value of 𝑦 given in Figure 9 stabilizes the structure. 

 

At 𝜇 = 0.915, the sliding planes becomes inactive and another hinge forms in the arch at the 

crown where the line of thrust reaches the extrados.  A five-hinge collapse mechanism (Figure 

8c) is present for 𝜇 exceeding 0.915, which is unaffected by the value of 𝜇.  This is reflected in 

Figure 9 by the constant values for 𝜃𝐻 and 𝑦 for 𝜇 exceeding 0.915.  An abutment wider than this 

value of 𝑦 stabilizes the structure. 

 

The dashed line in Figure 9 again represents the presumed architectural lower bound on 

abutment width, equal to the arch thickness.  A comparison of Figure 7 (three-piece model) with 

Figure 9 (continuum model) reveals smaller abutment widths for the former for the same friction 

coefficient. 

 

The series of mechanisms described above do not include the type shown in Figure 3 in which 

the same joint accommodates both hinging and sliding.  In a continuum model, the hinging joint 

coinciding with the sliding joint (where the ratio of friction force to normal force reaches a 

maximum along the arch) would be unusual.   

 

  

6. PLATE-BANDE 

 

Shown in Figure 10 is the geometry of de la Hire’s plate-bande, with the thickness of the plate-

bande denoted by 𝑡 and its half span by 𝑓.  The height of the abutment is now denoted by 𝑔, 

which is consistent with its usage for the circular arch as the vertical distance from the base of 

the abutment to point 𝐿 (see Figure 1).  The pair of joints 𝑀𝐿 is located adjacent to the 

abutments, and 𝜃𝑝𝑏 denotes their angle from vertical, with their extended planes passing through 

point 𝐶.  The three pieces separated by the joints 𝑀𝐿 are considered to be solid, and the weights 

𝑁𝐵𝐿𝑀 atop the abutments are neglected, which de La Hire justifies as being conservative.  

Thrusts at the joints are in the normal direction, consistent with neglecting friction.  Horizontal 

displacement at the base of the abutments is restrained. 

 

With the weights 𝑁𝐵𝐿𝑀 neglected, the equation to determine abutment width for the plate-bande 

can be obtained as a special case of Equation 5 for the circular arch by setting length 𝑎 (refer to 

Figure 1) to zero.  Thus, 
1

2
𝑔𝑦2 + 𝐴𝑦 − 𝐴𝑔

𝑒

𝑓
= 0,    (11) 

where 𝐴 is the weight of 𝑀𝐿𝐸𝐹.  Equation 11 is the same as de la Hire’s equation after 

multiplying the latter through by 
𝑔

2
.  However, de la Hire derives the relation from scratch, never 



 

14 

 

mentioning that it is a special case of Equation 5.  He says only that “ce cas n'est pas tout-à-fait si 

composé que le precedent”, meaning the plate-bande is simpler than the circular arch. 

 

The omitted weights 𝑁𝐵𝐿𝑀 can be included with some effort, noting that this weight is a 

function of 𝑦.  The result is  

(
1

2
𝑔 +

1

2
𝑡) 𝑦2 + 𝑓𝑡 𝑦 +

1

2
𝑓2𝑡 − 𝐴𝑓 + 𝐴ℎ𝐴 − 𝐴𝑔

𝑒

𝑓
= 0,    (12) 

still quadratic in 𝑦, where ℎ𝐴 is the horizontal distance from the centerline to the center of gravity 

of weight 𝐴 equal to  

ℎ𝐴 =
𝑡𝑓2

2𝐴
(1 +

𝑡

𝑒
+

1

3

𝑡2

𝑒2
).     (13) 

 
 

Using the dimensions listed in the caption of Figure 10, which approximately match de la Hire’s 

geometry in Figure A3, the abutment widths given by Equation 11 (weight 𝑁𝐵𝐿𝑀 omitted) and 

Equation 12 (weight 𝑁𝐵𝐿𝑀 included) are 60.4 units and 55.7 units, respectively.  This difference 

is about 8%.  For reference, the plate-bande thickness is 29 units. 

 

The graphical construction to determine the abutment width 𝑦 for the plate-bande is shown in 

Figure 11 (produced by computer), which corresponds to de la Hire’s construction shown in 

Figure A3.  The solid lines are drawn during the solution, and the dotted lines show the half 

plate-bande and one abutment for reference.  The dimensions used for Figure 11 are those from 

the caption of Figure 10, which approximately match de la Hire’s geometry.  This solution is for 

weights NBLM omitted (Equation 11). 

 

The step-by-step process in the graphical solution is given below, interspersed with some 

explanations. 

 

1. Plot points 𝑀, 𝐿, 𝑆 and 𝐹 and the vertical centerline (through 𝐹). 
 

2. Locate point 𝐶 where a line through 𝑀 and 𝐿 intersects the centerline. 
 

3. Locate point 𝐸 where a horizontal line through 𝐿 intersects the centerline. 
 

The lengths 𝐿𝐸̅̅̅̅ , 𝐸𝐶̅̅ ̅̅ , 𝐿𝑆̅̅ ̅ and 𝐹𝐸̅̅ ̅̅  are denoted by 𝑓, 𝑒, 𝑔 and 𝑡, respectively. 
 

4. Locate point 7 on the line 𝑀𝐿 midway between points 𝑀 and 𝐿. 
 

5. Locate point 3 where a horizontal line through point 7 intersects the centerline. 
 

The length of the line 73 equals 
𝐴

𝑡
, where 𝐴 is the area of the plate-bande segment 𝑀𝐿𝐸𝐹.   

 

6. Locate point 10 on the centerline so that 𝐸10̅̅ ̅̅ ̅ = 73̅̅̅̅ . 
 

Thus, 𝐸10̅̅ ̅̅ ̅ =
𝐴

𝑡
. 
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7. Locate point 11 where line 𝐿𝐸 intersects a circular arc with center midway between 

points 𝐹 and 10 and with radius equal to 
1

2
𝐹10̅̅ ̅̅ ̅. 

 

Using the similar triangles 𝐸11𝐹 and 𝐸10 11 (neither drawn in the figure), 11𝐸̅̅ ̅̅ ̅: 𝐹𝐸̅̅ ̅̅ =

𝐸10̅̅ ̅̅ ̅: 11𝐸̅̅ ̅̅ ̅, and thus 11𝐸̅̅ ̅̅ ̅ = √𝐴. 
 

8. Locate point 12 on the line 𝐿𝐸 so that 𝐿12̅̅ ̅̅ ̅ = 11𝐸̅̅ ̅̅ ̅. 
 

Thus, 𝐿12̅̅ ̅̅ ̅ = √𝐴. 
 

9. Locate point 15 on the line 𝐹𝐸 so that 15𝐸̅̅ ̅̅ ̅ =
1

2
𝐿𝐸̅̅̅̅ . 

 

Thus, 15𝐸̅̅ ̅̅ ̅ =
𝑓

2
. 

 

10.  Locate point 16 where line 𝐿𝐸 intersects a circular arc with center midway between 

points 15 and 𝐶 and with radius equal to 
1

2
15𝐶̅̅ ̅̅ ̅. 

 

Using the similar triangles 𝐸16 15 (not drawn in figure) and 𝐸𝐶16, 16𝐸̅̅ ̅̅ ̅: 15𝐸̅̅ ̅̅ ̅ = 𝐸𝐶̅̅ ̅̅ : 16𝐸̅̅ ̅̅ ̅, and 

thus 16𝐸̅̅ ̅̅ ̅ = √
𝑒𝑓

2
. 

 

11. Locate point 13 on the line drawn vertically upward from point 𝐿 by drawing line 𝑆12 

and then drawing line 13 12 perpendicular to it through point 12.  
 

Using the similar triangles 13𝐿12 and 12𝐿𝑆, 13𝐿̅̅ ̅̅ ̅: 𝐿12̅̅ ̅̅ ̅ = 𝐿12̅̅ ̅̅ ̅: 𝐿𝑆̅̅ ̅, and thus 13𝐿̅̅ ̅̅ ̅ =
𝐴

𝑔
. 

 

12. Locate point 18 on the centerline by drawing line 16𝐶 and then drawing line 11 18 

parallel to it. 

Using the similar triangles 𝐸18 11 and 𝐸𝐶16, 𝐸18̅̅ ̅̅ ̅: 11𝐸̅̅ ̅̅ ̅ = 𝐸𝐶̅̅ ̅̅ : 16𝐸̅̅ ̅̅ ̅, and thus 𝐸18̅̅ ̅̅ ̅ = √
2𝐴𝑒

𝑓
. 

 

13. Locate point 19 on a horizontal extension of line 𝐿𝐸 by making the length of line 𝐸19 

equal to 13𝐿̅̅ ̅̅ ̅. 

Thus, 𝐸19̅̅ ̅̅ ̅ =
𝐴

𝑔
.  Since 𝐸18 19 is a right triangle, 18 19̅̅ ̅̅ ̅̅ ̅̅ = (𝐸19̅̅ ̅̅ ̅ 2 + 𝐸18̅̅ ̅̅ ̅ 2)

1

2 = (
𝐴2

𝑔2 + 2𝐴
𝑒

𝑓
)

1

2
.  

 

14. Locate point 9 on the line 18 19 by making the length of line 9 19 equal to 13𝐿̅̅ ̅̅ ̅.  
 

Thus, 9 19̅̅ ̅̅ ̅̅ =
𝐴

𝑔
.  The length of line 18 9 is equal to  18 19̅̅ ̅̅ ̅̅ ̅̅ − 9 19̅̅ ̅̅ ̅̅ , thus  

18 9̅̅ ̅̅ ̅̅ = −
𝐴

𝑔
+ (

𝐴2

𝑔2
+ 2𝐴

𝑒

𝑓
)

1

2
.  This is the abutment width 𝑦 resulting from Equation 11 after 

adjustment by whatever scale is being used for the plot. 
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De la Hire’s graphical construction for the plate-bande therefore seems to be correct.  However, 

the question arises as to why he devised a different and more complicated graphical construction 

for the plate-bande since Equation 11 is a special case of Equation 5 for the circular arch.  

Indeed, the graphical solution described in Section 4 works for the plate-bande, as shown in 

Figure 12.  De la Hire must have recognized this special case relationship, if not before he 

derived the equation for abutment width of the plate-bande, then surely afterwards.  There may 

be some advantages one to the other regarding the accuracy to which the graphical constructions 

can be made, but such are not obvious.  De la Hire was a geometrician and published on the 

subject [12], so presumably he was well versed in such things. 

 

 

7. DE LA HIRE’S PLATE-BANDE WITH FRICTION INCLUDED 

 

As with the circular arch, it is of interest here to include the effect of friction for the plate-bande 

in order to see what difference it makes.  Both a three-piece model and a continuum model of the 

plate-bande shown in Figure 10 are investigated.  The actual geometry, i.e., with weight 𝑁𝐵𝐿𝑀 

included, is employed.  For the continuum model, the joints of infinitesimal spacing are oriented 

so their extended planes all pass through point 𝐶.  

 

Three-piece model 

 

For the three-piece model, repeating what was done for the circular arch in Section 5, inclusion 

of friction replaces 
𝑒

𝑓
 with 

1

tan(𝜃+𝜙)
 in Equation 12.  Thus,   

 

(
1

2
𝑔 +

1

2
𝑡) 𝑦2 + 𝑓𝑡 𝑦 +

1

2
𝑓2𝑡 − 𝐴𝑓 + 𝐴ℎ𝐴 − 𝐴

𝑔

tan(𝜃+𝜙)
 = 0.    (14) 

The width 𝑦 from Equation 14 using de la Hire’s geometry (dimensions listed in the caption to 

Figure 10) is plotted in Figure 13 as a function of 𝜇 over the range from 0 to 1.  The value at 𝜇 = 

0 (𝑦 = 55.7 units) agrees with the result from Equation 12.  As seen, friction causes a significant 

reduction in 𝑦.  

 

Continuum solution 

 

As with the circular arch, the continuum model of the plate-bande was analyzed by a 

computerized process that examined many mechanisms of collapse and their dependence on 

locations of sliding planes and hinging joints and on the coefficient of friction.  This process 

used the specific dimensions listed in the caption of Figure 10.  For a different geometry, the set 

of mechanisms identified could be different. 
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An addition assumption made in the continuum solution is that sliding is prevented from 

occurring along the joint 𝐵𝐿 at the top of each abutment.  Depending on the coefficient of 

friction, this could require keyed construction.  

 

For narrow enough abutments, two collapse mechanisms can occur depending on the coefficient 

of friction 𝜇, as shown in Figure 14.  In part a, both hinging and sliding occur at the same 

location (joint 𝑀𝐿), which is something that did not happen with the circular arch.  Hinging also 

occurs at the base of the abutments as they rotate out.  This mechanism is the same as what 

occurs for the three-piece model, and no intermediate joint in the plate-bande is involved.  Thus, 

the equation for abutment width 𝑦 is the same as given by Equation 14, and this equation applies 

in the range of 𝜇 from zero to 0.444.  The abutment width in Figure 14a is shown for 𝜇 = 0.30.  

For 𝜇 above 0.444, the mechanism in Figure 14b occurs.  This is a five-hinge mechanism; sliding 

ceases along joint 𝑀𝐿, and the crown becomes a hinge point.  The abutment width 𝑦 is 

independent of the value of 𝜇.  The variation of 𝑦 as a function of 𝜇 is shown in Figure 15 for the 

range of 𝜇 from 0 to 1.  Abutment widths wider than shown in Figure 15 for a given value of 𝜇 

stabilize the structure. 

 

 

8. SUMMARY 

 

The conclusion by others [5-8] that de la Hire based his analysis on a collapse mechanism 

involving the central part of the arch acting as a wedge, rotating the abutments outward as it 

drops, does not seem to be justified.  Although such a mechanism is consistent with de la Hire’s 

analysis, his writing lacks enough detail to support this view, which, if true, would make de la 

Hire not only a pioneer of static analysis of structures but a pioneer of limit analysis as well. 

 

De la Hire’s derivation of the quadratic equation for the abutment width of the circular arch, 

which uses a three-piece structural model, is general in terms of the position angle of the pair of 

inclined joints in the arch, a conclusion contrary to that reached by others [6]. 

 

De la Hire’s construction for finding the abutment width for a circular arch by graphically 

solving the associated quadratic equation contains an error, as suspected by another writer [5].  

This error has a minor effect on the results, as least for the particular arch geometry employed.  

A different graphical construction used by de la Hire for the plate-bande appears to be correct.  

However, given that the plate-bande solution is a special case of the one for the circular arch, the 

plate-bande graphical construction seems to be needlessly complicated and unnecessary, or at 

least its advantage is not evident. 

 

Friction can be included in de la Hire’s three-piece structural models quite easily.  For a 

continuum model, where hinging or sliding can take place anywhere along the arch or plate-
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bande, the situation is more complicated.  Different collapse mechanisms occur depending on the 

value of the coefficient of friction.  Generally, higher coefficients of friction make the structure 

more stable when the collapse mechanism involves sliding, so the required abutment widths are 

smaller.  For the circular arch that de la Hire analyzed, an abutment width equal to the arch 

thickness, which could be considered as an architectural lower bound, is satisfactory for realistic 

values of the friction coefficient. 
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10. FIGURES 

 

 
Figure 1.  Version of Figure A1 showing the circular arch together with lines and labels used to 

derive the equation for abutment width.  Dimensions in arbitrary units as scaled from Figure A1 

are 𝑀𝐶̅̅̅̅̅ = 61 (radius 𝑟𝑒 of extrados), 𝐿𝐶̅̅̅̅  = 36 (radius 𝑟𝑖 of intrados) and 𝑏 = 64 (height of 

abutment). 
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Figure 2.  Aid to de la Hire’s derivation of equation for abutment width for the circular arch, 

showing one side of the arch below the joint, including abutment and its hinge point.  Part (a):  

Forces acting.  Part (b):  Use of bent lever 𝐿𝐻𝑇 with fulcrum at abutment hinge point 𝐻.  Part 

(c):  Alternative dimensioning for the center of gravity of weight 𝐴’ used to derive Equation 8. 

 

 

 

 

 
 

Figure 3.  Collapse mechanism attributed to de la Hire [5-8], involving rotation of the abutment 

levers and sliding down of the arch wedge. 
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Figure 4.   Abutment width for de la Hire’s analysis of his circular arch as a function of joint 

position angle 𝜃:  comparison of Equation 5 (simplified geometry) and Equation 8 (actual 

geometry).  

 

 

 
 

Figure 5.  Version of Figure A2 showing the graphical construction to determine abutment width 

for the circular arch.  The angle 𝜃 for the joint 𝑀𝐿 equals 45º.  Length of line 98 is the desired 

abutment width.  The main diagram above shows the corrected version of de la Hire’s 

construction, and the dashed arc in the insert is drawn with de la Hire’s error.   
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Figure 6.  Aid to derivation of Equation 10 for abutment width (three-piece circular arch with 

friction included). 

 

 

 

 

 

 

 
 

Figure 7.  Abutment width predicted by Equation 10 for de la Hire’s circular arch (actual 

geometry) over a range of the friction coefficient 𝜇 from 0 to 1.  De la Hire’s no-friction solution 

from Equation 8 is marked.  This plot is for the three-piece model with joint 𝑀𝐿 located at 𝜃 

equal to 45º. 
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Figure 8:  The three collapse mechanisms that occur in a continuum model of de La Hire’s 

circular arch, depending on the value of the coefficient of friction 𝜇.  Mid-arch hinging joints are 

located with 𝜃𝐻, and mid-arch sliding planes are located with 𝜃𝑆.  Dots denote hinge points.  Part 

(a):  two pairs of sliding planes; the wide abutment is stationary.  Part (b):  Four hinge points and 

two sliding planes.  Part (c):  Hinging only; no sliding planes. 

 

 

 
 

Figure 9:  Collapse mechanism parameters for de la Hire’s circular arch (actual geometry) over a 

range of the friction coefficient 𝜇 from 0 to 1:  abutment width 𝑦, hinging joint position angle 𝜃𝐻 

and sliding plane position angle 𝜃𝑆.  This plot is for the continuum model. 
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Figure 10.  De la Hire’s plate-bande.  Dimensions in arbitrary units as scaled from Figure A3 are 

𝑓 = 51 (half span), 𝑡 = 29 (thickness) and 𝑔 = 90 (height of abutment).  𝜃𝑝𝑏 = 30º.  

 

 

 

 

 
 

Figure 11. Version of Figure A3 showing the graphical construction to determine abutment width 

for de la Hire’s plate-bande.  Length of line 18 9 is the desired abutment width.   
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Figure 12.  De la Hire’s graphical construction method for the circular arch (corrected) applied to 

the plate-bande.  Length of line 98 is the desired abutment width.   

 

 

 

 

 

 

 
 

Figure 13.  Abutment width predicted by Equation 14 for de la Hire’s plate-bande (actual 

geometry) over a range of the friction coefficient 𝜇 from 0 to 1.  De la Hire’s no-friction solution 

from Equation 12 is marked.  This plot is for the three-piece model. 
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Figure 14.  The two collapse mechanisms that occur in a continuum model of de la Hire’s plate-

bande, depending on the value of the coefficient of friction 𝜇.  Sliding along the horizontal joints 

between the plate-bande and tops of abutments is restrained.  Dots denote hinge points.  Part (a):  

Four hinge points with concurrent hinging and sliding along the two inclined joints adjacent to 

the abutment.  Part (b):  Hinging only; no sliding. 

 

 

 

 

 

 

 

 
 

Figure 15.  Abutment width 𝑦 for de la Hire’s plate-bande (actual geometry) over a range of the 

friction coefficient 𝜇 from 0 to 1.  This plot is for the continuum model. 

 

 

 

 

 

 



 

27 

 

 

11. APPENDIX:  The three figures from de la Hire’s Memoir [2] 

 

 

 

 

 
 

 

Figure A1.  Figure 1 showing circular arch and one abutment together with lines and labels used 

to derive the equation for abutment width. 
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Figure A2.  Figure 2 showing the graphical construction used to determine abutment width for 

the circular arch. 
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Figure A3.  Figure 3 showing the plate-bande to the left of its centerline and the graphical 

construction used to determine abutment width. 

 

 

 

 

 

 

 


