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Summary Paragraph 1 

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a ubiquitous superfamily 2 

of coiled-coil proteins that influence membrane curvature in eukaryotes and are 3 

associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular 4 

signaling1-6. BAR domain proteins have not been identified in bacteria, despite certain 5 

organisms displaying an array of membrane curvature phenotypes7-16.  Here we identify 6 

a prokaryotic BAR domain protein, BdpA, from Shewanella oneidensis MR-1, an iron 7 

reducing bacterium known to produce redox active membrane vesicles and micrometer-8 

scale membrane extensions. BdpA is required for uniform size distribution of outer 9 

membrane vesicles and is responsible for scaffolding outer membrane extensions 10 

(OMEs) into membrane structures with consistent diameter and curvature. While a strain 11 

lacking BdpA produces OMEs, cryogenic transmission electron microscopy reveals more 12 

lobed, disordered OMEs rather than the membrane tubes produced by the wild type 13 

strain.  Overexpression of BdpA promotes OME formation even during planktonic 14 

conditions where S. oneidensis OMEs are less common. Heterologous expression also 15 

results in OME production in Marinobacter atlanticus CP1 and Escherichia coli.  Based 16 

on the ability of BdpA to alter membrane curvature in vivo, we propose that BdpA and its 17 

homologs comprise a newly identified class of prokaryotic BAR (P-BAR) domains that will 18 

aid in identification of putative P-BAR proteins in other bacterial species. 19 

Introduction  20 

Eukaryotic Bin/Amphiphysin/Rvs (BAR) domain-containing proteins generate 21 

membrane curvature through electrostatic interactions between positively charged amino 22 

acids and negatively charged lipids, scaffolding the membrane along the intrinsically 23 
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curved surface of the antiparallel coiled-coil protein dimers17-20.  Some BAR domain-24 

containing proteins, such as the N-BAR protein BIN1, contain amphipathic helical wedges 25 

that insert into the outer membrane leaflet and can assist in membrane binding21.  Other 26 

BAR domains can be accompanied by a membrane targeting domain, such as PX for 27 

phosphoinositide binding22,23, in order to direct membrane curvature formation at specific 28 

sites, as is the case with sorting nexin BAR proteins4.  The extent of accumulation of BAR 29 

domain proteins at a specific site can influence the degree of the resultant membrane 30 

curvature24, and tubulation events arise as a consequence of BAR domain 31 

multimerization in conjunction with lipid binding25.  Interactions between BAR domain 32 

proteins and membranes resolve membrane tension, promote membrane stability, and 33 

aid in localizing cellular processes, such as actin binding, signaling through small 34 

GTPases, membrane vesicle scission, and vesicular transport of proteins1,26,27.  Despite 35 

our knowledge of numerous eukaryotic BAR proteins spanning a variety of modes of 36 

curvature formation, membrane localizations, and subtypes (N-BAR, F-BAR, and I-BAR), 37 

characterization of a functional prokaryotic BAR domain protein has yet to be reported. 38 

Bacterial cell membrane curvature can be observed during the formation of outer 39 

membrane vesicles (OMV) and outer membrane extensions (OME).  OMV formation is 40 

ubiquitous and has many documented functions9.  OMEs are less commonly observed, 41 

remain attached to the cell, and various morphologies can be seen extending from single 42 

cells including Myxococcus xanthus14,15, flavobacterium strain Hel3_A1_488, Vibrio 43 

vulnificus10, Francisella novicida28, Shewanella oneidensis7,29-31, and as cell-cell 44 

connections in Bacillus subtilis32-34 and Eschericia coli35. Several bacterial proteins have 45 

demonstrated membrane tubule formation capabilities in vitro16,36-40, but despite the 46 
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growing number of reports, proteins involved in shaping bacterial membranes into 47 

OMV/Es have yet to be identified. Recently, researchers have begun to suspect that OMV 48 

and OME formation has some pathway overlap8, and it is proposed that proteins are 49 

necessary to stabilize these structures13. 50 

Shewanella oneidensis is a model organism for extracellular electron transfer 51 

(EET), a mode of respiration whereby electrons traverse the inner membrane, periplasm, 52 

and outer membrane via multiheme cytochromes to reach exogenous insoluble terminal 53 

electron acceptors, such as metals and electrodes41,42. It is also known to produce redox-54 

active OMVs43 and OMEs coated with mulitheme cytochromes, particularly upon surface 55 

attachment7,30,43. However, little is known about their formation mechanism, control of 56 

shape or curvature, and electrochemical properties that influence EET function. 57 

Results and Discussion 58 

S. oneidensis OMVs are redox-active and enriched with BdpA 59 

OMVs were purified from cells grown in batch cultures to characterize the redox 60 

features and unique proteome of S. oneidensis OMVs, as well as to identify putative 61 

membrane shaping proteins.  Cryogenic transmission electron microscopy (cryo-TEM) 62 

tomography reconstruction slices of the purified samples showed uniform OMVs with the 63 

characteristic single membrane phenotype and an approximate diameter of 200 nm (Fig. 64 

1a). Previous measurements suggest OMVs can reduce extracellular electron 65 

acceptors43 and that vesicles from G. sulfurreducens can mediate electron transfer44. 66 

Electrochemical activity of multiheme cytochrome complex MtrCAB and their ability to 67 

mediate micrometer-scale electron transport has been characterized in whole cells45, but 68 

no electrochemical characterization of OME/Vs has been reported that link activity to 69 
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multiheme cytochromes. Here, electrochemical measurements of isolated OMVs were 70 

performed to determine if purified OMVs maintain the redox features when detached from 71 

cells. Cyclic voltammetry (CV) of isolated membrane vesicles adhered to a gold electrode 72 

via self-assembled monolayers show redox activity demonstrating electron transfer to and 73 

from the electrode interface (Fig. 1b). The first derivative (Fig. 1b inset) revealed a 74 

prominent peak with a midpoint potential of 66 mV and a smaller peak at -25 mV versus 75 

a standard hydrogen reference electrode (SHE). This midpoint potential is consistent with 76 

the characteristics of multiheme cytochromes such as MtrC/OmcA from previous 77 

microbial electrochemical studies45,46, suggesting that the extracellular redox molecules 78 

of the cellular outer membrane extends to OMVs.  79 

The proteome of the OMVs was compared to the proteome of purified outer 80 

membranes extracted from whole cells. Using a label-free quantification method47, 81 

significant differences in the ratio of individual proteins in the vesicle to the outer 82 

membrane could be computed (log fold change) (Fig 1c). The proteome of the purified 83 

OMVs showed ~300 proteins were significantly enriched in the vesicles as compared to 84 

the outer membrane, and ~300 proteins were significantly excluded from the vesicles 85 

(Fig. 1c).  MtrCAB cytochromes were neither significantly enriched nor excluded from the 86 

vesicles, consistent with the interpretation that vesicles could extend the respiratory 87 

surface area. Active protein sorting into eukaryotic vesicles is a coordinated process 88 

involving a protein sorting signal, localized membrane protein recruitment, initiation of 89 

membrane curvature induction, and coating nascent vesicles with membrane scaffolds48.  90 

Several proteins significantly enriched in the vesicles might contribute to OMV formation, 91 

such as murein transglycosylase, the peptidoglycan degradation enzyme holin, cell 92 
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division coordinator CpoB, and a highly enriched putative BAR domain-containing protein 93 

encoded by the gene at open reading frame SO_1507, hereafter named BAR domain-94 

like protein A (BdpA) (Fig. 1d). 95 

Vesicle enrichment of BdpA led us to the hypothesis that BdpA could be involved 96 

in membrane shaping of OMVs based on the role of such proteins in eukaryotes.  The C-97 

terminal BAR domain of BdpA is predicted to span an alpha-helical region from AA 276-98 

451 (E-value = 2.96e-03); however, since the identification of the protein is based on 99 

homology to the eukaryotic BAR domain consensus sequence (cd07307), it is possible 100 

that the BAR domain region extends beyond these bounds (Fig. 1d).  Coiled coil 101 

prediction49 suggests BdpA exists in an oligomeric state of antiparallel alpha-helical 102 

dimers, as is the case for all known BAR domain proteins18,50-52.  BdpA has an N-terminal 103 

signal peptide with predicted cleavage sites between amino acids 22-23, suggesting non-104 

cytoplasmic localization (Fig. 1d).  A galactose-binding domain-like region positioned 105 

immediately downstream of the signal peptide supports lipid targeting activity seen in 106 

other BAR domain proteins, such as the eukaryotic sorting nexins3 which have phox (PX) 107 

domains that bind phosphoinositides53.  The S. oneidensis rough-type lipopolysaccharide 108 

(LPS) contains 2-acetamido-2-deoxy-D-galactose54, which suggests possible localization 109 

of the protein to the outer leaflet of the outer membrane.   110 

BdpA controls size distribution of vesicles 111 

To determine whether BdpA influences vesicle morphology, OMVs were harvested 112 

from wild type (WT) cells and cells in which the gene for BdpA had been deleted (ΔbdpA), 113 

and their diameters were measured by dynamic light scattering (DLS).  WT OMVs (n=11) 114 

had a median diameter of 190 nm with little variability in the population (±21 nm), while 115 
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the diameters of ΔbdpA OMVs (n=9) were distributed over a wider range with a median 116 

value of 280 nm ± 131 nm (Fig 2a).  The data suggest BdpA controls vesicle diameter in 117 

membrane structures ex vivo, potentially acting by stabilizing OMVs. OMV frequency and 118 

size distribution was also measured in live cultures using a perfusion flow imaging 119 

platform and the membrane stain FM 4-64, as described previously29.  S. oneidensis 120 

strains were monitored for OME/V production over the course of 5 hours (>5 fields of view 121 

per replicate, n=3).  Spherical membrane stained extracellular structures were classified 122 

as OMVs, while larger aspect ratio (i.e. length greater than the width) structures were 123 

classified as OMEs. The duration of time-lapse imaging allowed tracking the progression 124 

of an OME/V over time.  It was possible to quantify the proportion of cells producing ‘large’ 125 

vesicles, defined as those where the membrane was clearly delineated from the interior 126 

of the vesicles, typically >300 nm.  ΔbdpA cells produced significantly more large vesicles 127 

compared to WT cells (Fig. 2b) even though both the overall frequency of vesiculation 128 

and extensions were the same (Fig. 2c).  The size of S. oneidensis vesicles was more 129 

discrete than vesicles produced by other bacteria55,56 that do not contain a BdpA homolog, 130 

making it likely that BdpA is responsible for precise regulation of vesicle size. Previous 131 

studies showed that OMEs transition between large vesicles and OMEs over time29.  132 

BdpA appears to be involved in this transition due to the increased frequency of large 133 

vesicles from ΔbdpA cells.  134 

BdpA constrains membrane extension morphology 135 

 The median diameter of the OMVs is also the apparent maximum diameter 136 

observed in outer membrane extensions29 suggesting BdpA influences membrane 137 

morphologies of both structures. As with the vesicles, WT and ΔbdpA cells made the 138 
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same number of extensions in perfusion flow conditions (Fig. 2c). The resolution of 139 

fluorescence microscopy was insufficient to identify morphological differences between 140 

OMEs.  To minimize sample processing of unfixed OMEs for cryo-TEM sample 141 

preparation, cells were deposited onto a glass coverslip instead of a perfusion flow 142 

chamber.  BdpA was also expressed from a 2,4-diacetylphloroglucinol (DAPG)-inducible 143 

promoter57 (PPhlF-BdpA) in the ΔbdpA strain containing the plasmid p452-bdpA.  After 3 144 

hours post deposition on cover glass, OMEs can be seen extending from WT, ΔbdpA, 145 

and ΔbdpA p452-bdpA cells (Fig. 3, Supplemental Fig. 1, 5 fields of view, n=3). Similar to 146 

perfusion flow experiments (Fig. 2c), no statistically significant difference in the overall 147 

frequency of OME production was observed between the cells in static cultures.  148 

Cryo-TEM was used to assess any morphological differences between the OMEs 149 

in each of the strains at the ultrastructural level.  S. oneidensis OMEs from unfixed WT, 150 

ΔbdpA, and ΔbdpA p452-bdpA strains were visualized at 90 minutes (Supplemental Fig. 151 

2) and 3 hours (Fig. 3) post deposition onto EM grids.  At 90 minutes, WT OME 152 

phenotypes appeared narrow, tubule-like, and seldom interspersed with lobed regions 153 

(Supplemental figure 2a).  In ΔbdpA OMEs, lobed regions are prevalent with irregular 154 

curvature (Supplemental figure 2b).  Several narrow ΔbdpA p452-bdpA OMEs evenly 155 

interspersed with slight constriction points or “junction densities” were observed extending 156 

from a single cell (Supplemental Fig. 2c), suggesting that BdpA expression rescues the 157 

phenotype by constricting and ordering OMEs into narrow tubules.  By 3 hours post 158 

inoculation, images of WT cells consistently show narrow, tubule-like OMEs (Fig. 3b, 159 

n=31).   The ΔbdpA OMEs generally appear as lobed, disordered vesicle chains with 160 

irregular curvature, and vesicles can be observed branching laterally from lobes on the 161 
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extensions (Fig. 3b, n=13).  Nascent WT OMEs from previous studies also exhibited 162 

lateral branching of vesicles and lobes, but they exhibited uniform curvature and diameter 163 

between lobes and were observed immediately following OME formation29.  Tubules were 164 

not observed in any ΔbdpA OMEs at 3 hours.  OMEs from ΔbdpA p452-bdpA cells appear 165 

as a narrow tubules of a uniform curvature or as ordered vesicle chains (Fig. 3b, n=3).   166 

Expression of BdpA results in OMEs during planktonic growth 167 

 S. oneidensis OMEs are more commonly observed during surface attachment 168 

rather than planktonic cultures7,29.  BAR domain proteins can directly promote tubule 169 

formation from liposomes in vitro24, so inducing expression of an additional copy of the 170 

bdpA gene prior to attachment could result in OME formation even during planktonic 171 

growth.  Growth curves were similar in cultures with the pBBR1-mcs2 empty vector in 172 

either of the WT (MR-1 pBBR1-mcs2) or ΔbdpA (ΔbdpA pBBR1-mcs2) background 173 

strains, but induction of bdpA in ΔbdpA p452-bdpA cells at higher concentrations of 1.25 174 

and 12.5 µM 2,4-diacetylphloroglucinol affected the growth rate (Supplemental figure 3).   175 

Planktonic cultures inoculated from overnight cultures were induced with 12.5 µM DAPG 176 

for 1 hour, labeled with FM 4-64, and imaged by confocal microscopy.  Neither WT (Fig. 177 

4) nor MR-1 pBBR1-mcs2 exposed to 12.5 µM DAPG (not shown) produced OMEs 178 

immediately following deposition onto cover glass. However, 12.5 µM DAPG-induced S. 179 

oneidensis MR-1 p452-bdpA cells displayed OMEs immediately, ranging between 1-7 180 

extensions per cell (Figure 4, Supplemental video 1). OME formation combined with 181 

growth rate data suggests bdpA expression in planktonic cultures redirects membrane 182 

production necessary for cell division into OMEs.  The ultrastructure of OMEs resulting 183 

from expression of bpdA from MR-1 p452-bdpA cells was examined by cryo-TEM, but in 184 
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this case samples from planktonic cultures were vitrified on EM grids after induction rather 185 

than incubation during induction on the EM grids. OMEs appear as tubule-like segments 186 

interspersed with pearled regions proximal to the main cell body (Fig. 4b).  OMEs from 187 

the MR-1 p452-bdpA strain are observed as thin, tubule-like outer membrane vesicle 188 

chains, suggesting BdpA involvement in the constriction of the larger outer membrane 189 

vesicle chains into longer, tubule-like extensions with more evenly interspersed junction 190 

densities.  The BdpA OME phenotype more closely resembles membrane tubules formed 191 

by the F-BAR protein Pacsin1 from eukaryotic cells, showing a mixture of tubule regions 192 

interspersed with pearled segments58,59.  193 

BdpA-mediated membrane extensions in Marinobacter atlanticus CP1 and E. coli. 194 

 To test the effect of expressing BdpA in an organism with no predicted BAR 195 

domain-containing proteins and no apparent OME production, BdpA was expressed in 196 

Marinobacter atlanticus CP160. Marinobacter and Shewanella are of the same 197 

phylogenetic order (Alteromonadales) and have been used for heterologous expression 198 

of other S. oneidensis proteins, such as MtrCAB61,62.  Upon exposure to DAPG, M. 199 

atlanticus containing the p452-bdpA construct (CP1 p452-bdpA) form membrane 200 

extensions (Figure 4).  OMEs ranged from small membrane blebs to OME tubules 201 

extending up to greater than 10 µm in length from the surface of the cell (Supplemental 202 

Fig. 4).  As noted previously, variation in the tubule phenotypes are commonly seen in 203 

tubules from eukaryotic F-BAR proteins58,59, showing possible mechanistic overlap of 204 

mutable membrane curvature functionalities between these two separate BAR domain 205 

proteins. 206 
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 In previous membrane curvature formation experiments with eukaryotic BAR 207 

domain proteins, localized BAR domain protein concentrations affected the resultant 208 

shape of the membranes, ranging from bulges to tubules and branched, reticular tubule 209 

networks at the highest protein densities63-65.  We predicted that expression of BdpA in 210 

cells optimized for protein overexpression, such E. coli BL21(DE3), would show OMEs 211 

resembling structures previously observed from eukaryotic BAR protein experiments in 212 

vitro.  While the uninduced E. coli BL21(DE3) p452-bdpA cells had uniform, continuous 213 

cell membranes similar to those of plasmid-free BL21(DE3) cells under the conditions 214 

tested, E. coli BL21(DE3) cells containing the p452-bdpA vector induced with DAPG had 215 

outer membrane extensions and vesicles (Figure 4).  When visualized over time, OMEs 216 

progressed towards a network of reticular membrane structures extending from the cell 217 

(Fig. 4c).  After 30 minutes, additional membrane blebs were observed that developed 218 

into elongated OMEs by 60 minutes.  Growth of E. coli OMEs was coincident with 219 

shrinking of the cell body (from initial cell length = 4.457 µm to 3.479 µm at 60 minutes), 220 

supporting direct membrane sculpting activity of BdpA.   221 

P-BAR: a new BAR domain subtype 222 

The discovery of a novel, functional BAR domain protein in prokaryotes provokes 223 

questions into the evolutionary origin of BAR domains, such as whether the BdpA BAR 224 

domain in Shewanella arose as a result of convergent evolution, a horizontal gene 225 

transfer event, or has a last common ancestor across all domains of life.  BdpA homologs 226 

were identified by PSI-BLAST in several other organisms, ranging from other species of 227 

Shewanella to Alishewanella, Rheinheimera, and Cellvibrio (Supplemental Fig. 5).    The 228 

current BAR domain pfam Hidden Markov Model (HMM) prediction analysis identified 229 
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BAR domain features in only 5 of the 52 prokaryotic homologs despite greater than 90% 230 

homology to S. oneidensis BdpA.  Functional analysis will be necessary to determine if 231 

these homologs contain unpredicted BAR domains and merit inclusion in the generation 232 

of a new BAR domain pfam seed alignment.  The resultant alignment was used to 233 

generate a maximum likelihood phylogenetic tree showing evolutionary relatedness of 234 

BdpA orthologs to the BAR domain prediction sequences (Supplemental Fig. 5).  The 5 235 

BdpA orthologs predicted to contain a BAR domain based on the current model were 236 

subsequently aligned with representative known BAR proteins from the various BAR 237 

domain subtypes (N-BAR, F-BAR, and I-BAR)66.  BdpA and its prokaryotic orthologs 238 

cluster separately from the eukaryotic BAR proteins in their own distinct clade (Fig. 5), 239 

suggesting that while BdpA contains a functional BAR domain, it represents its own class 240 

of BAR domain, hereafter named P-BAR (Prokaryotic BAR).  It seems likely that the P-241 

BAR domain arose as a result of horizontal gene transfer from a eukaryote due to the 242 

prevalence of eukaryotic coiled-coil proteins with predicted homology to BdpA after 2 243 

iterations of PSI-BLAST.  However, the branch lengths and low bootstrap values 244 

supporting the placement of P-BAR relative to other BAR domain subtypes make it 245 

challenging to directly infer the evolutionary history of P-BAR domains.  Discovery of other 246 

putative P-BAR proteins would help to build this analysis, and if future comparative 247 

proteomics analysis of OME/Vs demonstrates overlapping activity of BdpA with 248 

preferential cargo loading into OME/Vs, it could hint at the evolutionary origins of vesicle-249 

based protein trafficking.  Conservation of BAR domain proteins supports the notion that 250 

three-dimensional organization of proteins in lipid structures is as important to 251 
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prokaryotes as it is eukaryotes, and suggests additional novel P-BAR proteins are waiting 252 

to be discovered. 253 

 254 

Methods 255 

Bacterial strains, plasmids, and medium The bacterial strains used in this study can 256 

be found in Supplemental Table 1.  S. oneidensis strains were grown aerobically in Luria 257 

Bertani (LB) media at 30˚C with 50 µg/mL kanamycin when maintaining the plasmid.  To 258 

observe membrane extensions, cells were centrifuged and resuspended in a defined 259 

media comprised of 30 mM Pipes, 60 mM sodium DL-lactate as an electron donor, 28mM 260 

NH4Cl, 1.34 mM KCl, 4.35 mM NaH2PO4, 7.5 mM NaOH, 30 mM NaCl, 1mM MgCl2, 1 261 

mM CaCl2, and 0.05 mM ferric nitrilotriacetic acid30.  Marinobacter atlanticus CP1 strains 262 

were grown in BB media (50% LB media, 50% Marine broth) at 30˚C with 100 µg/mL 263 

kanamycin to maintain the plasmids as described previously60.   264 

Inducible BdpA expression plasmids were constructed for use in S. oneidensis 265 

MR-1, M. atlanticus CP1, and E. coli BL21(DE3) using the pBBR1-mcs2 backbone 266 

described previously60.  The Marionette sensor components (phlF promoter, consitutively 267 

expressed PhlF repressor, and yellow fluorescence protein (YFP)) cassette from 268 

pAJM.45257 was cloned into the pBBR1-mcs2 backbone, and the YFP cassette was 269 

replaced with the gene encoding BdpA by Gibson assembly (primers in Supplemental 270 

Table 1).  The resulting plasmid was given the name p452-bdpA.  The Gibson assembly 271 

reactions were electroporated into E. coli Top10 DH5α cells (Invitrogen), and the 272 

sequences were confirmed through Sanger sequencing (Eurofins genomics).  Plasmid 273 

constructs were chemically transformed into conjugation-competent E. coli WM3064 cells 274 
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for conjugative transfer into the recipient bacterial strains of S. oneidensis MR-1 and M. 275 

atlanticus CP1.  The same BdpA expression vector was transformed into E. coli 276 

BL21(DE3) cells (Invitrogen) by chemical transformation.   277 

Generation of a scarless ΔbdpA knockout mutant of S. oneidensis was performed 278 

by combining 1 kilobase fragments flanking upstream and downstream from bdpA by 279 

Gibson assembly into the pSMV3 suicide vector.  The resultant plasmid pSMV3_1507KO 280 

was transformed into E. coli UQ950 cells for propagation.  Plasmid sequences were 281 

confirmed by Sanger sequencing before chemical transformation into E. coli UQ950 for 282 

conjugation into S. oneidensis.  Conjugation of pSMV3_1507KO into S. oneidensis MR-283 

1 was performed as described previously31. 284 

Purification of Outer Membrane Vesicles S. oneidensis MR-1 cells were grown in LB 285 

in 1L non-baffled flasks at 30 C at 200 RPM. When an OD600 of 3.0 was reached, cells 286 

were pelleted by centrifugation at 5000 x g for 20 min at 4°C, resulting supernatant was 287 

filtered through a 0.45 μm filter to remove remaining bacterial cells.  Vesicles were 288 

obtained by centrifugation at 38,400 x g for 1 h at 4°C in an Avanti J-20XP centrifuge 289 

(Beckman Coulter, Inc).  Pelleted vesicles were resuspended in 20 ml of 50 mM HEPES 290 

(pH 6.8) and filtered through 0.22 μm pore size filters.  Vesicles were again pelleted as 291 

described above and finally resuspended in 50 mM HEPES, pH 6.8, except for vesicle 292 

preparations used for electrochemistry which were suspended in 100 mM MES, 100 mM 293 

KCl, pH 6.8.  Extracellular DNA, flagella, and pili can all be co-purified.  Protocol was 294 

adapted from67.   295 
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Dynamic Light Scattering Distribution of vesicle diameters were measured with Wyatt 296 

Technology's Möbiuζ dynamic light scattering instrument.  297 

Electrochemistry CHA Industries Mark 40 e-beam and thermal evaporator was used to 298 

deposit a 5 nm Ti adhesion layer and then a 100 nm Au layer onto cleaned glass 299 

coverslips (43X50 NO. 1 Thermo Scientific Gold Seal Cover Glass, Portsmouth NH, 300 

USA). Self-assembled monolayers were formed by incubated the gold coverslip in a 301 

solution of 1mM 6-mercaptohexanoic acid in 200 proof ethanol for at least 2 hours.  302 

Electrode was then rinsed several time in ethanol followed by several rinses in milliQ 303 

water.  The SAMs layer was then activated by incubation in 100 mM N-(3-304 

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and 25 mM N-305 

hydroxysuccinimide, pH 4, for 30 minutes.  A sample of outer membrane vesicles was 306 

deposited on the surface of the electrode and incubated at room temperature overnight 307 

in a humid environment.  Cyclic voltammetry was performed in a 50 mL 3 electrode half-308 

cell completed with a platinum counter electrode, and a 1 M KCl Ag/AgCl reference 309 

electrode electrical controlled by a Gamry 600 potentiostat (Gamry, Warminster, PA).  310 

The whole experiment was completed in an anaerobic chamber with 95% nitrogen, 5% 311 

hydrogen atmosphere.  312 
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Proteomics Vesicle samples were prepared as described above.  S. oneidensis outer 313 

membrane (OM) was purified via the Sarkosyl method described by Brown et al.68.  A 50 314 

mL overnight culture of cells was harvested by centrifugation at 10,000 × g for 10 min.  315 

The cell pellet suspended in 20 mL of 20 mM ice-cold sodium phosphate (pH 7.5) and 316 

passed four times through a French Press (12000 lb/in2).  The lysate was centrifuged at 317 

5,000 × g for 30 min to remove unbroken cells.  The remaining supernatant was 318 

centrifuged at 45,000 × g for 1 h to pellet membranes.  Crude membranes were 319 

suspended in 20 mL 0.5% Sarkosyl in 20 mM sodium phosphate and shaken horizontally 320 

at 200 rpm for 30 min at room temperature.  The crude membrane sample was centrifuged 321 

at 45,000 × g for 1 h to pellet the OM.  The pellet of OM was washed in ice-cold sodium 322 

phosphate and recentrifuged.  323 

To prepare for mass spectrometry samples were treated sequentially with urea, 324 

TCEP, iodoactinamide, lysl endopeptidase, trypsin, and formic acid.  Peptides were then 325 

desalted by HPLC with a Microm Bioresources C8 peptide macrotrap (3x8mm).  The 326 

digested samples were subjected to LC-MS/MS analysis on a nanoflow LC system, 327 

EASY-nLC 1200, (Thermo Fisher Scientific) coupled to a QExactive HF Orbitrap mass 328 

spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a Nanospray 329 

Flex ion source.  Samples were directly loaded onto a PicoFrit column (New Objective, 330 

Woburn, MA) packed in house with ReproSil-Pur C18AQ 1.9 um resin (120A° pore size, 331 

Dr. Maisch, Ammerbuch, Germany).  The 20 cm x 50 μm ID column was heated to 60° 332 

C.  The peptides were separated with a 120 min gradient at a flow rate of 220 nL/min.  333 

The gradient was as follows: 2–6% Solvent B (7.5 min), 6-25% B (82.5 min), and 25-40% 334 

B (30 min) and to 100% B (9min).  Solvent A consisted of 97.8% H2O, 2% ACN, and 335 
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0.2% formic acid and solvent B consisted of 19.8% H2O, 80% ACN, and 0.2% formic 336 

acid.  The QExactive HF Orbitrap was operated in data dependent mode with the Tune 337 

(version 2.7 SP1build 2659) instrument control software.  Spray voltage was set to 2.5 338 

kV, S-lens RF level at 50, and heated capillary at 275 °C. Full scan resolution was set to 339 

60,000 at m/z 200. Full scan target was 3 × 106 with a maximum injection time of 15 ms. 340 

Mass range was set to 300−1650 m/z. For data dependent MS2 scans the loop count 341 

was 12, target value was set at 1 × 105, and intensity threshold was kept at 1 × 105. 342 

Isolation width was set at 1.2 m/z and a fixed first mass of 100 was used.  Normalized 343 

collision energy was set at 28.  Peptide match was set to off, and isotope exclusion was 344 

on.  Data acquisition was controlled by Xcalibur (4.0.27.13) and all data was acquired in 345 

profile mode.  346 

Bioinformatics Putative BAR domain SO_1507 (BdpA) was identified in search of 347 

annotation terms of S. oneidensis MR-1. The conserved domain database (CDD-348 

search)(NCBI) was accessed to identify the position-specific scoring matrix (PSSM) that 349 

matched and specific region of SO_1507 that represented the BAR domain. It was 350 

confirmed that a region 276-421 matched to BAR superfamily cl12013 and specifically to 351 

the family member BAR cd07307.  LOGICOIL multi-state coiled-coil oligomeric state 352 

prediction was used to determine the presence of coiled-coils within BdpA.  SignalP 6.1 353 

was used to detect the presence of the signal peptide and cellular localization of BdpA.   354 

A PSI-BLAST69 search against the NCBI nr database was performed using the 355 

BdpA BAR sequence as the initial search seed to determine how prevalent the BdpA BAR 356 

domain is in related species. Conserved BdpA orthologs were annotated as hypothetical 357 

proteins in all of the species identified.  In the initial round, 24 proteins were found from 358 
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other organisms identified as Shewanella with a high conservation among the proteins 359 

and another 28 proteins were found in more distant bacteria species that had similarity of 360 

65% to 44 %. A second iteration identified a few proteins much more distantly related 361 

from bacterial species and then proteins from eukaryote phylum Arthropoda that were 362 

annotated as being centrosomal proteins. All of the found proteins from bacterial species 363 

were hypothetical proteins with no known function. Only five of the proteins from the 364 

search returned hits to the PSSM of the BAR cd07307. The identity among the proteins 365 

was very high and examination of the proteins suggests that a functional form similar to 366 

the BAR domain would result for all the found proteins. Overall this places the original 367 

protein SO_1507 as a protein that just barely meets criteria via PSSM models to be 368 

assigned a matching the BAR domain while the rest of the proteins found have enough 369 

differences to fail to match the BAR model while still being very similar to SO_1507. An 370 

attempt was made to build up a HMM (Hidden Markov Model) using HMMer to use for 371 

searching for other proteins that might match but as with the PSI-BLAST search only the 372 

proteins that formed the model returned as good matches. So there appear to be a tight 373 

clade of very similar proteins with very little differentiation in the sequence. This indicates 374 

that while sequence homology between BdpA and the existing BAR domain consensus 375 

sequence predicted the BAR domain region in BdpA using hmmer or NCBI tools, the 376 

sequence conservation is at the cusp of a positive hit by the HMM since other closely 377 

related (>90% homology) BdpA orthologs were not predicted to contain a BAR domain 378 

by this method.  The most homologous eukaryotic protein to BdpA (27%) is a putative 379 

centrosomal protein in Vollenhovia emeryi (accession #: XP_011868153) that is predicted 380 

to contain an amino terminal C2 membrane binding domain and a carboxy-terminal SMC 381 
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domain within a coiled-coil region.  Despite CDD search failing to predict the presence of 382 

a BAR domain in this protein, it does not preclude the presence of one, pending an 383 

updated BAR pfam HMM. 384 

 385 

Confocal microscopy For in vivo imaging of intrinsic outer membrane extension 386 

production, S. oneidensis MR-1 strains were grown in LB media overnight, washed twice 387 

with SDM, and diluted to an OD600 of 0.05 in 1 mL of SDM with appropriate antibiotics.  388 

Prior to pipetting, ~1cm of the pipette tip was trimmed to minimize shear forces during 389 

transfer.  100 µL of each culture was labeled with 1 µL 1M FM 4-64 to visualize the cell 390 

membranes.  After staining, 10 µL of the labeled cell suspension was gently pipetted onto 391 

22 x 22 mm No.1 cover glass (VWR) and sealed onto glass slides with clear acrylic nail 392 

polish (for confocal imaging) or onto chambered cover glass (for widefield fluorescence).  393 

On average, intrinsic membrane extension formation could be observed starting after 45 394 

minutes sealed onto cover glass.  Diluted cells were induced with 12.5 µM DAPG for 1 395 

hour at 30˚C with 200 RPM shaking agitation for planktonic OME production.  Cells were 396 

labeled with FM 4-64 and sealed onto glass slides as before.  Induced OMEs were imaged 397 

immediately after mounting onto slides.   398 

Confocal images were taken by a Zeiss LSM 800 confocal microscope with a Plan-399 

Apochromat 63x/1.4 numerical aperture oil immersion M27 objective.  FM 4-64 400 

fluorescence was excited at 506 nm: 0.20% laser power.  Emission spectra was detected 401 

from 592-700 nm using the LSM 800 GaAsP-Pmt2 detector.  To capture the dynamics of 402 

the OMEs, images were collected over the designated length of time between 0.27 – 0.63 403 

seconds per frame.  Single frame time series images were collected of either a 50.71 µm 404 
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by 50.71 µm (2x zoom) or a 20.28 µm by 20.28 µm (5x zoom) field of view.  Images were 405 

recorded using the Zeiss Zen software (Carl Zeiss Microscopy, LLC, Thornwood, NY, 406 

USA). 407 

Perfusion flow microscopy For OME statistics comparing S. oneidensis strains MR-1 408 

and ΔbdpA, cells were pre-grown aerobically from frozen (-80°C) stock in 10 mL of Luria-409 

Bertani (LB) broth (supplemented with 50 µg/mL Kanamycin for strains with plasmid) in a 410 

125-mL flask overnight at 30°C and 225 rpm. The next day, the stationary phase (OD600 411 

3.0 – 3.3) preculture was used to inoculate 1:100 into 10 mL of fresh LB medium in a 125-412 

mL flask. After ~6 hours at 30°C and 225 rpm, when the OD600 was 2.4 (late log phase), 413 

5 mL of cells were collected by centrifugation at 4226 x g for 5 min and washed twice in 414 

defined medium. The perfusion chamber, microscope, and flow medium described 415 

previously7,29,30 were used for all perfusion flow OME statistics experiments. During each 416 

5 hour imaging experiment, the perfusion chamber was first filled with this flow medium, 417 

then <1 mL of washed cells were slowly injected for a surface density of ~100-300 cells 418 

per 112 x 112 µm field of view on a Nikon Ti-E inverted microscope. Cells were allowed 419 

to attach for 5-15 minutes on the coverslip before perfusion flow was resumed at a 420 

volumetric flow rate of 6.25 ± 0.1 µL/s. Cells and OMEs were visualized with the red 421 

membrane stain FM 4-64FX in the flow medium (0.25 µg/mL of flow medium). A total of 422 

1,831 wild type and 2,265 ΔbdpA cells were used for extension and vesicle quantification. 423 

 424 

Cryo transmission electron microscopy  425 

Shewanella strains were streaked onto LB plates with or without kanamycin and allowed 426 

to incubate 3 days on a benchtop. The night before freezing, individual colonies were 427 
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inoculated into 3 ml LB +/- kanamycin and incubated at 30 °C overnight with 200 rpm 428 

shaking. The following morning optical densities of the cultures were measured at 429 

600nm and adjusted to a final OD600 of 1. Cells were pelleted at 8,000 rpm for three 430 

minutes for buffer exchange/washes. For the ΔbdpA_p452-bdpA transformed cells, 12.5 431 

µM DAPG was added.  A freshly glow discharged 200 mesh copper grid with R2/1 432 

Quantifoil carbon film was placed into a concavity slide. Approximately 150 µl of a 1:10 433 

dilution of the cell suspensions, with or without the inducer, was added to cover the grid. 434 

A glass coverslip was then lowered onto the concavity to exclude air bubbles. The 435 

edges of the coverslip were then sealed with nail polish to prevent media evaporation. 436 

The slide assembly was then incubated in a 30 °C incubator for 1.5 to 3 hours. 437 

Immediately prior to plunge freezing, the top coverslip was removed by scoring the nail 438 

polish with a razor blade. TEM grids with cells were gently retrieved with forceps and 439 

loaded into a Leica grid plunge for automated blotting and plunging into LN2-cooled 440 

liquid ethane. Vitrified grids were transferred to a LN2 storage dewar. Imaging of frozen 441 

samples was performed on either a Titan (ThermoFisher Scientific) microscope 442 

equipped with a Gatan Ultrascan camera and operating at 300 kV or a Talos 443 

(ThermoFisher Scientific) equipped with a Ceta camera and operating at 200 kV. 444 

Images were acquired at 10,000 to 20,000 X magnification and were adjusted by 445 

bandpass filtering. 446 

 447 
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 637 

Figure 1 Redox active vesicles are enriched with BAR domain protein BdpA. A. Cryo-TEM 638 
of S. oneidensis MR-1 extra cellular vesicles (scale = 200 nm). B. Cyclic voltammetry of 639 
vesicles adhered to gold electrode via small self-assembled monolayers, as diagramed. 640 
Inset shows first derivative of anodic scan. C. Volcano plot of vesicle proteome compared 641 
to cell-associated outer membrane. D. Schematic of BbdA domains. 642 
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 644 

Figure 2 BdpA is responsible for maintaining vesicle morphology but does not alter the 645 
frequency of OMV or OME formation. A. Dynamic light scattering of deletion strain 646 
compared to wild type, with weighted averages of vesicle size (p = 0.038). B. 647 
Quantification of large vesicles being produced by living cells monitored by fluorescence 648 
microscopy. C. Quantification of total number of vesicles and extensions being formed by 649 
living cells as observed my fluorescence microscopy. Error bars represent standard 650 
deviation. 651 
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 653 

 654 

Figure 3 BdpA promotes OME maturation into ordered tubules. A) Fluorescence microscopy (left) 655 
and cryo-TEM (right) images of S. oneidensis WT (top), ΔbdpA (middle), and ΔbdpA p452-bdpA 656 
(bottom) OMEs. Scale = 2 µm (left), 100 nm (right).  B)  Representative cartoon of OME 657 
phenotypes and relative phenotype frequency per outer membrane structure observed from each 658 
strain.  Membrane blebs/bulges were defined as non-structured membrane protrusions that did 659 
not resemble either of the other OME categories. 660 
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 662 

Figure 4 Heterologous expression of BdpA promotes OME formation.  A) Induction of BdpA 663 
expression during planktonic, non-attached growth results in OME formation in S. oneidensis 664 
(left), M. atlanticus CP1 (middle), and E. coli BL21 DE(3) (right).  Scale = 2 µm.  B)  Cryo-TEM 665 
image of planktonic S. oneidensis OMEs upon induction of BdpA.  Scale = 200 nm.  C)  OME 666 
growth over time at 30 minute intervals of E. coli BL21 DE(3) expressing BdpA while attached to 667 
a glass surface.  Scale = 2 µm.   668 
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 670 

 671 

 

Figure 5 Comparative phylogenetic analysis of BdpA with prokaryotic orthologs and eukaryotic 672 
BAR domains.  Maximum Likelihood evolutionary histories were inferred from 1000 bootstrap 673 
replicates, and the percentage of trees in which the taxa clustered together is shown next to the 674 
branches.  Arrows indicate multiple branches collapsed to a single node, where arrow height is 675 
relative to the number of taxa enclosed within the arrow.  S. oneidensis BdpA and 5 prokaryotic 676 
orthologs (WP_011623497 – unclassified Shewanella genus, ESE40074 – S. decolorationis S12, 677 
WP_039978560 - S. decolorationis, KEK29176 – S. xiamenensis, and WP_055648003 – 678 
Shewanella sp. Sh95) predicted by the current BAR domain pfam HMM to contain a BAR domain 679 
aligned with representative BAR domains from various BAR domain subtypes (N-BAR, F-BAR, I-680 
BAR). 681 
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