nature astronomy

In the format provided by the authors and unedited.

Tidally trapped pulsations in a close binary star system discovered by TESS

G. Handler[®]¹⊠, D. W. Kurtz², S. A. Rappaport³, H. Saio⁴, J. Fuller⁵, D. Jones[®]^{6,7}, Z. Guo[®]⁸, S. Chowdhury¹, P. Sowicka[®]¹, F. Kahraman Aliçavuş^{1,9}, M. Streamer¹⁰, S. J. Murphy[®]¹¹,

R. Gagliano¹², T. L. Jacobs¹³ and A. Vanderburg¹⁴

¹Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland. ²Jeremiah Horrocks Institute, University of Central Lancashire, Preston, UK. ³Department of Physics, and Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA, USA. ⁴Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, Japan. ⁵TAPIR, California Institute of Technology, Pasadena, CA, USA. ⁶Instituto de Astrofísica de Canarias, La Laguna, Spain. ⁷Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Spain. ⁸Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, USA. ⁹Physics Department, Faculty of Sciences and Arts, Çanakkale Onsekiz Mart University, Çanakkale, Turkey. ¹⁰Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australian Capital Territory, Australia. ¹¹Sydney Institute for Astronomy (SIFA), School of Physics, University of Sydney, Sydney, New South Wales, Australia. ¹²Planet Hunters, Yale University, New Haven, CT, USA. ¹³Amateur Astronomer, Bellevue, WA, USA. ¹⁴Department of Astronomy, The University of Texas at Austin, Austin, TX, USA. ^{Est}e-mail: gerald@camk.edu.pl

Selected regions of a high-resolution spectrum of HD 74423 demonstrating it to be composed of two λ Bootis stars. Top two panels: a region containing prominent metal lines of A-type stars. Lower panel: a region around a multiplet of carbon lines. The black graph is the observed spectrum, and the blue and red lines are two theoretical spectra with $T_{\rm eff} = 8000 \,\mathrm{K}$, log g = 4.0, [M/H] = -2.0 and $v \sin i = 55$ and $50 \,\mathrm{km s^{-1}}$, respectively. The spectral lines are all double, with a separation of about $150 \,\mathrm{km s^{-1}}$. The strengths of most metal lines are reasonably well reproduced with such a low overall metallicity, with the exception of carbon that has a much larger abundance. Both components of HD 74423 thus share the λ Bootis type spectral peculiarity.

Temperature perturbation at the initial pulsation phase as a function of $\cos \theta_p$. This asymmetric distribution is required to reproduce the run of the pulsation amplitude in Fig. 4 and indicates the pulsation amplitude to be trapped in one hemisphere.