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Abstract— When used as part of a hybrid controller, finite-
memory strategies synthesized from LTL specifications rely on
an accurate dynamics model in order to ensure correctness
of trajectories. In the presence of uncertainty about this
underlying model, there may exist unexpected trajectories that
manifest as unexpected transitions under control of the strategy.
While some disturbances can be captured by augmenting the
dynamics model, such approaches may be conservative in that
bisimulations may fail to exist for which strategies can be
synthesized. In this paper, we characterize the tolerance of such
hybrid controllers - synthesized for generalized reactivity(1)
specifications- to disturbances that appear as unexpected jumps
(transitions) to states in the discrete strategy part of the con-
troller. As a first step, we show robustness to certain unexpected
transitions that occur in a finite-manner, i.e., despite a certain
number of unexpected jumps, the sequence of states obtained
will still meet a stricter specification and hence the original
specification. Additionally, we propose algorithms to improve
robustness by increasing tolerance to additional disturbances.
A robot gridworld example is presented to demonstrate the
application of the developed ideas and also to obtain empirical
computational and memory cost estimates.

I. INTRODUCTION

The ability of strategies synthesized from formal specifica-
tions to be tolerant to unexpected perturbations (disturbances
or uncertainty or unexpected failures) is important - more so
for safety-critical applications. This is an area of concern
with reactive strategies because they are not error-resilent.
Even with disturbances that are not critical to the system, but
were not accurately modeled during synthesis, no guarantees
can be provided about satisfaction of the temporal-formula
used for synthesis. Though sometimes these uncertainties can
be modelled through the dynamics, it may be the case that
it is not possible to synthesize a winning strategy with the
uncertainty.

After a disturbance, if resynthesis is done from the
perturbed point, there are no current results that provide
guarantees about the execution with segments from two
separate strategies. In this paper, we make progress towards
enhancing the tolerance of strategies synthesized to sat-
isfy specifications in the generalized reactivity(1) (GR(1))
fragment of linear-temporal logic (LTL) [12], [13]. GR(1)
formulae are considered because they are quite expressive
in terms of temporal properties captured, yet symbolic syn-
thesis algorithms are possible if relatively low computational
complexity [3], [7], [11]. The first result we show is that by
trivially refining a strategy synthesized to satisfy a GR(1)
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formula, a strategy that is robust to certain unexpected
perturbations and guarantees i.e winning against a stricter
formula can be generated. Then, exploting this tolerance,
we propose multiple algorithms that combine separately syn-
thesized strategies to form a single robust winning strategy.
It is often desired that the system can recover from these
glitches (uncertainities/noise) and function normally and this
be done without resynthesizing the entire strategy again. It
is also desirable that the strategies allow for recovery from
faults whenever possible. In this regard, we propose one
such approach which lets us recover from glitches without a
complete resynthesis.

Understanding the behavior of systems to disturbances and
uncertainties has been extensively studied in control theory
and more recently, for reactive controllers and their synthesis.
In [10], [15], [14], the robustness considered is in terms
of bounded input-output deviation. This relates directly to
the prevalent notion in control for robustness[17], where
controllers are designed to ensure bounded disturbances
lead to bounded deviations from nominal-behavior for the
system. In this work, the tolerance to disturbances is in the
form of satisfaction of a formula representing the desired
system behavior. However, we do not yet propose a measure
on this interpretation of robustness . In [2], the effect of
disturbances on system behavior is quantified. The focus
here is to synthesize robust systems that degrade gracefully -
smallest number of system failures possible but not primarily
directed on GR(1) specifications. Some existing work on
notions of robustness in terms of satisfaction or violation of
a formula can be found in [16], [4], [1]. The main objective
in our paper is to understand and augment the robustness
of pre-existing strategies for recovery from disturbances
in constrast to those in [8] where robustness margins are
introduced during abstraction for model inaccuracies. [5]
uses a similarly motivated underlying idea to completely
re-synthesize new robust strategies against a new GR(1)
formula. Often uncertainties are not foreseen at the time of
synthesis occur. In cases such as these, where unforeseen
perturbations occur when the controller is implemented on
the cyber-physical system, the results presented in this work
allow for continued execution with guarantees in terms of
formula satisfaction.

In summary, the main contributions of this work are
the following: 1) to characterize the inherent tolerance of
GR(1) strategies to unexpected perturbations; 2) to propose
and prove approaches to refine GR(1) strategies to augment
their tolerance to unexpected perturbations; 3) to quantify
empirically the cost of augmenting the tolerance (robustness)
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using the proposed approaches.

II. PRELIMINARIES

For a finite set ⌃, the set of all finite strings formed from
concatenating elements of ⌃ is denoted by ⌃⇤, which is
known as the Kleene closure [6]. The set of all countably
infinite strings of ⌃ is ⌃! . In this paper, a subscript notation
is used, e.g., �

0

�

1

�

2

· · ·�
n

2 ⌃⇤, but observe that infinite
strings can also be regarded as functions of the natural
numbers N into ⌃.

Let AP
in

be a set of input atomic propositions, and
AP

out

be a set of output atomic propositions such that
AP

in

\AP
out

= ;. A state s is an assignment of True
and False to the atomic propositions in AP

in

[AP
out

. We
use subset notation to indicate states and thus, for brevity,
introduce ⌃ = 2AP

in

[AP

out .
A finite-memory strategy is a pair (f,m

0

) where f :
M⇥2AP

in ! M⇥2AP

out is a partial function and m

0

2 M ,
where |M | < 1. Intuitively the set M represents the
memory of the strategy. At each move, a new output is given
depending on the input and the current memory value. As
part of the move, a memory value is selected. Since we are
only concerned with finite-memory strategies in this paper,
we simply refer to them as strategies. The set of input-output
sequences that may occur under f is defined as

Plays(f) =
�
� 2 ⌃! | 9m 2 M

!

.8k � 0.

f(m
k

,�

k

\AP
in

) = (m
k+1

,�

k

\AP
out

)
 
, (1)

where every m 2 M

! has the same first element, m

0

.
Elements of Plays(f) are referred to as plays. The set of
prefixes that may be extended into a play is

Pref(f) = {� 2 ⌃⇤ | 9↵ 2 ⌃!

.�↵ 2 Plays(f)} . (2)

Remark 1: For each � 2 Plays(f), there exists a unique
m 2 M

! satisfying f(m
k

,�

k

\AP
in

) = (m
k+1

,�

k

\AP
out

)
for k � 0.
It follows from the remark that a sequence of inputs deter-
mines precisely one output sequence.
We describe specifications for these strategies in linear
temporal logic (LTL)[ref] in this paper. LTL formulae over
propositions (AP

in

[ AP
out

) are evaluated over positions i
in � = �

0

�

1

..... 2 ⌃! . In addition to the Boolean operators,
the standard LTL operators ⇤ (always), ⇤(eventually) and
�(next) are used here for the specification.

A finite-memory strategy (f,m
0

) is said to be

• input-enabled iff for every �in 2 (2AP

in)! , there exists
� 2 Plays(f) such that �in

k

= �

k

\AP
in

for k � 0.
• a realization of an LTL formula ' iff Plays(f) ✓ L(')

(also written as (f,m
0

) realizes '), i.e., for every � 2
Plays(f), � |= '.

A state s 2 ⌃ is said to be reachable under (f,m
0

) iff there
exists � 2 Plays(f) such that �

k

= s for some k � 0.

A GR(1) formula is an LTL formula of the form

⇥env ^⇤ ⇢

env ^

0

@
J^

j=1

⇤ ⇤ env

j

1

A

=) ⇥sys ^⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!
, (3)

where ⇥env is a state formula (i.e., without temporal oper-
ators) that is a function of AP

in

, ⇥sys is a state formula
that is a function of AP

out

, and all  env

j

,  sys

k

subfor-
mulae are functions of AP

in

[AP
out

and also without
temporal operators. The subformula ⇢

env is a function of
AP

in

[AP
out

[�AP
in

, where

�AP
in

= {�x | x 2 AP
in

} .

Except for � operators appearing as subformulae from
�AP

in

, there are no other temporal operators in ⇢

env.
Finally, ⇢sys is defined similarly to ⇢

env but as a function
of AP

in

[AP
out

[�AP
in

[�AP
out

.
To facilitate working with (3), and in particular the subfor-

mulae ⇢env and ⇢sys, we extend the semantics of the operator
|= for finite strings. Let � 2 ⌃⇤. Define

� |= ⇢ () �↵ |= ⇢ for any ↵ 2 ⌃!

, (4)

where ⇢ is any Boolean formula that is a function of
AP

in

[AP
out

[�AP
in

. Because at most one � operator
binds to each atomic proposition, it follows that only �

0

,�

1

determine whether the formula is satisfied.
Given a GR(1) formula ' as in (3), a state s 2 ⌃ is said to

be '-reachable under (f,m
0

) iff there exists � 2 Plays(f)
such that for some k � 0,

�

k

= s, (5)
� |= ⇥env

, (6)
�

j:(j+1)

|= ⇢

env for j < k � 1. (7)

A finite-memory strategy (f,m
0

) is said to be a strict
realization of (or to strictly realize a) GR(1) formula (3) if
the following conditions are met

� |= ⇥env =) � |= ⇥sys (8)

� |= (⇤�1

⇢

env =) ⇤�1

⇢

sys) (9)

for any � 2 Plays(f). Intuitively, strict realizability ensures
that blocking of an environment liveness condition when the
other assumptions are met only occurs when the system is
following tranition rules. Here, ⇤�1 is the Past LTL operator
who semantics are as defined in [13].

III. INHERENT ROBUSTNESS OF GR(1) STRATEGIES

Definition 2: A perturbation for a given finite-memory
strategy is a deviant transition to a state s

0 in ⌃ from a state
s, such that f(m

j

, s

0\AP
in

) 6= f(m
j+1

, s

0\AP
out

)_ss0 6|=
⇢

env.
A perturbation occurs when the system control action fails

to drive the system to the state indicated by the strategy or
the environment violates a safety assumption. In this section,



we show that the GR(1) strategy with trivial refinement
can satisfy a stricter formula - one that allows for finite
perturbations when the transitions meet certain constraints.
First we prove a lemma and which is then used to propose
the refinement to allow for unexpected perturbations.

Let (f,m
0

) be a finite-memory strategy that strictly re-
alizes a GR(1) formula ', let � 2 Pref(f) with |�| � 1,
and let pi 2 ⌃. Let Ī be the set of '-reachable states and
p

i 2 Ī , � 2 ⌃! . Let ⌧ i⇠i↵i 2 Plays(f) where ⌧ i, ⇠i 2 ⌃⇤

for i 2 {1, 2, ......n}.
Define 1

jump

to be a formula such that for �
j:j+1

|= 1
jump

iff f(m
k+1

, �

j+1

\AP
in

) 6= f(m
k+2

, �

j+1

\AP
out

) where
k = j if 1

0

is True and k = j � |⌧ i⇠i
0

|�⌃i�1

c=1

|⇠c|� |�| for
1
i

being True. Define 'jump as below:

'

jump := ⇥env^ ⇤⇤(⇢env_1
jump

)^

0

@
J^

j=1

⇤ ⇤ env

j

1

A =)

⇥sys ^⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!

Lemma 3: If ��1

p

1 |= ⇢

sysand ⇠

i

�1

p

i+1 |= ⇢

sys

8i 2 1, ....., n� 1. For any ⌧

i

⇠

i

↵

i 2 Plays(f) where
⌧

i

, ⇠

i 2 ⌃⇤ with ⇠

i

0

= p

i and ⌧

i

⇠

i is a path
through which p

i is '-reachable, the following holds �̄ =
�⇠

1

⇠

2

...⇠

k

⇠

k+1

.....⇠

n

↵

n |= '

jump.
Proof: The pre-ordered set of n-strategies chosen in

Lemma 6 is chosen with replacement from the set of n

strategies. This lemma arises as a direct consequence of
Lemma 6 for the case where m = 1, that is the number of
strategies synthesized is just 1. The same strategy is chosen n
times and traces generated by the strategies are concatenated
to generate a word satisfying 'jump

Intuitively, the practical significance of Lemma 3 is that, if
there is a disturbance that causes an unexpected transition to
some state that is '-reachable in other plays and if there are
only finitely many such disturbances, then execution of the
finite-state machine can continue after an appropriate change
of its internal state and still result in a correct input-output
sequence. This result also allows for actions even when ⇢env
is violated. If ⇢env is violated during a particular transition
between a state s and its successor s

0 i.e ss

0¬ |= ⇢

env and
we end up at a '-reachable state, this allows for a sequence
of input-outputs that satisfies 'jump if these disturbances
occur in a finite manner. This suggests the refinement
proposed subsequently. This result is useful because in
practice once the symbolic computation during the synthesis
of GR(1) strategies is done, only the '-reachable paths
are enumerated from the symbolic computation. In this
instance, all the states stored are '-reachable and only the
⇢

sys condition must be checked before concatenating two
paths and continuing further execution along the new path.

Consider a controller based on a GR(1) strategy. Consider

the formula

'̄ := ⇥env ^ ⇤⇤(⇢env _ 1
jump

)^
0

@
J^

j=1

⇤ ⇤ env

j

1

A ^ ( ⇤⇤¬1
jump

) =)

⇥sys ^⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!
. (10)

Algorithm 1 with n = 1, generates an output sequence
for a controller given an input sequence. The lemma
above guarantees that this input-output sequence satisfies
the formula '̄. It also considers for disturbances during
application of the output action to a cyber-physical system.

The added ⇤⇤¬1
jump

segment on the environment-
assumption side in '̄ ensures that the perturbations do not
occur infinitely often. And, for all instances of environment
violation if a feasible '-reachable state can be found, the
system part of the formula is satisfied.
Also, we arrive at the following corollaries which help us
augment the robustness of a given strategy strictly-realizing
a GR(1) formula.

Corollary 4: Let (f,m
0

) be a finite-memory strategy that
realizes a GR(1) formula ' and 'jump be the corresponding
LTL formula as defined above. Let � 2 ⌃! , then

� |= '

jump =) � |= '. (11)
Proof: If � |= (¬⇥env _⇤ ⇢

env _ (
W

K

k=1

⇤⇤¬ env

j

))
then � |= '.

Corollary 5: Let (f,m
0

) be a finite-memory strategy that
realizes a GR(1) formula ', and let p be reachable under
(f,m

0

). If ⌧p↵ 2 Plays(f) (at least one must exist), then
p↵ satisfies

⇤ ⇢

env^

0

@
J^

j=1

⇤ ⇤ env

j

1

A =) ⇤ ⇢

sys^
 

K^

k=1

⇤ ⇤ sys

k

!
.

(12)

IV. AUGMENTING ROBUSTNESS

A. Approach 1: Concatenating multiple strategies with same
safety/progress specifications

In this section, the intuition from Section III is used and a
more general Lemma is presented and proved. The results in
this section allow for the concatenation of multiple strategies
synthesized with formulae differing in the initial condition
and the approach for concatenation is described.

Given the specification '

0

and a synthesized finite-
memory strategy (f

0

,m

0

) that realizes '
0

, let I(f
0

,m

0

) be
the set of all states in the strategy.

Let ⌘
0

, ⌘
1

, ⌘
2

...⌘
n

be the additional states in ⌃ that the
strategy must visit to provide additional robustness. Define
⌘

in

i

= ⌘

i

\ AP
in

and ⌘

out

i

= ⌘

i

\ AP
out

. Define ⇥env

i

as
a Boolean formula which is True for a state s in ⌃ iff s \
AP

in

= ⌘

env

i

. Similarly, define ⇥sys

i

as a Boolean formula
which is True for a state s in ⌃ iff s \AP

out

= ⌘

out

i

.



Then, construct a set of finite-memory strategies (f
i

,m

i

0

)
such that 8i 2 {0, 1, 2..., n} , (f

i

,m

i

0

) realizes '
i

, where '
i

is as defined below:

'

i

= T in

i

^⇤ ⇢

env ^ (
J^

j=1

⇤ ⇤ env

j

) =)

T out

i

^⇤ ⇢

sys ^ (
K^

k=1

⇤ ⇤ sys

k

). (13)

. Let (f
0

,m

0

0

) be a finite-memory strategy that strictly
realizes a GR(1) formula '

0

, let � 2 Pref(f
0

) with |�| � 1,
and let pi 2 ⌃.

Let there be a set of finite-memory strategies {(f
i

,m

i

0

)}
such that 8i 2 I = {1, 2...,m} , (f

i

,m

i

0

) strictly-realizes
'

i

, where '
i

is as defined above.
Consider a fixed ordering of the strategies,
{f

i

1

, f

i

2

, f

i

3

, ....f

i

n

} where i

l

2 {1, 2....,m} and
l 2 {1, 2...., n}. Let ⌧ l⇠l↵l 2 Plays(f

i

l

) where ⌧ l, ⇠l 2 ⌃⇤.
Define 1

l

and 1
jump

as below: 1
jump

^1
l

! �(1
l+1

^¬1
l

).
1
0

is initialized to True.
Define 1

jump

to be a boolean formula such that
for �

j:j+1

|= 1
jump

iff f

i

l

(m
k+1

, �

j+1

\ AP
in

) 6=
f

i

l

(m
k+2

, �

j+1

\ AP
out

) where k = j if 1
0

is True and
k = j + |⌧ l|� ⌃l�1

c=1

|⇠c|� |�| for 1
l

being True.

Lemma 6: If 8l 2 {1, ...,m}, p

l is '

i

l

-reachable un-
der (f

i

l

,m

i

l

0

) through the path ⌧

l

⇠

l with ⇠

l

0

= p

l. And
��1

⇠

1

0

|= ⇢

sys, ⇠l�1

⇠

l+1

0

|= ⇢

sys 8l 2 {1, ...,m � 1} then
�̄ = �⇠

1

⇠

2

....⇠

n

↵

n |= '

jump.
.
Proof: By definition, there exists �l 2 Plays(f

i

l

) and k

such that pl = �

l

k

, �l |= ⇥env

0 , and

�

l

j:(j+1)

|= ⇢

env for j < k � 1. (14)

Thus, we write ⌧

l

⇠

l

↵

l = �

l by taking ⌧

l

j

= �

l

j

for 0 
j < k. And, ⇠l

r

= �

l

k+r

where 0  r < m

l

for some
m

l

, and ↵

l

j�k�m

= �

l

j

for j � k + m. We want to show
that �⇠1⇠2...⇠k⇠k+1

.....⇠

n

↵

n |= '

jump. Since 'jump has the
form of (3), this is equivalent to at least one of the following
subformulae being satisfied: ¬⇥env

0

, ⇤(¬⇢env ^ ¬1
jump

),
⇤⇤¬ env

j

for some j, or

⇥sys

0

^⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!
. (15)

Since � 2 Pref(f
0

) by hypothesis, there exists � 2 ⌃! such
that �� 2 Plays(f

0

). Also by hypothesis, (f
0

,m

0

) realizes
'

0

, i.e., Plays(f
0

) ✓ L('
0

), hence �� |= '

0

. Since |�| � 1
by hypothesis, �� |= ¬⇥env

0

if and only if �̄ |= ¬⇥env

0

.
Thus, if �� |= ¬⇥env

0

, then �̄ |= '

jump. Otherwise (i.e., if
�� |= ⇥env

0

), consider the subformula ⇤(¬⇢env ^ ¬1
jump

).
For all k < |�| � 1,�

k:k+1

|= ¬1
jump

by definition
of a Play(f

0

) and that � 2 Pref(f
0

). Also, for
k � k̄ = |�⇠1⇠2...⇠k⇠k+1

.....⇠

n|,↵n

k�¯

k,k+1�¯

k

|= ¬1
jump

and ⇠

n

�1

↵

n

0

|= ¬1
jump

since ⌧

n

⇠

n

↵

n 2 Plays(f
n

).
If ��1

⇠

1 |= ¬1
jump

and ⇠

l

�1

⇠

l+1

0

|= ¬1
jump

then

�̄ 2 Plays(f
0

) and by definition �̄ |= '

jump (since 'jump

reduces to '
0

if 1
jump

always evaluates to False). Consider
the case when ��1

⇠

1

0

|= 1
jump

and ⇠

l

�1

⇠

l+1

0

|= 1
jump

. For
this case, we can conclude �̄ |= ⇤(¬⇢env ^ ¬1

jump

) =)�
(�� |= ⇤¬⇢) _ (⇠1⇠2...⇠k⇠k+1

.....⇠

n

↵

n |= ⇤¬⇢env)
�
. If

this is not the case, notice that we can trivially merge � and
⇠

1 or ⇠l+1 and ⇠l repeatedly and satisfy the 1
jump

condition.

If �� |= ⇤¬⇢env, then there is a minimum k such
that �

k:

� |= ¬⇢env or �
(k�|�|): |= ¬⇢env. If k < |�| � 1,

then �̄ |= ⇤(¬⇢env ^ ¬1
jump

) (recall �
k:k+1

|= ¬1
jump

).
Then �̄ |= '

jump.

From the hypothesis ('
0

-reachability and '

l

-reachability)
and as a consequence strict-realization we have

��1

⇠

1

0

|= ⇢

sys

, (16)

and
⇠

l

�1

⇠

l+1

0

|= ⇢

sys8l 2 1, 2, 3..., n� 1, (17)

which we will refer to later while addressing the final case.
The other case in which �̄ |= ⇤(¬⇢env ^ ¬1

jump

) is if
⇠

l |= ⇤¬⇢env for some l or ⇠n↵n |= ⇤¬⇢env since ⇠

l

are themselves part of some play and ��1

⇠

1

0

|= 1
jump

and
⇠

l

�1

⇠

l+1

0

|= 1
jump

. If any ⇠

l |= ¬⇢env for i  n � 1, then
'

jump is directly satisfied. If ⇠n↵n |= ⇤¬⇢env then again
'

jump is satisfied.
Otherwise, suppose that �̄ |= ⇤⇤¬ env

j

for some j .
From the semantics of LTL and the fact that  env

j

contains
no temporal operators, this implies ↵n |= ⇤⇤¬ env

j

$
�̄ |= ⇤⇤¬ env

j

. In this case, which again implies ↵n |=
⇤⇤¬ env

j

! �̄ |= '

jump. We now consider the final case
where �̄ |= ⇥env

0

^ ⇤⇤(⇢env_1
jump

)^
⇣V

J

j=1

⇤ ⇤ env

j

⌘
.

By '

n

-reachability, ⌧n
d,d+1

|= ⇢

env for all d < |⌧n| � 1.
And, ⇠n↵n |= ⇤ ⇢

env as argued for this case (otherwise
'

jump would directly hold). Thus, ⌧n⇠n↵n |= ⇤ ⇢

env. Recall
that ⌧n⇠n↵n |= ⇥env

n

. Because (f
n

,m

n) realizes '

n

by
hypothesis and because ⌧n⇠n↵n 2 Plays(f) and ⌧n⇠n↵n |=
⇥env

n

, if neither ⌧n⇠n↵n |= ⇤¬⇢env nor ⇤⇤¬ env

j

for
any j, it must be that ⌧n⇠n↵n satisfies '

n

. For this case,
⇠

l

d,d+1

|= ⇢

env 8d < |⇠l| � 1 (because otherwise '

jump

would directly hold).
By '

l

-reachability of ⇠l
0

and strict-realizability, ⇠l
d,d+1

|=
⇢

sys 8d < |⇠i|� 1. From (16) and (17), it follows that

��1

⇠

1

⇠

2

....⇠

n

↵ |= ⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!
.

Recall the suffix � such that �� 2 Plays(f
0

). (f
0

,m

0

)
strictly realizes '

0

, therefore if �� |= ⇥env

0

, it must be that
�� |= ⇥sys

0

. � |= ⇥sys

0

since � |= ⇥env

0

(8). Furthermore,
because in this case we are assuming there is no 0  k <

|�| � 1 such that �
k:(k+1)

|= ¬⇢env (otherwise we would
have �̄ |= '

0

), it follows from strict realizability (cf. (9))
that for 0  k < |�| � 1, �

k:(k+1)

|= ⇢

sys, and therefore
�̄ |= '

jump.



Consider GR(1) strategy based controllers, as discussed
earlier, where only the '-reachable states are retained and
the environment moves are restricted to ones that do not
violate ⇢env. Combine the finite-state controllers by adding
transitions from all states to all other '-reachable states
that satisfy ss

0 |= ⇢

sys. This combined set of controllers
(strategies) will satisfy the formula '̄ with 1

jump

being as
defined in Lemma 6.

Algorithm 1 gives a formal description of the approach
to combine strategies using the lemma proposed above. The
notation used in the description is as defined in this section.
This controller formed by the combined set of controllers
(strategies) will satisfy the formula '̄ with 1

jump

being as
defined in Lemma 6.

Procedure 1 Implements controller based on Section IV

Input: finite-memory strategy (f
i

,m

i

0

) 8i 2 {1, 2, ...., n},
sequence of inputs �env 2 AP

in

w , a system the control
sequence �

sys can be applied to and its state measured
s 2 ⌃, set I - union of '

i

-reachable states for strategy f

i

and M memory states corresponding to I and a mapping
for every m in M to the strategy f

i

m

it was taken from.
Output: Sequence of output actions �sys 2 AP

out

! satis-
fying '̄ when conditions in Lemma 6 are satisfied
memory=m

0

i=1
(memoryNew, �sys

i

) = Strategyf : (memory, �env

0

)
safety=1
l=0
while (True) do

if (�env

i�1

,�

sys

i�1

)(�env

i

) |= ⇢

env and safety=1 then
(memoryNew, �sys

i

) = Strategy f

l

: (memory, �env

i

)
Run: SafetyCheck

else if (�env

i�1

,�

sys

i�1

)(�env

i

) 6|= ⇢

env OR safety=0
then

if 9p and a corresponding m such that p 2 I and m in
M and i

m

2 {1, 2, ...,m} and (�env

i�1

,�

sys

i�1

)p |=
⇢

sys and p \AP
in

= �

env

i

then
(�env

i

,�

sys

i

) = p, memoryNew=m, l = i

m

Run: SafetyCheck
else

EXIT
end if

end if
i+=1
memory=memoryNew

end while

B. Approach 2: Augment Initial States

Let (f0

,m

0

) be a finite-memory strategy that strictly
realizes a GR(1) formula ', with |�| � 1, and let pi 2 ⌃.
Let � belong to Pref(f⇤) and � |= ⇥env ^⇥sys.

For a set of states ⌘ 2 ⌃ and ⌘ 62 I(f,m
0

), let �⌘ be a
Boolean formula indicating these states. Let (f⇤

,m

⇤
0

) be a
finite memory strategy that strictly realizes the formula '⇤

Procedure 2 SafetyCheck
apply �sys

i , measure s

if (�env

i�1

,�

sys

i�1

)s 6|= ⇢

sys then
EXIT

end if
if (�env

i

�

sys

i

) = s then
safety=1

else
safety=0, �env

i

=s \AP
in

, �sys

i

=s \AP
out

end if

that is defined as below:

'

⇤ := (If

in

_ �⌘

in

) ^⇤ ⇢

env ^ (
J^

j=1

⇤ ⇤ env

j

)

=) (I _ �⌘) ^⇤ ⇢

sys ^ (
K^

k=1

⇤ ⇤ sys

k

).

Corollary 7: If p
l

is '⇤-reachable under (f⇤
,m

⇤) through
the path ⌧

l

⇠

l with ⇠

l

�1

= p

l

8l 2 1, ...,m, ⌧ l⇠l↵l 2
Plays(f⇤) , ssss��1

⇠

1 |= ⇢

sys, ⇠

l

�1

⇠

l+1

0

|= ⇢

sys 8l 2
1, ...,m� 1 then �̄ = �⇠

l

1

⇠

l

2

....⇠

m

↵

m |= '

jump.
This corollary results as a special case of Lemma 6 with
the number of strategies, n = 1 and picking a � such that
⇥env ^ ⇥sys is satisfied. The utility in this approach is that
if there a certain set of states that are recognized as states
the system is likely to be perturbed to after executing the
strategy, these states can be augmented to the initial-set of
states visited by the strategy and using these as the initial
states, synthesis can be done. This ensures that there is no
loss of coverage in terms of the states visited by the initial
strategy and there a single strategy that is robust to likely
disturbances. Again, this strategy can be refined similarly as
proposed earlier.

C. Approach 3: Patching
Let (f,m

0

) be a finite-memory strategy that strictly
realizes a GR(1) formula ', let � 2 Pref(f) with |�| � 1,
and let p 2 ⌃ and p 62 I(f,m

0

). Let ⌘ be an element in
⌃ and ⌘ 62 I(f,m

0

). Define T
reach

as a Boolean formula
that evaluates to True at a state s in ⌃ iff s 2 I(f).
Let (f

reach

,M) be a finite-memory strategy that strictly
realizes(defined similarly to the GR(1) specification) '

reach

where '
reach

is defined as
 
�

⌘

in ^⇤ ⇢

env ^ (
K^

k=1

⇤ ⇤ env

k

)

!
=)

�
�

⌘

out ^⇤ ⇢

sys ^ ⇤ Treach
�

Define 1
jump

to be a boolean formula such
that for � 2 ⌃⇤, j � 1, �

j:j+1

|= 1
jump

if
f(m

j

, �

j

\ AP
in

) 6= f(m
j+1

, �

j

\ AP
out

) and
8i < j, �

i:i+1

|= ¬1
jump

. Otherwise, �
j:j+1

|= ¬1
jump

.



For j = 0, �
j:j+1

|= 1
jump

if f(m
j

, �

j

\ AP
in

) 6=
f(mk

j+1

, �

j

\AP
out

) . Otherwise, �
j:j+1

|= ¬1
jump

.

'

jump := ⇥env^⇤(⇢env_1
jump

)^

0

@
J^

j=1

⇤ ⇤ env

j

1

A =)

⇥sys ^⇤ ⇢

sys ^
 

K^

k=1

⇤ ⇤ sys

k

!

Lemma 8: If p is '
reach

-reachable (defined similarly as
for a GR(1) specification) under (f

reach

,M) and ��1

p |=
(⇢sys) then for �reach 2 {Plays(f

reach

)} with the following
properties holding:
(i) �reach |= ⇤ Treach
(ii) k

⇤ = min{k : �reach

k

= p} < j

⇤ = min{j : �reach

j

|=
T
reach

} and
(iii) �

j

⇤ is '-reachable
(iv) ��1

p |= ⇢

sys

then firstly, (�
reach

|=
⇣V

K

k=1

⇤ ⇤ env

k

⌘
) =)

�p�

reach

k

⇤
+1:j

⇤↵ |= '

jump where ��

j

⇤
↵ 2 Plays(f ), � 2

⌃⇤. And secondly, (�
reach

|=
⇣W

K

k=1

⇤⇤¬ env

k

⌘
) =)

�p�

reach

k

⇤
+1:

|= '

jump.
Proof.
Let �reach 2 Plays(f

reach

) such that it meets the four
assumptions in the lemma and be the path through which
p is 'reach-reachable. For the case when , �p�reach

k

⇤
+1:j

⇤↵ |=
(
W

K

k=1

⇤⇤¬ env

j

) _ ⇤(¬⇢env ^ ¬1
jump

) _ (¬⇥env) then
�p�

reach

k

⇤
+1:

|= '.

Consider the other scenario, �p�

reach

k

⇤
+1:j

⇤↵ |=
⇥env ^ ⇤(⇢env _ 1

jump

) ^
⇣V

K

k=1

⇤ ⇤ env

k

⌘
. By

'

reach-reachability �

reach

j:j+1

|= ⇢

env for all j  (k⇤ � 1). If
�p�

reach

k

⇤
+1:j

⇤↵ |= ⇤(⇢env_1
jump

), then p�

reach

k

⇤
+1:j

⇤↵ |= ⇤ ⇢

env

(since ��1

p |= 1
jump

, see earlier proofs). Therefore,
�

reach

j:j+1

|= ⇢

env for all j  (j⇤ � 1).

Case 1: (�
reach

|=
⇣V

K

k=1

⇤ ⇤ env

k

⌘
)

We showed �reach

j:j+1

|= ⇢

sys for all j  (j⇤�1). As earlier, by
applying strict-realizability for f on �, we get �

j:j+1

|= ⇢

sys

for all j  |�|� 2. ��1

p |= ⇢

sys.

By corollary 5, �
j

⇤
↵ |= ⇤ ⇢

env ^ (
V

K

k=1

⇤ ⇤ env

k

) =)
�

j

⇤
↵ |= ⇤ ⇢

sys ^ (
V

J

j=1

⇤ ⇤ sys

j

). Therefore

�

reach

k

⇤
+1:j

⇤↵ |= ⇤ ⇢

sys ^
⇣V

K

k=1

⇤ ⇤ sys

k

⌘
, since it

was shown that �reach

j:j+1

|= ⇢

env for all j  (j⇤ � 1)
. Since �p�

reach

k

⇤
+1:j

⇤↵ |= ⇥env ^ ⇤ ⇢

env , by strict-
realizability we get �

l:l+1

|= ⇤ ⇢

sys and � |= ⇥sys.
Combined with our assumption ��1

p |= ⇢

sys, we get
�p�

reach

k

⇤
+1:j

⇤↵ |= ⇥sys ^ ⇤ ⇢

sys ^
⇣V

K

k=1

⇤ ⇤ sys

k

⌘
.

Therefore, �p�reach

k

⇤
+1:j

⇤↵ |= '

jump

Case 2: �
reach

|= (
W

K

k=1

⇤⇤¬ env

k

)
In this case, the intuition is that because we cannot
invoke strict-realizability, we cannot give guarantees
about satisfaction of ⇢

sys. It is easy to see that
p�

reach

k

⇤
+1:

|= (
W

K

k=1

⇤⇤¬ env

k

) given the assumption.
Therefore, �p�reach

k

⇤
+1:

|= '

jump.

This result enables us to find a way to recover in the event
of the environment violating a safety-specification on its part
or the system failing to successfully transition to the state
indicated by the original strategy (f,m) just building a patch
to the original strategy. Recover here refers to the idea of
satisfying the system part of the GR(1) specification. Though
the proof presents the idea in the case of one such violation,
the patching can be done recursively and the proof for that
case would closely follow the one outlined above. During
the recursive patching, the set of states to which the patch is
built can be grown by augmenting the states reached in the
initial strategy with the set of states visited in the previously
patches build. This would likely grow coverage with each
patch that is built. In addition, if disturbances(d) occurs to a
'

reach

d (defined similarly as above)-reachable state without
breaking ⇢sys during the execution of the patch itself, it can
also be treated similarly by building a new patch from the
disturbed state to the total set of states visited. An algorithm
for building patches and executing it on a system is formally
stated in 3

D. Patching without progress
Instead of building a patch with the formula

'

reach

specified above, one with the assumption
on environmental progress relaxed can be used,
'

relaxed

reach

:=
⇣
�

⌘

in ^⇤ ⇢

env ^ (
V

K

k=1

⇤ ⇤ env

k

)
⌘

=)
�
�

⌘

out ^⇤ ⇢

sys ^ ⇤ Treach
�

'

relaxed

reach

has lesser length than '
reach

and allows for faster
computation. Since, 'relaxed

reach

=) '

reach

, Lemma 7 holds
with '

reach

replaced by 'relaxed

reach

.

V. EXAMPLE IMPLEMENTATION AND ANALYSIS

Examples are implemented for the analysis of the tech-
niques described in sections III,IV for the task of planar robot
motion planning in the environments shown (See Figure 1).
The robot is required to visit a set of locations infinitely
often (progress-states) . A moving obstacle whose behavior
dynamics mimic those of the robot with different progress-
states and initial positions is added to the setup. The planned
trajectories for the robot must be such that they do not collide
with any of the walls (regions shaded black in Figure 1) or
the non-deterministic moving obstacle.

A. Complexity for refinement
An empirical analysis of the computational costs involved

in each of the approaches to augment robustness is pre-
sented here. The computations were peformed on a 2.40GHz
Quadcore machine with 16 GB of RAM. The experiment de-
scribed below is repeated 50 times and the average synthesis



Procedure 3 Algorithm for executing single patch from
perturbed state

Input: GR(1) formula ', finite-memory strategy (f,m
0

),
sequence of inputs �

env 2 AP
in

w , a system control
sequence �

sys can be applied and its state measured
s 2 ⌃, set I of '-reachable states for strategy f and
M memory states, such that each m 2 M is the memory
corresponding to some p in I along a ' reachable path.

Output: Sequence of output actions �sys 2 AP
out

! satis-
fying '̄ when conditions in Lemma 8 are satisfied
memory=m

0

i=1
l=0
(memoryNew, �sys

i

) = Strategyf
l

: (memory, �env

0

)
safety=1
while (True) do

if (�env

i�1

,�

sys

i�1

)(�env

i

) |= ⇢

env and safety=1 then
(memoryNew, �sys

i

) = Strategyf : (memory, �env

i

)
Run: SafetyCheck

else if (�env

i�1

,�

sys

i�1

)(�env

i

) 6|= ⇢

env OR safety=0
then

if Synthesize f

reach for 'reach with (�env

i

,�

sys

i

) as
intial state is successful then

reached=0
memoryNew=0
while reached=0 do

if (�env

i�1

,�

sys

i�1

)(�env

i

) |= ⇢

env and safety=1
then

(memoryNew, �

sys

i

) = Strategyf
reach

:
(memoryNew, �env

i

)
Run: SafetyCheck
i+=1
if safety=0 then

EXIT
end if
if (�env

i

,�

sys

i

) 2 I then
reached=0
memoryNew= memory corresponding to
(�env

i

,�

sys

i

) in M

end if
else

EXIT
end if

end while
else

EXIT
end if

end if
i+=1
memory=memoryNew

end while

Fig. 1: Grid-World Setup

times are presented in Table I. Random 5x5 gridworlds are
generated with a wall density of 0.2. The moving obstacle
and robot have two different progress-locations which they
visit infinitely often and two different initial positions. For
each of the approaches 5 perturbation points are chosen as
described:

• Multiple Strategy Approach: A single perturbation point
is chosen that is not visited by the initial strategy and
a strategy is synthesized. The states visited by the new
strategy are stored. And, a new perturbation point is
chosen not in any of the earlier strategies. This repeated
5 times.

• Patching: The points are chosen as the previous ap-
proach except only those states from the new strategy
are stored that occurred before the trajectories hit the
old set of states.

• Patching without progress: Similarly done as patching,
if synthesis from a perturbed point is not feasible,
another point is chosen. This is done so till a point
is found from which a feasible patch exists.

• Augmented Initial States Approach: Five arbitrary
points not visited by the original strategy are chosen
and a new strategy is synthesized.

The coverage i.e the number of unique states - robot, mov-
ing obstacle position combinations - visited by each strategy
is also presented. It loosely characterizes the robustness for
the concatenated-strategies as this count represents the '-
reachable states. Approach 3 is implemented recursively,
with the visited states augmented in each patch. With re-
cursive patching, the time for synthesis tends to decrease
progressively with each patch for a given gridworld because
the number of unique visited states tends to go up. Also,
the numbers indicate that the synthesis for patching without
the progress condition is faster than that with progress, as
expected because the synthesis formula has smaller length.



Approach for
refinement

Average time
for
synthesis(s)

Coverage
(unique states)

New strategy from perturbed state 0.22 145.14
Augment Initial States 0.21 144.92

Patching 2.98 173.63
Patching without progress 1.90 130.36

TABLE I: Runtimes and unique states visited

VI. CONCLUSION AND FUTURE DIRECTIONS

We demonstrated the inherent tolerance of strategies syn-
thesized to satisfy GR(1) specifications and described ap-
proaches to augment the tolerance of a strategy to perturba-
tions by refinement or concatenation with other strategies in
a provably correct manner. It was shown that these refined
strategies satisfy a stricter formula than the one used for
synthesis. This tolerance is useful when the model is not
exact for either the system behavior or the environment
behavior.
In the future, we plan to extend the framework built here
to the case of infinite jumps. We also intend to develop a
metric that would quantify the robustness added to a strategy
through a given concatenation and prescribe approaches for
refinement of strategies to make them more robust with
optimal synthesis time/memory costs. Also, we plan to
implement the approaches in Sections IV-A and IV-B using
enumeration from a stored BDD computed during the origi-
nal synthesis as that would remove the need for re-synthesis
to obtain the new strategies. This is not directly facilitated
by the solver ’gr1c’ [9] used for the work presented here.
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