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Supplementary Text 1: Recipe for the calculation of local wave activity (LWA) 

We illustrate the calculation of LWA using the weather map on 1200 UTC 13 Feb 1983.  The 

calculation is performed for the latitudes of 20N-90N. The detailed calculation procedure is listed 

below. 

1. Choose a latitude of interest, 𝜙.  Use 50 N as an example here. 

2. Determine the corresponding 𝑍500  contour such that the equivalent latitude of the contour 

satisfies 𝜙𝑒 = 𝜙.  The equivalent latitude is obtained from the area from the 𝑍500 contour to 

the North Pole via box counting and converting the area to a hypothetical equivalent latitude 

such that the contour is zonally symmetric.  SI Fig. 7a gives the Z500 contour (solid red) with 

the equivalent latitude of 50N (dashed red). 

3. Compute the eddy term 𝑧̂ = 𝑧 − 𝑍500.  For the calculation at each latitude, only the values 

between the latitude 𝜙 and contour 𝑍500 will be used.  See SI Fig. 7b. Note that z is the actual 

geopotential height, and ž is the difference between the actual geopotential height and the 𝑍500 

for the equivalent latitude. 

4. The line integral for the southern cyclonic LWA is computed at the longitude λ by box-counting 

𝑧̂ in the southern grid boxes relative to the latitude 𝜙𝑒 that satisfy 𝑧̂ ≤ 0. Similarly, the northern 

anticyclonic LWA is calculated for the northern grid boxes satisfying 𝑧̂≥ 0.  LWA at 𝜙 = 50N 

is shown in SI Fig. 7c.  This is compared with the product of the zonal amplitude 𝑧̂  and 

meridional amplitude 𝜙̂ of a planetary wave described in ref 1, where 𝑧̂ is the deviation of the 

geopotential height from the zonal mean, and 𝜙̂ is the meridional displacement of the contour.  

In the small amplitude limit, LWA=−0.5𝑎𝑧̂𝜙̂ 2, where 𝑎 is Earth’s radius. 

5. Repeat steps 1-4 for all the other latitudes.  The longitude by latitude map of LWA is shown in 

SI Fig. 7d. 



 

Supplementary Text 2: Jet Stream Sinuosity Analysis.  

The transient sinuosity of the meandering jet stream provides a direct description of the 

ongoing weather systems in mid-latitudes. The slower but wavier jet stream is generally 

accompanied by more extreme weather systems, such as low/high pressure and strong frontal 

systems.  The sinuosity of the jet stream is typically defined as the ratio between the length of a 

trajectory and the length of the shortest straight line between two points. We derive the transient 

sinuosity of the jet stream (abbreviated as sinuosity hereafter) based on the 6-hourly geopotential 

height at 500 hPa from the reanalysis data. We first calculate Z500 mean value (𝑍̅) for a mean 

latitude (𝜙̅) over a certain latitude zone in NH (20-80° in this study), and then find the contour line 

of 𝑍 in the 2-D map of Z500. The sinuosity is the ratio between the length of the contour line and 

the length of the latitude circle for 𝜙̅. Such an index was developed to study the jet stream response 

to global warming3. 

The winter NH mean sinuosity during 1970-2005 shows an essentially insignificant declining 

trend with a fractional change of about −1.0% per decade and p-value of 0.19 (Supplementary 

Figure 2). The hemispheric mean similarity between LWA and sinuosity suggests that they are 

equivalent in characterizing mid-latitude circulations over a large analysis domain.  

 

Supplementary Text 3: LWA correlation with climate oscillation indices 

By individually correlating the time series of seasonal Northern Hemisphere mean LWA 

with six climate oscillation indices, we are able to identify those that explain the weather extreme 

variability on the interannual time scale. The Arctic Oscillation (AO, or NAM) and the North 

Atlantic Oscillation (NAO) are the two most pronounced climate variabilities exhibiting close 



relationships with LWA over Northern Hemisphere mid-latitudes, with correlation coefficients 

about −0.83 and −0.66, respectively. The anti-correlations agree with previous studies that 

analyzed those relationships in different time periods4. The PDO exhibits a much weaker 

correlation with LWA, with a coefficient of +0.33. The Stratospheric variability (Strato.), El Niño-

Southern Oscillation (ENSO), and Quasi-Biennial Oscillation (QBO) play even smaller roles in 

the year-to-year variability of LWA, with the coefficients < 0.1. 
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Supplementary Figure 1. Climatology and trends (1970-2005) of cyclonic and anticyclonic wave 

activities based on JRA-55.  

 

 

Supplementary Figure 2. Northern Hemispheric trends of jet stream sinuosity and local wave 

activity (LWA) during 1970-2005 based on JRA55 Reanalysis. The bottom panel shows the results 

with removal of natural variability (NAT) by the multivariate linear regression method. 
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Supplementary Figure 3. Same with Figure 1 but for top 10% LWA during each season. They 

indicate the extreme LWA cases and strongest cyclonic/anticyclonic events   
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Supplementary Figure 4. Comparison of climatological geopotential height at 500 hPa (Z500) 

and local wave activity (LWA) between JRA-55 and the CESM all forcing experiment. 

 

 

 

Supplementary Figure 5. CESM model simulated trends of sea ice fraction. 
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Supplementary Figure 6. CESM simulated Probability Distribution Function (PDF) of 

wintertime Tmin averaged over two periods, 1970-1975 (blue) and 2000-2005 (red), under the all-

but-aerosol forcing scenario. The shades in the PDFs denote the spread (1-𝜎) among different years 

in each period. 
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SI Figure 7. (a) 𝑍500 as a function of longitude and latitude.  (b) The eddy term 𝑧̂ plotted between 

the latitude 50N and the contour with the equivalent latitude 𝜙𝑒 = 50N.  (c) LWA at 50N as a 

function of longitude (red).  The product of the zonal amplitude 𝑧̂ and meridional amplitude 𝜙̂ of 

a planetary wave (blue).  In the small amplitude limit, |LWA|=0.5𝑎𝑧̂𝜙̂.  (d) -LWA as a function of 

longitude and latitude.  In (a), (b) and (d), the contour with the equivalent latitude 𝜙𝑒 = 50N is 

shown in solid red, and the latitude 50N is in dashed red. 
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