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Abstract— Performance of biomolecular circuits is affected

by changes in temperature, due to its influence on underlying

reaction rate parameters. While these performance variations

have been estimated using Monte Carlo simulations, how to

analytically bound them is generally unclear. To address this,

we apply control-theoretic representations of uncertainty to

examples of different biomolecular circuits, developing a frame-

work to represent uncertainty due to temperature. We estimate

bounds on the steady-state performance of these circuits due to

temperature uncertainty. Through an analysis of the linearised

dynamics, we represent this uncertainty as a feedback uncer-

tainty and bound the variation in the magnitude of the input-

output transfer function, providing a estimate of the variation in

frequency-domain properties. Finally, we bound the variation in

the time trajectories, providing an estimate of variation in time-

domain properties. These results should enable a framework

for analytical characterisation of uncertainty in biomolecular

circuit performance due to temperature variation and may help

in estimating relative performance of different controllers.

I. INTRODUCTION

Temperature is a global environmental variable that in-
fluences performance in a variety of engineering contexts.
In electrical circuits, for example, transistor gains vary
with temperature. Consequently, performance in larger cir-
cuits and devices, assembled from such components, also
varies with temperature. Analogously, biomolecular circuit
function can also be temperature-dependent, owing to the
temperature-dependence of underlying reaction rate param-
eters. As robustness to temperature is often a performance
objective for biomolecular circuits in both natural and design
contexts, investigating the extent of variation in performance,
due to a temperature uncertainty, is an important task.

For biomolecular circuits, such robustness analysis has
been performed using tools from control theory [1]. These
include the use of structured singular value analysis to
characterize the robust stability of oscillations [2], [3], [4]
as well as algorithms to generate robustness certificates
for qualitative circuit behaviour to persist in presence of
parametric uncertainty [5]. In addition to these, a robustness
analysis approach commonly used has been Monte Carlo
simulations — qualitative and quantitative characterisation of
variation in circuit response through computer simulations,
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for a large set of randomly chosen points in the parameter
space. Canonical examples of this approach are investigations
in bacterial chemotaxis [6] and developmental pattern for-
mation [7]. We have also previously used a similar approach
to characterize uncertainty in performance of a variety of
biomolecular circuits for a given temperature uncertainty [8],
[9]. While conceptually easier, these simulations may be
computationally expensive, unlike an analytic estimate.

There are three interesting aspects to consider about mod-
elling uncertainty due to temperature in biomolecular cir-
cuits. One, due to the global nature of temperature variable,
it should affect all reaction rate parameters. Typically, mag-
nitudes of reaction rate parameters can increase by a factor of
2–3 for a 10�

C increase in temperature [10]. Two, in addition
to the tracking and regulation problems, there can be a
larger set of performance objectives in biomolecular circuits.
Examples of quantitative objectives include, in addition to
the steady-state and response-time robustness, the height and
width of pulses, and, analogously, the amplitude and period
of oscillations. Three, biomolecular circuits, being nonlinear
systems in general, have an additional layer of complexity
relative to the uncertainty modelling tools developed primar-
ily in the context of linear systems. Indeed, even when the
overall dynamical system model in biomolecular contexts
is linear, various performance attributes such as steady-
state value may be a nonlinear function of the parameters.
Additionally, the components of the Jacobian matrix on
linearisation around an operating point may themselves be a
nonlinear function of reaction rate parameters. Given these,
it is unclear how to obtain quantitative performance bounds
in biomolecular circuits due to temperature uncertainty.

Here our objective is to analytically estimate performance
bounds in biomolecular circuits due to temperature uncer-
tainty. To address this, we use tools from control theory,
apply them to biomolecular circuit outputs, developing a
framework to represent uncertainty due to temperature. We
investigate the variation in the steady-state value due to
temperature uncertainty. Next, we linearise the system about
the steady-state value, finding that temperature uncertainty
can be represented as a feedback uncertainty and estimate
bounds on the system transfer function magnitude. Finally,
we bound the circuit trajectories, obtained either exactly or
from the linearised dynamics, from which variation in time-
domain properties such as pulse width and pulse height may
be estimated. In all cases studied, we find that the analyti-
cal estimates performance bounds obtained, when assessed
against Monte Carlo simulations, are reasonably good.
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II. UNCERTAINTY IN STEADY-STATE VALUE
As primary determinants of cellular behaviour, biomolec-

ular circuits participate in a range of dynamic functions,
including signalling, differentiation, and oscillations. From
a mathematical modelling point of view, one representation,
in terms of ordinary differential equations, can be obtained
based on mass action — the rate of reaction is proportional
to the product of the concentration of the reactants, with the
proportionality constant being the rate of the reaction,

ẋ = f(x, µ), (1)

where the variables (x) are concentrations of different
biomolecules and the parameters (µ) are the reaction rate
constants. In general, these parameters can depend on tem-
perature T , µ = µ(T ). There are different performance
features that might be of interest, both qualitative such as
the stability of a steady-state, adaptation, and existence of
limit cycles, as well as quantitative, such as the value of
the steady-state, adaptation time, and the period of the limit
cycle. Each of these is a function, possibly nonlinear, of the
parameters, and consequently of temperature.

Consider the steady-state value x0, which can be obtained
as a solution to ẋ = 0 ) f(x0, µ) = 0. This equation
maps an uncertainty in the parameters, due to temperature
uncertainty, into an uncertainty in the steady-state value. To
obtain an analytical bound on the steady-state uncertainty,
consider a linearisation around the steady-state value x0 and
a nominal parameter set µ0,
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if the inverse exists, with all partial derivatives evaluated at
(x0, µ0). This equation may be used to estimate a perfor-
mance bound for each of the components,
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This upper bound on the absolute value of the uncertainty
can be taken as an estimate of the variation in steady-state
value.

To explore the utility of the performance bound obtained
using the linearisation analysis, let us consider examples of
biomolecular circuits. While these examples are simple, they
recur in multiple contexts.
Example 1: Consider a simple mathematical model of gene
expression, as a production-degradation process of a protein
with concentration x,

ẋ = ↵ � �x, (3)

with a constant rate of production ↵ and degradation,
modelled as a first-order process, with rate constant �. At
steady-state, x0 = ↵/�. Suppose ↵ = � = 1, and when
temperature increases by 10�

C each of the rates can change
by a factor of 2–3. We choose nominal parameter values
as ↵0 = �0 = 2.5 and their corresponding uncertainties as
�↵/↵0 = ��/�0 = ±1/5. Nominal value of the steady-
state value is x00 = ↵0/�0 = 1. Using the linearisation

analysis above (Eqn. 2), we find that |�y| |�↵|/�0 +
↵0|��|/�0 = 0.4. We compared this analytical estimate with
Monte Carlo simulations (Fig. 1a.) and find that the bounds
are close to the actual variation. In particular, the upper
bound underestimates the variation and the lower bound
overestimates the variation. 2
Example 2: Consider a simple mathematical model of a
phosphorylable protein Z that can exist in two states, Z and
Z

P . The phosphorylation and dephosphorylation reactions
are first-order, and represented by rate constants k+ and k�,
respectively. Using mass action, the rate of change of the
fraction of phosphorylated protein, x = Z

P

/(Z + Z

P ) can
be obtained as,

dx

dt

= k+ � (k+ + k�)x. (4)

At steady-state, x0 = k+/(k+ + k�). Suppose that k+ =
k� = 10 and there is a 10�

C increase in tempera-
ture. Because of this, the reaction rate parameters increase
by a multiple of 2–3. To represent this parametric un-
certainty, we may choose nominal parameter values as
k+0/k+ = k�0/k� = 2.5 and uncertain parameter values as
�k+/k+0 = �k�/k�0 = ±1/5. Due to this, the nominal
steady-state x00 = 1/2 and, from above Eqn. (2),
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10
.

On comparing these with the Monte Carlo simulations, we
find that the bounds cover the variation in steady-state value
(Fig. 3b.). 2
Example 3: Consider next a simple mathematical model of an
Incoherent Feedforward Loop [11], a dynamic biomolecular
circuit that is overrepresented in biomolecular circuit mo-
tifs [12], and capable of generating systems-level properties
such as adaptation of the output y to step change in input
u [13], fold-change detection to changes in u [14], [15], and
pulsing output y [16],

ẋ = ↵

x

u � �x,
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y

K

x

x

u � �y. (5)

The steady-state value of the output y is y0 = K

x

↵

y

/↵

x

.
We had previously performed a robustness analysis of the
steady-state around the parameters ↵

x
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y

= K

x

= � = 1
using Monte Carlo simulations [9], assuming that for a 10�

C

increase of temperature the values of parameters ↵

x

, ↵

y

, and
� increase by a multiple of 2–3, while K

x

, itself a ratio of
two parameters, changes by a multiple 0.66–1.5. To repre-
sent this parametric uncertainty after the 10�

C increase in
temperature, we can explicitly choose the nominal parameter
values as ↵
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Fig. 1. Uncertainty bounds for steady-state for a. Production-degradation
circuit model, b. Phosphorylation reaction, and c. Incoherent Feedforward
Loop circuit model. Magenta dots represent the parameter choices and
steady-state value calculations of a number of random simulations. Horizon-
tal spread is for purposes of illustration. Black rectangular boxes represent
the uncertainty bounds, assumed for the parameters or in the steady-state
output obtained from the linearised analysis. The vertical axis is normalised
uncertainty — variation in performance normalised to initial parameters
specified.

the linearisation as in Eqn. (2), we get,
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We compared this bound with the variation in performance
obtained from Monte Carlo simulations (Fig. 1c.). The upper
bound underestimates the variation, although only slightly,
for this set of parameters. In contrast, the lower bound
overestimates the variation. 2

Therefore, we find that this approach is helpful in analyti-
cally estimating of the performance uncertainty of the steady-
state even though it is obtained from a standard linearisation-
based analysis. Further, even though the presentation has
been for a steady-state, variation in any function of the
temperature-dependent parameters, such as a transient char-
acteristic or an element of the Jacobian, can be usefully
estimated in this fashion.

III. UNCERTAINTY IN LINEARISED DYNAMICS

As explicit solutions of nonlinear dynamical solutions are
frequently unavailable, one way to analyse their dynamics
is to first linearise the system equations around an operating
point. In some cases, this approximation is the only practical
means to study the dynamics. A reason for this may be the
multiplicity of tools available to investigate the behaviour
of linear systems, including for uncertainty representation.
Typically, the basic idea for representing uncertainty is to
split the components of the linearised system matrices into
their nominal and uncertain components and to separate
the uncertain components from the nominal system [1].
This provides an uncertainty representation of the linearised
dynamics which is used to study robustness in stability
and performance. In the present case, where temperature
uncertainty affects all parameters, elements of the linearised
system matrices can themselves be nonlinear combination of

the operating point and the parameters, both of which can be
temperature-dependent. A linearisation analysis as presented
in the previous section (Eqn. (2)) can be used to separate each
element in terms of a nominal component and an uncertain
component.
Example 1 (contd.): Linearising Eqn. (3) around the operat-
ing point x = x0 = ↵/�,

�ẋ = ���x,

where �x = x � x0. The parameter � can be separated into
its nominal and uncertain components, respectively, �0 and
��,

�ẋ = ��0�x + w,

z = d

�

�x,

w = �

�

z,

where d

�

= max(��) and |�
�

| 1. This can be represented
as a feedback uncertainty (Fig. 2a., inset). The transfer
function from the initial condition to �x is
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We compared these bounds with Monte Carlo simulations
of the magnitude of transfer function (Fig. 2a.). Both the
upper and lower bounds are conservative work well. In
particular, the uncertainty almost vanishes as frequency in-
creases. This is consistent with our expectation as for large
enough frequency, the upper bound is unity. The reason this
happens is because even when parameter uncertainty is the
largest possible, it does not affect the dynamics in the higher
frequency range. This graphical uncertainty representation
highlights this point. 2

As a similar exercise may be performed for Example 2,
we proceed to the example of the feedforward loop.
Example 3 (contd.): Linearising Eqn. (5) around the operat-
ing point u = u0, x = x0 = ↵

x

u0/�, and y = y0,


�ẋ

�ẏ
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Using a procedure based on Eqn. (2), each of these el-
ements may be separated into their nominal and uncer-
tain components: a11,0 = ��0, �a11 = �� = ±�0/5;
a21,0 = �y0,0�0/(u0↵x,0), �a21 = �y0�0/(u0↵x,0) +
��0y0,0/↵
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After separating the uncertainty,


�ẋ
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where d

a11 = max(�a11), d

a21 = max(�a21), d

b1 =
max(�b1), d

b2 = max(�b2), |�
b1| 1, |�

b2| 1, |�
a11| 1,

and |�
a21| 1. This uncertainty representation belongs to the

class of feedback uncertainty (Fig. 2b., inset).
To obtain a graphical representation, a similar exercise,

of separating out the uncertainty components, may be per-
formed in terms of the transfer function from �u to �y. The
transfer function is

P (s) =
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is the nominal transfer function. This expression can be
rearranged to get a bound on the magnitude of the actual
transfer function in terms of the nominal transfer function,
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We compared these bounds with those obtained from the
Monte Carlo simulations of the magnitude of transfer func-
tion (Fig. 2). Overall, we find that both the upper and
lower bounds are conservative, with the lower bound being
more so. In particular, the upper bound is tight towards the
higher frequency range. In this range, it is the numerator
of the transfer function which has dominant effect in the
uncertainty. These bounds help to estimate variation in the
peak of the transfer function. 2
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Fig. 2. Uncertainty bounds for linearised dynamics for a. Production-
degradation circuit model and b. Incoherent Feedforward Loop circuit
model. Magenta lines represent the magnitude of the transfer function
of a number of random simulations. Cyan line represents the nominal
transfer function. Black lines represent the uncertainty bounds obtained
from a linearised analysis. Insets are block diagram representations of the
uncertainty.

In this section, we have applied the standard uncertainty
representation from linear control theory for the case of
temperature uncertainty. For these cases, they show how
temperature can be represented as a feedback uncertainty and
hoe a bound on the frequency-domain characteristics may be
estimated.

IV. UNCERTAINTY IN TRAJECTORIES

Finally, we consider the bounding the variation in the
time trajectory. There are at least two cases in which this is
possible. One, when the exact solution of the time trajectory
is available from the nonlinear dynamical equations. Two,
when the exact time trajectory is approximated by the
solution of the corresponding linearised system of equations.
In both these cases, we have, x = x(t, µ), where t is
time. Linearising this for the nominal parameters µ0 )
�x(t) = @x

@µ

�µ, where the partial derivative is evaluated
on the nominal trajectory x(t, µ0). Then, uncertainty in each
component of the state vector can be estimated as |�x

i

(t)|P
j

[ @x

@µ

]
ij

|�µ

j

|. We note that the uncertainty in the time
trajectory can vary with time.
Example 1 (contd.): The time trajectory starting from zero
initial condition of the nonlinear dynamics (Eqn. (3)) is
x(t) = x0(1 � e

��t). From the above framework, the
uncertainty in this trajectory is estimated to be,

|�x(t)|= (1 � e

��0t)�x0 + x0te
��0t��.

Overall, these compare reasonably well with the perfor-
mance variation observed in Monte Carlo simulations of the
complete system dynamics(Fig. 3a.). Analogous to the case
observed for the steady-state variation (Fig. 1a.), the upper
bound is a slight underestimate and the lower bound is an
overestimate. 2
Example 3 (contd.): The time trajectory for a step in-
put through the linearised dynamics Eqn. (6) is �y(t) =
(y0/u0)�te

��t. Using the above framework, the uncertainty
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in this trajectory is,
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We compared this bound with deviation from the steady-state
from Monte Carlo simulations of the nonlinear equations
(Eqn. (5)). In this way, the variation in trajectory can
be bounded (Fig. 3b.). Both bounds are conservative. The
upper bound is reasonably tight for the rising portion of
the trajectories, consistent with its behaviour in the high
frequency range of the plots. In particular, this can be used
to estimate the time-domain properties such as pulse height
and pulse width. The lower bound is the more conservative
of the two. In particular, those times where it is negative may
just be replaced with 0, given the positivity constraint of the
concentration variables. 2

Based on these examples, we find that this approach
provides a way to estimate analytical performance bound for
the time trajectories as well as some of their properties.

V. CONCLUSIONS
Assessing robustness of biomolecular circuit function to

uncertainty in circuit parameters, for example, due to tem-
perature, is an important problem. Using tools of uncertainty
representation from control theory on examples of biomolec-
ular circuits exhibiting dynamic behaviour, we present three
results. One, we calculate worst-case performance bounds
for steady-state uncertainty for a given temperature un-
certainty. Two, we consider dynamics of the linearisation
around the steady-state, find that temperature uncertainty
can be represented as a feedback uncertainty, and bound
variations in the transfer function. Three, we bound the
variation in the system trajectories, both over time as well
as for some time-domain attributes. These results provide an
analytical framework to estimate variation in performance
for a temperature uncertainty.

An interesting aspect we find here, is in the comparison of
the bounds, obtained from a standard linearisation analysis,
with Monte Carlo simulations where nonlinearities can play
a role. Given the infinitesimal nature of validity of any
linearisation analysis, it is not strictly expected to hold for
the complete nonlinear system. In general, it depends on
the nature of nonlinearity and the extent of variation. For
the parameter uncertainties considered here, the match is
reasonably good. In particular, the upper bound is found to be
closer to the Monte Carlo simulation than the lower bound.
Further the upper bound for the transfer function magnitude
works particularly well for the high frequency dynamics.

An important direction for future work is to compare these
performance bounds with those obtained from other methods.
The performance bounds developed here for biomolecu-
lar circuits, often intrinsically nonlinear systems. For such
nonlinear systems in engineering contexts, there have been
investigations to formulate the robustness analysis as an
optimisation problem [17]. In this approach, worst-case
bounds are obtained by optimising over a parameter uncer-
tainty interval for the output of interest. Comparing bounds
obtained from these methods to the presented bounds as well
as the Monte Carlo simulations should further clarify the
variation in performance due to temperature uncertainty.

Uncertainty representations in control engineering con-
texts allow a determination of robustness in stability and
in performance. Here, we have developed a framework for
representing temperature uncertainty in biomolecular cir-
cuits, and estimating quantitative performance bounds due
to it. Given that one of the motivations for uncertainty
representations in control theory is to conveniently represent
nonlinear dynamical behaviours for ease of analysis and
design, a systematic analysis of this approach for temperature
uncertainty in biomolecular circuits, as presented here, high-
lights different aspects of the process. Further, this should be
useful for assessing performance robustness for biomolecular
circuits. Finally, this should be useful in a relatively quick
comparison, especially as system dimensions increase, of
the effect of different controllers on the performance of
biomolecular circuits.
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[5] S. Waldherr and F. Allgöwer, “Robust stability and instability of bio-
chemical networks with parametric uncertainty,” Automatica, vol. 47,
no. 6, pp. 1139–1146, June 2011.

[6] N. Barkai and S. Leibler, “Robustness in simple biochemical net-
works,” Nature, vol. 387, no. 6636, pp. 913–917, June 1997.

[7] A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B.-Z. Shilo, and N. Barkai,
“Robustness of the BMP morphogen gradient in Drosophila embryonic
patterning,” Nature, vol. 419, no. 6904, pp. 304–308, Sept. 2002.



[8] S. Sen and R. M. Murray, “Temperature dependence of biomolecular
circuit designs,” in 52nd IEEE Conference on Decision and Control,
Dec. 2013, pp. 1398–1403.

[9] S. Sen, J. Kim, and R. M. Murray, “Designing robustness to tem-
perature in a feedforward loop circuit,” in 53rd IEEE Conference on
Decision and Control, Dec. 2014, pp. 4629–4634.

[10] A. B. Reyes, J. S. Pendergast, and S. Yamazaki, “Mammalian pe-
ripheral circadian oscillators are temperature compensated,” J Biol
Rhythms, vol. 23, pp. 95–98, 2008.

[11] S. Mangan and U. Alon, “Structure and function of the feed-forward
loop network motif,” Proc Natl Acad Sci USA, vol. 100, no. 21, pp.
11 980–11 985, Oct. 2003.

[12] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in
the transcriptional regulation network of Escherichia coli,” Nat Genet,
vol. 31, no. 1, pp. 64–68, May 2002.

[13] W. Ma, A. Trusina, H. El-Samad, W. A. Lim, and C. Tang, “Defining
network topologies that can achieve biochemical adaptation,” Cell, vol.
138, no. 4, pp. 760–773, Aug. 2009.

[14] L. Goentoro, O. Shoval, M. W. Kirschner, and U. Alon, “The inco-
herent feedforward loop can provide fold-change detection in gene
regulation,” Mol Cell, vol. 36, no. 5, pp. 894–899, Dec. 2009.

[15] O. Shoval, L. Goentoro, Y. Hart, A. Mayo, E. Sontag, and U. Alon,
“Fold-change detection and scalar symmetry of sensory input fields,”
Proc Natl Acad Sci USA, vol. 107, no. 36, pp. 15 995–16 000, Sept.
2010.

[16] J. J. Tyson, K. C. Chen, and B. Novak, “Sniffers, buzzers, toggles and
blinkers: dynamics of regulatory and signaling pathways in the cell,”
Curr Opin Cell Biol, vol. 15, no. 2, pp. 221–231, Apr. 2003.

[17] J. E. Tierno, R. M. Murray, J. C. Doyle, and I. M. Gregory, “Nu-
merically Efficient Robustness Analysis of Trajectory Tracking for
Nonlinear Systems,” Journal of Guidance, Control, and Dynamics,
vol. 20, no. 4, pp. 640–647, July 1997.


