
1

Synthesis of Distributed Longitudinal Control
Protocols for a Platoon of Autonomous Vehicles

Duo Han, Yilin Mo, Richard M. Murray

Abstract—We develop a framework for control protocol syn-

thesis for a platoon of autonomous vehicles subject to temporal

logic specifications. We describe the desired behavior of the

platoon in a set of linear temporal logic formulas, such as

collision avoidance, close spacing or comfortability. The problem

of decomposing a global specification for the platoon into dis-

tributed specification for each pair of adjacent vehicles is hard

to solve. We use the invariant specifications to tackle this problem

and the decomposition is proved to be scalable.. Based on the

specifications in Assumption/Guarantee form, we can construct

a two-player game (between the vehicle and its closest leader)

locally to automatically synthesize a controller protocol for each

vehicle. Simulation example for a distributed vehicles control

problem is also shown.

I. INTRODUCTION

Traffic safety and efficiency have been of primary concern
for decades. The automated highway systems [1] which are
designed to ensure safety and increase traffic flow at the same
time have attracted increasing attention. The main idea is
to form a platoon of closely spaced vehicles moving at a
high speed. The benefits of a close platoon include greater
capacity on the road, weaker impact of vehicles collision (due
to close spacing) and less aerodynamic drag [2]. The vehicles
(except the leader usually driven by human) have automated
control of speed and steering since human drivers cannot react
timely to drive safe. The controller of each vehicle mainly
relies on the information collected from two sources: one is
Vehicle to Vehicle (V2V) communication which share data
among the vehicular communication network like DSRC [3];
the other one is the data measured by sensors such as radars or
lidars. The difference is that the V2V communication renders a
vehicle comprehensive data of other vehicles such as position,
velocity and acceleration while the sensors only measure the
longitudinal and lateral position of its neighbors.

In this paper we focus on the longitudinal control rather than
lateral control. More specifically, we care about maintaining
inter-vehicle gap size, collision avoidance, keeping stable
speed, etc. A lot of work have been done on longitudinal
control protocols for a platoon of vehicles [4]–[10]. Compared
to these traditional design-and-verify approaches, we want
to specify the desired system behavior and automatically
synthesize a controller that is provably correct subject to the
system requirements. Temporal logics such as linear temporal

D. Han is with the Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong. Email: dhanaa@ust.hk.

Y. Mo and R. M. Murray are with the Department of Control and
Dynamical Systems, California Institute of Technology, Pasadena, CA. Email:
yilinmo@caltech.edu, murray@cds.caltech.edu.

logic (LTL) provides such a natural framework to express
desired behavior. The advantage of temporal logics over other
formalisms like regular language is the resemblance to the
natural human language which we will see later. LTL is a
powerful task-specification language branch for robotics and
automated vehicles to encode the tasks such as safety (A al-
ways happens) or liveness (B always eventually happens). The
success of LTL specifications have been witnessed in robots
motion planning and autonomous vehicles path planning [11]–
[14]. The common approach for motion planning with LTL
specifications is to construct a finite transition system as the
abstraction of the original physical dynamical system [12],
[15]. The abstraction describes the possible behavior in finite
state space. Based on the abstracted finite transition system and
the LTL specifications, a control protocol can be automatically
synthesized based on the automaton-based approach.

For a vehicle in the platoon, the behavior of the preceding
vehicle and its follower is totally unpredictable when the
communication links among them temporarily fail. The only
information is the relative longitudinal position. Even if there
is communication which tells it the real-time dynamics of
its neighbors, the vehicle still has to cooperate with others
to satisfy the specification. For example, the vehicle should
conservatively slow down a little when links fail, to prevent
the sudden brake of its preceding vehicle though it may not
occur, to satisfy the safety specification. Thus the vehicle
system can be treated as a reactive system since the controller
does not only consider the state of its own system which
maintains an interaction with the environment but also the state
of the environment (i.e., its neighbors and the communication
channel status) to satisfy a specification. Our goal is to
synthesize a distributed control protocol for each reactive
system such that the whole system of the platoon satisfy some
given specifications.

The main contributions of this paper are summarized as
follows. Firstly, we formulate the distributed control of a
platoon of vehicles problem in the linear temporal logic
framework. The formalization allows automatic synthesis of
the reactive control protocols based on the model-checking
theory [16]. Secondly, the distributed synthesis in general
undecidable [17]. We attack the difficulty of decomposing a
global specification into an equivalent set of distributed specifi-
cations by introducing an invariant specification. We can prove
the satisfiability of the revised distributed specifications is a
sufficient condition for the satisfiability of the global guarantee
specifications. By introducing an invariant specification, the
synthesis problem is scalable with any number of vehicles in
the platoon. Lastly, we provide a specify-and-synthesize design

Submitted, 2015 Conference on Decision and Control (CDC)
http://www.cds.caltech.edu/~murray/papers/hmm15-cdc.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/289179662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

flow demonstration on an example.
The remainder of the paper is organized as follows. Section

II presents a technical description of LTL and other formal
definitions. Section III formulates the distributed control prob-
lem and Section IV reformulates the original problem and
gives an alternative approach to synthesize the distributed
control protocols. Section V demonstrate the specify-and-
synthesize design flow using an example. We conclude with
future directions in Section VI.

II. PRELIMINARIES

We present some preliminary materials on finite transition
system and linear temporal logic language. The LTL languages
are useful in describing more complicated control tasks and we
try to formulate the platoon control problem into a two-player
game which contains a leader and a follower.

A. Finite transition system

Definition 2.1: An atomic proposition is an assertion on
a system variable that must be true or false given the value of
the variable. If the atomic proposition p is True at the state
s, we denote this as s ✏ p. Otherwise, we denote it as s 2 p.

Definition 2.2: A finite transition system is a tuple
FTS = (S,A,!, I,⇧, L), where

• S is the finite set of states,
• A is the finite set of actions,
• !✓ S ⇥A⇥ S is a transition relation,
• I is the set of initial states,
• ⇧ is the set of atomic propositions and
• L is a labeling function which maps each state to the set

of atomic propositions which are true on it.
Let A(s) = {a 2 A : 9s0 2 S, s !a s

0} denote the set
of active actions of s. Let Post(s, a) = {s0 2 S : s !a s

0}
denote the set of direct successors of s under action a. Denote
Post(s) =

S
a2A(s) Post(s, a) as the set of direct successors

of s. A path fragment is a finite or infinite sequence
of states s0, s1, . . . , si, si+1, . . ., where si+1 2 Post(si). A
path is a finite path fragment with a state having no direct
successors or an infinite path fragment. The trace of an
infinite path fragment s0, s1, . . . , si, si+1, . . . is the sequence
of the sets of atomic proposition corresponding to each s-
tate, i.e.,L(s0), L(s1), . . . , L(si), L(si+1), The language
L(FTS) of FTS consists of all possible traces. A execution

of the FTS is a sequence (s0, a0), (s1, a1), . . . , (si, ai), . . .
where s0 2 I, (si, ai, si+1) 2! .

B. Linear temporal logic

Linear temporal logic (LTL) is a powerful formal language
that specifies the desired system behaviors and the admissible
environment behaviors, which was first used as a specification
language by Pneuli [18]. By including temporal operators in
reasoning propositions, LTL specifications are able to describe
a wide range of properties of systems, such as safety, reach-
ability, stability, recurrence, etc. An LTL formula consists
of atomic propositions and logic operators. Different from
proposition logic which uses the logic connectives: negation

(¬), disjunction (_), conjunction (^) and implication (=)),
LTL incorporates temporal operators: next (#), always (⇤),
eventually (3) and until (U). Specifically, an LTL formula
given a set of atomic propositions ⇧ is defined inductively as
follows:

• True is an LTL formula,
• any atomic proposition p 2 ⇧ is an LTL formula,
• given LTL formulas ', '1 and '2, ¬', '1^'2, #' and

'1U'2 are also LTL formula.
All other operators and all LTL formulas can be derived from
these basic ones, i.e., '1 =) '2 () ¬'1 ^ '2, ⇤' ()
¬3¬'.

Definition 2.3: LTL semantics: a LTL formula is inter-
preted on an infinite sequence " = "0"1"2"3 . . . where "i 2 2⇧.
We say ' holds at position i, written as "i ✏ ', if and only
if (iff) ' holds for the remainder of the sequence " starting
from i. If "0 ✏ ', we write " ✏ '.

The semantics of any LTL formula is defined as follows:
• " ✏ True,
• for an atomic proposition p 2 ⇧, "i ✏ p iff p 2 "i,
• "i ✏ ¬' iff "i 2 ',
• " ✏ '1 _ '2 iff " ✏ '1 or " ✏ '2,
• "i ✏ #' iff "i+1 ✏ ',
• " ✏ '1U'2 iff there exists j � i such that "j ✏ ' and

8k 2 [i, j), "k ✏ '.
Derived from the definition above, "i ✏ ⇤' iff "k ✏ ', 8k 2
[i,+1). " ✏ 3' iff there exists j � i such that "j ✏ '. The
set LTL(⇧) is all LTL formulas over ⇧.

Example 2.4: We can express various properties of interest
in LTL formulas. A safety formula may be of the form
⇤(speed < 60 miles) which states the requirement that the
speed of a car is invariantly less than 60 miles throughout
an execution. Safety formulas are supposed to ensure nothing
bad happens. An example of guarantee formula would be
3(location = Exit) which means eventually the car will
arrive at the exit at least once. This is an issue of reachability.
A progress formula would be ⇤3(speed > 0) which asserts
that the car has to move forward infinitely often during an
execute since we can’t forbid a car to brake but we don’t
allow that it never moves. In other words, we hope something
good will always happen. The example of a response formula
is ⇤(green light on ! 3the i

th
car moves forward),

which describes how the i

th should react to the change of
environment. A stability formula, i.e., 3⇤(0 < �x < 100m),
asserts that the property that the relative distance between each
two adjacent cars of a platoon should always be in a range
after a point of the execution. Some other properties can also
be expressed in LTL language.

Given an FTS and a specification consisting a list of LTL
formulas, synthesizing a control protocol is equivalent to
finding a path that satisfies the specification, which is known
as a model checking problem [16]. We refer the reader to [16]
in which formal verification results can be found.

C. Reactive synthesis
For a system consisting of controlled and uncontrolled

variables, we can treat the control protocol synthesis as a two-
player game: the environment and the system. For example, the

3

brake of a vehicle is a controlled variable but the traffic light
status is an uncontrolled variable. The two players alternatively
acts with different purposes: the environment wants to falsify
' and the system wants to satisfy it. The system will make
decisions based on its current state and the environment
behavior. Generally, the reactive synthesis problem is to find
a controller satisfy a specification of the following form:

' = '

e ! '

s
. (1)

In other words, under some environment assumption specifi-
cation, we are interested in whether there exists a controller
that guarantee the system specification. Often this is also called
Assumption/Guarantee (A/G) specification. The complexity of
this synthesis problem is at most double exponential in the
length of ' (more details can be found in [19]). We focus on a
subset of LTL specifications, called Generalized Reactivity(1)
(GR(1)) [20], which can be solved in polynomial time but at
the same time still expressive. The GR(1) specification is in
the following form:

'init ^⇤'

e ^
^

i2Ie

⇤3'

e
i

!
�!

^

i2Is

⇤'

s
i ^

^

i2It

⇤3'

s
i

!

(2)
We shall convert the natural language specifications on the
vehicle systems into LTL specifications in GR(1) form in the
next section.

III. SPECIFICATIONS-BASED PLATOON CONTROL

In this section we introduce our framework of controlling
the platoon in a regulated way. First we need to model the
dynamics of a vehicle. The longitudinal motion of a vehicle
can be modelled as a nonlinear system with parameters such
as the mass of vehicle and the aerodynamic drag coefficient
(see [21] for details). Without loss of generality, we use
the following continuous linearized system to illustrate our
framework:

d

dt

2

4
s(t)
v(t)
a(t)

3

5 =

2

4
0 1 0
0 0 1
0 0 0

3

5

2

4
s(t)
v(t)
a(t)

3

5+

2

4
0
0
1

3

5
u(t), (3)

where x(t) =
⇥
s(t) v(t) a(t)

⇤T 2 X ✓ R3 is the state
vector, s is the relative distance between the roadside reference
point and the vehicle, v is the velocity of the vehicle, and a

is the acceleration. u 2 U ✓ R is the control input. X is the
continuous state space and U is the set of admissible control
input. Since the continuous states are infinite in which case the
model-checking based synthesis cannot be used, the next step
is to build a finite transition system (FTS) abstracting from
the original system. Roughly speaking, the continuous state
space is partitioned into many proposition preserving cells
which serves as states in FTS. The transition between cells is
defined if and only if there exists a continuous control input
taking the system from any point in the source cell to some
point in the destination cell. Once we have a discrete controller
synthesized based on the FTS and some given specifications
which will be discussed later, we can translate a sequence of
abstract discrete states back to a sequence of continuous states

[15]. A lot of research results and examples on abstraction
approach can be found in [14], [22]–[24]. Note that we do
not add any disturbance but we consider the deterministic
system whose behavior is totally controlled by the input. The
extension is not that difficult. For example, the disturbance can
be considered by the continuous controller which generates
a control input taking the system to the destination against
any possible disturbance. Assume the FTS for a vehicle i is
Vi = (S,A,!, I,⇧, L) and all the vehicles are identical.

The dynamics information of a vehicle can be accessed by
another vehicle via two approaches. One is from the distance
measurement sensor, i.e., radar or lidar sensors. The follower
can detect the relative distance between the leader in front of
it and itself but obtain no other information like velocity or
acceleration, though it can estimate these information (delayed
and inaccurate) based on the sensor measurements and its
own dynamics information. The other way of information flow
resorts to the wireless communication like DSRC [25], [26],
which can share all the dynamic information of one vehicle
to its neighbors. The disadvantage is that the data packets
may drop anytime and the packet drop rate increases with the
relative distance and the channel load, contrast to stability of
collecting sensor measurements. In our case, we consider a
vehicle only communicates with its preceding vehicle and its
follower with non-deterministic packet loss.

We consider a platoon of N+1 vehicles which has a leader
C0 and N followers. The followers are identified by Ci, i 2
G = [1, N] with FTS=Vi. The identifier i is smaller if Ci is
closer to C0. The examples of an atomic proposition could
be {xi � xi�1 > 5}, {vi 20}, {ai < 5}, where xi is the
distance between Ci and a given roadside reference point and
the unit is m, vi is the velocity of Ci and the unit is m/s, ai
is the acceleration of Ci and the unit is m/s

2. Each AP is
mapped to a set of discrete states in Vi. A boolean environment
variable ci acts as the indicator that whether Ci is receiving
data packets from Ci�1. The assumption on ci, expressed in
LTL formula, is

'e =
^

i2G

'

i
e, (4)

'

i
e = ⇤3ci. (5)

Now we write a list of example specifications in the form of
LTL formulas to express the desired behaviors of the platoon.
The following specifications can be modified or extended for
different purposes.

1) Safety specification 's =
V

i2G '

i
s,1 ^

V
i2G '

i
s,2:

we have

'

i
s,1 = ⇤(xi � xi�1 > 0) (6)

for collision avoidance, and

'

i
s,2 = ⇤(0 vi 20) (7)

for setting speed limit and no backing off.
2) Progress specification 'p =

V
i2G '

i
p,1 ^

V
i2G '

i
p,2:

we have

'

i
p,1 = ⇤3(vi > 0) (8)

4

because the vehicle is not allowed to stop forever.

'

i
p,2 =

^

i2G

⇤3(xi � xi�1 5) (9)

makes the follower will always eventually approach its
preceding vehicle within 5 meters to form a platoon.

3) Response specification 'r: 'r =
V

i2G '

i
r,1^

V
i2G '

i
r,2:

We list two simple response specifications here. 'r,1

means when Ci receives the dynamics information of
Ci�1, it can predict the next position of Ci�1 and
eventually get closer while avoid collision. When there is
no communication, Ci should take a conservative action
instead.

'

i
r,1 = ⇤3(c ! (xi � #xi�1) > (#xi � #xi�1))

(10)
'

i
r,2 = ⇤(¬c ! (xi � #xi�1) (#xi � #xi�1))

(11)

4) Comfortability specification 'c: 'c: 'r =
V

i2G '

i
c,1 ^V

i2G '

i
c,2:

To make the passengers comfortable, we set some limit
on the change of acceleration and deceleration. When
the relative distance is large, the vehicle should smoothly
accelerate and decelerate.

'

i
c,1 = ⇤(�5 ai 5) (12)

'

i
c,2 = ⇤ ((xi � xi�1 > 20) ! (|ai � #ai| 2))

(13)

While he leader of the platoon is usually driven by a driver
or separately controlled from the followers by the central
controller, we still impose some specifications that constrain
its behavior. For example, if the leader stands still or drives too
fast, the followers are not able to satisfy their specifications.
We set the specification for the leader as follows

'

l = '

0
s,2 ^ '

0
p,1 ^ '

0
c,1. (14)

The specification for all the followers is

'

f = 's ^ 'p ^ 'r ^ 'c. (15)

Distributed controller synthesis problem : Given the
FTS for each vehicle and the global Assumption/Guarantee
specification

' =
�
'e ^ '

l
�
! '

f
, (16)

one needs to automatically synthesize a sequence of control
signals, also called control protocol,

u

1
i , u

2
i , . . . 2 U

for each subsystem i starting from any initial states to satisfy
the specification for any sequence of environment status. If
there exists at least a sequence of control input to take the
given reactive system to satisfy the specification, then the
specification is said to be synthesizable.

IV. DISTRIBUTED CONTROLLER SYNTHESIS

We solve the distributed synthesis problem by dividing the
platoon into N subsystems. Each subsystem Mi = (i �
1, i), i 2 G consists of two vehicles. The FTS Ci�1 together
with the environment variable ci acts as the environment for
Ci. The next step is to compose an appropriate A/G specifi-
cation '

i
sub for Mi and synthesize a distributed controller for

Ci such that the whole platoon satisfies '. A natural idea is
to decompose the global specification into

'

i
sub =

�
'

i
e ^ '

i�1
s,2 ^ '

i�1
p,1 ^ '

i�1
c,1 ^ '

i�1
c,2

�

!
�
'

i
s,1 ^ '

i
s,2 ^ '

i
p,1 ^ '

i
c,1 ^ '

i
c,2

�
. (17)

In other words, if assuming Ci+1 satisfies the specification
on its own properties such as xi�1, vi�1, ai�1 and the envi-
ronment specification holds such that there exists a controller
that guarantees Ci to satisfy the specification on its own
properties and relative distance, we can prove that the global
A/G specification for the whole platoon can be satisfied by
induction. However, in general 'i

sub can’t be decomposed from
the global specification ' directly. A counterexample is as
follows:

Example 4.1: Suppose a simple global specification is
^

i2G

'

i
s,2 ^

^

i2G

'

i
p,2.

If we directly filter the relevant specification for Mi out, say,
the environment assumption for Ci�1 is

'

i
sub,e := '

i�1
s,2 . (18)

and the system guarantee for Ci is

'

i
sub,s := '

i
s,2 ^ '

i
p,2. (19)

Thus the A/G specification for Mi is

'

i
sub := '

i
sub,e ! '

i
sub,s.

If there exists a controller such that the sequence of states of
Ci satisfy '

i
sub for any i 2 G. The global specification can be

satisfied automatically. However, the controller does not exist.
If the first m cars in the platoon are always at the speed of
20 m/s and the distance of each one to their neighbors is 5 m,
the (m+1)st car is left 10 m behind the mth car. There is no
controller for Cm+1 to catch up with Cm satisfying the safety
specification and progress specification simultaneously.

Since the global specification decomposition may not work
due to the lack of a feasible controller like the example above,
one has to find a better approach for decomposition in which
the environment assumption in each subsystem will be relaxed.
One way of relaxing the environment assumption for Mi is to
restrict the behavior of vehicle in the guarantee specification
for Mi�1. In the next section, we introduce the concept of
invariant specification by which we can synthesize a controller
for each vehicle to satisfy the guarantee specification while
slightly relaxing the assumption on the leading vehicle.

5

A. Invariant Specification

We denote '

i
private as an LTL formula containing only

atomic propositions of xi, vi, ai and denote '

i
public as an

LTL formula only containing the relative distance xi � xi�1,
velocity (vi � vi�1) and acceleration (ai � ai�1). Then the
A/G specification in (17) can be written into

�
'

i�1
e ^ '

i�1
private

�
!
�
'

i
private ^ '

i
public

�
(20)

If we can find a '

i
new such that there exists a controller for

any Ci, i 2 N satisfy the following specification,
�
'

i�1
e ^ '

i�1
private ^ '

i�1
new

�
!

�
'

i
private ^ '

i
new ^ '

i
public

�
. (21)

Then we define

'

i
inv = '

i
private ^ 'i (22)

as an invariant specification for Ci.
Example 4.2: In previous example, we can define

'

i
inv = '

i
s,2 ^⇤3(vi 20) (23)

as the invariant specification. Thus the new A/G specification
for Mi is

'

i
sub,new = '

i�1
inv !

�
'

i
inv ^ '

i
p,2

�
. (24)

We can use TuLiP to synthesize a controller for this simple
system.

We give a definition on the partial order over the set of all
LTL specifications.

Definition 4.3: Partial order: Let '1,'2 2 LTL(⇧), then
'1 � '2 iff L('1) ✓ L('2).
Before we present the main theorem, we need the following
lemma on boolean operation.

Lemma 4.4: If a^b ! c^d and c^e ! f , then a^b^e !
c ^ d ^ f .

Proof: If a ^ b ^ e ! c ^ d ^ f is False, we have

a ^ b ^ e is True (25)

and

c ^ d ^ f is False. (26)

If we assume a^b ! c^d is True, from (25) we have a^b is
True and c^ d is True. Thus h is False from (26). Since c

and e are True, c^ e ! f is False. Therefore, a^ b ! c^d

and c ^ e ! f cannot hold simultaneously. This completes
proof.
Now we state a theorem that if we can find a proper invariant
specification, we can turn the distributed controller synthesis
problem into a set of solvable two-player games.

Theorem 4.5: Assume that the communication channel
specification 'e and the specification of the leading vehicle of
the platoon '

i
inv hold. If there exists an invariant specification

'

i
inv � '

i
private

such that there is a controller for Mi satisfying the specifica-
tion in the following form:

�
'

i
e ^ '

i�1
inv

�
!
�
'

i
inv ^ '

i
public

�
(27)

for any i 2 G, then '

f in (16) can be guaranteed. In other
words,

�
'e ^ '

0
inv

�
! '

f (28)

is synthesizable.
Proof: Note that the control protocol satisfying an A/G

specification only ensure the guarantee specification only when
the environment restricts its behavior under its assumption.
Otherwise, we cannot say that the guarantee part holds even
if the A/G specification is synthesizable and satisfied by some
controllers.

Given that the leader of the platoon C0 satisfies the as-
sumption specification '

0
inv and the environment assumption

'

1
e holds, the specification in (27) for M1 is synthesizable,

i.e., the automatically synthesized controller can guarantee that
'

1
inv ^ '

1
public. Since

�
'

2
e ^ '

1
inv

�
!
�
'

2
inv ^ '

2
public

�
(29)

is synthesizable, from Lemma 4.4 we have the synthesizable
A/G specification
�
'

2
e ^ '

1
e ^ '

0
inv

�
!
�
'

2
inv ^ '

2
public ^ '

1
inv ^ '

1
public

�
.

(30)

Assuming that

î

m=1

'

m
e ^ '

0
inv !

î

m=1

'

m
inv ^

î

m=1

'

m
public (31)

is synthesizable. Based on Lemma 4.4 and (27), we have the
synthesizable specification

i+1̂

m=1

'

m
e ^ '

0
inv !

i+1̂

m=1

'

m
inv ^

i+1̂

m=1

'

m
public. (32)

Therefore, we can inductively conclude that there exists a
control protocol for each subsystem Mi, i 2 G such that

�
'e ^ '

0
inv

�
!
^

i2G

�
'

i
inv ^ '

i
public

�
(33)

Since '

i
inv � '

i
private, the modified guarantee specification is

a sufficient condition that the original guarantee specification
in (16) can be ensured by some control protocols, i.e.,

�
'e ^ '

0
inv

�
! '

f (34)

Note that the only difference between (16) and (34) is
that we relax the assumption on the leader by restricting its
behavior described by '

0
inv .

Remark 4.6: Searching a feasible invariant specification
falls in the category of the minimal revision problem for
specifications, say, revising or relaxing the specifications such
that they are as close as the initial user intent, like [27] [28].
Basically, one may easily find '

i
inv � '

i
private by relaxing

'

i
private. The key issue is how to revise the specifications

minimally and automatically, which is left as future work.

6

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Time

D
ist

an
ce

Car 1
Car 2
Car 3

Fig. 1. Example of a platoon of three cars. Car 1 is the leader which satisfies
(14) and the invariant specification in (23).

V. EXAMPLES

We use a simple example to illustrate the synthesis process.
The platoon consists of three cars, i.e., one leader and two
followers. We directly use the simplified discrete transition
system to describe the dynamics of the vehicle. The number
of system states is 48, i.e., 6 states for the relative distance,
4 states for the velocity and 2 states for the communication
channel. The specification of acceleration is guaranteed within
the setting. The controller is automatically synthesized satis-
fying (24) by TuLiP, which outputs a script that generates a
Mealy machine in Simulink. In Fig. 1 we show a realization
of the positions of three cars in the platoon vs time (sampling
time is 0.1s). Note that the controller for the (Car 1, Car 2)
pair and (Car 2, Car 3) pair is the same and we only need to
synthesize one common controller for the whole platoon.

VI. CONCLUDING REMARKS

In this paper we formulate the distributed control of auto-
mated vehicles problem using LTL specifications. Thanks to
the expressive power of LTL, we can translate the behavioral
requirements of the platoon in natural language into a set
of LTL-based specifications. Generally the distribution of
the global specification is hard to solve. By introducing the
invariant specification, we divide the global specification into
a number of GR(1) specifications for each reactive system.
The satisfiability of each specification works together to guar-
antee the satisfiability of the global specifications. Then we
can automatically synthesize a distributed controller for each
vehicle in the platoon. Future work includes investigation of
automatically search for the invariant specification even for
the solution set and extension for lateral control.

REFERENCES

[1] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE
Trans. Autom. Control, vol. 38, no. 2, pp. 195–207, 1993.

[2] R. Horowitz and P. Varaiya, “Control design of an automated highway
system,” Proc. IEEE, vol. 88, no. 7, pp. 913–925, 2000.

[3] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety
messaging in dsrc,” in Proc. ACM Int. Workshop on Vehicular ad hoc
networks, 2004, pp. 19–28.

[4] S. Sheikholeslam and C. A. Desoer, “Longitudinal control of a platoon
of vehicles,” in Proc. American Control Conf., 1990, 1990, pp. 291–296.

[5] ——, “Longitudinal control of a platoon of vehicles with no communi-
cation of lead vehicle information: a system level study,” IEEE Trans.
Vehicular Technology, vol. 42, no. 4, pp. 546–554, 1993.

[6] D. N. Godbole and J. Lygeros, “Longitudinal control of the lead car
of a platoon,” IEEE Trans. Vehicular Technology, vol. 43, no. 4, pp.
1125–1135, 1994.

[7] S. S. Stankovic, M. J. Stanojevic, and D. D. Siljak, “Decentralized
overlapping control of a platoon of vehicles,” IEEE Trans. Control
Systems Technology, vol. 8, no. 5, pp. 816–832, 2000.

[8] D. Swaroop, J. K. Hedrick, and S. Choi, “Direct adaptive longitudinal
control of vehicle platoons,” IEEE Trans. Vehicular Technology, vol. 50,
no. 1, pp. 150–161, 2001.

[9] G. Guo and W. Yue, “Autonomous platoon control allowing range-
limited sensors,” IEEE Trans. Vehicular Technology, vol. 61, no. 7, pp.
2901–2912, 2012.

[10] S.-Y. Han, Y.-H. Chen, L. Wang, and A. Abraham, “Decentralized
longitudinal tracking control for cooperative adaptive cruise control
systems in a platoon,” in Proc. IEEE Int. Conf. Systems, Man, and
Cybernetics, 2013.

[11] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2005, pp. 2020–2025.

[12] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proc. ACM Int. Conf.
Hybrid systems: computation and control, 2010, pp. 101–110.

[14] ——, “Synthesis of control protocols for autonomous systems,” Un-
manned Systems, vol. 1, no. 01, pp. 21–39, 2013.

[15] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 971–
984, 2000.

[16] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[17] A. Pneuli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in Proc. Symp. on Foundations of Computer Science. IEEE,
1990, pp. 746–757.

[18] A. Pnueli, “The temporal logic of programs,” in Proc. IEEE 18th Annual
Symp. Foundations of Computer Science, 1977, pp. 46–57.

[19] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. Symp. Principles of programming languages, 1989, pp. 179–190.

[20] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive (1) designs,”
in Verification, Model Checking, and Abstract Interpretation. Springer,
2006, pp. 364–380.

[21] P. A. Ioannou and C.-C. C. Chien, “Autonomous intelligent cruise
control,” IEEE Trans. Vehicular Technology, vol. 42, no. 4, pp. 657–
672, 1993.

[22] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp.
1862–1877, 2006.

[23] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571, 2009.

[24] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robotics, vol. 25,
no. 6, pp. 1370–1381, 2009.

[25] F. Bai and H. Krishnan, “Reliability analysis of dsrc wireless com-
munication for vehicle safety applications,” in Proc. IEEE Intelligent
Transportation Systems Conf., 2006, pp. 355–362.

[26] L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile
vehicle-to-vehicle narrow-band channel measurement and characteriza-
tion of the 5.9 ghz dedicated short range communication (dsrc) frequency
band,” IEEE J. Selected Areas in Communications, vol. 25, no. 8, pp.
1501–1516, 2007.

[27] K. Kim, G. E. Fainekos, and S. Sankaranarayanan, “On the revision
problem of specification automata,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2012, pp. 5171–5176.

[28] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Proc. IEEE Int. Conf. Robotics and Automation, 2011,
pp. 40–45.

