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AN EXPLICIT CM TYPE NORM FORMULA
AND EFFECTIVE NONVANISHING

OF CLASS GROUP L-FUNCTIONS FOR CM FIELDS

LIYANG YANG

We show that the central value of class group L-functions of general CM
fields can be expressed in terms of derivatives of real-analytic Hilbert Eisen-
stein series at CM points. Using this in conjunction with an explicit CM
type norm formula established in Section 3, following an idea of Iwaniec
and Kowalski (2004), we obtain a conditional explicit lower bound for class
numbers of CM fields under the assumption ζK

( 1
2

)
�F log DK/F (note that

GRH implies ζK
( 1

2

)
≤0). Some results in the proof lead to an effective nonva-

nishing result for class group L-functions of general CM fields, generalizing
the only known ineffective results. Moreover, combining the CM type norm
formula with Barquero-Sanchez and Masri’s work (2016), we shall deduce
an explicit Chowla–Selberg formula for all abelian CM fields.

1. Introduction

1.1. A lower bound for the class number of CM fields. For imaginary quadratic
fields K =Q(

√
−D), Gauss’ class number problem has for a long time inspired

the study of lower bounds of h(−D), the class number of K. Also, the magnitude
of h(−D) is closely related to the exceptional characters, i.e., those characters χ
such that L(s, χ) has a real zero near s = 1 [Landau 1918; Goldfeld 1975; Goldfeld
and Schinzel 1975; Granville and Stark 2000]. A repelling property of the excep-
tional zero gives the result h(−D)→∞ as D→∞ [Deuring 1933; Heilbronn
1934]. Landau [1935] then obtained the lower bound h(−D) �ε D1/8−ε by a
quantitative analysis of the repelling effects. Siegel [1935] got a stronger result:
h(−D)�ε D1/2−ε . See [Iwaniec 2006] for a more concrete historical introduction.
However, all these results suffer from the serious defect of being ineffective. Hence
one can not use them to determine the fields of class number one. Also, there are
many other situations requiring an effective lower bound for h(−D), for example, by
genus theory, the Euler idoneal number problem calls for an effective lower bound

h(−D)� Dc′/ log log D, with c′ > log 2.
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Generally one hopes to show that hK ≥C Dc
K for some positive (absolute) constants c

and C , where hK is the class number and DK is the absolute discriminant.
Unconditionally, Stark [1974, Theorem 2] gave an effective lower bound for

the class number of a CM field K of the shape hK �n,ε D1/2−1/2n
K/F Dε

F , where
ε > 0, F is a totally real subfield of K with n = [F :Q], and DF is the absolute
discriminant of F and DK/F = DK · D−2

F . When [K :Q] ≥ 20, Hoffstein [1979]
generalized Stark’s result by removing the Dε

F -term and computing the implied
constant explicitly. Also, for any CM field K, Odlyzko [1975] gives an effective
lower bound of hK in terms of the degree of K. For n = 1 the known unconditional
lower bound is

∏
p|DK

(1− 2
√

p/(p+ 1))−1 log DK due to [Goldfeld 1985; Gross
and Zagier 1986]. On the other hand, if we assume the grand Riemann hypothesis,
the exponent c can be taken to be 1

2 − ε for any ε > 0. Moreover, assuming the
Dedekind zeta function ζK (s) has a Siegel zero, Louboutin [1994] obtained effective
lower bounds for hK , with c = 1

4 .
It is well known that the class group L-functions of an imaginary quadratic field

K =Q(
√
−D) can be expressed in terms of values of the real-analytic Eisenstein

series for SL2(Z) at Heegner points [Duke et al. 1995]. Based on this fact, Iwaniec
and Kowalski [2004] obtained an effective lower bound for the class number
hK � D1/4 log D assuming that L

( 1
2 , χK/Q

)
≥ 0, where χK/Q is the quadratic

character corresponding the extension K/Q; see Section 2. In this paper we
generalize Iwaniec and Kowalski’s result to arbitrary CM fields and obtain an
expression for class group L-functions in terms of derivatives of real-analytic Hilbert
Eisenstein series at CM points. Due to the estimates on the Fourier expansions
we show that for any CM field K, if ζK (

1
2)≤ 0, then c = 1

4 is admissible, and the
implied constant is effective.

A precise statement is our Theorem A. To achieve it, we shall introduce some
analytic objects with respect to F. We let γ ∗F be the normalized Euler–Kronecker
constant, i.e.,

(1) γ ∗F = lim
s→1

(
ρ−1

F ζF (s)−
1

s− 1

)
.

For any CM extension K/F, we will always denote by DF (resp. DK ) the absolute
discriminant of F (resp. K ). Let hF (resp. hK ) be the class number of F (resp. K ).
Then we have:

Theorem A. Let F/Q be a totally real field of degree n. Let K/F be a CM
extension. Assume that

(2) ζK
(1

2

)
≤

ρF

4[O×K :O
×

F ] · hF
log
√

DK

DF
.
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Then we have

(3) hK ≥9F
−1
· D1/4

K log
√

DK

DF
,

where
9F := π

−nρ−1
F hF D2

F + e2γ ∗F+2n+2ϒ∗F D3/2
F ,

and ϒ∗F = 4γ ∗F + 3 log DF + 4n+
√

7n+ 8.

Remark. Noting that ζK (s) is continuous on
( 1

2 , 1
)

and lims→1− ζK (s) = −∞,
the grand Riemann hypothesis then gives ζK

( 1
2

)
≤ 0, which is stronger than the

assumption (2). Unconditionally, it is only known that ζQ

( 1
2

)
< 0 currently. Also,

we can keep the normalized Euler–Kronecker constant γ ∗F here as an invariant of
F. We refer to Theorem 7 in [Murty and Van Order 2007] for an elementary upper
bound for γ ∗F and to Theorem 1 in [Ihara 2006] for a conditional upper bound.

Remark. Note that Stark’s bound is sharper than (3) except [K :Q] ≤ 4. However,
the proof of Theorem A, when invoked with Stark’s result, leads to effective results
on nonvanishing of class group L-functions (and their derivatives) for CM fields.
Note that previous results are all ineffective. See Section 1.2 for more details.

Also, we point out that, with a little bit more work, the inequality (3) can be
naturally generalized to a conditional lower bound for hO, where O is an order
of K and hO denotes the number of proper O-ideal classes of O, since everything
in this paper has a counterpart in the order case.

The outline of the proof to Theorem A is described in Section 2.2 below, with
the new ingredients involved. See the rest of the sections for lengthy details.

Also, we have the following corollary to go beyond [Iwaniec and Kowalski 2004]
by plugging the upper bound for γ ∗F given in Lemma 20 into (3). It is of course
weaker than the conditional result in [Ihara 2006] under GRH; however, it is simple
enough compared to the elementary bound in [Murty and Van Order 2007].

Corollary 2. Let notation be as before. Then there exist absolute constants c1,c2>0
such that if ζK

(1
2

)
satisfies (2), then we have

(4) h−K ≥ c1 D−c2
F · D

1/4
K log DK/F ,

where h−K is the relative class number of K/F and DK/F = D−2
F DK is the relative

discriminant of K/F.

Remark. Combining the analytic class number formula with a result of Louboutin
[1994, Proposition A], one actually sees that if we assume ζK

( 1
2

)
≤ 0, then es-

sentially h−K � D1/4
K , where the implied constant is effective. According to the

conditional estimate γ ∗F � log log DF [Ihara 2006], it is expected that one can take
c2 = 3+ ε in (4) for any ε > 0. So (4) is an improvement of Louboutin’s result if
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we fix F and let DK vary. Also, by Hermite’s theorem [1857] one sees that almost
every h−K is a positive power of DK/F .

1.2. Nonvanishing of class group L-functions. It is an important problem in num-
ber theory to determine whether an interesting L-function is nonvanishing at the
central value s = 1

2 . However, it is usually pretty difficult to check individually. A
common strategy is to consider instead the average of L-functions over a family.
One fruitful way for dealing with such averages combines periods relations of
Waldspurger type with the equidistribution of special points on varieties (see, e.g.,
[Michel and Venkatesh 2007; Masri 2010]). However, in this paper, we will use
purely analytic methods to obtain asymptotic expressions for some averages of
weighted class group L-functions. This has several advantages. For instance, one
can obtain effective nonvanishing results, namely, avoiding using Siegel’s bound.

Although one can obtain the nonvanishing results on the critical line Re(s)= 1
2

by the same method, here we just focus on the central value s = 1
2 for simplicity.

Precisely, we will use byproducts from the proof of Theorem A to obtain a lower
bound for the number of nonvanishing class group L-functions as (5). This bound, as
can be seen, is almost as good as the conjectural magnitude. Moreover, a significant
difference between our approach and that in [Masri 2010] is that subconvexity
bounds are not essential for us. Therefore, one might be able to handle higher
derivative cases by general convex bounds for Dirichlet series via our methods here.

Theorem B. Let F/Q be a totally real field and K/F is a CM extension. Denote
by L(0)K

(
χ, 1

2

)
= L K

(
χ, 1

2

)
and L(1)K

(
χ, 1

2

)
= L ′K

(
χ, 1

2

)
the derivative of L K (χ, s)

at s = 1
2 . Then for any ε > 0 we have

(5) #
{
χ ∈ Ĉl(K ) : L(k)K

(
χ, 1

2

)
6= 0

}
�F

hK

log DK
, k = 0, 1,

where the implied constant in (5) is computable.

Remark. When F =Q, i.e., K is imaginary quadratic, Blomer [2004] followed
[Duke et al. 1995] to prove a better lower bound

#
{
χ ∈ Ĉl(K ) : L K

(
χ, 1

2

)
6= 0

}
≥ c · hK

∏
p|DK

(
1−

1
p

)
for some constant c > 0 and all sufficiently large DK . Once DK is chosen, the
constant c can be taken explicitly. However, one does not know how large DK must
be chosen for this lower bound to be valid because of an application of Siegel’s
lower bound for L(1, χK/F ). For a general CM extension K/F, when F has trivial
class group, Masri [2010] proved a lower bound as

(6) #
{
χ ∈ Ĉl(K ) : L K

(
χ, 1

2

)
6= 0

}
�F,ε D1/100−ε

K .



CM NORM FORMULA AND NONVANISHING OF L-FUNCTIONS FOR CM FIELDS 351

Again, this bound is ineffective since Siegel’s bound is used here. The exponent
1

100 comes from an application of subconvexity bound for GL(2).

Together with Stark’s effective lower bound, Theorem B implies that:

Corollary 4. Let F/Q be a totally real field of degree n and K/F a CM extension.
Then we have

#
{
χ ∈ Ĉl(K ) : L(k)K

(
χ, 1

2

)
6= 0

}
�F,ε

D1/2−1/(2n)
K

log DK
, k = 0, 1.

Moreover, the implied constants are computable.

Remark. By (5) and Theorem A, if we assume (2), in particular, if we assume
ζK
( 1

2

)
≤ 0, then we obtain

#
{
χ ∈ Ĉl(K ) : L(k)K

(
χ, 1

2

)
6= 0

}
�F,ε D1/4

K , k = 0, 1,

where the implied constant is computable. Moreover, Siegel’s theorem gives that

#
{
χ ∈ Ĉl(K ) : L(k)K

(
χ, 1

2

)
6= 0

}
�F,ε

D1/2
K

log DK
, k = 0, 1,

where the implied constant is ineffective. This is a significant improvement of (6).

1.3. An explicit Chowla–Selberg formula for general abelian CM fields. The cel-
ebrated Chowla–Selberg formula was first proved for imaginary quadratic fields
in [Selberg and Chowla 1967] by analytic methods. A geometric interpretation
was given by Gross [1978]. Yoshida [2003] obtained such a formula for arbitrary
CM fields. For any abelian CM field which contains a totally real subfield with
trivial narrow class group, Barquero-Sanchez and Masri [2016], combining Lerch’s
identity [1897] and the results in [Deninger 1984], were able to obtain an explicit
Chowla–Selberg formula in terms of (generalized) gamma functions, paralleling
the original Chowla–Selberg formula.

In this section, we point out that Barquero-Sanchez and Masri’s idea works
for all CM fields with our Proposition 15 being the new input. Hence we shall
avoid repeating the proof of [Barquero-Sanchez and Masri 2016] and just state the
generalized formula below.

Let K be an abelian CM field and F is its maximal totally real subfield. Then
there is some N ∈N≥1 such that K ⊂Q(ζN ) with ζN = e2π i/N . Let HK (resp. HF )
be the subgroup of Gal(Q(ζN )/Q) which fixes K (resp. F). Fix an isomorphism
Gal(Q(ζN )/Q) ' (Z/NZ)×. Set X K = {χ ∈ ̂(Z/NZ)

×
: χ |X K= 1}. Let X F be

defined similarly. For any χ ∈ X K , it can be written as χ = χ∗χ0, where χ∗ is
primitive and χ0 is trivial. Write cχ the conductor of χ∗. Since χ∗ is uniquely
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determined by χ , then cχ is well-defined. Define the Gauss sum associated with
χ ∈ X E to be

τ(χ)=

cχ∑
k=1

χ(k)e2πki/cχ .

Define the function 02(w)= eR(w), Re(w) > 0, where

R(x)= lim
n→∞

(
−ζ ′′Q(0)+ x log2 n− log2 x −

n−1∑
k=1

(
log2(x + k)− log2 k

))
.

This function 02(w) is defined in [Deninger 1984] and it is analogous to 0(s)/
√

2π .
Now we state a general version of the Chowla–Selberg formula for abelian CM fields.

Theorem C. Let F/Q be a totally real field of degree n and K/F a CM extension
with K/Q abelian. Let 8 be the fixed CM type for K as before. For any fractional
ideal a of K, denote by fa a fixed integral ideal in the Steinitz class of a with minimal
absolute norm, and write za for the corresponding CM point of type (K ,8). Then

∏
[a]∈Cl(K )

H(za, fa)= C K
F

∏
χ∈X K \X F

cχ∏
k=1

0

(
k
cχ

) hKχ(k)
2L(0,χ) ∏

χ∈X F
χ 6=1

cχ∏
k=1

02

(
k
cχ

) hK τ(χ)χ(k)
2cχ L(1,χ)

,

where for any fractional ideal b of F,

H(z; b)= [N8(Im(z))NF/Q(b)
−1
]
1/hFφ(z; b),

and φ(z; b) is defined via

logφ(z;b)=−
2πn D1/2

F yσ

ρF NF/Q(b)
·ζF (2, [OK ])−

2ρ−1
F

DF NF/Q(b)

∑
b∈F×
|N (b)|−1λ(b,0)e(bz),

and

λ(b, s)=
∑∑

(a,c)∈b−1o−1
×O×F /O

×,+
F

ac=b

|c|(1−2s)σ .

Also, the constant C K
F equals (2−n−1π−1 DK

−1/2 DF )
hK /2.

Remark. It is clear that by definition H(za, fa) is independent of the choice of fa.
If h−F = 1, we may take fa =OF to recover Theorem 1.1 in [Barquero-Sanchez and
Masri 2016]. Combined with Colmez’s theorem [1993], the formula above can be
used to compute the average of Faltings heights of certain CM abelian varieties.
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2. Proof of Theorem A in imaginary quadratic case

2.1. Review of the imaginary quadratic case. We start by reviewing the case of
Theorem A in the imaginary quadratic case. This is Iwaniec and Kowalski’s original
idea. For the sake of illustration, we give a brief proof following [Iwaniec and
Kowalski 2004].

Let K =Q(
√
−D) be a imaginary quadratic field. Since Q has class number 1,

we can often factor a nonzero integral ideal uniquely as (l)a where l ∈ Z>0 and a is
a primitive ideal, i.e., a has no rational integer factors other than ±1.

If a is primitive, then it is generated by

a=

[
a,

b+ i
√

D
2

]
,

where a= Na and b solves the congruence b2
+D≡ 0 (mod 4a), and is determined

modulo 2a.
Conversely, given such a and b we get a primitive ideal a=

[
a, b+i

√
D

2

]
. Thus

there exists a one-to-one correspondence between the primitive ideals and the points

za :=
b+ i
√

D
2a

∈ H determined by modulo 1.

These will be called the Heegner points. Moreover, we have a−1
= [1, z̄a]. Then

according to [Duke et al. 1995] one has the following formula:

(7)
1
h

∑
χ∈Ĉl(K )

χ(a)L K (s, χ)= w−1
(√

D
2

)−s

ζ(2s)E(za, s),

where h=hK is the class number,w is the root of unity of K, a is any primitive ideal,
za is the Heegner point, and E(z, s) is the real analytic Eisenstein series of weight 0
for the modular group. The Eisenstein series E(z, s) admits the Fourier expansion:

2(s)E(z,s)=2(s)ys
+2(1−s)y1−s

+4y1/2
∞∑

k=1

∑
mn=k

(
m
n

)i t

Ki t(2πky)cos(2πkx),

where 2(s) := π−s0(s)ζ(2s). Applying Fourier inversion we get from (7) that

(8) L K (s, χ)= w−1
(√

D
2

)−s

ζ(2s)
∑

za∈3D

χ(a)E(za, s),

where 3D := {za ∈ F : a primitive} and F is the fundamental domain for SL2(Z).
Clearly from the Fourier expansion we have E

(
z, 1

2

)
≡ 0, since ζ(2s) ∼ 1

2s−1
when s→ 1

2 and the right-hand side is well defined.
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Thus take the derivative of (8) at s = 1
2 and note K0(y)� y−1/2e−y to get

L K
( 1

2 , χ
)
=

√
2
w
|D|−1/4

∑
a

χ(a)E ′
(
za, 1

2

)
=

1
w

∑
a

χ(a)
√

a

{
log
√
|D|
2a
+ 4

∞∑
n=1

τ(n)K0

(
πn
√
|D|

a

)
cos
(
πnb

a

)}

=
1
2

∑
a

χ(a)
√

a
log
√
|D|
2a
+ O

(
h(D)|D|−1/4),

since #3D = h(D).
Assuming L

( 1
2 , χD

)
≥ 0, i.e., L K

(1
2 , χ0

)
= ζ

( 1
2

)
L
( 1

2 , χD
)
≤ 0, we derive

h(D)|D|−1/4
�

∑
a

1
√

a
log
√
|D|
2a
=

∑
a

1
√

a
log
√
|D|
a
+ O

(
h(D)|D|−1/4).

Thus we have h(D)|D|−1/4
�
∑

a
1
√

a log
√
|D|
a � log |D|, which implies:

Theorem 6 [Iwaniec and Kowalski 2004]. Let notation be as before. Assume that
L
( 1

2 , χD
)
≥ 0. Then we have

(9) h(D)� |D|1/4 log |D|.

Remark. The implied constant in (9) is absolute. Actually, by estimating everything
explicitly one can get an explicit lower bound:

Theorem 7 [Dittmer et al. 2015]. Let notation be as before. Assume L
(1

2 , χD
)
≥ 0,

then for any ε ∈
(
0, 1

2

)
we have

h(D)≥ 0.1265ε|D|1/4 log |D| for all D ≥ 2001/(1−2ε).

2.2. Sketch of proof of Theorem A and Theorem B in the general CM case. To
generalize Iwaniec and Kowalski’s results to the CM fields case, one has to establish
a general form of the Eisenstein period (7) (see below). The analogue of (7) in
the CM case is easy to build if F, the totally real subfield, has trivial narrow class
group (see, e.g., [Masri 2010]). In general, one needs to compute CM points
associated to each Steinitz class. However, the situation is quite different from the
imaginary quadratic case since generally, integral representatives in Cl(F) bounded
by Minkowski bounds may not necessarily be primitive. In addition, the CM type
norm of the imaginary parts of CM points should be computed explicitly in order
to compute the constant terms of Fourier coefficients of Eisenstein series. These
problems are solved by the crucial Proposition 13 in Section 3.2 below. Roughly
speaking, fix a CM type 8 on K, then a fractional ideal a ⊂ K corresponds to a
CM point za in a Hilbert modular variety (see Section 3); we calculate the CM
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type norm N8(ya) explicitly, where ya the imaginary part of za. Also, unlike the
cases in [Iwaniec and Kowalski 2004] or [Masri 2010], generally a single Hilbert
Eisenstein series does not have a functional equation, but it turns out that it does
vanish at the central point s = 1

2 . Then we prove Proposition 15, which is an
expression for L K

( 1
2 , χ

)
in terms of derivatives of Eisenstein series similar to (7).

Then following Iwaniec and Kowalski’s idea, an explicit lower bound for L K
( 1

2 , χ0
)

is given in Proposition 18, Section 4.1. Furthermore, several effective estimates
such as bounds for L K (1, χ) and the normalized Euler–Kronecker constant γ ∗F are
established in Section 4. With all these preparations, we eventually complete the
proof of Theorem A in Section 4.2.

The above mentioned results such as Proposition 15 and Fourier expansion of
derivatives of Hilbert Eisenstein series (i.e., Lemma 17) will lead to a lower bound
for the first moment of class group L-functions and an upper bound for the second
moment for class group L-functions; see (52) and (53). Then a standard technique
using the Cauchy inequality will imply the k = 0 case of Theorem B. The k = 1
case simply follows from the k = 0 case and functional equation.

3. Generalization to the CM case

3.1. Hilbert Modular varieties and CM zero-cycles.

3.1.1. The basic correspondence. Let F/Q be a totally real extension of degree n.
For any S ⊂ F, let S+ be the subset of S consisting of totally positive elements.
Given a fractional ideal f⊂ F, define

0(f) :=

{
γ =

(
a b
c d

)
∈ SL(2, F) : a, d ∈OF , b ∈ f, c ∈ f−1

}
.

Let H be the upper half plane. Then 0(f) acts on Hn via

γ · z = (σ1(γ )z1, . . . , σn(γ )zn) for all z = (z1, . . . , zn) ∈ Hn.

Recall that the quotient
X (f) := 0(f)\Hn

is the open Hilbert modular variety associated to f. It’s known [Goren 2002,
Theorem 2.17] that X (f) parameterizes isomorphism classes of triples (A, i,m)
where (A, i) is an abelian variety with real multiplication i : OF ↪→ End(A) and

m : (MA,M
+

A)→
(
(oF f)

−1, (oF f)
−1,+)

is an OF -isomorphism MA
∼
−→ (oF f)

−1 which maps M+A to (oF f)
−1,+, where

MA := {λ : A→ A∨ | λ is a symmetric OF -linear homomorphism}

is the polarization module of A and M+A is its positive cone.
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Let K/F be a CM extension and let 8= (σ1, . . . , σn) be a CM type of K. Then
z= (A, i,m)∈ X (f) is a CM point of type (K ,8) if one of the following equivalent
definitions holds:

(a) Because z ∈ Hn , there is a point τ ∈ K such that

8(τ)= (σ1(τ ), . . . , σn(τ ))= z

and 3τ = f+OFτ is a fractional ideal of K.

(b) (A, i ′) is a CM abelian variety of type (K ,8) with complex multiplication
i :OK ↪→ End(A) such that i = i ′ |OF .

To relate CM points with ideals of K, recall that we have fixed ε0 ∈ K× such that
ε0 =−ε0 and 8(ε0) ∈Hn . Let a be a fractional ideal of K and fa := ε0oK/Faa∩ F.

Then by Lemma 3.1 in [Bruinier and Yang 2006], the ideal class of fa is the
Steinitz class of a ⊂ K as a projective OF -module. Then it is clear that the CM
abelian variety (Aa = Cn/8(a), i) has the polarization module

(MA,M
+

A)→
(
(oF f

a)−1, (oF f
a)−1,+).

To give an OF -isomorphism between the above pair and ((oF f)
−1, (oF f)

−1,+)

amounts to giving some r ∈ F+ such that fa = r f. Therefore, to give a CM point
(A, i,m) ∈ X (f) is the same as to give a pair (a, r), where a is a fractional ideal of
K and fa = r f for some r ∈ F+. Two such pairs (a1, r1) and (a2, r2) are equivalent
if there exists an γ ∈ K× such that a2 = γ a1 and r2 = r1γ γ . We write [a, r ] for the
class of pair (a, r) and identify it with its associated CM point (Aa, i,m) ∈ X (f).

Note that for any fractional ideal f ⊂ K and any r ∈ F+ we have the natural
isomorphism of varieties:

τ : X (f) ∼−→ X (r f), z = (zi ) 7→ r z = (σi (r)zi ).

3.1.2. Upper bounds of Minkowski type and Steinitz class. Let L/Q be a number
field of signature (r1, r2). Let n be the degree of L/Q, then n= r1+2r2. Minkowski
showed that there is a constant M(r1, r2) only depending on the signature such
that for any C ∈ Cl(L), there exists an integral ideal aC ∈ C satisfying NL/Q(aC)≤

M(r1, r2)
√

DL , where DL is the absolute discriminant of L .
We can make the corollary in [Zimmert 1981, p. 374] more explicit. In fact, an

elementary estimate gives that

(10) log
DL

NL/Q(aC)
≥ (2 log 2+ γ )r1+ (log 2π + 2γ )r2−

√
7n.

Then for n ≥ 6, the right-hand side is always positive since
√

n ≤
√

r1+
√

2r2. Let
M(n) := (4r2n!)/(πr2nn). Then M(n) ·

√
DL gives the Minkowski constant of L/Q.
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Combining M(n) with (10) we can take

(11) M(r1, r2) :=min{e−(2 log 2+γ )r1−(log 2π+2γ )r2+
√

7n
·1n≥7+M(6)·1n≤6, M(n)}.

In particular, when n is large, we have M(r1, r2) ≤ 50.7−r1/2 · 19.9−r2 . From
now on, we shall fix M(r1, r2) in (11). For totally real extension F/Q, each ideal
class C ∈ Cl(F) contains an integral ideal fC satisfying NF/Q(fC)≤ M(n, 0)

√
DF .

Now we fix a set of fractional ideals

(12) I+F :=
{
f : f⊂OF and N (f)≤ M(n, 0)

√
DF
}
,

such that
Cl(F)+ = {[f] : f ∈ I+F },

where Cl(F)+ denotes the narrow ideal class group of F. For simplicity, we assume
OF ∈ I+F . Then for any fractional ideal a⊂ K, there exists a unique f∈ I+F such that

fa := ε0oK/Faa∩ F ∈ [f],

i.e., we can find some r ∈ F+ such that fa = r f. Then by the above discussion,
[a, r ] gives a CM point in X (f). Actually we can construct the CM point more
explicitly. To achieve this, let’s recall the standard result:

Proposition 8 [Yoshida 2003, Proposition 2.1, p. 179]. Let F be an arbitrary
algebraic number field and K/F be an algebraic extension of degree n. Let a⊂ K
be a fractional ideal. Then there exist α1, . . . , αn ∈ F and a fractional ideal f⊂ F
such that

a=OFα1⊕ · · ·⊕OFαn−1⊕ fαn.

Moreover, we have
[f] = [c · NK/F (a)] ∈ Cl(K ),

where c is a fractional ideal of F, independent of a, such that

[c2
] = [DK/F ], where DK/F := NK/F (oK/F ).

Proof. The first part of the assertion comes from the structure theorem for a finitely
generated torsion free module over a Dedekind domain. Then we can write

OK =OFα1⊕ · · ·⊕OFαn−1⊕ cαn;

a=OFβ1⊕ · · ·⊕OFβn−1⊕ fβn,

where {α1, . . . , αn} and {β1, . . . , βn} are basis of K over F and f and b are fractional
ideals of F. Then there exists some γ ∈ GL(n, F) such that γαi = βi , 1 ≤ i ≤ n.
Take x ∈ A×F such that div(x) = c−1f and set y = diag[x, 1, . . . , 1]. Then clearly
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yγOK =a. On the other hand we have a=aOK , where a ∈A×K such that div(a)=a.
Therefore we have

a−1 yγOK =OK ,

which gives that NK/F (a
−1c−1f)= det(γ )−1 NK/F (a−1 yγ ) ∈O×F , i.e.,

[NK/F (a)] = [NK/F (c
−1f)] ∈ Cl(F).

Therefore the last assertion is reduced to the case a=OK .
Let {α′1, . . . , α

′
n} be the dual basis of K/F with respect to the relative trace

T rK/F . Then we have

o−1
K/F =OFα

′

1⊕ · · ·⊕OFα
′

n−1⊕ c−1α′n,

where oK/F is the relative different with respect to K/F. Then by the above
discussion (i.e., taking a= o−1

K/F ) we have

[NK/F (o
−1
K/F )] = [c

−1
· c−1
] ∈ Cl(K ).

Hence we have [DK/F ] = [NK/F (o
−1
K/F )] = [c

2
] ∈ Cl(K ). �

Let a be any fractional ideal of K, let [fa] be the Steinitz class of a. Denote by

(13) Sta =
{
fa : NF/Q(fa)= min

f∈[fa]
NF/Q(f)

}
.

Given a fractional ideal a⊂ K, take an fa ∈ Sta. Without loss of generality, we
may assume that fa ∈ I+F . We then fix this choice for any fractional ideal a ∈ K
once and for all. Then by Proposition 8 there is a decomposition

(14) a=OFα⊕ faβ.

By the above proposition and the definition of fa we can take a appropriate β
such that there exists some r ∈ F+ such that fa = r fa.

Define za := α
β

. Then we have as in the proof of Lemma 3.2 of [Bruinier and
Yang 2006] that

(αβ −αβ̄)fOK = oK/Faa.

Then we have
ε0(αβ −αβ̄)= rε for some ε ∈O×.F

Replacing β by ε−1β if necessary, we can assume ε = 1. This implies that

ε0(z̄− z)=
r
ββ̄
∈ F×,

and thus za ∈ K× ∩Hn
= {z ∈ K× :8(z) ∈ Hn

}. Moreover, z represents the CM
point [a, r ] ∈ X (fa).
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Let CM(K ,8, f) be the set of CM points [a, r ] ∈ X (f) which we regard as a
CM 0-cycle in X (f). Let

CM(K ,8) :=
∑

[f]∈Cl(F)+
CM(K ,8, f).

We have the natural surjective map

CM(K ,8)� Cl(K ), [a, r ] 7→ [a].

The fiber is indexed by ε ∈O×,+F /NK/FO×K , since every element in the fiber of a
is of the form [a, rε] with r fixed and ε ∈O×,+F a totally positive unit. Note that
](O×,+F /NK/FO×K )≤ 2.

3.2. Representation of ideals. Let za be the CM point corresponding to the frac-
tional ideal a. Write xa (resp. ya) to be the real part (resp. imaginary part) of za. To
prove our main results, we need to compute ya explicitly. We start with recalling
some definition.

Definition 9 (primitive ideals). Let a be a fractional ideal of OK . We say that a is
primitive if a is an integral ideal of OK and if for any nontrivial integral ideal n
of OF , n−1a is not an integral ideal.

Fact 10. For any fractional ideal a of OK , there exists a unique fractional ideal n
of F such that n−1a is a primitive ideal. The ideal n will be called the content of
the ideal a.

Let K/F be a CM extension. There exists some D ∈ F×/(F2
∩ F×) such that

K = F(
√

D). We may assume D ∈OF and fix this choice once and for all. Let q
be the index-ideal

[
OK :OF [

√
D]
]
. Set q̃= qOK .

Proposition 11 [Cohen 2000, Section 2.6]. Let a be a fractional ideal of K. There
exist unique ideals n and m and an element b ∈OF such that

(15) a= n(m⊕ q−1(−b+
√

D)),

where q is the index-ideal
[
OK :OF [

√
D]
]
. In addition, we have the following:

1. n is the content of a.

2. a is an integral ideal of OK if and only if n is an integral ideal of OF .

3. a is primitive in K/F if and only if n=OF .

4. m is an integral ideal and aa=mn2.

Remark. The element b is determined by the modulo relation{
δ− b ∈ q,
b2
+ D ∈mq2,

where δ ∈OF comes from the corresponding pseudomatrix on the basis (1,
√

D)
[Cohen 2000, Corollary 2.2.9].
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The equations (14) and (15) give us two decompositions of a fractional ideal a
of K. However, the main obstacle comes from the factor n in (15). We may not
easily get rid of n unless the ideal class group Cl(F) is trivial. Noting that n is
a content, one natural way is to use the decompositions to construct a group of
primitive representatives of the ideal class group Cl(K ) such that the CM norms of
the imaginary part of the corresponding CM points can be computed explicitly. In
fact, It can be seen from the definition that an integral ideal a of OK is primitive if
and only if its primary decomposition is of the following form:

a=
∏

j

P′j ·
∏

i

Pαi
i P

βi
i ,

where P′j are ramified primes and Pi are splitting primes with αi · βi = 0. In
particular, every split prime ideal of OK is primitive. On the other hand, by
the Chebotarev density theorem, there exist a group of representatives of Cl(K )
consisting of split prime ideals. This gives us a set of primitive representatives
of Cl(K ). However, since we have to bound these representatives uniformly (as
can be seen in the last section) and it is not easy to give such a bound for splitting
ideals in each ideal class, we move on in another way.

It’s well known that, for any fractional OF -ideals a and b, we have the isomor-
phism a⊕ b'OF ⊕ ab. But this is not enough to make (15) into the form of (14),
we need to make the isomorphism into an identity.

Lemma 12. Suppose K/F is a finite extension of number fields. Let a and b be
fractional ideals of OF . Let α, β be two elements in K×. Assume that a ∈ a, b ∈ b,
c ∈ b−1 and d ∈ a−1 such that ad − bc = 1 ∈ F. Set

(α′, β ′) := (α, β)

(
a c
b d

)
,

then we have
aα+ bβ =OFα

′
+ abβ ′.

Proof. We have α′ = aα+ bβ and β ′ = cα+ dβ. Hence

OFα
′
+ abβ ′ ⊂ (OF · a+ ab · c)α+ (OF · bab · d)β ⊂ aα+ bβ.

Conversely, we have α = dα′− bβ ′ and β =−cα′+ aβ ′. Hence

aα+ bβ ⊂OFα
′
+ abβ ′. �

Let za be the associate CM point to a. Define the CM type norm of ya as
N8(ya) :=

∏
σ∈8 σ(ya). In Section 3.3 we will see that CM type norms show up

naturally in Fourier coefficients of Hilbert Eisenstein series and their derivatives at
the central value. According the period formula (27) CM type norms of imaginary
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parts of CM points also connect with central values of class group L-functions. By
the above preparation we can prove an explicit expression of N8(ya) as follows:

Proposition 13. Let notation be as before. Then we have

(16) N8(ya)=
NK/Q(ca)NF/Q(fa)NF/Q(q)

2

2n NK/Q(a)
·

√
DK

DF
,

where fa ∈ Sta, ca is an element in the content of aq̃−1 that is of the minimal absolute
norm, and DK (resp. DF ) is the absolute discriminant of K/Q (resp. F/Q).

Proof. By the argument in the above remark, we may assume a is an integral ideal
of OK such that aq̃−1 is integral. Let n be the content of aq̃−1, then n is integral.
Noting that q⊂OF , hence by (15) we have the decomposition

(17) a= n · (−b+
√

D)⊕ n−1q−1aa= n · (−b+
√

D)⊕ n−1q−1aa,

where b ∈OF and q is the index-ideal
[
OK :OF [

√
D]
]
.

Let ca ∈ n be an element of the minimal absolute norm, and we fix one such
choice for each a once and for all. Then by Lemma 12 we have

(18) a= n · (−b+
√

D)⊕ n−1q−1aa=OF · ca · (−b+
√

D)⊕ q−1aa · c−1
a .

The direct sum in the right-hand side of the above identity can be verified easily
from the proof of Lemma 12. Also noting that by the definition of q we have
oK/F = 4Dq−2, where oK/F is the relative ideal-discriminant, then [q−1aa] is the
Steinitz class of a.

Combining the decomposition (17) with (14), i.e., a=OFα⊕ faβ, we have, by
the uniqueness of Steinitz class, that

α = ca · (−b+
√

D)ε and faβ = q−1aa · c−1
a ,

for some unit ε ∈O×F . So we have

ya = Im(za)=
ca · Im(

√
D)

β
.

Noting that oK/F = NK/F (oK/F ) and DK = D2
F NF/Q(oK/F ), we thus obtain

N8(ya)=
∏
σ∈8

(
ca ·
√

D
β

)
=

NK/Q(ca)NF/Q(fa)NF/Q(q)
2

2n NK/Q(a)
·

√
DK

DF
. �

Remark. From the above expression, it is clear that N8(ya) is independent of
a particular choice of fa ∈ Sta. Also, the term NK/Q(ca) in the right-hand side
of (16) does not depend on a particular choice of ca. In fact (16) shows that N8(ya)
is independent of the choice of a particular representative of the class [a]. This
is because the factors NF/Q(fa) and NK/Q(caa−1) are both invariant under scalar
multiplication by K×.
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We will always fix the CM type 8 in this paper. For the sake of simplicity, we
will write yσa for the CM type norm N8(ya) in computations in the following parts.

3.3. Hilbert Eisenstein series. Let notation be as before. Let a and b be fractional
ideals of F. Take ϕ to be the characteristic function of the closure of ab⊕b. Let ϕab
be the characteristic function of the closure of ab, and ϕb be the characteristic
function of the closure of b. Then we define

Gk(z, s;ϕ)= y−k/2+sσ
∑

(c,d)∈F2,×/O×F

ϕ(c, d)(cz+ d)−k
|cz+ d|k−2sσ.

Define

0a :=

{
γ ∈

(
a b
c d

)
∈ GL(2, F) : a, d ∈OF , b ∈ a−1, c ∈ a, det γ ∈O+F

}
.

Then clearly ϕ(xγ )= ϕ(x) for x ∈ F⊕ F, γ ∈0a. From now on, we assume k= 0.
One can check that

Gk(γ z, s; a, b)= Gk(z, s; a, b) for all γ ∈ 0a.

Let G(z, s; a, b) := G0(z, s; a, b) and define the regularized Eisenstein series as

E(z, s; a, b) := ζF (2s)−1G(z, s; a, b), Re(s) > 1.

Then based on the Fourier expansion of G(z, s; a, b) [Yoshida 2003, Chapter V]
we have the explicit Fourier expansion:

E(z,s;a,b)= N (b)−2s ysσ ζF (2s, [b]−1)

ζF (2s)

+

(√
π0
(
s− 1

2

)
0(s)

)n

D−1/2
F N (b)−1y(1−s)σN (ab)1−2s ζF (2s−1, [ab]−1)

ζF (2s)

+

(
2π s

0(s)

)n yσ/2

D1/2
F N (b)ζF (2s)

∑
b∈F×
|N (b)|s−1/2λ(b,s)e(bx)

×

∏
v∈J∞

Ks− 1
2
(2πyv|bv|).

We have the following Laurent expansion of (partial) Dedekind zeta function
around s = 1:

(19) ζF (s, C)=
h−1

F ρF

s− 1
+ γF,[C]+ O(s− 1),
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where C is an ideal class in Cl(F), and ρF = 2nhF RFw
−1
F DF

−1/2 is the residue of
ζF (s) at s = 1. In particular, around s = 1 we have

(20) ζF (s)=
ρF

s− 1
+ γF + O(s− 1),

where

γF,C := lim
s 7→1

{
ζF (s, C)−

h−1
F ρF

s− 1

}
;

and by ζF (s)=
∑
[C]∈Cl(F) ζF (s, C) we have

γF =
∑

C∈Cl(F)

γF,C = ρFγ
∗

F ,

where γ ∗F is defined in (1). Constants γF and γF,C are called unnormalized Euler–
Kronecker constants with respect to F/Q, which we will deal with later.

From the Fourier expansion above we see that E(z, s; a, b) has a meromorphic
continuation to C with a simple pole at s = 1 with residue

Ress=1 E(z, s; a, b)=
2n−1πn RF

wF DF N (b)N (ab)ζF (2)
.

We have the Taylor expansion around s = 0 such that 0(s)= s−1
+ O(1) and

(21) ζF (s)=−
hF RF

wF
sn−1
+ O(sn),

where RF is the regulator and wF is the number of roots of unity. Then E(z, s; a, b)
is holomorphic at s = 1

2 . Moreover, we can show actually E(z, s; a, b) vanishes at
s = 1

2 for all z ∈ C.

Lemma 14. Let notation be as above. Then we have

E
(
z, 1

2 ; a, b
)
≡ 0 for all z ∈ Hn.

Proof. Let f⊂ F be a fractional ideal and f̃ be its dual, i.e., [f] · [f̃] = [D], where D

is the different of F/Q. Let

ZF (s, [f]) := ZF,∞(s)ζF (s, [f]) and ZF (s) := ZF,∞(s)ζF (s),

where ZF,∞(s) :=DF
s/2π−ns/20(s/2)n . It is well known that we have the following

functional equation for the partial completed zeta function:

(22) ZF (s, [f])= ZF (1− s, [f̃]).

An immediate consequence of this is the functional equation for the completed
Dedekind zeta function (obtained adding the partial ones), which has exactly the
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same form. Also, all the partial zeta functions have a simple pole at s = 1 with the
same residue 2n RFw

−1
F D−1/2

F .
Let’s introduce some functions to simplify the notations. Define

M1(s) := ZF (2s)N (b)−2s ysσ ζF (2s, [b]−1)

ζF (2s)

= ZF,∞(2s)N (b)−2s ysσ ζF (2s, [b]−1);

M∗2 (s) :=
(√

π0
(
s− 1

2

)
0(s)

)n

D−1/2
F N (b)−1 y(1−s)σ N (ab)1−2s ζF (2s− 1, [ab]−1)

ζF (2s)
;

M2(s) := ZF (2s)M∗2 (s)

= ZF,∞(2s− 1)N (b)−1 y(1−s)σ N (ab)1−2sζF (2s− 1, [ab]−1).

Then by (22) (taking f= ab) we see that M2(1− s)= H(s)M1(s), where

H(s) := N (b)2s−1 N (ab)2s−1
·
ζF (2s, [ãb]−1)

ζF (2s, [b]−1)
.

Since the Dirichlet series ζF (2s, [b]−1) absolutely converges when Re(s)> 1
2 , H(s)

is holomorphic when Re(s) > 1
2 , and can be continued to a meromorphic function

on C. Since all the partial zeta functions have a simple pole at s = 1 with the same
residue, we see H(s) is holomorphic at s = 1

2 and H
( 1

2

)
= 1.

Let L(s)−1
:= H(s)H(1− s), then we have

L(s)−1
=
ζF (2s, [ãb]−1)ζF (2− 2s, [ãb]−1)

ζF (2s, [b]−1)ζF (2− 2s, [b]−1)
.

Likewise, L(s) is a meromorphic function on C and is analytic at s = 1
2 , with

L
( 1

2

)
= 1. So we have M(1− s)= H(s)M1(S)+ H(s)L(s)M2(s). Now let

E1(s) := ZF (2s)
(

2π s

0(s)

)n yσ/2

D1/2
F N (b)ζF (2s)

= 2n Ds
F

yσ/2

D1/2
F N (b)

;

E2(s) :=
∑

b∈F×
|N (b)|s−1/2λ(b, s)e(bx)

∏
v∈J∞

Ks− 1
2
(2πyv|bv|)

=

∑
b∈F×
|N (b)|s−1/2

∑∑
(a,c)∈b−1o−1

×C
ac=b

|N (c)|1−2se(bx)
∏
v∈J∞

Ks− 1
2
(2πyv|bv|)

=

∑
b∈F×

∑∑
(a,c)∈b−1o−1

×C
ac=b

(
|N (a)|
|N (c)|

)s− 1
2

e(bx)
∏
v∈J∞

Ks− 1
2
(2πyv|bv|).
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Also set E(s) = E1(s)E2(s). In fact both E1(s) and E2(s) are entire functions.
Let’s briefly explain why E2(s) is entire: by Turan’s inequality for Bessel functions,
log Kν(x) is convex. Also note the fact that

lim
x 7→+∞

log Kν(x)
x

=−1,

hence we have Kν(x)≤ (eKν(1))e−x . Namely, the Bessel K-function has exponen-
tial decay, which forces the sum in E2(s) to converge absolutely. Also one sees
easily that E1(s)= D2s−1

F E1(1− s). So we have

E(1− s)= D1−2s
F E1(s)E2(1− s).

Let E(z, s; a, b) :=ZF (2s)E(z, s; a, b) be completed Eisenstein series, then by the
Fourier expansion of E(z, s; a, b) we have

E(z, s; a, b)= M(s)+ E(s)= M1(s)+M2(s)+ E1(s)E2(s).

By the above computation we have

E(z, 1− s; a, b)= H(s)M1(s)+ L(s)H(s)M2(s)+ D1−2s
F E1(s)E2(1− s).

Therefore, we have (noting that Kν(x)= K−ν(x))

E
(
z, 1

2 ; a, b
)
= lim

s 7→ 1
2

E(z, s; a, b)
ZF,∞(2s)ζF (2s)

= lim
s 7→ 1

2

E(z, 1− s; a, b)
ZF,∞(2− 2s)ζF (2− 2s)

=− lim
s 7→ 1

2

H(s)M1(s)+ L(s)H(s)M2(s)+ D1−2s
F E1(s)E2(1− s)

ZF,∞(2− 2s)ζF (2s)

=− lim
s 7→ 1

2

H
( 1

2

)
M1(s)+ L

(1
2

)
H
( 1

2

)
M2(s)+ E1

( 1
2

)
E2
( 1

2

)
ZF,∞(2s)ζF (2s)

=− lim
s 7→ 1

2

E(z, s; a, b)
ZF,∞(2s)ζF (2s)

=−E
(
z, 1

2 ; a, b
)
.

Thus we have E
(
z, 1

2 ; a, b
)
= 0. �

Remark. Note that E(z, s; a, b) may not have a functional equation, since the
Hilbert modular variety may have several cusps. The Eisenstein matrix will always
have a functional equation. However, when a= b=OF , there is only one cusp. In
fact, we see that in this situation H(s)= L(s)= 1 and E(s)= E(1− s), then we
have the functional equation

E(z, s; a, b)= E(z, 1− s; a, b),

which gives immediately that E
(
z, 1

2 ; a, b
)
= 0. This is the case in [Iwaniec and

Kowalski 2004].
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3.4. Periods of Eisenstein series. In this section we combine the discussion in last
two subsections to show the class group L-function L K (χ, s) can be expressed as a
weighted period of the Eisenstein series E(z, s; f) with respect to the CM 0-cycles
CM(K ,8, f), where [f] ∈ Cl(F)+.

Recall that we have the natural surjective map

CM(K ,8)� Cl(K ), [a, r ] 7→ [a].

And the fiber is indexed by ε ∈O×,+F /NK/FO×K with order at most 2.
Recall that by Proposition 13, since K/F is a CM extension of number fields of

degree 2n, we have that (see [Zimmert 1981]) for each ideal class C ∈ Cl(K ), there
exists an integral ideal aC ∈ C such that

NK/Q(aC)≤ M(0, n)
√

DK .

Clearly, we may assume a[OK ] =OK . Thus we can define a set of representatives
of Cl(K ) as

(23) IK := {a : a= aCq for all C ∈ Cl(K )},

where q is the index ideal in (15).
For convenience, let us fix IK once and for all. Clearly we have

Cl(K )= {[a] : a ∈ IK }.

For any a ∈ IK , let ya be the imaginary part of za, the associated CM point. Then
by (16) we have

(24) yσa = N8(ya)≥
M(0, n)−1 NF/Q(fa)

2n DF
for all a ∈ IK .

Also, for any fractional a of K, there exists a unique fa ∈ I+F and a CM point
[a, r ] ∈ X (fa) :=0(fa)\Hn mapping to [a]. Note that there are at most 2 preimages
of [a] ∈ Cl(K ). From now on, we fix one of them [a, r ] ∈ CM(K ,8, fa) for all a.

Then we have a decomposition (14), i.e.,

a=OFαa+ faβa

with za := αa/βa ∈ K× ∩Hn
= {z ∈ K× :8(z) ∈Hn

}. Moreover, za represents the
CM point [a, r ].

Proposition 15. Let K be a CM extension of a totally real number field F of
degree n, and 8 be a CM type of K. Then we have

(25) L K (χ,s)=
(2n DF )

s

Ds/2
K [O

×

K :O
×

F ]

∑
[a−1]∈Cl(K )

χ([a])N (fa)sζF (2s)E(za,s; f−1
a , fa),

where fa ∈ I+F is defined as above and za is the corresponding CM point of a via the
map CM(K ,8)� Cl(K ).



CM NORM FORMULA AND NONVANISHING OF L-FUNCTIONS FOR CM FIELDS 367

Proof. Let C ∈ Cl(K ) be an ideal class. Then there exist a unique primitive ideal
a∈ IK such that [a]=C−1. Hence as b runs over integral ideals in C , ab= (w) runs
over principal ideals (w)withw∈a/O×K . Let

∑
′ denote that the summation is taken

over nonzero integral variables (e.g.,
∑
′

a means the summation is taken over all
nonzero integral ideals a⊂K ), then the partial Dedekind zeta function can be written

ζK (s,C)=
∑′

b∈C

NK/Q(b)
−s
= NK/Q(a)

s
∑′

w∈a/O×K

NK/Q((w))
−s

=
NK/Q(a)

s

[O×K :O
×

F ]

∑′

(c,d)∈OF⊕fa/O×F

NK/Q((cαa+ dβa))−s

=
NK/Q(a)

s NK/Q((βa))
−s

[O×K :O
×

F ]

∑′

(c,d)∈OF⊕fa/O×F

NK/Q((cza+ d))−s

=
NK/Q(OF za+ fa)

s

[O×K :O
×

F ]

∑′

(c,d)∈OF⊕fa/O×F

NK/Q((cza+ d))−s.

Write za = xa+ iya, then a calculation with determinants yields

(26) NK/Q(OF za+ fa)= yσa NF/Q(fa) ·
2n DF
√

DK
.

By a calculation with the CM type 8 we have NK/Q((cza + d)) = |cza + d|2σ ,
where we have identified za with 8(za) ∈ Hn . Thus by combining the preceding
computations we obtain

ζK (s,C)=
(2n DF NF/Q(fa))

s

Ds/2
K [O

×

K :O
×

F ]

∑′

(c,d)∈OF⊕fa/O×F

ysσ
a |cza+ d|−2sσ

=
(2n DF NF/Q(fa))

s

Ds/2
K [O

×

K :O
×

F ]
G(za, s; f−1

a , fa).

Finally, using that L K (χ, s)=
∑

C∈Cl(K ) χ(C)ζK (s,C) we obtain (25). �

In particular, it comes from Lemma 14 and Proposition 15 that:

Proposition 16. Let notations be as above. Then we have

(27) L K
(
χ, 1

2

)
=

2n/2−1ρF
√

DF

D1/4
K [O

×

K :O
×

F ]

∑
[a−1]∈Cl(K )

χ([a])
√

N (fa)E ′
(
za, 1

2 ; f
−1
a , fa

)
.

Remark. Note that
√

NF/Q(fa)E ′
(
za, 1

2 ; f
−1
a , fa

)
is independent of the choice of fa

for any fractional ideal a in K. Formula (27) is known when the narrow class group
of F is trivial [Masri 2010], in which case one can take fa to be OK .
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We will use this Eisenstein period formula (27) in conjunction with the CM type
norm formula (16), following an idea of Iwaniec and Kowalski [2004], to obtain
Theorem A in Section 4.

3.5. Derivatives of Eisenstein series at the central point. In this subsection the
derivative of the Eisenstein series and its Fourier expansion will be investigated.
Further estimates will be provided in the next section. We start from the vanishing
property of E ′

(
z, 1

2 ; a, b
)

as follows.

Lemma 17. Let a and b be fractional ideals of F as before. Then we have

E ′
(
z, 1

2 ;a,b
)

=
yσ/2

NF/Q(b)

{
2h−1

F log yσ+
4(γF,[b]−1−h−1

F γF )

hFρF

+h−1
F

[
log NF/Q(ab

−1)−n(γ+2log2)
]

+
2n+1

ρF
√

DF

∑
b∈F×

∑∑
(a,c)∈b−1o−1

×C
ac=b

e(bx)
∏
v∈J∞

K0(2πyv|bv|)

}
,

where the Euler–Kronecker constants γF,[b]−1 and γF are defined in (19) and (20)
respectively; γ = 0.57721 . . . is the Euler–Mascheroni constant and

C := (ab∩ F×)/O×,+F .

Proof. To simplify the computation, let’s introduce some notation. Set

M1(s) := NF/Q(b)
−2s ysσ ζF (2s, [b]−1)

ζF (2s)
;

M2(s) :=
(√

π0
(
s− 1

2

)
0(s)

)n

D−1/2
F N (b)−1 y(1−s)σ N (ab)1−2s ζF (2s−1, [ab]−1)

ζF (2s)
;

E(s) :=
2nπns yσ/2

√
DF0(s)n N (b)ζF (2s)

∑
b∈F×
|N (b)|s−

1
2λ(b,s)e(bx)

∏
v∈J∞

Ks− 1
2
(2πyv|bv|).

Note that for convenience, we shorten the notation of the norm NF/Q to N occa-
sionally. Then clearly E ′

(
z, 1

2 ; a, b
)
= M ′1

( 1
2

)
+M ′2

( 1
2

)
+ E ′

( 1
2

)
. Also,

M ′1(s)=
[
−2 log N (b)+ log yσ

]
·M1(s)+ N (b)−2s ysσ

(
ζF (2s, [b]−1)

ζF (2s)

)′
.
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By (19) and (20) we have(
ζF (2s, [b]−1)

ζF (2s)

)′ ∣∣∣∣
s= 1

2

= lim
s 7→ 1

2

2ζ ′F (2s, [b]−1)ζF (2s)− 2ζ ′F (2s)ζF (2s, [b]−1)

ζ 2
F (2s)

= lim
s 7→ 1

2

4ρF
(2s−1)2

( h−1
F ρF

2s−1 + γF,[b]−1
)
−

4h−1
F ρF

(2s−1)2
(
ρF

2s−1 + γF
)

ρ2
F

(2s−1)2

=
4(γF,[b]−1 − h−1

F γF )

ρF
.

Note that by (19) and (20) we have

M1
( 1

2

)
=

yσ/2

N (b)
lim
s 7→ 1

2

ζF (2s, [b]−1)

ζF (2s)
=

yσ/2

hF N (b)
.

Thus we have

(28) M ′1
(1

2

)
=

yσ/2

hF N (b)

{
log

yσ

N (b)2
+

4(γF,[b]−1 − h−1
F γF )

ρF

}
.

For the M ′2(
1
2)-term, by definition we have

log M2(s)= C + n log0
(
s− 1

2

)
− n log0(s)+ (1− s) log yσ

+ (1− 2s) log N (ab)+ log ζF (2s− 1, [ab]−1)− log ζF (2s),

where C := n log
√
π − 1

2 log DF − log N (b). From this identity we obtain

M ′2(s)= M2(s) ·

{
n0′

(
s− 1

2

)
0
(
s− 1

2

) − n0′(s)
0(s)

− log yσ − 2s log N (ab)

+
2ζ ′F (2s− 1, [ab]−1)

ζF (2s− 1, [ab]−1)
−

2ζ ′F (2s− 1)
ζF (2s− 1)

}
.

Since 0
(
s− 1

2

)
∼
(
s− 1

2

)−1 around s = 1
2 and noting (20) and (21), we obtain

M ′2
(1

2

)
= M2

( 1
2

)
lim

s 7→ 1
2

{
−

n
s− 1

2

−
n0′

( 1
2

)
0
( 1

2

) − log yσ − 2s log N (ab)+ n−1
s− 1

2

+
1

s− 1
2

}

=−M2
( 1

2

)
·

{
n0′

( 1
2

)
0
( 1

2

) + log yσ + log N (ab)
}
.



370 LIYANG YANG

By (20) and (21) and the functional equation (22) one can easily deduce that
M2
( 1

2

)
=−h−1

F N (b)−1 yσ/2. Hence we have

(29) M ′2
( 1

2

)
= h−1

F N (b)−1 yσ/2 ·
{

n0′
( 1

2

)
√
π
+ log yσ + log N (ab)

}
.

Now let’s compute 0′
( 1

2

)
: Differentiating the Hadamard decomposition of 0(s)−1

logarithmically at s= 1 we see 0′(1)=−γ by the definition of γ . Since 0(s+1)=
s0(s), we have 0′(2)= 1− γ . Now consider the duplication formula

0(2s)= π−1/222s−10(s)0
(
s+ 1

2

)
.

Differentiating it at s = 1
2 we thus obtain 0′

( 1
2

)
=−
√
π(γ +2 log 2). Plug this into

(29) to obtain

(30) M ′2
(1

2

)
= h−1

F N (b)−1 yσ/2 · {log yσ + log N (ab)− n(γ + 2 log 2)}.

Finally we deal with E ′
( 1

2

)
-term. Noting that lims 7→1/2 ζ

−1
F (2s)= 0, we have

E ′
( 1

2

)
=
−2n yσ/2
√

DF N (b)
lim
s 7→ 1

2

2ζ ′F (2s)

ζ 2
F (2s)

×

∑
b∈F×
|N (b)|s−1/2λ(b, s)e(bx)

∏
v∈J∞

Ks− 1
2
(2πyv|bv|)

=
2n+1 yσ/2

D1/2
F N (b)ρF

∑
b∈F×

λ
(
b, 1

2

)
e(bx)

∏
v∈J∞

Ks− 1
2
(2πyv|bv|)

=
2n+1 yσ/2

D1/2
F N (b)ρF

∑
b∈F×

∑∑
(a,c)∈b−1o−1

×C
ac=b

e(bx)
∏
v∈J∞

K0(2πyv|bv|).

Combining this formula with (28) and (30) we thus obtain the conclusion. �

4. Proof of the Main Theorems

4.1. Estimates related to L-functions. Let F be a totally real number field of
degree n. Let K/F be a CM extension and Ĉl(K ) be the dual group of the ideal
class group Cl(K ). Note that L(χ, 1) is finite for any nontrivial χ ∈ Ĉl(K ), so we
can define

(31) LF := max
χ∈Ĉl(F)\{χ0}

|L F (χ, 1)|.

Also, in this paper we will always use M(r1, r2) as the generalized Minkowski
function defined in (11).
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Proposition 18. Let notation be as above, and χ0 be the trivial character in Ĉl(K ).
Then we have

(32) L K
(
χ0,

1
2

)
≥

ρF

[O×K :O
×

F ] · hF

(
1
2

log
√

DK

DF
−80

F · hK D−1/4
K

)
.

where

80
F :=

25n/2 M(0, n)D7/4
F h2

F

πnρF h+F
+ e2ρ−1

F LF+nL∗F
√

DF ,

and L∗F = 4ρ−1
F LF + log DF + (3 log 2− logπ)n+

√
7n+ 4.

Proof. By Lemma 17 we have E ′
(
z, 1

2 ; f
−1
a , fa

)
= IM(z; fa)+ IE(z; fa), where

IM(z; fa) :=
yσ/2

NF/Q(fa)hF

{
2 log yσ +

4ϒF,[fa]−1

ρF

− 2 log NF/Q(fa)− (γ + 2 log 2)n
}
,

IE(z; fa) :=
yσ/2

NF/Q(fa)
·

2n+1

ρF
√

DF

∑
b∈F×

∑∑
(a,c)∈f−1

a o−1
×C

ac=b

e(bx)
∏
v∈J∞

K0(2πyv|bv|),

where C :=O×F /O
×,+
F , and

LF,[fa]−1 := γF,[fa]−1 − h−1
F γF =

1
hF

∑
χ∈Ĉl(F)
χ 6=χ0

χ([fa])L F (χ, 1).

By Proposition 15 we can write L K
(
χ, 1

2

)
= L M,χ + L E,χ , where

L M,χ =
2n/2√DF

2D1/4
K

·
ρF

[O×K :O
×

F ]

∑
[a−1]∈Cl(K )

χ([a])
√

NF/Q(fa) · IM(z; fa),

L E,χ =
2n/2√DF

2D1/4
K

·
ρF

[O×K :O
×

F ]

∑
[a−1]∈Cl(K )

χ([a])
√

NF/Q(fa) · IE(z; fa).

We will start with bounding IE(z; fa) and further estimating L E,χ :

|IE(z; fa)| ≤
yσ/2

N (fa)
·

2n+1

ρF
√

DF

∑
b∈F×

∑∑
(a,c)∈f−1

a o−1
×C

ac=b

∏
v∈J∞

|K0(2πyv|bv|)|

=
yσ/2

N (fa)
·

2n+1
[O×F :O

×,+
F ]

ρF
√

DF

∑
b∈f−1

a o−1∩F×

∏
v∈J∞

|K0(2πyv|bv|)|
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To compute [O×F : O
×,+
F ], let’s fix an ordering (φ1, . . . , φn) of Hom(F,Q) and

consider the homomorphism

τ : O×F −→ {±1}n, x 7→ (φ1(x)/|φ1(x)|, . . . , φn(x)/|φn(x)|).

Then clearly, ker(τ )=O×,+F . Hence Im(τ )'O×F /O
×,+
F . In fact, by Lemma 11.2

of [Conner and Hurrelbrink 1988] we have

coker(τ )' Gal(H+F /HF )' ker(Cl(F)+→ Cl(F)),

where HF is the Hilbert class field of F and H+F is the narrow Hilbert class field
of F. By the above isomorphism, we have [O×F :O

×,+
F ] = 2nhF h+F

−1. Noting that F
is totally real, consider the canonical embedding

j : F −→ FR :=

∏
v∈J∞

Fv ' Rn.

Since f−1
a o−1

6= 0, the lattice 0 := j (f−1
a o−1) is complete in FR. Let α1, . . . , αn

be a Z-basis of f−1
a o−1. Let βv = j (αv), then we may assume that βv > 0, for all

1≤ v ≤ n. Since Z is a PID, we have 0 = Zβ1⊕ · · ·⊕Zβn . Then a computation
with determinants gives∏

v∈J∞

β−1
v = vol(0)−1

=
1
√

DF
· NF/Q(fao)= NF/Q(fa)

√
DF .

For any b ∈ f−1
a o−1

∩ F×, we may write j (b)= (m1β1, . . . ,mnβn), where mi 6= 0,
for all 1 ≤ v ≤ n. Otherwise, we may assume m1 = 0. Then there exists some
v ∈ J∞ such that bv = 0. Then the minimal polynomial of b has 0 as its root. This
is impossible unless b = 0.

On the other hand, note that K0(x) < K1/2(x) =
√
π

2x
e−x for all x > 0. Com-

bining these results we have

|IE(z; fa)| ≤
yσ/2

NF/Q(fa)
·

22n+1hF

ρF h+F
√

DF

∏
v∈J∞

( ∞∑
m=1

√
1

yvβvm
e−2πyvβvm

)

=
1

NF/Q(fa)
·

22n+1hF

ρF h+F
√

DF

∏
v∈J∞

β−1/2
v

∏
v∈J∞

( ∞∑
m=1

√
1
m

e−2πyvβvm
)

≤
1

NF/Q(fa)
·

22n+1hF

ρF h+F
√

DF

∏
v∈J∞

β−1/2
v

∏
v∈J∞

1
e2πyvβv − 1

≤
1

NF/Q(fa)
·

22n+1hF

ρF h+F
√

DF

∏
v∈J∞

β−1/2
v

∏
v∈J∞

1
2πyvβv

≤

√
NF/Q(fa) ·

2n+1hF D1/4
F

πnρF h+F
y−σ .
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Therefore, by Proposition 13 and the definition of IK , we have

|IE(z; fa)| ≤
√

NF/Q(fa) ·
2n+1hF D1/4

F

πnρF h+F
·

2n DF NK/Q(a)

NF/Q(fa)NF/Q(q)2
√

DK

≤
22n+1 M(0, n)hF D5/4

F

πnρF h+F
√

NF/Q(fa)
for all a ∈ IK .

Note that by definition, each fa ∈ I+F is defined in (12). Thus we have

|L E,χ | ≤
2n/2√DF

2D1/4
K

·
ρF

[O×K :O
×

F ]

∑
a∈IK

22n+1 M(0, n)hF D5/4
F

πnρF h+F

≤
1

[O×K :O
×

F ]
·

25n/2 M(0, n)D7/4
F hF

πnh+F
· hK D−1/4

K ,

where IK is defined in (23), so that (24) is available here.
On the other hand, we will give a lower bound for IM(z; fa) and L M,χ . Recall

the definition of LF given in (31); then clearly for any a ∈ IK , we have

LF ≥
1

hF

∑
χ∈Ĉl(F)\{χ0}

|L F (χ, 1)| ≥ |LF,[fa]−1 |.

Hence by the expression for yσ given in Proposition 13 we obtain

(33) IM(z; fa)≥

√
NK/Q(ca)NF/Q(q)2

NK/Q(a)NF/Q(fa)

{
2 log

√
DK

2n DF
−CF,a

}
·

D1/4
K

√
2n DF hF

,

where the tail CF,a is defined as

CF,a = 2 log
NK/Q(a)

NK/Q(ca)NF/Q(q)2
+

4LF

ρF
+ (γ + 2 log 2)n.

Combining (33) with (24) yields

L M,χ0 ≥
ρF

2[O×K :O
×

F ] · hF

∑
[a−1]∈Cl(K )

√
NK/Q(ca)NF/Q(q)2

NK/Q(a)

×

{
2 log

√
DK

2n DF
− 2 log

NK/Q(a)

NK/Q(ca)NF/Q(q)2
−

4LF

ρF
− (γ + 2 log 2)n

}

=
1
2

∑
a∈IK

Nq(a) ·

{
2 log

√
DK

DF
− 2 log

2n NK/Q(a)

NK/Q(ca)NF/Q(q)2
−CF

}
,

where

Nq(a)=
ρF ·NF/Q(q)

[O×K :O
×

F ]·hF
·

√
NK/Q(ca)
NK/Q(a)

and CF = 4ρ−1
F LF + (γ + 2 log 2)n.
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Write Nq(a)
∗
= 2n NK/Q(ca)−1 NF/Q(q)

−2 NK/Q(a), then we can introduce an
undetermined parameter T satisfying 0< T ≤ M(0, n)

√
DK such that

L M,χ0 ≥

∑
a∈IK

Nq(a)
∗
≤T

Nq(a) ·

(
log

√
DK

DF ·Nq(a)∗
−

1
2

CF

)
− LT

M,χ0
,

where the truncation term LT
M,χ0

is defined as

LT
M,χ0
=

∑
a∈IK

Nq(a)
∗
≥T

Nq(a) ·

{∣∣∣log
√

DK

DF ·Nq(a)∗

∣∣∣+ 1
2

CF

}
.

We can take T = TK/F = min
{
(e−CF

√
DK )/DF , 2n M(0, n)

√
DK

}
. Then due

to (11) and (12) we have TK/F = e−CF D−1
F
√

DK if n ≥ 9. Note that the choice of
TK/F above implies that

log
√

DK

DF ·Nq(a)∗
≥ CF for all a ∈ IK such that Nq(a)

∗
≤ TK/F .

Noting that Nq(a)
∗
≤ M(0, n)

√
DK , we define

8F = max
TK/F≤Nq(a)∗≤2n M(0,n)

√
DK

∣∣∣log
√

DK

DF ·Nq(a)∗

∣∣∣+ 1
2

CF .

Then by monotonicity we obtain

(34) 8F =max
{3

2CF , log 2n M(0, n)DF +
1
2CF

}
≤ log M(0, n)DF + 2CF .

When e−CF D−1
F
√

DK > 2n M(0, n)
√

DK (e.g., when n ≥ 9), this implies that

LTK/F
M,χ0
≤

2n/2ρF

[O×K :O
×

F ] · hF

∑
a∈IK

TK/F≤Nq(a)
∗
≤2n M(0,n)

√
DK

1√
Nq(a)∗

·8F

=
ρF8F eCF/2

[O×K :O
×

F ] · hF

√
DF · hK D−1/4

K .

And when e−CF D−1
F
√

DK ≤ 2n M(0, n)
√

DK (according to our discussion before,
this might happen only when n ≤ 8), we just take LTK/F

M,χ0
= 0. Hence, we have

L M,χ0 ≥
1
2

∑
a∈IK

Nq(a)
∗
≤TK/F

Nq(a) · log
√

DK

DF ·Nq(a)∗
− LTK/F

M,χ0

≥
1
2
Nq(q) · log

√
DK

DF
−

ρF8F eCF/2

[O×K :O
×

F ] · hF

√
DF · hK D−1/4

K .
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Since Nq(q) = [O×K :O
×

F ] · ρF hF
−1, then involving the upper bound of |L E,χ |

developed as before we have

(35) L K
(
χ0,

1
2

)
≥

ρF

[O×K :O
×

F ] · hF

(
1
2

log
√

DK

DF
−8′F · hK D−1/4

K

)
.

where

8′F :=
25n/2 M(0, n)D7/4

F h2
F

πnρF h+F
+8F eCF/2

√
DF .

By (11) and the usual Minkowski constant M(n) one can obtain an elementary
computation of M(0, n), substituting this bound into (34) leads to the inequality

8F ≤ 2CF + log e−(2γ+log 2π)n+
√

7n+4 DF ,

from which one then has

(36) 8F ≤ 4ρ−1
F LF + log DF + (3 log 2− logπ)n+

√
7n+ 4.

Then the proof follows from the estimate (35) and inequalities (36). �

From Proposition 18 one sees naturally that an upper bound for |L F (χ, 1)| is
needed to make the inequality (32) more explicit. The desired estimate is provided
in the following lemma.

Lemma 19. Let F/Q be any field extension of degree n < +∞. Let χ be any
nontrivial primitive Grossencharacter of modulus m. Then we have

(37) |L F (χ, 1)| ≤ 2
[

e
2n

log(DF NF/Q(m))

]n

.

Moreover, if for any χ ∈ Ĉl(F) \ {χ0}, we have

(38) |L F (χ, 1)| ≤
(

1+ γ+2 log 2−logπ
2

n+ 1
2

log DF + ρ
−1
F γF

)
· ρF ,

where ρF := Ress=1 ζF (s) and γF is the Euler–Kronecker constant of F/Q.

Proof. Denote by (r1, r2) the signature of F/Q. Let b be the number of real places
of F dividing the infinite part of the conductor of χ . Let a := r1− b. Then a ≥ 0
and b ≥ 0. Consider the completed Hecke L-function associated with χ :

(39) 3F (χ, s) := (DF NF/Q(m))
s/2L F,∞(χ, s)L F (χ, s),

where L F,∞(χ, s) is the infinite part of L F (χ, s), i.e.,

(40) L F,∞(χ, s) := 2−r2sπ−ns/20(s/2)a0((s+ 1)/2)b0(s)r2 .
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Then 3F (χ, s) is an entire function satisfying the functional equation:

(41) 3F (χ, s)=Wχ3F (χ, 1− s),

where Wχ ∈ C is the root number with |Wχ | = 1.
Let 2χ (x) be the inverse Mellin transform of 3F (χ, s). Then one can verify

easily that (41) yields the functional equation of 2χ :

(42) 2χ (x)= x−1Wχ2χ (x−1).

Then by Mellin transform and (42) we have the integral representation of 3F (χ, s):

3F (χ, s)=
∫
∞

0
x s−12χ (x) dx =

∫
∞

1
x s−12χ (x) dx +Wχ

∫
∞

1
x−s2χ (x) dx .

Since 0(s) is the Mellin transform of the function f (x)= e−x , (x > 0), the inverse
Mellin transform of gλ,µ(s) := 0(λs+µ) (for all λ > 0, µ ∈ R) is

(M−1gλ,µ)(x)= λ−1xµ/λe−x1/λ
, λ > 0, µ ∈ R.

Clearly, M−1gλ,µ is positive. Since the parameters a, b and n are nonnegative
integers, we can regard0(s/2)a0((s+1)/2)b0(s)r2 as a product of gamma functions
of the form 0(λs), λ > 0. Let 2χ,∞ denote the inverse Mellin transform of
2r2sπns/2L F,∞(χ, s)= 0(s/2)a0((s+ 1)/2)b0(s)r2 ; then we have

2χ,∞(x)= (M−1,∗ag1/2,0 ∗M−1,∗bg1/2,1/2 ∗M−1,∗r2 g1,0)(x) for all x > 0,

where for any m ∈ N+, M−1,∗m g denotes the m-fold convolution of M−1g, the
inverse Mellin transform of the function g. Hence 2χ,∞(x) > 0 for all x > 0.

Note that by definition we have

2χ (x)=
1

2π i

∫ c+i∞

c−i∞
x−s3F (χ, s) ds=

∑
06=a⊂OF

χ(a)2χ,∞

(
2r2πn/2 NF/Q(a)√

DF NF/Q(m)
·x
)

By the definition of a and b we see 2χ,∞ = 2χ,∞. Since 2χ,∞ is positive, we
have 2χ =2χ . Thus for any s > 1, we obtain

|3F (χ, 1)| ≤
∣∣∣∫ ∞

1
2χ (x) dx

∣∣∣+ ∣∣∣∫ ∞
1

x−12χ (x) dx
∣∣∣

≤ 2
∣∣∣∫ ∞

1

∑
06=a⊂OF

χ(a)2χ,∞

(
2r2πn/2 NF/Q(a)√

DF NF/Q(m)
· x
)

dx
∣∣∣

≤ 2
∑

06=a⊂OF

∫
∞

0
x s−12χ,∞

(
2r2πn/2 NF/Q(a)√

DF NF/Q(m)
· x
)

dx

= 2(DF NF/Q(m))
s/2L F,∞(χ, s)ζF (s).
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From this inequality we obtain the upper bound for L F (χ, 1):

(43) |L F (χ, 1)| ≤ 2(DF NF/Q(m))
(s−1)/2 L F,∞(χ, s)

L F,∞(χ, 1)
· ζ(s)n for all s > 1.

Let

H(s) := sa+r2(s− 1)n
L F,∞(χ, s)
L F,∞(χ, 1)

· ζ(s)n = ξ(s)nG(s)b+r2,

where

ξ(s) := s(s− 1)π−s/20(s/2)ζ(s) and G(s) :=
√
π0((s+ 1)/2)

s0(s/2)
.

Then by (43) we have |L F (χ,1)|≤2(DF NF/Q(m))
(s0−1)/2(s0−1)n−1

·s−a−r2
0 H(s0),

where s0 := 1+ 2n[log(DF NF/Q(m))]
−1. Recall that we have the well known

Hadamard decomposition for entire functions

1
0(s)

= seγ s
∞∏

n=1

(
1+

s
n

)
e−s/n and ξ(s)= eBs

∏
ρ

(
1−

s
ρ

)
es/ρ,

where B ∈ C is a constant and ρ runs through nontrivial zeros of ζ(s). Then

G ′(s)/G(s)= (log G(s))′ =
∞∑
j=1

(−1) j ( j + s)−1
≤ 0 for all s > 0.

This gives that (log G)′′(s) =
∑
∞

j=1(−1) j−1( j + s)−2 > 0 when s > 0. Hence
log G is convex when s > 0. Now we work out B and thus see for every nontrivial
zero ρ = σ + iτ , we have |τ | ≥ 6. In fact, by definition, B = ξ(0)′/ξ(0). The
functional equation ξ(s)= ξ(1− s) gives ξ(s)′/ξ(s)=−ξ(1− s)′/ξ(1− s). Thus
B =−ξ(1)′/ξ(1). Therefore,

B = 1
2

logπ − 1
2
0′

0

(3
2

)
− lim

s 7→1+

(
ζ ′

ζ
(s)+ 1

s−1

)
=−1− γ

2
+

1
2

log 4π.

On the other hand, by B =−ξ(1)′/ξ(1) and symmetry of the nontrivial zeros,

B =−1
2

∑
ρ

(
1

1− ρ
+

1
ρ

)
=−

∑
ρ=σ+iτ

Re
1
ρ
=−

∑
ρ=σ+iτ

2σ
σ 2+ τ 2 .

Then for any ρ = σ + iτ with 1
2 ≤ ρ ≤ 1, one has −B ≥ 2σ · (σ 2

+ τ 2)−1, which
gives the lower bound

|τ | ≥

√
2σ
−B
− σ 2 ≥

√
1
−B
−

1
4
≥ 6.
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Thus the function

h(s) :=
∑

ρ=σ+iτ

1
s− ρ

=

∑
ρ=σ+iτ
τ≥0

s− σ
(s− σ)2+ τ 2 , 1≤ s ≤ 6

is increasing. So (log ξ(s))′ = ξ(s)′/ξ(s) = B + h(1)+ h(s) is increasing when
1≤ s ≤ 6. Then log ξ(s) is convex when 1≤ s ≤ 6. Therefore log(s−a−r2 H(s)) is
convex when 1≤ s ≤ 6.

By [Zimmert 1981] we know that there exists an integral ideal a such that
NF/Q(a)≤ M(r1, r2)

√
DF . Then clearly

log(DF NF/Q(m))≥ log DF ≥ M(r1, r2)
−1.

Recall that M(r1, r2)≤ M(n) := (4r2n!)/(πr2nn). Hence

s0 = 1+ 2n[log(DF NF/Q(m))]
−1
≤ 1+ 2nM(r1, r2)≤ 1+ 2n · 4nn!

πnnn ≤ 6.

By convexity we have H(s0)≤max{H(1), H(6)} = 1.
Let χ ∈ Ĉl(F) be a nontrivial Hilbert character. We have that

Cl(F)' IF/I∞F F×, where I∞F :=
∏
p|∞

F×p ×
∏
p-∞

O×F,p.

So in this case b = 0, a = r1 and m = OF . Then we have the completed
L-function (39), where NF/Q(m)= 1 and (40) becomes

L F,∞(χ, s) := 2−r2sπ−ns/20(s/2)r10(s)r2 .

As before, noting that 2χ =2χ , Mellin transform and functional equations imply

(44) |3F (χ, 1)| ≤
∫
∞

1
|2χ (x)|(1+ x−1) dx ≤

∫
∞

1
|2(x)|(1+ x−1) dx,

where 2∞ is the inverse Mellin transform of 0(s/2)r10(s)r2 and

2(x) :=
∑

06=a⊂OF

2∞

(
2r2πn/2 NF/Q(a)
√

DF
· x
)
.

Let c > 10 and 3F (s) := Ds/2
F 2−r2sπ−ns/20(s/2)r10(s)r2ζF (s). Then by (44),

|3F (χ, 1)| ≤
∫
∞

1

(
1

2π i

∫ c+∞

c−i∞
3F (s)x−s ds

)
(1+ x−1) dx

=
1

2π i

∫ c+∞

c−i∞
3̃F (s) ds,

where 3̃F (s) :=3F (s)·
( 1

s+
1

s−1

)
. Denote the right-hand side by IF . The functional

equation 3F (s)=3F (1− s) gives us that 3̃F (s)=−3̃F (1− s).
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Recall that combining the elementary bound and functional equation of ζF (s)
and by the Phragmén–Lindelöf theorem we have the fact that

ζF (σ + i t)� |t |(1−σ)/2 log |t |, 0≤ σ ≤ 1, |t | ≥ 2.

By functional calculus we have ζF (σ + i t)� |t |1/2−σ log |t |, σ ≤ 0, |t | ≥ 2. Note
that in the area S := {s = σ + i t : 1− c ≤ σ ≤ c, |t | ≥ 1} we have uniformly that

0(s)=
√

2πe−(π/2)|t |ei t (log |t |−1)e(iπ t/(2|t |))(σ−1/2)(1+ Oc(|t |−1)).

So 3̃F (s) decays exponentially in S as |t | 7→∞. Thus shifting the contour we get

IF = Ress=1 3̃F (s)+Ress=1 3̃F (s)+
1

2π i

∫ 1−c+i∞

1−c−i∞
3̃F (s) ds

= 2 Ress=1 3̃F (s)−
1

2π i

∫ c+∞

c−i∞
3̃F (s) ds.

Hence IF = Ress=1 3̃F (s)=3F,1+3F,2, where

3F,1 := lim
s→1

(s− 1) ·3F (s) and 3F,2 := lim
s→1

(s− 1) ·3F (s)′.

By the Laurent expansion of ζF (s) at s= 1 we have lims→1
( 1

s−1 +
ζ ′F
ζF
(s)
)
= ρ−1

F γF .
Hence 3F,2/3F,1 = (log3F (s))′ |s=1 is equal to

1
2

log DF − r2 log 2− n
2

logπ + r1
2
·
0′

0

(1
2

)
+ r2

0′

0
(1)+ ρ−1

F γF

=
1
2

log DF −
n
2

logπ + γ+2 log 2
2

· r1+ (γ + log 2)r2+ ρ
−1
F γF .

Then by the inequality |3F (χ, 1)| ≤ IF we obtain (38). �

Now we move on to the Euler–Kronecker constant γF . Clearly we need an upper
bound for it. The known result on upper bounds for γF is essentially 2 log log

√
DF ,

which is established under GRH [Ihara 2006]. To prepare for the proof of Theorem A,
we give an elementary unconditional effective upper bound for γF .

Lemma 20. Let notation be as before. Then there is an absolute constant c > 0
such that

(45) −
1
2

log DF −
γ+2 log 2−logπ

2
n− 1≤ γ ∗F ≤ c log DF .

Remark. Note that the main term of this lower bound in (45) is −1
2 log DF , which

is slightly better than the general result (i.e., lower bound of main term − log DF )
given in [Ihara 2006]. On the other hand, under GRH, one has γ ∗F � log log DF

according to the main theorems in [Ihara 2006].

Proof. The lower bound for γF can be deduced simply from (38). We thus will
focus on the upper bound here. For s = σ + i t ∈ C with 1

2 ≤ σ ≤ 1, we have

(46) (s− 1)ζF (s)� ρF |s DF |
(1−σ)/2.
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Note (46) is essentially Theorem 5.31 in [Iwaniec and Kowalski 2004] without
|s DF |

ε . We drop the ε-factor by using a subconvexity bound for ζF at σ =Re(s)= 1
2

as an endpoint rather than using the bound for ζF (i t) via the functional equation
before applying the Phragmén–Lindelöf theorem. In fact, a subconvexity result (see,
e.g., [Venkatesh 2010]) shows that there exists some δ (e.g., one can take δ = 1

200 )
such that ζF (s)� |s DF |

1/2−δ, where s = 1
2 + i t . Then the Phragmén–Lindelöf

theorem implies that

(47) (s− 1)ζF (s)� |s DF |
(1/2−δ)(1−σ), where s = σ + i t, 1

2 ≤ σ < 1.

Hence (46) comes from (47) and Theorem 5.31 in [Iwaniec and Kowalski 2004].
Let C be the circle centered at s= 1 with radius r = 1−(2 log DF )

−1. Since ζF is
a meromorphic function with a simple pole at s = 1, by Cauchy’s theorem we have

γF =
1

2π i

∮
C

ζF (s)
s− 1

ds�
∮
C

ρF

|s− 1|2
|ds| � ρF log DF .

Then the proof follows. �

With these preparations we can now give a proof of our main theorems.

4.2. Proof of Theorem A.

Proof. As before, let K/F be a CM extension and [F :Q] = n. Note that for every
χ ∈ Ĉl(K ), the conductor of χ is OK . So we have, by Lemma 19, that

ρ−1
F LF ≤ 1+

γ + 2 log 2− logπ
2

n+ 1
2

log DF + γ
∗

F .

Then Lemma 20 implies that ρ−1
F LF ≤ c′1 log DF for some absolute constant c′1 > 0,

since a classical lower bound for DF implies that log DF � n.
Likewise, one has L∗F =4ρ−1

F LF+log DF+(4 log 2−π)n+
√

7n+4≤ c′2 log DF

for some positive absolute constant c′2. Then (3) follows from Proposition 18 and
thus (4) follows from (3) and elementary computations of M(n, 0) and M(0, n). �

4.3. Proof of Theorem B. Substituting orthogonality into Proposition 16 we have:

Lemma 21. Let notations be as above, then we have

(48) L K
(
χ, 1

2

)
=

2n/2ρF
√

DF

2D1/4
K [O

×

K :O
×

F ]

∑
[a−1]∈Cl(K )

χ([a])
√

N (fa)E ′
(
za, 1

2 ; f
−1
a , fa

)
,

and
1

hK

∑
χ∈Ĉl(K )

|L K (χ, 1/2)|2

=
2n−2 DF
√

DK
·

ρ2
F

[O×K :O
×

F ]
2
×

∑
[a−1]∈Cl(K )

NF/Q(fa)
∣∣E ′(za, 1

2 ; f
−1
a , fa

)∣∣2.
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After inserting the Fourier expansion Lemma 17 and the CM type norm formula
(16) into (48), we get the following generalization of (7):

Proposition 22. Let notation be as before. Let a be a fractional ideal of K. Then

(49)
1

hK

∑
χ∈Ĉl(K )

χ(a)L K (χ,
1
2)=Nq(a) ·

{
log N8(ya)+ E1(F, K ; a)

}
,

where

(50) Nq(a)=
ρF · NF/Q(q)

[O×K :O
×

F ] · hF
·

√
NK/Q(ca)
NK/Q(a)

.

Here ca is given by (16), and fa is determined by a according to (14). The error
term E1(F, K ; a) above satisfies that

(51) E1(F, K ; a)� log DF +
h2

F D1/4
F N (fa)
ρF h+F

N8(ya)−3/2.

where the implied constant is absolute.

Taking a to be trivial in (49), combined with (16), (50) and (51), we have

(52)
1

hK

∑
χ∈Ĉl(K )

L K
(
χ, 1

2

)
�F

log DK

[O×K :O
×

F ]
.

On the other hand, substituting Lemma 17 into the second formula in Lemma 21
leads to

1
hK

∑
χ∈Ĉl(K )

∣∣L K
(
χ, 1

2

)∣∣2� 2n−2 D2
F

√
DK
·

ρ2
F

[O×K :O
×

F ]
2

∑
[a−1]

∣∣E ′(za, 1
2 ; f
−1
a , fa

)∣∣2
�F

(log DK )
2

[O×K :O
×

F ]
2

∑
N (a)�

√
DK

1
N (a)

.

Then a standard estimate on ∑
N (a)�

√
DK

1
N (a)

implies that

(53)
1

hK

∑
χ∈Ĉl(K )

∣∣L K
(
χ, 1

2

)∣∣2�F
(log DK )

2

[O×K :O
×

F ]
2

∑
n�
√

DK

d(n)
n
�F

(log DK )
3

[O×K :O
×

F ]
2
,

where d(n) is the divisor function, and the implied constants are effective.
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Proof of Theorem B. By (52), (53) and the Cauchy inequality, we have

(hK log DK )
2

[O×K :O
×

F ]
2
�F

∣∣∣ ∑
χ∈Ĉl(K )

L K
(
χ, 1

2

)∣∣∣2
�F #

{
χ ∈ Ĉl(K ) : L K

(
χ, 1

2

)
6= 0

}
·

∑
χ∈Ĉl(K )

∣∣L K
(
χ, 1

2

)∣∣2
�F,ε #

{
χ ∈ Ĉl(K ) : L K

(
χ, 1

2

)
6= 0

}
·

hK (log DK )
3

[O×K :O
×

F ]
2
.

Now the k = 0 case of Theorem B follows. The k = 1 case then comes from the
k = 0 case and logarithmic derivative of the functional equation of L K (χ, s). �
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