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Abstract— The bottom up design of genetic circuits to
control cellular behavior is one of the central objectives
within Synthetic Biology. Performing design iterations on
these circuits in vivo is often a time consuming process, which
has led to E. coli cell extracts to be used as simplified circuit
prototyping environments. Cell extracts, however, display
large batch-to-batch variability in gene expression. In this
paper, we develop the theoretical groundwork for a model
based calibration methodology for correcting this variability.
We also look at the interaction of this methodology with
the phenomenon of parameter (structural) non-identifiability,
which occurs when the parameter identification inverse
problem has multiple solutions. In particular, we show that
under certain consistency conditions on the sets of output-
indistinguishable parameters, data variability reduction can
still be performed, and when the parameter sets have a cer-
tain structural feature called covariation, our methodology
may be modified in a particular way to still achieve the
desired variability reduction.

I. INTRODUCTION

Cell-free extracts have been proposed as a potential tool
for the rapid prototyping of genetic circuits in synthetic
biology [1]. One of the challenges in the development of
this technology is that there is significant variability across
different batches of extracts, which limits our ability to
reliably generalize the results of any one extract. Takahashi
et al. [2] showed large variation in the constitutive expres-
sion of a fluorescent protein between batches, and Hu et
al. [3] showed that the variability in expression could be
mapped to variability in the parameter estimates. Interest-
ingly, Garamella et al. [4] showed minimal variability in
constitutive gene expression between four extract batches.
However, such reproducibility has not been demonstrated
in other labs, and furthermore, Garamella et al. did not
demonstrate the lack of variability in the behavior of more
complex circuits.

In this paper, we develop a framework for the computa-
tional reduction of extract variability. We begin by defining
some notation (Section II) and framing the variability
reduction in terms of the so called data correction problem
(Section III). We then define the calibration-correction
method, named after a similar method developed to correct
wind tunnel variability [5], which solves this problem
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(Section III). Next, we show that under certain consistency
conditions, the presence of parameter non-identifiability
does not hinder our methodology (Section IV). We also
show that these consistency conditions may be violated
when the non-identifiability possesses a certain structural
feature, and end with a modification to the methodology
that addresses this phenomenon (Section V).

II. NOTATION AND PRELIMINARY IDEAS

A. Systems, Experiments, Models and Parameters

We consider systems S = (E,C) described as a com-
bination of an extract E and a circuit C, and define an
experiment H = (S, x0, y) to be the execution of a system
under initial conditions x0 and output measurements y,
where the bar denotes the assumption that experimental
data is reflects the “ground truth”. Time dependent inputs
may be included without significant change to the results
derived in this paper, and are suppressed for simplicity.

The parameter vector θ of a model M associated with
a given experiment will be partitioned into extract specific
parameter (ESP) coordinates e ∈ RqE , and circuit specific
parameter (CSP) coordinates c ∈ RqC . We do not restrict
these parameters to be in the positive orthant, since any
positive parameters may be log transformed.

The partition of θ = (e, c) into ESPs and CSPs may
be made using the following guidelines: ESPs are param-
eters associated primarily with species that are present
in the system regardless of the the circuit implemented.
Examples include the total concentration of transcriptional
or translational machinery, or elongation rates. CSPs are
parameters associated with species that may no longer
exist in the system when the circuit is changed. Examples
include transcription factor dimerization rates.

Experiments are modeled using initialized parametrized
models with the equations of the general form

ẋ = f (x ,θ ),
y(θ , x0) = h(x ,θ ), x(0) = x0(θ ).

(1)

Here x , x0 ∈ Rn
+, the solutions are assumed to exist for

all t ≥ 0, the parameter vector symbol is θ = (e, c) ∈
Ω ⊆ RqE+qC , where Ω is the set of all parameter values
of interest. The output is denoted y(θ , x0) ∈ Rr . The
functions f and h are assumed to be analytic vector
fields with respect to x in some neighborhood of any
attainable x , and time dependence of the vector fields can
be modeled by including t in the state variables [6]. We
will use the shorthand y(θ , x0) = M(θ , x0) to refer to the
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model in Equation (1), and will often suppress arguments
such as x0 for brevity. We will sometimes replace (θ ) with
(e, c), as in stating y (e, c) = M (e, c) or just M (e, c). We will
use the hat symbol (̂ ) to denote an estimated parameter
value (θ̂ , for instance), or a simulated model trajectory,
ŷ. The tilde (̃ ) over parameter symbols is reserved for
miscellaneous purposes, particularly in proofs.

B. The Model Universe and Model Correctness Assumptions

Our analytical results will be stated and proved in a
virtual model universe, where artificial data y are gen-
erated using nominal models M with known nominal
parameter values θ . I.e., in the model universe, we identify
H = (S, x0, y) with y = M(θ , x0).

We will also make a model correctness assumption, de-
noted M = M , which states that the models we use to es-
timate parameters from the data are the very models used
to generate the data. The model correctness assumption
allows us to isolate the interaction of non-identifiability
with our method. Issues associated with model correctness
or the use of approximate models (that often arise due to
model order reduction) form an interesting direction for
future work. Furthermore, note that we will always use
single points to specify nominal parameter values, even
when we can only identify sets of parameter values from
the output trajectories. In this paper, we will use the model
universe assumption to refer to both assumptions.

C. Parameter Non-Identifiability

In this section, we follow Walter and Lecourtier [6] in
defining the notion of structural non-identifiability.

Definition 1 (Output-Indistinguishability). Let M(θA) be
a parametrized model, and let M(θB) be a model with the
same structure. M(θA) and M(θB) are said to be output-
indistinguishable if

θA, θB ∈ Ω,
y(θA, x0) = y(θB, x0) ∀t ≥ 0, ∀x0 ∈Rn

+.
(2)

Definition 2 (Structural Global Identifiability (parame-
ter)). The i th coordinate of θA, denoted θA,i , is structurally
globally identifiable (SGI) if for almost any θA ∈ Ω, Equa-
tion (2) has a unique solution for θB,i .

This means that for an SGI coordinate, output indis-
tinguishable trajectories almost always lead to a unique
estimate of the coordinate.

Definition 3 (Structural Global Identifiability (model)).
The model M(θ ) is called structurally globally identifiable
(SGI) if all its parameters θi , for i = 1, 2, . . . , qE + qP , are
SGI.

In the absence of global structural identifiability, mul-
tiple points in the parameter space give rise to the same
output behavior. In biological applications, this situation
tends to be common due to a limited number of mea-
surements and a large number of state variables [7]. Our
main goal is to demonstrate that it is not always necessary

to achieve global identifiability for every parameter to
achieve a modeling objective such as ours. To this end, we
shall consider models with non-SGI parameters, and thus
allow e and c to exist in sets of output-indistinguishable
parameters, denoted by E and C respectively.

III. THE CALIBRATION-CORRECTION METHODOLOGY
In this section, we give formal definitions of the data

correction problem, the parameter identification operation
and the calibration-correction method. We begin by defin-
ing two extracts, the reference extract (E1), and a candidate
extract (E2). Let Hi,cal (resp. Hi,test) be an experiment per-
formed with a calibration circuit Ccal (resp. test circuit Ctest)
in the extract Ei . Let Mcal and Mtest be the corresponding
models, and assume that the reaction mechanisms defining
them are modeled at the same level of detail. For example,
in this paper, we consider a constitutive gene expression
circuit as Ccal and a tetR mediated repression circuit as
Ctest. In both these circuits, gene expression is modeled
with the simple enzymatic reaction,

dna+ enz
kf−−"#−−
kr

dna:enz
kc−−→ dna+ enz+ prot. (3)

This is crucial because it allows for parameters estimated
from one model to be used in the other. With these
definitions, we may state the data correction problem
(Figure 1).

Definition 4 (Data Correction Problem). Consider the test
circuit experiments Hi,test = ((Ei ,Ctest), x0,test, yi,test), i =
1, 2. Assume that we may choose the experiments Hi,cal,
i = 1, 2 and collect the corresponding data y1,cal and y2,cal.
Furthermore, assume that we may pick the models Mcal
and Mtest, as long as they are at the same level of modeling.
Solving the data correction problem (DCP) involves taking
the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returning a
trajectory ŷ1,test, such that ŷ1,test = y1,test.

Remark 1. In general, the DCP will only be solvable in the
model universe, where y i,cal ! M cal(ei , ccal) and yi,test !
M test(ei , ctest), i = 1, 2. ⋄
Remark 2. With real data, the equality ŷ1,test = y1,test must
be replaced with the approximate equality ŷ1,test ≈ y1,test
defined in some sense. For instance, we may require
that d(y1,test, ŷ1,test) <

1
2 d(y1,test, y2,test), where d is an

appropriate metric. ⋄
Next, define the set valued parameter identification

operator that will be used for studying the effect of non-
identifiability on our methodology.

Definition 5 (Parameter Identification). Let the set Γθ
be the set of all pairs (y, M(θ )) for which there exists
a parameter θ̂ ∈ Ω such that y = M(θ̂ ). Let P(Ω) be
the power set of Ω. We define the parameter identification
of the θ coordinates of the model M as an operation
IDθ : Γθ → P(Ω), with IDθ (y, M(θ )) = {θ̂ ∈ Ω | y = M(θ̂ )}

In the definition above we have explicitly included θ
as a subscript to ID and Γ . This is useful because we also
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Fig. 1. The data correction problem involves the transformation of
the behavior of a test circuit (ii, a tetR repression circuit here), from a
candidate extract to a reference extract. We have the freedom to design
and implement a set of calibration experiments (Hi,cal, i = 1, 2) on the
two extracts (i, constitutive expression of GFP here), and collect the
resulting data (y1,cal and y2,cal).

define a conditional version of ID, as described in Remark
3 below.

Remark 3. We define two modifications to the use of the
IDθ operator. First, we allow for the identification of a
subset of parameter coordinates, such as c, with values
for the remaining parameter coordinates fixed, e = ẽ. We
call this the conditional ID operator, and use the nota-
tion IDc|e=ẽ(y, M(e, c)), which will often be abbreviated to
IDc(y, M(ẽ, c)), to describe it. The domain of the modified
operator is Γc|e=ẽ = {(y, M) | ∃c : y = M(ẽ, c)}, or Γc for
short. Similarly, the codomain can be either P(Rqc) or
P(projcΩ), where projc denotes the projection operator
from the full coordinate space to the CSP coordinates, c.

A second method of identifying values for some subset
of parameter coordinates (say c once again) is to iden-
tify values over all the parameter coordinates, and then
to project the resulting set down to the coordinates of
interest, as in projc IDθ (y, M), where θ = (e, c). ⋄

Next, we define the calibration-correction method as a
sequence of steps involving parameter identification and
prediction. Along with stating each step of the method
in terms of single parameter points or trajectories, we
also give descriptions of the sets of all such points and
trajectories. The definitions of these sets allow for the
investigation of how structural non-identifiability of pa-
rameters affects this method’s ability to solve the DCP.

Briefly, the method involves performing calibration ex-
periments to find ESPs corresponding to each extract by
fitting Mcal to y i,cal for i = 1, 2. Next, the ESPs for the
candidate extracts are fixed in the test model, and the CSPs
for this model are estimated using corresponding data.
Finally, a corrected trajectory is generated by simulating
the test model using these CSPs, along with the ESPs for
the reference extract, E1.

Definition 6 (The Calibration-Correction Method). Con-

sider the DCP in the model universe. We define the
calibration-correction method as a sequence of steps that
takes the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns
a prediction ŷ1,test. The steps are:

1) Calibration Step. Find ê1,cal and ê2,cal such that
(ê1,cal, ê2,cal, ĉcal) satisfies y1,cal = Mcal(ê1,cal, ĉcal) and
y2,cal = Mcal(ê2,cal, ĉcal) for some ĉcal. The sets of all
such ESP points are found by projecting the set

Θ̃cal !
!
(e1, e2, c)
"" yi,cal = Mcal(ei , c), i = 1, 2

#
,

onto the corresponding ESP coordinates:

Ei,cal ! projei
Θ̃cal, i = 1, 2. (4)

2) Correction Step One. Identify ĉ2,test such that y2,test =
Mtest(ê2,cal, ĉ2,test). The set of all such points is

C′2,test !
⋃

ê∈E2,cal

IDc|e=ê

%
y2,test, Mtest

&
e, c
'(

. (5)

3) Correction Step Two. Generate the prediction ŷ1,test !
Mtest(ê1,cal, ĉ2,test). Note that the set of all such pre-
dictions is

Y1 !
⋃

ê∈E1,cal

⋃

ĉ∈C′2,test

ŷ1(ê, ĉ), (6)

with individual predictions ŷ1(ê, ĉ)! Mtest(ê, ĉ).

Remark 4. The version of the calibration step defined
above is straightforward to implement computationally. It
involved a single estimation step, followed by projections.
We also give an equivalent (equivalence established by
the Lemma in Appendix VI-A) definition that allows for
the estimation of the parameters of the two extracts
separately. Start by estimating the joint ESP-CSP sets for
individual extracts, Θi,cal ! IDθ

&
yi,cal, Mcal(θ )
'
, i = 1, 2,

and then compute the set of CSPs where these agree, Ccal !
projcΘ1,cal ∩ projcΘ2,cal. Finally, the ESP sets are generated
by restricting the Θi,cal by Ccal and projecting the result into
the ESP coordinates, Ei,cal !

)
e | ∃c ∈ Ccal : (e, c) ∈ Θi,cal

*
,

i = 1, 2.
The fact that the sets Θi,cal, i = 1, 2, are estimated

separately can be useful in cases where the dimension
of the spaces e and c live in (i.e., qE and qC) are large
enough that estimating Θ̃cal ∈R2qE+qC might be much more
difficult than estimating Θi,cal ∈RqE+qC . The trade-off here
is that intersections and restrictions of sets represented by
point clouds can be computationally difficult. ⋄
Remark 5. Note that the set C′2,test is a subset of the
larger set C2,test ! projc IDθ (y2,test, Mtest). Indeed, C′2,test is
obtained from C2,test by only keeping the points whose
corresponding e coordinate values were in the calibration
set E2,cal. We use C′2,test because in the first correction step,
we identify c only after fixing the value of e to an arbitrary
point within E2,cal. ⋄
Remark 6. We can define two failure conditions for the
calibration-correction method that will be useful in deriv-
ing the main theoretical results of this chapter. Both the



conditions must be avoided for the calibration-correction
method to solve the DCP.

The first condition (FC1) occurs if a parameter iden-
tification step is attempted when no parameter exists
such that the model fits the data. This means that the
data-model pair (y, M) under consideration is not in the
domain, Γ , of the operator ID. For example, in the first cor-
rection step, if ê2,cal is such that there is no c̃ that satisfies
y2,test = Mtest(ê2,cal, c̃), then the parameter estimation step
fails at this point. In terms of Equation (5), this failure
condition occurs if it occurs for any point e in E2,cal.

The second failure condition (FC2) occurs if correction
step two is able to produce a trajectory not equal to the
true trajectory, i.e., ŷ1,test ̸= y1,test. In terms of the set Y1
defined in Equation (6), this means that Y1 contains at
least one element that is not equal to y1,test. ⋄

IV. IDENTIFIABILITY CONDITIONS

In this section, we show that the SGI property is not
necessary for the calibration-correction method to solve
the DCP. This will be stated as a corollary of the main
result of this section (Theorem 1), which gives conditions
on the sets of parameters obtained during the calibration-
correction method such that the method solves the DCP.

The results rely on two insights. First, the set of output
indistinguishable parameters is an equivalence class with
respect to the problem of fitting model output trajectories
to data [8]. In terms of implementation, this means that an
arbitrary point may be picked from this set, and the model
output will fit the data trajectories at this point. Second,
the calibration-correction method involves only fitting and
predicting the output trajectories, and not the full state
trajectories. This allows us to consider the possibility
of treating the sets of parameters obtained during the
calibration step and the first correction step as equivalence
classes with respect to the prediction step (correction step
two) of the method. Indeed, we derive conditions under
which we may pick arbitrary points from the sets E2,cal,
C2,test and E1,cal and still have the method solve the DCP.

Theorem 1 (Parameter consistency). Consider the DCP in
the model universe. Furthermore, consider the calibration-
correction method, and the sets Θ̃cal, E1,cal, E2,cal and C′2,test.
Define Θi,test ! IDθ

&
yi,test, M test(θ )
'

for i = 1, 2. Then, the
conditions

Θ̃cal ̸= -, (7)
E2,cal ⊆ projeΘ2,test, (8)

E1,cal × C′2,test ⊆ Θ1,test, (9)

are necessary and sufficient for the calibration-correction
method to solve the DCP.

Proof. We note that solving the DCP using the calibration-
correction method simply involves avoiding the failure
conditions FC1 and FC2 described in Remark 6. Avoiding
FC1 wherever it may occur ensures that the method can
be implemented in the first place, and avoiding FC2 means

that the method returns only the desired result. Thus, we
must show that the conditions (7-9) are necessary and
sufficient for avoiding FC1 and FC2.

The necessity of condition (7) follows from the fact that
if Θ̃cal = -, then there does not exist a vector (e1, e2, c)
such that y i,cal = Mcal(ei , c) for i = 1, 2, leading to FC1 at
the calibration step. We note in passing that in the model
universe, condition (7) always holds.

Next, we prove the necessity of E2,cal ⊆ E2,test !
projeΘ2,test. Assume that there exists an ẽ ∈ E2,cal such
that ẽ /∈ E2,test. Thus, there does not exist a c̃ such that
Mtest((ẽ, c̃)) = y2,test. Since the operator IDc|e=ẽ is only
defined on the set {(y, M) | ∃c : M((ẽ, c)) = y}, we see
that the map IDc|e=ẽ(y2,test, Mtest(e, c)) is not well defined,
leading to FC1 at the first correction step.

We prove the necessity of condition (9) as follows.
Assume that there exists a (ẽ, c̃) ∈ E1,cal × C′2,test such that
(ẽ, c̃) /∈ Θ1,test. Since we use points ê ∈ E1,cal and ĉ ∈ C′2,test
to generate the prediction ŷ1,test in the second correction
step, it is possible that ê = ẽ and ĉ = c̃. Since Θ1,test is the
set of all points (e, c) that give the correct trajectory y1,test,
we have the possibility that ŷ1,test ̸= y1,test, giving us FC2.

Finally, sufficiency is a simple consequence of the fact
that conditions (7-9) address both the points in the
method where FC1 could be met, and the point in the
method where FC2 could occur. Explicitly, condition (7)
allows the calibration step to avoid FC1, condition (8)
allows correction step one to avoid FC1, since it implies
that for all ẽ ∈ E2,cal, there exists a c̃ such that (ẽ, c̃) ∈ Θ2,test.
Condition (9) enables correction step two to avoid FC2,
since it implies that for all ẽ ∈ E1,cal and for all c̃ ∈ C′2,test
we have that y1,test = Mtest(ẽ, c̃), implying that the set
of all possible predicted trajectories only has the correct
trajectory in it, Y1 = {y1,test}.
Remark 7. We can give some physical interpretations of the
conditions (7-9). To do this, we first note that condition
(9) implies (see Lemma 3 in Appendix VI-B)

E1,cal ⊆ projeΘ1,test, (10)
C′2,test ⊆ C′1,test, (11)

where C′1,test is defined in a similar way to C′2,test.
Condition (7) and (10) may be interpreted to mean

that the calibration experiments must be more informative
about the ESPs than the test circuit experiments. This fol-
lows from the fact that the sets of output-indistinguishable
ESPs obtained from the calibration step are subsets of the
corresponding sets from the test circuits, projeΘi,test.

Condition (11) says that the CSP sets for the test circuit,
if estimated by first fixing the ESPs to values obtained
at the calibration stage, must agree. Agreement here is
defined to be unidirectional, with one set being a subset
of another. This is only because the correction being
performed is from the candidate extract to the reference
extract. If bidirectional correction (Corollary 2, below)
were required, then we would have equality in condition
(11).



Finally, condition (9) says that the ESP and CSP coordi-
nates in the set Θ1,test can only covary outside E1,cal×C′2,test,
i.e., all the points within this set must belong to Θ1,test.
Covariation is defined in Section V. ⋄

Next, we state a few corollaries of the theorem.

Corollary 1 (SGI Sufficiency). SGI models are sufficient
for the calibration-correction method to solve the DCP in
the model universe.

Proof. Since the models are SGI, the nominal model uni-
verse parameters uniquely fit the model to the data, and
therefore the sets in conditions (7-9) only have single
entries. Therefore, these conditions are trivially satisfied:

Θ̃cal = {(e1, e2, ccal)} ̸= -,
E2,cal = {e2} ⊆ proje{(e2, ctest)}= projeΘ2,test,
E1,cal × C′2,test = {e1}× {ctest} ⊆ {(e1, ctest)}= Θ1,test.

Corollary 2 (Bidirectional Correction). To be able to correct
the test data from either extract to the other requires that:

Θ̃cal ̸= -,
Ei,cal ⊆ projeΘi,test, i = 1, 2,

E1,cal × C′2,test ⊆ Θ1,test,

E2,cal × C′1,test ⊆ Θ2,test.

Proof. The proof is a simple union of the sets of conditions
implied by Theorem 1 for each direction of correction.

Remark 8. We note that the condition C′2,test ⊆ C′1,test
discussed in Remark 7 gets transformed into C′2,test =
C′1,test. ⋄

Next we discuss the case of correcting the calibration
data itself. This will be important in the next section when
we examine the effect of a phenomenon called parameter
covariation on the calibration-correction method. There,
we will prove that a modified version of the method is
able to solve the problem at least for this case, even in
the presence of parameter covariation.

Corollary 3 (‘Test = Calib’ Case). Consider the DCP for
the case where y i,test = yi,cal and M test = M cal for i = 1, 2.
Furthermore, define Θi,cal ! IDθ

&
yi,cal, Mcal(θ )
'

for i = 1, 2,
and

C′2,cal !
⋃

ẽ∈E2,cal

IDc

&
y2,cal, Mcal (ẽ, c)
'

. (12)

Then, the conditions

Θ̃cal ̸= -, (13)
E2,cal ⊆ projeΘ2,cal, (14)

E1,cal × C′2,cal ⊆ Θ1,cal, (15)

are necessary and sufficient for the calibration correction
method to solve this problem.

Proof. Simply specialize Theorem 1 to this case.

V. PARAMETER COVARIATION

In this section, we describe parameter covariation (Fig-
ure 2), and show that it causes the calibration correction
method to fail. We then discuss an improvement to the
method that addresses this issue. We start by defining a
device that will be useful for taking slices of parameter
sets.

Definition 7 (Cutting Plane). Consider the space of pa-
rameters Rq, the vector θ ∈ Rq partitioned into two sets
of coordinates θ = (θa,θb) ∈Rqa ×Rqb and the subspaces
A ! Rqa × {0} and B ! {0} × Rqb corresponding to the
θa and θb coordinates respectively. Let θ̃a ∈ A. Then, we
denote the cutting plane generated by shifting the origin
of B to (θ̃a, 0) with the notation cutθb

(θ̃a).

Definition 8 (Parameter Covariation). Consider the space
of parameters Rq and the vector θ ∈ Rq partitioned
into two sets of coordinates θ = (θa,θb) ∈ Rqa × Rqb .
Consider some set of parameters Θ ⊆ Rq. If there exist
θ̃a1, θ̃a2 ∈ projθa

Θ such that projθb

&
Θ ∩ cutθb

(θ̃a1)
'
̸=

projθb

&
Θ ∩ cutθb

(θ̃a2)
'
, then Θ is said to have parameter

covariation of its θb coordinates with respect to its θa
coordinates.

Remark 9. We will often abbreviate parameter covariation
to just covariation, and say that parameter coordinates can
covary. ⋄

K1

!1$:
+

L

CA B D

Fig. 2. Parameter covariation. (A) A Cartesian product condition is
equivalent to a set not having covariation (Lemma 1). (B) The definition
of covariation illustrated. (C) Thin covariation in the θa coordinates with
respect to the θb coordinates. (D) The set in blue does not display thin
covariation.

Lemma 1. Let θ = (θa,θb) ∈ Θ ⊆Rq be a partition of the
coordinates of Rq. Then, the set Θ has covariation of its θb
coordinates with respect to its θa coordinates if and only if
projθa

Θ× projθb
Θ ̸= Θ.

Proof. First, we prove the (⇒) direction. Covariation im-
plies that for some θa1,θa2 ∈ projθa

Θ there exists a point
θ̃b ∈ projθb

Θ such that

θ̃b ∈
&

projθb

&
Θ ∩ cutθb

(θ̃a1)
'
△
&

projθb

&
Θ ∩ cutθb

(θ̃a2)
'
,

(16)

where △ is the symmetric difference set operation. It
further implies that there exists a point θ̃a ∈ {θ̃a1, θ̃a2} ⊆
projθa

Θ such that (θ̃a, θ̃b) /∈ Θ. Thus, projθa
Θ×projθb

Θ ̸=
Θ.



Next, we prove the (⇐) direction. Let (θ̃a1, θ̃b) ∈
projθa

Θ × projθb
Θ be such that (θ̃a1, θ̃b) /∈ Θ. Since θ̃b ∈

projθb
Θ, there exists a θ̃a2 ∈ projθa

Θ such that (θ̃a2, θ̃b) ∈
Θ. Thus we have θ̃b ∈ projθb

&
Θ ∩ cutθb

(θ̃a2)
'

but θ̃b /∈
projθb

&
Θ ∩ cutθb

(θ̃a1)
'
, which proves the assertion.

Corollary 4. The set Θ has covariation of its θb coordinates
with respect to its θa coordinates if and only if it has
covariation of its θa coordinates with respect to its θb
coordinates.

Proof. Using Lemma 1, along with a version of it where
the roles of θa and θb are swapped, leads to this result.

Remark 10. This equivalence will allow us to refer to sets
having covariation with respect to a given partition, such
as (e, c). ⋄

Next, we show that in the presence of covariation,
the calibration-correction method is unable to solve the
DCP even in the ‘Test = Calib’ case of Corollary 3. In
particular, we will assume that the restriction of Θ1,cal to
E1,cal×projcΘ2,cal has covariation with respect to the (e, c)
partition.

Proposition 1. Consider the ‘Test = Calib’ case of the DCP.
Assume the conditions

Θ̃cal ̸= -, (17)
C′2,cal ⊆ projcΘ1,cal, (18)

Ei,cal ⊆ projeΘi,cal, i = 1, 2, (19)

hold, but the set

Θ′1,cal ! Θ1,cal ∩
&
E1,cal × projcΘ2,cal

'
(20)

has covariation with respect to the (e, c) partition. Then, the
calibration-correction method fails to solve this problem.

Proof. Condition (18), along with the fact that for the ‘Test
= Calib’ case, C′2,cal = projcΘ2,cal, implies that projcΘ

′
1,cal =

C′2,cal. Condition (19) implies projeΘ
′
1,cal = E1,cal. Covari-

ation implies that projeΘ
′
1,cal × projcΘ

′
1,cal ̸= Θ′1,cal. Thus,

the proper subset relation Θ′1,cal ! E1,cal × C′2,cal holds,
and therefore there exists (ẽ, c̃) ∈ E1,cal × C′2,cal such that
(ẽ, c̃) /∈ Θ′1,cal ⊆ Θ1,cal. This implies that E1,cal×C′2,cal " Θ1,cal,
which violates condition (15).

Next, we show that for a specific type of covariation,
which we call thin covariation, a modified version of the
calibration-correction method is able to solve the DCP for
the ‘Test = Calib’ case.

Definition 9 (Thin Covariation). Let Θ ⊂ Rq be a set of
parameters and let (θa,θb) ∈ Rq be a partition of the co-
ordinates of Rq. If Θ covaries with respect to this partition
and if for all θ̃b ∈ projθb

Θ, we have
""cutθa

(θ̃b)∩Θ
"" = 1,

then we say that the covariation of the θa coordinates of
Θ is thin with respect to the θb coordinates.

Remark 11. We note that if Θ ! IDθ (y , M(θ )), then
the condition that for all θ̃b ∈ projθb

Θ, we have

E2,cal

E2,cal

ê2

Ĉ2

E1,cal

ê1

Correction 
Step One

Calibration 
Step 

Correction 
Step Two

E1,cal

CSP CSP

CSP CSP

ESP ESP

ESP ESP

CSP

ESP

CSP

ESP E2,calE1,cal

Calibration
 Step 

Calibration Correction with CSP fixingCalibration-correction in the presence of 
(thin) covariation  

CSP

ESP

CSP

ESP {ê2}

Ĉ2

E2,cal=E1,cal={ê1}

Correction 
Step One

Correction 
Step Two

i

A

ii

i

B

ii

E1 E2 E1 E2

Fig. 3. (A) A schematic description of how thin covariation between
the ESP-CSP coordinates in the estimated joint parameter sets can cause
calibration-correction to fail at correcting even the calibration data (‘Test
= Calib’ special case). The blue lines in all the plots are the joint ESP-
CSP sets of all the parameter values that fit the calibration model to data.
(B) How the CSP fixing modification (Definition 10) to the calibration
step helps solve this issue. The ESP sets estimated at the calibration step
are now generated by first intersecting the parameter sets (blue lines)
with a line parallel to the ESP axis (‘cutting plane’ parallel to the ESP
subspace in higher dimensions) centered at an arbitrary CSP value that
can be attained, and secondly projecting these intersections to the ESP
coordinates for both extracts.

""cutθa
(θ̃b)∩Θ
"" = 1 is equivalent to the θa coordinates of

the model M(θa,θb) being SGI for each fixed θb. ⋄
Remark 11 says that this type of covariation is essentially

a statement about the some coordinates being condition-
ally structurally globally identifiable, despite covarying
with respect to the remaining coordinates.

Definition 10 (CSP Fixing). Consider the sets Θi,cal !
IDθ
&

yi,cal, Mcal(θ )
'
, i = 1, 2 and let c̃ ∈ projcΘ1,cal ∩

projcΘ2,cal. Then, we define CSP fixing as a modifica-
tion to the calibration step in which the sets Ei,cal !
proje
&
cute (c̃) ∩ Θi,cal

'
for i = 1, 2.

Proposition 2. Consider the sets Θi,cal !
IDθ
&

y i,cal, Mcal (θ )
'

for i = 1, 2, and the partition
θ = (e, c). Assume that the Θi,cal have thin covariation in
their c coordinates with respect to their e coordinates. Then,
the calibration-correction method with CSP fixing is able to
solve the DCP for the ‘Test = Calib’ case of Corollary 3.

Proof. Let c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and ẽ2 ∈
E2,cal ! proje
&
cute (c̃) ∩ Θ2,cal

'
. We note that the sets

projc
&
cutc (ẽ2) ∩ Θ2,cal

'
= IDc(y2,cal, Mcal (ẽ2, c)) are equal

by definition. Now, pick an arbitrary point c̃′ ∈
projc
&
cutc (ẽ2) ∩ Θ2,cal

'
. It follows that c̃′ = c̃ from the fact

that c̃ ∈ projc
&
cutc (ẽ2) ∩ Θ2,cal

'
and that the element in""cutθa

(θ̃b)∩Θ
""= 1 is unique. Thus, the only possible CSP

value that can be returned by the first correction step is c̃.
Next, we look at the second correction step. Pick an

arbitrary ẽ1 ∈ E1,cal ! proje
&
cute (c̃) ∩ Θ1,cal

'
. Since the

point (ẽ1, c̃) ∈ Θ1,cal, we have that y1,cal = ŷ1,cal ! M(ẽ1, c̃),
and FC2 is avoided.

VI. DISCUSSION

The framework presented in this work is not limited
to cell extracts, and is readily generalizable to correct
process behavior between different environments. Examples



include correcting circuit behavior between cell strains
or between in vitro and in vivo environments, or even
between wind tunnels [5].

Extensions include generalizing condition 9 and CSP
fixing to a prescription of how part models with parameter
non-identifiability can be combined to predict the behavior
of an entire system. Indeed, dealing with covariation by
partially identifying parameters might be used for exper-
iment design. We may also generalize these results to
the case when there is noise in the data, and notions of
practical identifiability [7] must be considered.

APPENDIX

A. Equivalence of the Two Definitions of the Calibration Step

In this section, we prove two identities that establish the
equivalence of the two definitions of the calibration step
given in Definition 6 and Remark 4.

Lemma 2. Let Θ̃cal, Θ1,cal and Θ2,cal be as defined in
Definition 6 and Remark 4. Then, the identities

projc Θ̃cal ≡ projcΘ1,cal ∩ projcΘ2,cal, (21)

projei
Θ̃cal ≡
!

e
"" ∃c ∈
&

projcΘ1,cal ∩ projcΘ2,cal

'

s.t. (e, c) ∈ Θi,cal

#
, i = 1, 2,

(22)

hold.

Proof. First, we prove (21) using a series of equivalences.
Let c̃ ∈ projc Θ̃cal. This is equivalent to

∃e1, e2 : (e1, e2, c̃) ∈ Θ̃cal

⇔∃e1, e2 : y i,cal = Mcal(ei , c̃), i = 1, 2
⇔ (ei , c̃) ∈ Θi,cal, i = 1, 2
⇔ c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal,

which proves the assertion.
Next, we prove (22) for e1 by showing that the left and

right hand sides are subsets of each other. The proof for the
e2 case is similar. Denote the set on the left hand side with
L, and the one on the right with R. Let ẽ1 ∈ L = proje1

Θ̃cal.
Then, ∃ẽ2, c̃ such that (ẽ1, ẽ2, c̃) ∈ Θ̃cal, which implies c̃ ∈
projc Θ̃cal and y1,cal = Mcal(ẽ1, c̃). By the identity (21), we
have that c̃ ∈ projcΘ1,cal ∩ projcΘ2,cal and (ẽ1, c̃) ∈ Θ1,cal,
which shows that L ⊆ R.

We conclude the proof by showing that R ⊆ L. Let
ẽ1 ∈ R, which means that there exists a c̃ ∈ projcΘ1,cal ∩
projcΘ2,cal such that y1,cal = Mcal(ẽ1, c̃). Furthermore, since
c̃ ∈ projcΘ2,cal, there also exists an ẽ2 such that y2,cal =
Mcal(ẽ2, c̃). Together these imply that (ẽ1, ẽ2, c̃) ∈ Θ̃cal,
which gives ẽ1 ∈ proje1

Θ̃cal, proving the assertion.

B. Equivalence of the Two CSP Subset Conditions Given in
Remark 7

The Cartesian product condition given in Equation (9)
implies two further conditions, which we state in Lemma 3
below.

Lemma 3. Condition (9), which states that E1,cal×C′2,test ⊆
Θ1,test, implies that

E1,cal ⊆ projeΘ1,test, (23)
C′2,test ⊆ C′1,test, (24)

where C′1,test is defined in a similar way to C′2,test,

C′1,test !
⋃

ê∈E1,cal

IDc|e=ê

%
y1,test, Mtest

&
e, c
'(

.

Proof. Condition (23) follows simply by applying the proje
operator to both sides of condition (9). To prove condition
(24), we note that condition (9) implies that for an
arbitrary c̃ ∈ C′2,test, we have that for all ẽ ∈ E1,cal, the model
fits the data, y1,test = Mtest(ẽ, c̃). This in turn implies that

c̃ ∈
⋃

ê∈E1,cal

IDc|e=ê

%
y1,test, Mtest

&
e, c
'(
= C′1,test.

Thus, C′2,test ⊆ C′1,test.
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