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Abstract— In this paper we consider the problem of network

reconstruction, with applications to biochemical reaction net-

works. In particular, we consider the problem of global network

reconstruction when there are a limited number of sensors that

can be used to simultaneously measure state information. We

introduce dynamical structure functions as a way to formulate

the network reconstruction problem and motivate their usage

with an example physical system from synthetic biology. In

particular, we argue that in synthetic biology research, network

verification is paramount to robust circuit operation and thus,

network reconstruction is an invaluable tool. Nonetheless, we

argue that existing approaches for reconstruction are hampered

by limited numbers of biological sensors with high temporal

resolution. In this way, we motivate the global network re-

construction problem using partial network information and

prove that by performing a series of reconstruction experiments,

where each experiment reconstructs a subnetwork dynamical

structure function, the global dynamical structure function can

be recovered in most cases. We illustrate these reconstruction

techniques on a recently developed four gene biocircuit, an

event detector, and show that it is capable of differentiating the

temporal order of input events.

I. INTRODUCTION

Two key variables that often determine the behavior of
a dynamical system are its network structure and paramet-
ric realization. The structure of the network generally is
determined by how states in the system causally depend
on each other; edges in the network are determined by
causal dependence while nodes are determined by the states
of the system. Network structure alone does not determine
dynamical behavior, though, parametric information is also
important in determining what dynamical behaviors a system
can achieve. Rather, network structure, or topology, often de-
fines or narrows the possible behaviors a system can achieve.
Without any structural constraints, a dynamical system can
have arbitrary input-output behavior. Once network structure
is imposed, the set of realizable input-output trajectories can
be reduced.

This is particularly evident in biological networks; certain
network topologies are referred to as network motifs [3].
In systems and synthetic biology, these network motifs are
broadly accepted as enabling useful dynamical behavior. For
example, an incoherent feed forward loop can be used for
fold-change detection or adaptation, a cyclic network of
repressors is associated with either oscillations or multi-
stability, and a dual negative feedback network of two
nodes is used as memory module or toggle switch. Network
structure is thus an important aspect of designing synthetic
biological circuits. By selecting an appropriate network motif
and validating its functionality in practice, synthetic biolo-

gists are able to guide the phenotype of biological systems
to match desired performance specifications.

It thus seems that the choice of network structure between
engineered systems or even fundamental physical compo-
nents is an important design variable to be considered. How
components are interconnected implicitly defines network
structure, which in turn constrains dynamical behavior of
the system. Certain network structures can give rise to un-
desirable dynamic behavior [4]. Choosing the right network
structure is thus an important problem in the synthesis of
robust engineered dynamical systems.

Similarly, once a dynamical system has been designed
and implemented, verifying that the network structure of
a dynamical system is operating as designed is an equally
important problem. This is especially critical, when the
engineered system does not behave as expected (a pervasive
challenge in current efforts to implement synthetic biocir-
cuits) [5]. The problem of verifying or reverse-engineering a
system’s network structure from measurement data is called
a network reconstruction problem. Network reconstruction
problems are a specific class of system identification prob-
lems, where the model class of interest not only encodes
parametric but structural information. In the next section we
motivate and formulate the network reconstruction problem
for different network representation models and argue that
one particular representation is well suited for biochemical
reaction networks: the dynamical structure function.

II. MOTIVATION: RECONSTRUCTING REPRESENTATIONS
OF NETWORK STRUCTURE

The network structure of nonlinear dynamical systems is
often implicitly defined by the state-space realization. Thus,
the process of network reconstruction for the full system
becomes a nonlinear parameter estimation or state-space
realization problem. Such network reconstruction problems
are non-convex, only locally identifiable at best, under-
constrained due to the sampling limits of experimental data,
and even ill-posed at times.

A class of dynamical systems where the concept of net-
work structure is well-defined and reconstruction results are
readily available are linear time-invariant (LTI) dynamical
systems. The most intricate description of network structure
of LTI systems refers to the network defined by interac-
tions between every state in the system. Reconstructing
the system’s network structure is equivalent to finding a
unique solution for the state-space realization. It is well
known that uniquely determining the state-space realization,
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is expensive, since it requires full-state feedback to be well-
posed. It is thus valuable to find different representations of
network structure, consistent with the state-space realization,
that encode essential structural information, but that impose
less stringent constraints on network reconstruction.

Arguably the simplest yet most broadly employed repre-
sentation of network structure is the system transfer func-
tion. The transfer function describes the closed-loop causal
dependencies of system outputs on system inputs. As such,
it imposes weak information constraints on the process of
network reconstruction; as long as it is possible to perturb the
system with each input (not necessarily independently) and
measure each output, it is possible to reconstruct the transfer
function of the system. However, the transfer function con-
tains very little structural information; the price of relatively
relaxed constraints on the network reconstruction problem is
that very little information about the actual network structure
of the system, e.g. how states in the system depend on each
other and interact, is encoded in the transfer function.

The tradeoffs between cost of network reconstruction
and the “informativity” of the structural representation are
especially clear in synthetic and systems biology research.
In this area, finding or verifying the network of a biological
system is an important problem. However, discovering the
entire chemical reaction network is typically an ill-posed
problem, since additional reactions may be introduced due
to host or environmental context, loading effects, or unan-
ticipated retroactivity effects [6]. Even without these effects,
the reconstruction problem is equivalent to finding a unique
realization for the dynamical system, which is ill-posed with-
out measurements of every chemical species in the system.
On the other hand, there are many inputs that can be used
to perturb the system of interest, e.g. silencing RNA, genetic
knock-outs, and small chemical inducers. Using these inputs,
it is straightforward to reconstruct the transfer function of the
system. However, the transfer function contains virtually no
information about how chemical species within the system
are interacting.

An intermediate representation of network structure that
addresses this trade-off is the dynamical structure function
[1]. It is a richer description of network structure than
the transfer function since it models the causal interactions
between measured outputs, in addition to the causal depen-
dencies of outputs on input variables. At the same time, it
does not require complete state feedback for reconstruction,
since it only models the interactions among output states.
In biological systems, this is especially applicable since the
output variables of a system are also a subset of the state
variables. All unmeasured states are subsumed in the edge-
weight functions that describe interactions between measured
variables. It is thus possible to experimentally target specific
chemical species to measure and verify that the network
structure of a biological system is functioning as intended.

A. The Dynamical Structure Function of an Incoherent (and
Coherent) Feed-Forward Loop

To illustrate the utility of the dynamical structure function,
consider the following design problem: to design and imple-
ment a novel incoherent feed-forward loop in a resource-
limited environment. The traditional approach, unaided by
the verification of network reconstruction, would assume
that the physical binding interactions of select chemical
species would be sufficient to enforce an incoherent feed-
forward logic. Specifically, we consider implementing a feed-
forward loop using the synthetic parts pLac-LasR-CFP-LVA,
pLas-TetR-YFP-LVA, and pLas-Tet-RFP-LVA and IPTG,
C3O6H12 � HSL, and aTc as inputs. A simple model for
this system without any loading effects is given as:
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The dynamical structure function for this system is derived
by taking Laplace transforms and eliminating the hidden
states m1,m2,m3, see [1] or [2] for a detailed derivation
of dynamical structure functions. The network and control
structure matrix transfer functions are written (Q(s), P (s))
where Q(s) is written as
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We do not write out P (s) here, however it is worth noting
that P (s) is a diagonal matrix and thus satisfies sufficient
conditions for network reconstruction [1]. The network, with
edge weight functions corresponding to the entries of Q(s),
is drawn in Figure 1A. Notice that if we take s 2 R

>0,
the sign of the entries in Q(s) coincides with the form of
transcriptional regulation implemented by TetR and LasR,
respectively. In [4] it was shown that the sign definite
properties of entries in Q(R

>0) are useful for reasoning
about the monotonicity of interactions between measured
outputs and how fundamental limits in system performance
relate to network structure.

However, to truly prototype a novel feedforward loop,
it is important to anticipate in vivo context effects. In this
biocircuit, the components are particularly susceptible to
loading effects [6]. In synthetic biological circuits, a protease
called ClpXP targets and degrades LVA-tagged proteins. This
protease can be found in limited supply when there are too
many LVA-tagged proteins [7]. Modifying the above model



Fig. 1. A The dynamical structure of system (2). Nodes represent measured chemical species, with black edges denoting causal dependencies stemming
from designed interactions, and red edges denoting causal dependencies arising from crosstalk or loading effects. Notice that the dynamical structure
captures network models interactions that are not described by the system transfer function G(s). B The input-output response of the nonlinear system
(2). Standard parameters from the literature [8] were used to generate the simulation. As the size of the load �

load

increases, the ability of the IFFL to
respond with a pulse decreases. C The maximum fold-change in the H1 norm of the crosstalk entries in Q(s). The H1 norm of Q31(s), plotted as a
function of �

load

. As the amplitude of directed crosstalk of x1 (LasR-CFP) on x3 (RFP) increases, the pulse height of RFP expression increases since
the increased gain of Q31 allows RFP to achieve higher expression before TetR repression activates. However, the increase in crosstalk also means that
TetR repression is less effective, resulting in steady-state drift as ClpXP load increases.

to account for these type of loading effects yields:
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Computing the dynamical structure function, we obtain Q(s)
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Notice that Q(s) is no longer lower-triangular, but fully
connected. Introducing loading effects creates additional
coupling between nodes in the network. If the coupling is
significant, the designed network interactions of the incoher-
ent feedforward loop are overcome by the crosstalk network
interactions [9].

In Figure 1 we simulate Q(s) for different amounts of
ClpXP loading. We use the variable

�
load

(x1, x3) ⌘
(�

c

(x1, x3)��
c,min

(x1, x3))

�
c,min

(x1, x3)

to denote the relative increase in loading effects from com-
petition for ClpXP protease. We define the directed crosstalk
of x3 on x1 as �c(x1, x3), following the conventions in [9],

as
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0
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dt.

Notice that from a design standpoint, the transfer function
provides no insight into how to modify system structure to
achieve better performance. If the first attempt to implement
the feed-forward loop resulted in one of the non-pulsing
traces, it would be unclear what component was the source
of failure. Thus, current approaches for troubleshooting bio-
circuits involve a systematic yet brute-force search over the
design space.

Reverse-engineering the dynamical structure function al-
lows us to discover unanticipated interactions between
measured states. By targeting culprit edges revealed in
network reconstruction, we reduce the complexity of
the redesign problem to specific system components.
In the case of system (2), for example, we find that
Q12(s), Q21(s), Q13(s), Q23(s), Q32(s) and Q31(s) are the
culprit (red) edges (c.f. Figure 1). The gain of these transfer
functions increases as �

load

increases as well. Additionally,
the gain of these transfer functions is positively correlated
with the binding strength of the LVA tags on x1 and x2.
Our simulation results suggest an intuitive way to attenuate
loading effects — using weaker LVA tags of LasR and TetR
(there are three different LVA tags, each with different bind-
ing affinity to ClpXP). Therefore, from a design standpoint,
reverse-engineering the dynamical structure function of a
system can provide critically valuable insight that could not
be gleaned from estimating the system’s transfer function.
Network reconstruction is thus a powerful tool to aid network
design of dynamical systems.

III. GLOBAL NETWORK RECONSTRUCTION FROM
PARTITIONED SUBNETWORKS

Recall that necessary and sufficient conditions for dy-
namical structure function reconstruction were derived in
[1]. However, the conditions stipulate that each vertex in



the network must be measured simultaneously over time.
In synthetic biology, this is a reasonable requirement when
reconstructing small networks comprised of two or three
nodes, since three bimolecular reporters can be used to
measure state dynamics (with minimal crosstalk between
reporters). For larger networks comprised of many states,
sequencing and microarray techniques yield low-temporal
resolution data but such data is insufficient for dynamical
structure reconstruction [1]. More broadly, in other physical
applications, it may not always be possible to measure
every single node in the dynamical structure network, even
though it may be possible to perturb each one. By adjusting
sensor placement, however, it may be possible to different
snapshots of the global network. The question is whether
these snapshots can be combined to reconstruct the global
network, thereby extending the results of [1].

Additionally, it is often the case that a reconstructed
network will reveal new pathways that merit further study.
Zooming in on these pathways is equivalent to reconstructing
a subnetwork of previously hidden states. Because of limited
sensors, zooming in often means obscuring other measured
states. Thus, it is important to understand how novel results
of a previously hidden pathway should be integrated with
existing network models of the larger global network.

To address this question, we first consider scenarios where
a global network has been partitioned into two subnetworks,
each of which are estimated in turn using the standard
network reconstruction algorithm (the general case for n

networks is similar but notation heavy). We will suppose
that we have the ability to perturb each of the nodes in the
global network, following the conditions outlined in [1]. For
simplicity, we thus assume that each (measurable) species y

i

in Y in the global network can be controlled independently
(but not necessarily directly) using some input u

i

in U ,
though such an assumption can be potentially relaxed [2].
We assume that the global system has a network modeled
by dynamical structure function (Q

b

(s), P
b

(s)) which can be
partitioned into two subnetworks (the general case follows
by induction), commensurate with a partition on the vector
Y into Y =

⇥
Y1 Y2
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T , written as
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where Y1 2 Rp1 and Y2 2 Rp2 and U1 2 Rm1 and U2 2
Rm2

. Here we have omitted the argument s for each Q

b,ij

and assume it is clear from context that we are working in
the Laplace domain. From this equation, we can derive the
following relation for (and the dynamical structure function
of) Y1(s):
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We denote the subnetwork dynamical structure function for
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s,1 2
Rp1⇥p1+p2 for each s 2 R. From [1], we know that number
of inputs for the first subnetwork m1 are the same as the
number of outputs p1. Likewise, m2 = p2.

Notice that the subnetwork (Q
s,1, Ps,1) describing interac-

tions between measured species Y1, assuming the measured
species in Y2 are hidden, is consistent with multiple global
dynamical structure functions (Q

b

(s), P
b

(s)). Thus, simply
using (Q

s,1, Ps,1) to identify P

b,1, Q
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uniquely is impossible. In general, if D1 is unknown, it is
impossible to back out any of the terms P

b,1, Q
b,11 and Q

b,12

or Q
b,22.

An alternate path is to consider reconstruction of the
second subnetwork and somehow combine the results to infer
parameters of the first. If we consider the dynamical structure
function for the subnetwork of measured species Y2, we get
expressions for (Q

s,2, Ps,2)

(I �D2)
�1

�
Q

b,22 +Q

b,21(I �Q

b,11)
�1

Q

b,12 �D2

�
,

(I �D2)
�1

⇥
Q

b,21(I �Q

b,11)�1
P

b,1 P

b,2

⇤

(6)
where D2 ⌘ diag
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s,2 2 Rp2⇥p1+p2 for each frequency s in C. Notice
that Q

b,22, Qb,11, Qb,12, Qb,21 are all parameters that map to
Q

s,2. The system is underdetermined, since it is a system of
6 equations with 8 unknown parameters, four in Q

b

, two in
P

b

and the two diagonal matrices D1 and D2. Thus, there is
not enough information to reconstruct the global dynamical
structure function from the sub dynamical structure func-
tions. Unless additional information is known a priori, exact
reconstruction of the global network is impossible.

Suppose, now that we have knowledge of D1 and D2.

Specifically, we consider the scenario when D1 = 0 and
D2 = 0, i.e. when

Q
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This raises the question, “What does it mean, structurally,
for the matrices D1 and D2 are zero?” The answer can be
explained as follows: D1 is identically zero whenever the
states of Y2 are not part of any hidden state auto-regulatory
loops for the states of Y1 (and vice versa for D2). We
illustrate with an example.

A. Example: A Subsystem with No Hidden Autofeedback
Loops

Suppose for simplicity that Y1 =
⇥
x y

⇤
T and Y2 =⇥

w z

⇤
T . First we consider the scenario where w is part of a

negative feedback loop of x that involves another measured
variable y from subnetwork containing x specifically, x !



w ! y ! x. Here we use an arrow to denote dependence
of the dynamics of one state on another.

We also suppose that w ! z; then the global network’s
topology is encoded by the global dynamical structure func-
tion as
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⇤
. Notice that the bottom left term in Q

s,1,
namely Q

yw

Q

wx

, encodes the dynamics of w as a product
of two transfer functions involving w to produce the open
loop transfer function of x mapping to y. When w is a hidden
(unmeasured) state, the effect of w on x in the auto-feedback
loop is mediated by the measured variable y, thus, effectively,
these hidden dynamics produce a causal dependency of one
output variable y on another output variable x. If y was
not measured, these hidden dynamics would create an auto-
feedback loop on x, which would then result in D1 being
non-zero. When any variables from the second network (w or
z) are involved in auto-feedback loops of one output variable
in the first network (x), D1 is non-zero if no other outputs
from the first network are involved in the auto-feedback loop.
Otherwise, D1 is zero.

⌅
Thus, if we are provided a priori information that D1 and
D2 are 0, then global network reconstruction is equiv-
alent to finding Q
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Substituting these expressions for Q
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These expressions of Q

b,12, Qb,21 and Q

b,11, Qb,22 are
uniquely determined by the known subnetwork matrices
Q

s,1, Qs,2, Ps,1, and P

s,2. Moreover, when P

s,11 and P

s,22

are diagonal, as per the recommended experimental setup
in [1], their inverses can be computed exactly. Thus, when
sufficient a priori information is available, exact global
network reconstruction from reconstructed subnetworks is
possible.

B. Investigating Global Boolean Reconstruction of Parti-
tioned Subnetworks

In many situations, a priori information regarding the dy-
namical structure of D1 and D2 are not necessarily available.
It is natural to wonder if it is possible to infer the Boolean
structure of D1 and D2, via Boolean reconstruction of the
subnetworks of Y1 and Y2. Since I � D1 are I � D2 are
diagonal, it does not alter the Boolean structure any matrix
it multiplies. In particular, we define the Boolean operator

B(x) =
(
1 if x 6= 0

0 if x ⌘ 0
.

and note that when D1 and D2 are not assumed to be zero,
then the full expression for Q

b,11 is written as

(I +K1K2)Qb,11 = (I �D1)Qs,1 +K1K2 �D1 (8)

where
K1 = (I �D1)Ps,12P

�1
s,22,

K2 = (I �D2)Ps,21P
�1
s,11

. (9)

When P

s,22 and P

s,11 are diagonal, as per the conditions of
[1], and since D1 and D2 are diagonal matrices by definition,
then any non-diagonal Boolean structure arises from the
structure of P

s,12 and P

s,21. Thus,

B(K1) = B(P
s,12),

B(K2) = B(P
s,21)

. (10)

In general, for transfer function matrices K1(s) and K2(s),

B(K1K2) 6= B(K1)B(K2).



There are ways in which non-zero rows of K1(s) and non-
zero columns of K2(s) can multiply to produce an exact
cancellation of non-zero transfer function entries. Addition-
ally, in computing Q

b,11 there can be exact cancellations
between the summation of (I � D1)Qs,1 and K1K2. In
practice, exact cancellations such as these are rare, since
engineered physical systems that rely on exact cancellations
typically are not stable or highly sensitive to perturbations.
Nonetheless, in the next section we highlight a different class
of subnetwork systems that can always be used for Boolean
global dynamical structure reconstruction.

IV. GLOBAL RECONSTRUCTION USING OVERLAPPING
SUBNETWORKS

In this section we visit the problem of reconstructing a
global dynamical structure function from overlapping sub-
network estimates. Intuitively, there is shared information
between subnetworks, since they share some of the observed
states. Thus, is it possible to combine that information to
reproduce an accurate global network structure?

Consider a dynamical system for which there are three
groups of states Y1, Y2, Y3 2 Rp1

,Rp2 , and Rp3 respectively.
Suppose that any pairwise combination of two groups can be
measured at the same time, but not all three simultaneously.
In the case of biochemical reaction networks, even though it
is possible to measure three fluorescent proteins at once, it is
common practice to use only two in order to avoid spectral
crosstalk. In such a scenario, the networks are purposely
monitored with the hope that overlapping measured states
in each subnetwork makes Boolean and global dynamical
structure reconstruction possible without any a prior infor-
mation. The global dynamical structure function for such a
system can be expressed generally as

Q

b

=

2

4
0 Q

b,12 Q

b,13

Q

b,21 0 Q

b,23

Q

b,31 Q

b,32 0

3

5

and we assume a diagonal control structure with

P

b

=

2

4
P

b,11 0 0
0 P

b,22 0
0 0 P

b,33

3

5
.

If we consider the subnetwork just involving states Y2, Y3

and eliminate Y1 as an output, we get internal structure Q

23
s

which can be simplified to

(I �D1)
�1

✓
0 Q

b,23

Q
b,32 0

�
+


Q

b,21

Q
b,31

� ⇥
Q

b,12 Q
b,13

⇤
�D1

◆

(I �D1)
�1

✓
Q

b,21Q12 Q
b,23 +Q

b,21Qb,13

Q
b,32 +Q

b,31Qb,12 Q
b,31Qb,13

�
�D1

◆

where

D1 = diag
✓

Q

b,21Qb,12 Q

b,23 +Q

b,21Qb,13

Q

b,32 +Q

b,31Qb,12 Q

b,31Qb,13

�◆

and control structure

P

23
s

= (I �D1)
�1


Q

b,21Pb,11 P

b,22 0
Q

b,31Pb,11 0 P

b,33

�

Notice that in this way of representing Q

23
s

, the entries of
Q

23
s

are strictly proper, since (I � D1)�1 produces terms
with relative degree 0. The subnetwork Q

13
s

excluding Y2 is

(I �D2)
�1(


Q

b,12Qb,21 Q
b,13 +Q

b,12Qb,23

Q
b,31 +Q

b,32Qb,21 Q
b,32Qb,23

�
�D2)

with

D2 = diag
✓

Q

b,12Qb,21 Q

b,13 +Q

b,12Qb,23

Q

b,31 +Q

b,32Qb,21 Q

b,32Qb,23

�◆

and

P

13
s

= (I �D2)
�1


Q

b,12Pb,22 P

b,11 0
Q

b,32Pb,22 0 P

b,33

�

The subnetwork Q

12
s

excluding Y3 is written as

(I �D3)
�1

✓
Q

b,13Qb,31 Q
b,12 +Q

b,13Qb,32

Q
b,21 +Q

b,23Qb,31 Q
b,23Qb,32

�◆

with

D3 = diag
✓

Q

b,13Qb,31 Q

b,12 +Q

b,13Qb,32

Q

b,21 +Q

b,23Qb,31 Q

b,23Qb,32

�◆

and

P

12
s

= (I �D3)
�1


Q

b,13Pb,33 P

b,11 0
Q

b,23Pb,33 0 P

b,22

�
.

Without additional information, it is impossible to recover
D1, D2, D3, and all the entries of Q and P simultaneously
from the subnetworks alone. Like the partitioned network
case, additional information must be obtained. However,
unlike partitioned subnetworks, overlapping subnetworks are
amenable to Boolean reconstruction. This in turn allows us
to determine if D1, D2, D3 are zero and whether global
reconstruction of the dynamical structure is possible. To see
how this follows, first note that the following equalities are
true:

B
�
(I �D1)

�1
Q

b,21Pb,11

�
= B (Q

b,21Pb,11) (11)
B
�
(I �D1)

�1
Q

b,31Pb,11

�
= B (Q

b,31Pb,11)

B
�
(I �D2)

�1
Q

b,12Pb,22

�
= B (Q

b,12Pb,22)

B
�
(I �D2)

�1
Q

b,32Pb,22

�
= B (Q

b,32Pb,22)

B
�
(I �D3)

�1
Q

b,13Pb,33

�
= B (Q

b,13Pb,33)

B
�
(I �D3)

�1
Q

b,23Pb,33

�
= B (Q

b,23Pb,33)

Additionally, since (I�D

i

) is a strictly non-zero diagonal
matrix, we have that B(I � D

i

) = B(I � D

i

)(P
b,ii

) and
since P

b,ii

are not identically zero, then B(Q
b,ij

) can be
determined for i 6= j. Once we have B(Q

b

(s)) then it is
possible to determine whether D1, D2, or D3 are zero.

If D1, D2, D3 are zero then again, global dynamical
reconstruction is possible. To see this, note that whenever
D1, D2, and D3 are zero, the entries of P

b,11, Pb,22, Pb,33

can be read off of the reconstructed control structure matrices
P

13
s

and P

23
s

respectively. Again, when P

b,11, Pb,22 and P

b,33

are diagonal, inversion of these transfer function matrices
can be computed analytically (thus avoiding any functional



inversion issues). Then post-multiplying the P

23
s

, P

13
s

, and
P

12
s

with the inverses of P
b,11, P

b,22 and P

b,33 yields in the
first column of each matrix:

P

23
s

P

�1
b,11[1 : 2, 1] =


Q

b,21

Q

b,31

�
,

P

13
s

P

�1
b,22[1 : 2, 1] =


Q

b,12

Q

b,32

�
,

P

12
s

P

�1
b,33[1 : 2, 1] =


Q

b,13

Q

b,23

�
(12)

which thus completes reconstruction of Q
b

.

V. CASE STUDY: GLOBAL DYNAMICAL NETWORK
RECONSTRUCTION OF A TRANSCRIPTION-TRANSLATION

EVENT DETECTOR

We have recently developed a novel event detector bio-
circuit in a cell-free transcription translation system [10],
for performing temporal logic. The details of operation
for this biocircuit are beyond the scope of this paper, but
Figure 2 provides a visual summary. We thus summarize the
key concepts as follows: a memory module comprised of
states TetR (x1) and LacI (x3) implementing dual negative
feedback retains the memory of the past arrival of inputs in
the past. Two direct-readout states, CFP (x2) and a far-red
fluorescent protein(x4) monitor the present arrival of inputs
arabinose and HSL. A simple model for the system is given
as follows

ẋ1 = ⇢1m1 � �

p

x1,

ẋ2 = ⇢2m2 � �

p

x2,

ẋ3 = ⇢3m3 � �

p

x3,

ẋ4 = ⇢4m4 � �

p

x4,

ṁ1 =
k1(kl + u5/kM,u5)

(1 + x3/kM,3 + u1/kM,u1)
+ u1 � �

m

m1,

ṁ2 =
k2(kl + u5/kM,u5)

(1 + u5/kM,u5)
+ u2 � �

m

m2,

ṁ3 =
k3(kl + u6/kM,u6)

(1 + x1/kM,1 + u2/kM,u2)
+ u3 � �

m

m3,

ṁ4 =
k4(kl + u6/kM,u6)

(1 + u6/kM,u6)
+ u4 � �

m

m4,

(13)

We first construct three versions of the system with one
version measuring states x1, x2, and x3 and another version
measuring states x1, x3, and x4, We have thus set up an
overlapping subnetwork reconstruction problem, so that we
can at least perform Boolean reconstruction. Here the global
network consists of four nodes and four inputs (excluding
arabinose and HSL), one for each node in the event detector
network. We seek to determine all entries of Q

b

(s) and
P

b

(s).
Let Q

s,[i1:i2] denote the subnetwork dynamical structure
function for states x

i1 to states x

i2 . The subnetwork for
Q

s,[1:3], and Q

s,[1,3:4], are written as:

Q

s,[1:3] =

0

@
0 0 � 0.078

d(s)

0 0 0
� 0.16

d(s) 0 0

1

A

Q

s,[1,3:4](s) =

0

@
0 � 0.078

d(s) 0

� 0.16
d(s) 0 0

0 0 0

1

A (14)

The corresponding control subnetworks P
s,[1:3] and P

s,[1,3:4],

are given as:

P

s,[1:3] =

0

B@
d(s) 1.3·10

�3

d(s) 0 0 0

0 1.0·10�3

d(s) 0 0

0 0 1.5·10�3

d(s) 0

1

CA

P

s,[1,3:4] =

0

B@

1.3·10�3

d(s) 0 0 0

0 0 1.5·10�3

d(s) 0

0 0 0 1.6·10�3

d(s)

1

CA

Here we have written each P matrix with the convention
that it is post-multiplied by u

i

in ascending order. The first
two P (s) matrices have zero columns in their fourth and
second columns respectively. Notice, since Q

b

is zero on the
diagonal, P

b

is diagonal and non-zero in all diagonal entries,
and I�D4 6= 0 (since D4 consists of strictly proper transfer
functions) then the equality to the fourth column of P

s,[1:3]

⇥
0 0 0

⇤
T

=
⇥
Q

b,14 Q

b,24 Q

b,34

⇤
T

(I �Q

b,44)
�1

P

b,44

implies that Q

b,14, Qb,24 and Q

b,34 are identically zero.
Similarly, examining the second column of P

s,[1,3:4] and
noting that

⇥
0 0 0

⇤
T

=
⇥
Q12 Q32 Q42

⇤
T

(I �Q22)
�1

P

b,22

allows us to conclude that Q
b,12, Qb,32, and Q

b,42 are zero.
Since Q

b,44 = 0 it follows from the results in the previous
section that B(Q

s,[1:3]) can be written as

B

0

B@

2

4
0 Q

b,12 Q

b,13

Q

b,21 0 Q

b,23

Q

b,31 Q

b,32 0

3

5+

2

4
Q

b,14

Q

b,24

Q

b,34

3

5

2

4
Q

b,41

Q

b,42

Q

b,43

3

5
T

1

CA

and in particular, applying the constraints above yields

B(Q
s,[1:3]) = B

0

@

2

4
0 Q

b,12 Q

b,13

Q

b,21 0 Q

b,23

Q

b,31 Q

b,32 0

3

5

1

A

We thus discover that Q
b,12, Qb,21, Qb,23, and Q

b,32 are all
zero while Q

b,13 and Q

b,31 are definitively non-zero. More
importantly, the Boolean structure of Q

b

is of the form
2

664

0 0 ⇤ 0
0 0 0 0
⇤ 0 0 0
0 0 0 0

3

775

which implies that D4 is zero, so we can reconstruct the
global dynamical structure function Q

b

(s). Reading off the
entries in Q

s,[1:3] we obtain the following final expression
for

Q

b

(s) =

0

BB@

0 0 � 0.078
d(s) 0

0 0 0 0
� 0.16

d(s) 0 0 0

0 0 0 0

1

CCA



Fig. 2. A An event detector biocircuit comprised of a toggle switch and two direct-readout reporters. The toggle switch acts as a memory module while
the direct-read out reporters report the current input state. B A table showing the ideal optical signature of the functional event detector, for each sequence
of inputs. C A sample time-trace of the event detector in response to a sequential step input of HSL and then arabinose, modeled and simulated as system
(13). D Steady-state simulation response of the functional event detector at t = 6 hours (cross-reference with table B). All simulation parameters were
selected using biologically realistic ranges, as provided by the Harvard Bionumbers database [8].

while reading off the entries of P

s,[1:3] and P

s,[1,3:4] gives
the control structure,

P

b

(s) =

0

BBBB@

1.3·10�3

d(s) 0 0 0

0 1.0·10�3

d(s) 0 0

0 0 1.5·10�3

d(s) 0

0 0 0 1.6·10�3

d(s)

1

CCCCA

Notice that the appropriate placement of sensors is critical
to global network reconstruction of the event detector. The
toggle switch is a feedback loop that can cause D

i

to be
nonzero if sensors are placed on the wrong states. Specifi-
cally, any subnetwork that does not place sensors on both x1

and x3 at the same time will produce a non-zero D

i

, which
makes dynamical structure reconstruction not possible.

VI. CONCLUSION AND ACKNOWLEDGMENTS

In conclusion, we have introduced and discussed the
importance of network reconstruction research, as well as
motivated the utility of reconstructing dynamical structure
functions for understanding dynamical systems. We have
shown, with an example system, that reconstructing a dynam-
ical structure function provides valuable insight for biocircuit
design and robustness — insight that would be impossible to
gain from the transfer function. More importantly, we have
made a case that reverse engineering structural information
about a dynamical system can reduce the complexity of
system redesign.

In general, global network reconstruction is not always
possible, since the availability and communication bandwidth
of sensors may be limited. We motivated the problem of us-
ing dynamical structure subnetworks to reconstruct the global
dynamical structure function of a system and showed that for
several classes of subnetwork systems, global reconstruction
from subnetwork estimates is possible. We illustrated our

results with an novel event detector, a biocircuit that we
have successfully prototyped in a cell-free system (data
not shown) and are currently optimizing it using network
reconstruction techniques.
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