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Abstract

This thesis makes a unique contribution to the field of quantum chaos by theoretically

demonstrating the effect that measurement has on the emergence of chaos from the quan-

tum world and demonstrating a means to control the onset of chaos in the quantum sys-

tem using adaptive measurements. Here we investigate how the choice of the continuous

measurement strategy for an open quantum system affects the emergence of chaos in the

transition from the quantum limit to the classical limit when the system is dissipative. We

consider two models in our research. The Duffing oscillator is classically chaotic and also

dissipative (ie. an open quantum system), whereas the driven top is classically a closed

system; adding dissipation via continuous measurement therefore changes the behaviour

in the classical limit.

The first half of this thesis presents the investigation of a dissipative system whose

classical limit is chaotic. We explore the emergence of chaos from the open quantum

system that is continuously monitored and investigate the dependence on the choice of

monitoring by changing a single parameter in a homodyne measurement scheme, effectively

changing the information gained by the measurement. We show that the emergence of

chaos in the regime where quantum effects are still present can be determined solely

by changing the measurement parameter. This is a result of the interplay between the

quantum interference effects induced by the nonlinear dynamics and the localisation and

decoherence that occurs due to the measurement. We also investigate the case where the

classical limit is regular for the Duffing oscillator, and demonstrate the semiclassical effect

of chaos induced by the measurement back-action. A certain choice of measurement leads

to a noise which drives the system to large spread in the dimensionless position enabling

a non-classical transition mechanism that is classically forbidden, inducing chaos in the
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system. These results are verified by the numerical calculation of the maximal Lyapunov

exponent in the quantum regime.

The second part of this thesis investigates the possibility of controlling the degree of

chaos with quantum control. We design an effective control scheme to control the degree

of chaos using the measurement dependency of the state. We propose an adaptive mea-

surement scheme which changes the homodyne measurement angle in real time depending

on the direction of the state’s interference fringes in phase space. This is done using the

knowledge gained by the measurement signal. We show that this control scheme can en-

hance or suppress chaos. By enhancing the degree of chaos we are also able to push the

onset of chaos further into the quantum regime than was possible before. By suppress-

ing chaos we generate highly non-classical states and regular motion. The feasibility of

experimentally realising this control technique is discussed in detail.

The final section of this thesis considers a chaotic system that is not dissipative in

the classical limit: the driven top. We investigate the effect that opening the quantum

system to decoherence has on the degree of chaos when we continuously measure the

system. We demonstrate that the presence of decoherence suppresses the chaos and alters

the dynamics of the quantum system. This is seen to worsen as the strength of the

measurement is increased unless a particular measurement is chosen that perfectly cancels

out the decoherence resulting in the Hamiltonian evolution in addition to noise from the

measurement. These results are verified by the separation time between classical and

quantum dynamics.
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6.4.2 Ĵz Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Continuous Measurement of a Driven Top . . . . . . . . . . . . . . . . . . . 90

6.5.1 Homodyne monitoring of a Hermitian output (Ĵz Dephasing): semi-
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1
Introduction

Hyperion tumbles chaotically through the vacuum of space as she orbits the planet Saturn.

She is a moon of Saturn, and her orbit is unlike the other moons. It is chaotic. Any

small perturbation, any small error in our calculations and we completely misjudge her

evolution. She is extremely sensitive to these small perturbations and yet her evolution

can be explained deterministically. That is, if we knew exactly her initial condition and

the parameters that govern her dynamics, we could know exactly where she would be at

any given time. This is the beauty of chaos.

Chaos can arise when a system’s evolution is governed by nonlinear equations of motion

and leads to an extreme sensitivity to initial conditions. It is the reason we cannot predict

the weather over long time scales. Even the tiniest perturbation can result in completely

different dynamical behaviour. A butterfly flaps its wings in Brazil and creates a tornado

in Texas or so the saying goes. This leads to interesting and wonderfully complicated

behaviour that on first glance looks entirely random. However, just because the evolution

looks complicated does not mean it is inexplicable. The underlying theoretical models

that describe the weather (eg. atmospheric convection and its coupling to oceans, land

surface, and sea ice) are well established, and the accuracy and timescale of weather

predictions increase in proportion with computational power [84]. The cardiac signal of

a human heart is another well-known example where chaos is known to be present and

well understood [20]. In this case the presence of chaos is unwanted and efforts are made

to control the system towards non-chaotic behaviour [40]. There are myriad examples

from physics [134, 142], chemistry [122], biology [129], of systems that appear to behave

randomly and unpredictably but can be deterministically described by chaos. The study

of chaos in classical systems is incredibly interesting and useful in its own right, but how

does it arise from the underlying microscopic principles of quantum mechanics?

From the time of the ancient Greeks, we have theorised about objects smaller than what

we observe, that this table that I write my thesis on is made up of even smaller objects,

atoms. When we finally developed the technology to observe the world of small things, we

were also interested in how they evolved. How does the evolution of sub-atomic particles

govern the motion of atoms? And how does the motion of these particles link to what we

see in everyday life? The connection between quantum mechanics and classical mechanics

1



2 Introduction

is something that we are constantly striving to understand. The correspondence principle

tells us that if we take a quantum object and make it bigger or put more energy into it,

then at some point the dynamics will start to look like what we see in the classical world.

And for the most part, physics has confirmed this. But there are still open questions as

to how we arrive at the classical world, particularly for the fields of quantum gravity and

quantum chaos. This thesis will focus on the emergence of chaos in quantum systems.

1.1 Emergence of Chaos from the quantum world

Figure 1.1: Saturn’s moon Hyperion has a chaotic orbit, the presence of decoherence leads to the

emergence of chaos.

Now consider again the moon Hyperion as she tumbles chaotically through the vacuum

of space, her motion governed by a set of nonlinear equations. She is made of many orders

of magnitude of atoms which are bound together to form a solid object. These atoms

are made of even smaller particles, protons and neutrons and electrons. The protons and

neutrons are split into smaller still fundamental particles which are called quarks. The

study of physics has shown us that the fundamental behaviour of nature is governed by

quantum mechanics so the evolution of the individual particles that make up Hyperion is

linear and therefore non-chaotic. More precisely, the wavefunction of a quantum system is

governed by the Schrödinger equation, which is a linear equation of motion. So how do we

get the chaotic dynamics of the entire moon from the quantum evolution of the individual

particles?

The first step towards solving this apparent paradox is to note that whilst the wave-

function evolution is linear, the quantum-mechanical observables can evolve according to

nonlinear equations of motion. Specifically, the Heisenberg equations of motion for the

observables are nonlinear. According to the correspondence principle, in the limit as the

system goes towards the classical, the dynamics will match the corresponding chaotic

classical system.



§1.1 Emergence of Chaos from the quantum world 3

1.1.1 Quantum chaos for closed systems

Quantum chaos is the study of quantum systems whose classical counterpart is chaotic.

There are different branches in the study of quantum chaos. The more traditional treat-

ment of quantum chaos is the consideration of the spectral characteristics of a chaotic

Hamiltonian. This has been done for systems such as the Bose-Hubbard model [73],

chaotic billiards [2], and the kicked top [53]. Each of these systems has a classical counter-

part that is chaotic. The more traditional treatment involves comparing the level spacing

statistics of the quantum system with random matrix theory [53]. In these studies, the

signatures of chaos are found in the eigenvalues of the Hamiltonian rather than the dy-

namics of the quantum system. The eigenvalues for the quantum system with a classically

regular counterpart follow Poissonian statistics [5]. However, when the classical limit is

chaotic, the statistics are described by the statistics of random matrices [9, 53, 73] ie.

the Wigner Dyson statistics [152, 32]. However, this treatment does not investigate what

happens to the dynamics of a quantum system as it transitions to a chaotic limit. For this

we must fairly compare the classical dynamics with the quantum dynamics via the phase

space methods utilised in the study of classical chaos.

1.1.2 Ehrenfest time and the breakdown of the correspondence principle

The time it takes for the dynamics of a closed quantum system and the particle dynamics

of the corresponding classical system to look different is known as the Ehrenfest time. In

principle, the position and momentum of a classical particle can be known exactly. In

constrast, a quantum system is described by a wavefunction that in general is delocalised

in space, and we cannot know the exact position and momentum of a quantum particle

simultaneously due to Heisenberg’s uncertainty principle. Consequently, for closed system

dynamics, the wavefunction over time spreads out with more uncertainty in position and

momentum. As this happens, the dynamics starts to look very different from the classical

dynamics of a point particle.

How do we reconcile the classical behaviour with the fundamental quantum behaviour

that the particles in the universe obey? We can take the quantum system to the classical

limit by increasing the number of particles in the model, or by increasing the energy of

the system. For a closed quantum system, the natural classical counterpart is the isolated

classical system and the closed quantum system will asymptotically approach this limit,

resulting in the proportionate growth of the Ehrenfest time. There will not, however, be

any agreement between the closed quantum system and a classically dissipative limit.

1.1.3 Dissipation and interaction with an environment

Many works have focused on trying to solve the puzzling question of correspondence

breakdown between the classical and quantum for chaotic systems [166, 55]. The major

problem that we encounter with the classically chaotic system is the time before the

quantum dynamics departs from the classical. This is the problem pondered by Zurek and

Paz in the 1990s [168]. In a thought experiment posed by Zurek and Paz, they considered

the moon Hyperion. Hyperion tumbles chaotically through the vacuum of space. The

fundamental nature of the constituent particles that form Hyperion is quantum in nature.

But we see a classical evolution governed by chaos. What is the estimated breakdown

time when we start to see the quantum dynamics diverge from the classical dynamics? In

their argument, Zurek and Paz estimate the time to be about 20 years! Since Hyperion’s
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age is much older than this, we would expect Hyperion to be in a quantum superposition.

But the evolution appears classical, why? The answer is decoherence.

In reality, a system is never truly isolated, there is some interaction with the surround-

ing environment. This coupling to an environment leads to a loss of coherence in the

system when information is transferred to the environment that cannot be followed by the

observer, this is decoherence. The decoherence destroys interference and superpositions,

leading to localisation of states and this provides a crucial step in the smooth transition

from the quantum system to the classical [100, 28, 166, 55, 103, 18]. The study of dissipa-

tive chaotic systems naturally requires the introduction of a coupling to an environment,

and an ever expanding part of the field of quantum chaos is the study of chaos for open

quantum systems.

1.2 The approaches of open quantum systems to quantum

chaos

1.2.1 Unconditional dynamics: Master equation

There have been two schools of thought in chaos in open quantum systems. The first

takes the approach of the ensemble average behaviour of the system, given by the master

equation. Historically, the ensemble average was believed to be the only way of observing

quantum mechanics with the seminal work done by Feynman and Vernon [41] and built

upon by Caldeira and Leggett [14]. Using this approach, the phase-space distribution of

the classical system is compared with the quasi-probability distribution of the ensemble of

quantum states, given by the Wigner function [55]. This does not allow a self-consistant

quantification of chaos suitable for both the classical and quantum system. Classically,

chaos can be determined by classical trajectories of motion and looking at the exponential

divergence of initially infinitesimally close trajectories in phase space. However, there is no

clear way to measure the divergence in phase space for the ensemble average of a quantum

system. The ensemble will usually approach a steady state, meaning the sensitivity to

initial conditions cannot be seen [18].

1.2.2 Conditional dynamics: Measurement

The other approach is to adopt a continuous monitoring of the quantum system. In

this case, the monitoring is said to produce an “unraveling” of the master equation in

terms of individual stochastic quantum trajectories that evolve conditioned on the mea-

surement record. Using this approach, it has been shown that the Poincaré section of a

single quantum trajectory reproduces the corresponding strange attractor in the macro-

scopic limit [131, 13], even when considering a few different monitoring strategies [117].

It also allows for a quantitative comparison between the classical and quantum Lyapunov

exponents as the system is varied [6, 99, 54, 68].

In general, when the classical motion is large compared to the quantum noise induced

by the stochastic nature of the trajectories, the quantum Lyapunov exponent approaches

the classical value [6], while there is a crossover to the quantum regime where noise pre-

dominates and chaos is suppressed [99]. Interestingly, positive Lyapunov exponents have

been found away from the classical limit [54] but perhaps even more surprising is that

they have also been reported for parameters where the corresponding classical system is

regular [68, 107]. These results show not only that the onset of chaos at the quantum level
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is possible, but also that it has a rich behaviour due to the interplay between the strength

of the nonlinear dynamics and the amount of noise introduced by the measurement back-

action. But quantum mechanics allows us to go beyond that and explore more complex

scenarios where, even when the form and strength of the system-environment interaction

are kept unchanged, different choices of measurement schemes can have a drastic affect on

the dynamics of the system. A fundamental question that I will ask as part of this thesis

is: How does the measurement strategy affect the Lyapunov exponent of the system?

The conditional dynamics of a quantum system has been used as a tool to explore

the emergence of chaos from the quantum in a quantitative way. With single quantum

trajectories we are able to calculate the divergence in phase space of two trajectories and

calculate the Lyapunov exponent just as we did with the classical system. But we are not

limited in our choice of measurement. There is an infinite number of ways of unraveling

the master equation in order to get conditional dynamics. The quantum nature of the

measurement means that the choice of measurement itself can play a role in how the system

behaves. When we measure a classical system, the system will behave the same way no

matter which way we decide to measure the system. This is not the case for quantum

systems! The very act of measurement will disturb the state of the quantum system,

leading to different outcomes depending on how we choose to measure the system [74].

And this fact has been used to the advantage of controlling quantum systems in the past.

So it begs the question: Does the choice of measurement also change the degree of chaos

present in a quantum system? If we can change the behaviour of a quantum system simply

by changing how we measure it, will we see this change in the Lyapunov exponent for the

system as we transition to the classical system where chaos is present? This question is

also explored in this thesis.

Moreover, if we do see a change in the quantum Lyapunov exponent just by changing

how we measure the system, can we use this as a control so that we may control the degree

of chaos in a quantum system by using our measurement device?

1.3 Controlling Chaos

Hyperion tumbles chaotically through the vacuum of space, but what if we could control

the dynamics, making her motion regular? The idea of dynamical control is nothing new.

1.3.1 Control of classical chaos

In classical systems, controls that suppress chaos have applications to regularising the

behaviour of cardiac rhythms [40] and to improving energy harvesting from cantilever de-

vices [38, 75]. The presence of chaos in experimental set-ups may or may not be desirable

and controlling these systems can be vitally important. Controlling dynamical systems

is itself an incredibly diverse field, with applications to everyday technology such as the

practical and necessary control of car braking or the ability to control an unstable inverse

pendulum. Control is an important aspect of stable dynamical systems. And understand-

ing how to control systems in the presence of chaos is incredibly important. The control of

chaotic systems has been studied extensively for classical systems. In most experimental

systems, the presence of chaos is common, however it is generally unwanted and trouble-

some when trying to achieve a stable system performance. Ott, Grebogi and Yorke (OGY)

came up with a control algorithm to control chaos in 1990 that is based on the fact that

the chaotic strange attractor has an infinite number of unstable periodic orbits (UPOs)
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embedded in it [101, 120]. Their method uses discrete time-dependent perturbations of

some system parameter to stabilise a chosen UPO that gives improved system performance

and kick the system into a periodic orbit. This algorithm has been implemented in the

past on classically chaotic systems such as the Henon map, the double rotor map and the

Duffing oscillator, using only the time series data that can be measured experimentally

to find the desired UPO. While OGY control focuses on the control of a discrete system.

Pyragas et al have proposed a control algorithm for continuous systems, taking a more

“always on” type of control where the system is continuously pushed towards a stable

periodic orbit [109]. These control techniques have been proven to work well for classical

chaos, and have been shown to control irregular heartbeats in the cardiac rhythm of a hu-

man heart [40]. For the quantum system however, we do not know the precise state of the

system, which makes it harder to control the system with these techniques. Fortunately,

the field of quantum control is also a rich field with experimentally viable techniques [158].

Techniques can be borrowed from this area in order to control chaos in quantum systems.

1.3.2 Quantum control

Quantum control comes in two flavours, open loop control and closed loop control or

otherwise known as non-feedback and feedback control respectively. In open loop control,

all controls are put in place in the beginning and no corrections are made based on the

dynamics of the system of interest. In contrast, closed loop control uses feedback in order

to alter the control based on the dynamics of the system. In this thesis we are only

interested in the use of closed loop control, which we will discuss below. To date, some of

the main applications of quantum control are quantum computing and metrology [4, 114]

as well as the feedback cooling of Bose Einstein condensates [64, 138, 137]. Experiments

have been done using quantum control techniques to stabilise quantum states and improve

phase estimation in metrology experiments [143, 22, 61, 104]. The control technique used

in these instances relies on a real time feedback control where the dynamics of the quantum

system is monitored over time and corrections are applied to the system dependent on the

dynamics.

1.3.3 Quantum control with adaptive measurements

There has been a lot of work done in the theoretical and practical implementation of

quantum control in the field of quantum optics. The main motivation for quantum control

in quantum optics may be for the purpose of quantum computing and quantum com-

munication, but the same techniques can be applied to chaotic systems as well. Take

for instance the adaptive measurement control scheme developed by Wiseman [153, 4] in

order to improve phase estimation. This control scheme involves making changes to the

measurement scheme as information about the state of the quantum system is gained so

that the measurement can be as efficient in the measurement of the phase as possible.

This is possible because of how the measurement gathers information about the state

of the system. Adaptive measurement techniques have been implemented previously in

experiments [114, 61, 104].

1.4 Observing quantum chaos experimentally

Chaos has been explored in quantum systems experimentally for decades. Experimental

set-ups with cold atoms have been a good testbed for the realisation of quantum chaos due
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to their extremely good controllability. Ultra-cold bosonic atoms in a trap also have the

remarkable physical phenomenon that when they are cooled down to a critical temperature,

the bosons condense into the ground state of the trap, forming a macroscopic wavefunction.

This phenomenon is known as Bose-Einstein condensation [10, 36] and we mention it here

because it can be useful for the simulation of quantum systems that are chaotic. The

tunability of the Feschbach resonance allows for tunability of the scattering length [21]

which means the interaction strength between the atoms can be easily tuned. This set up

can look at the single particle behaviour by turning off interactions, or it can look at the

different dynamics established by turning interactions on. The diverse range of systems

that could be simulated by tuning the experiment means the platform provides many

opportunities to explore different chaotic dynamics in the same quantum system. Quantum

chaos has been realised experimentally in the past [112, 72, 144, 94, 19]. The most common

and easily investigated systems being the kicked rotor [112] and the kicked/driven top [19,

144, 94]. Recently, the kicked top has been proposed in the nuclear spin of a single

atom [90]. But none so far have considered the continuous measurement of the quantum

system.

There has been a recent resurgence of experimental interest in exploring quantum

chaos due in part to the recent links that quantum chaos has to other areas of physics.

Many-body quantum chaos may be connected to areas such as information scrambling and

holographic duality [85, 127, 135, 88]. It may also be linked to nonequilibrium thermo-

dynamics [94] and the thermalisation of closed quantum systems. The ability to describe

quantum chaos using techniques of random matrices almost certainly leads to connections

to random unitaries [37]. The potential advantage to precision measurement and quantum

sensing that has recently been explored in the presence of chaos [42] hints at advantages

to considering quantum chaos.

To experimentally verify the work we do in quantum chaos, we need a method of

quantifying the chaos. How we do this in numerical simulations is to calculate the Lya-

punov exponent. For this we require a long time average and two trajectories initially

infinitesimally close to each other. We cannot do this in experiments, it is infeasible. So

we need to consider how we can measure chaos in an experiment. One potential is looking

at the breakdown time between the classical and quantum dynamics. This has been well

explored theoretically in the past [66, 18].

A more recent potential candidate is the use of out-of-time-order correlators (OTOCs),

which has been experimentally explored by several experimental groups [44, 79] and the

theoretical study of OTOCs has also been recently investigated [123, 43, 161, 162, 115,

78]. This topic has exploded in recent years with suggestion that the OTOCs could act as

a probe to explore chaos as well as the link to information scrambling in black holes [127,

85]. The idea of the OTOCs uses the sensitivity of the chaotic dynamics to the system

parameters. However, the drawback of this probe relies on the fact that you must be able

to perform a perfect time reversal of the Hamiltonian, which is not possible for systems

where dissipation is present. For dissipative chaos, we need other techniques.

1.5 Research Questions Addressed in this Thesis

1.5.1 How does measurement affect chaos?

Environment-induced decoherence has long been recognised as being of crucial importance

in the study of chaos in quantum systems. In particular, the exact form and strength of the
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system-environment interaction play a major role in the quantum-to-classical transition of

chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e.

for a given decoherence model and a fixed environmental coupling, there is still freedom

on how to monitor a quantum system. We show here that there is a region between the

deep quantum regime and the classical limit where the choice of the monitoring parameter

allows one to control the complex behaviour of the system, leading to either the emergence

or suppression of chaos. Our work shows that this is a result from the interplay between

quantum interference effects induced by the nonlinear dynamics and the effectiveness of

the decoherence for different measurement schemes. This thesis also compares the effect

of measurement when the classical system is in both a chaotic and a regular regime by

investigating different sets of parameters for the system. We not only show that the

measurement plays an important role in determining how the emergence of chaos occurs

from the quantum dynamics, but how the noise from the measurement can also induce

chaos when the classical limit is regular. The results discussed in this thesis make a

valuable contribution to understanding how chaos emerges from the quantum system when

it is continuously monitored, which could have serious consequences for experiments where

chaos can be present whether it is desired or not. The very act of measuring a quantum

system can induce chaos in these systems and we need to be aware of this.

1.5.2 Can we use adaptive measurement to control chaos?

The continuous monitoring of a quantum system strongly influences the emergence of

chaotic dynamics near the transition from the quantum regime to the classical regime.

Here we present a feedback control scheme that uses adaptive measurement techniques

to control the degree of chaos in the driven-damped quantum Duffing oscillator. This

control relies purely on the measurement backaction on the system, making it a uniquely

quantum control, and is only possible due to the sensitivity of chaos to measurement. We

quantify the effectiveness of our control by numerically computing the quantum Lyapunov

exponent over a wide range of parameters. We demonstrate that adaptive measurement

techniques can control the onset of chaos in the system, pushing the quantum-classical

boundary further into the quantum regime.

1.5.3 General effect or system-dependent?

In this thesis, the effect that measurement can have on the emergence of chaos in dissipative

quantum systems is investigated, but is this a general effect that can be seen in multiple

systems or is it system dependent? Two completely different systems are investigated in

this thesis. The Duffing oscillator, a system that can be described by the motion of a single

atom in a double well potential, and the driven top, a system that can be described by

two modes within a double well potential or by the angular momentum of a single atom

of large spin or by a collection of two level atoms. The Duffing oscillator is effectively

just a simple harmonic oscillator (SHO) with the lowest order perturbation that a system

can have (quartic potential). In the small oscillation limit, the SHO can be found in a

multitude of systems, that in itself makes the behaviour of the Duffing oscillator a general

behaviour for many nonlinear systems. The Driven top could be thought of as an extension

of the Duffing oscillator to include many body effects. By investigating both systems, we

gain some understanding of what the general effect of measurement is on the emergence

of chaos.



§1.6 Outline of thesis 9

1.5.4 Consequence of opening an isolated quantum system to the envi-
ronment

The first system that we investigate in this thesis is the quantum Duffing oscillator that

is continuously used as a model for investigating the emergence of chaos for dissipative

systems. As is said above, it is well understood that in order to see a smooth transition

to the classical regime for these systems, we must consider an open quantum system that

interacts with its environment. In contrast, the quantum driven top is the classical limit

of a closed system that undergoes Hamiltonian evolution. This is very different to the

first system that we look at which has a dissipative and therefore open evolution in the

classical limit. The driven top is quite often studied as a closed quantum system, but

experimentally there is often some kind of loss to the environment, which motivates the

investigation of what happens when this system interacts with an environment. What

happens as it transitions to the classical regime? This thesis will also aim to answer this

question, studying what happens when we open the quantum driven top, specifically when

we continuously monitor the quantum driven top as an open system. Previous work has

of course considered the effect of decoherence on the quantum driven top and shown the

presence of chaos to still exist for small amounts of loss [46], we will aim to contribute

to this research by adding the measurement as another parameter we can play with. Not

only has this system been experimentally realised in cold atom experiments [144] but it is

intriguing because the classical limit is isolated from the environment. As we said earlier,

no system is ever really isolated from the environment. Experiments in cold atoms try to

eliminate as much noise as physically possible but still there will always be some coupling

to the environment and by looking at the effect of opening the quantum driven top, we

can determine how this coupling will effect the emergence of chaos in these experiments.

The recent interest in this area of open quantum systems and the emergence of chaos

demonstrates how relevant this current work is. This is still a generally new area of an

old field and there are many open questions. This thesis addresses some of the questions

related to the role that continuous measurement has to play.

1.6 Outline of thesis

The first two chapters will act as an introduction to the background needed. This thesis is

investigating the emergence of chaos from a continuously monitored quantum system, and

some tools are required in order to describe this. Chapter 2 will firstly give a background

on what we define as chaos and then it will provide a general background for the “quan-

tum tools” we require to describe the system of interest and compare the quantum system

with the classical counterpart. Chapter 3 will provide the background for the evolution

of quantum systems, where we will mainly be interested in the evolution of open quantum

systems under continuous measurement. This thesis will be comprised of three main re-

sults chapters. The first part (chapter 4) will deal with the continuous measurement of

an open quantum system that is chaotic in the classical limit, focusing on the driven and

damped Duffing oscillator that exhibits chaos for certain choices of the system parameters.

In this section, we will discuss the results of the paper on “Tuning quantum measurements

to control chaos”, where the Lyapunov exponent is calculated for the quantum Duffing

oscillator for different choices of continuous measurement to show the dependence of chaos

on measurement. This chapter will also look at the interesting result that comes from the

driven and damped Duffing oscillator when it is regular in the classical regime with a
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different set of parameters. In this case we again study the effect that measurement has

on the emergence of the classical limit. This case is interesting because we show that the

measurement induces chaos in the quantum regime even when the classical system is not

chaotic. In chapter 5, we will follow on with the work of the first section, focusing on

the classically chaotic set of parameters and looking at the implementation of an adaptive

measurement technique to control the chaos. The development of the control algorithm

and the numerical simulations to model it are given in this chapter as well as the discus-

sion of experimentally realising this in different experimental set ups. This chapter will

discuss the underlying mechanisms that result in dynamical sensitivity to measurement.

Again, this will be done with the model of the quantum Duffing oscillator. In chapter

6 the measurement dependence and the effect of opening the quantum driven top to the

environment coupling will be investigated with relevance to experimental realisations of a

different toy model, the driven top. We make suggestions for how the quantum Lyapunov

exponent could be calculated for this system and we explore possible methods to quantify

chaos in an experimentally feasible way for this system by looking at the breaking time

between the classical and quantum dynamics. Chapter 7 will give a conclusion, sum-

marising the work done in this thesis and an outlook on the questions left to be answered

in the future.



2
Background I: Chaos and Quantum Mechanics

Let us now introduce the background concepts and techniques needed for the investigation

into the emergence of chaos in continuously monitored dissipative systems. In the history

of quantum mechanics, the correspondence between classical mechanics and quantum me-

chanics has been a key area of research. How do we link what we see in the classical world

with how the fundamental particles that make us up behave? At some point, the be-

haviour of the quantum system should look like the behaviour of the classical world as we

make the system more energetic or larger. The motion of the quantum harmonic oscillator

should in the classical limit behave just as the classical harmonic oscillator. To investigate

the emergence of chaos in continuously monitored dissipative systems, we will require a

few key areas of knowledge that will be introduced in the next two chapters. Firstly, the

concept of classical chaos and the usual methods to study it shall be introduced. Secondly,

we will require an introduction to quantum mechanics and the methods by which we can

compare the classical and quantum evolution using phase space methods.

In this thesis we will focus on two different quantum systems of interest, the quantum

Duffing oscillator (Ch. 4& 5) and the quantum driven top (Ch. 6). For each of these

systems, we require a different algebra to describe the quantum state in the appropriate

basis and phase-space geometry. For the Duffing oscillator we require the eigenstates of

the harmonic oscillator, ie. the energy basis states or number states for a single bosonic

mode. For the driven top we require the pseudo-angular momentum basis given by the

Dicke states for two bosonic modes. Both toy models can be realised in trapped bosonic

systems. A Duffing oscillator can be engineered by confining bosons in a single site of

a double well potential. In the case of the driven top, this system can be realised with

two bosonic modes corresponding to two sites of a double well lattice potential, with the

ability to interact and tunnel between the sites. In this chapter we will discuss the physics

that describes the quantum states of such systems.

In this thesis it is necessary to compare the dynamics of our quantum system with a

classical counterpart. The multidimensional Hilbert space of our quantum system has an

embedded classical phase space. The classical phase space for the Duffing oscillator is a 2D

plane, while for the driven top it is the surface of a sphere, which in the classical limit also

looks like the 2D plane. This background chapter presents these phase-space mappings and

11
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the corresponding “semi-classical” quantum states that occupy these embedded classical

phase spaces. We also discuss the semiclassical approximations we can make for our

quantum systems that will enable easy numerical simulations. We will also introduce the

phase space methods by which we can visualise the quantum state, making comparison

with the classical state easier.

The goal of this chapter will be to introduce enough background to the two worlds

of classical and quantum so that we can move on to the goal of the thesis which is to

investigate the evolution of the quantum system with dissipation present and when the

system is continuously monitored. The evolution of an open quantum system will be

introduced in the next chapter.

2.1 Phase space dynamics

As we briefly mentioned above, it is necessary to compare the evolution of classical systems

and quantum systems. The correspondence principle tells us that we should expect to

recover the classical evolution that we see in nature when we take quantum theory to

the limit of large quantum numbers. The space of quantum states is described by a

high dimensional Hilbert space but in order to make a comparison between the classical

and quantum theory, we compare the observable quantities, such as the position and

momentum of a particle. To do this, it is convenient to describe the dynamics of the

particle in a phase space that is given by the position and momentum. This is the usual

space that we will deal with when modelling the dynamics of a classical particle. For a

useful reference on the nonlinear dynamics of classical systems, with description of phase

space dynamics, see [133]. The classical particle will take a trajectory in the phase space

with the position and momentum (x, p) evolving over time as the particle moves. The

motion is described by the equations of motion for the system.

To generalise to higher dimensions, a point in the phase space flowing along the vector

field given by the point x and the velocities ẋ in the phase space will trace out a solution

x(t) to the equations of motion ẋ = f(x), this corresponds to a trajectory winding through

the phase space. A fixed point in the phase space satisfies f(x∗) = 0, this is a steady state.

Closed orbits correspond to periodic solutions for which x(t + T ) = x(t). In the phase

space, we can easily visualise the trajectory of the system for a given initial condition.

But it can be hard to determine the behaviour of the system just from the trajectory. For

this we can move to looking at the Poincaré section.

2.1.1 Poincaré section

Let us consider an n-dimensional system whose dynamics is governed by the equations of

motion ẋ = f(x). Let S be an (n−1)-dimensional surface of section that is transverse to the

flow. The Poincaré section is a mapping from S to itself obtained by following trajectories

from one intersection with S to the next. The map is defined as xk+1 = P (xk). This is

shown in Fig. 2.1. Now consider a closed orbit in the phase space as we describe above.

The trajectory starting at the point x will return to the same point after time T . The

corresponding Poincaré mapping will be a fixed point P (x∗) = x∗. We can see that

the problems of closed orbits will be converted into the problems of fixed points in this

mapping. This is in theory easier to interpret than the orbits in the phase space. However

this is not always the case in practice and it is usually not possible to analytically determine

the expression for the mapping. For periodic solutions, the mapping can be made easily.
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Figure 2.1: Poincaré section

2.1.2 Periodic orbits in phase space

The regular dynamics of a classical system is described by a periodic orbit in phase space.

If we take the Poincaré section of a periodic orbit, we see that the classical trajectory will

return to the same point in the section. A period-1 orbit is defined as an orbit that will

return once every period to the same place in phase space, and the Poincaré section will

be a single point for all time sections. A period-2 orbit will return once every two periods

to the same point and the Poincaré section will be two points in phase space, and so on.

A chaotic orbit will look very different to this.

2.2 Classical chaos

As we discussed briefly in the introduction, the emergence of chaos comes about from

the nonlinear equations that govern the evolution of a system. What exactly is chaos?

It is dynamical behaviour that appears seemingly complex and random but is actually a

result of fully deterministic evolution that we can understand and model very accurately.

See [133] for more detail.

The presence of chaos is defined by a few characteristic features:

• Sensitivity to initial conditions: The tiniest perturbation of the initial condition

leads to completely different evolution. This is quantified by an exponential rate

of divergence of trajectories in phase space. The rate is given by the Lyapunov

exponent which is positive for chaotic systems.

• Aperiodic motion: A chaotic system is characterised by the behaviour that it will

never come back to the same place. The orbit will always visit a different place in

the phase space of the system. This makes it aperiodic. The Poincaré section allows

us to visualise this, for chaotic dynamics, the section looks like a sea of chaos, ie.

many points covering the phase space.

• Bounded in phase space.

2.2.1 Poincaré Section for Dissipative chaos

Systems that are dissipative and chaotic are a bit stranger than Hamiltonian chaotic

systems. This is because of the emergence of a strange attractor in the Poincaré section.

Before we define a strange attractor, let us consider an attractor in general [133]. An

attractor (A) is a closed invariant set. Any trajectory that starts in the set will remain for
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all time. An open set U of initial conditions that contains A as a subset will be attracted.

The distance of any trajectory in U to A will approach zero as t→∞. The largest possible

U is called the basin of attraction of A. There is no proper subset of A that satisfies these

conditions (A in minimal).

A strange attractor is then defined to be an attractor that has a sensitive dependence on

initial conditions. The strange attractor for the Duffing oscillator is shown as an example

in Fig. 2.2. Any starting condition for this set of parameters will fall onto the strange

attractor, leading to chaos. For Hamiltonian dynamics that preserve area, it is impossible

to have an attractor of any kind.

x

p

Figure 2.2: Strange attractor for the Duffing oscillator.

2.2.2 Lyapunov exponent

The sensitivity to initial conditions can be quantified by the Lyapunov exponent which

gives the rate of divergence of trajectories in phase space [98]. This is defined as:

λ = lim
t→∞

lim
d0→0

ln (dt/d0)

t
, (2.1)

where dt is the distance between the two trajectories in phase space at time t and d0

is the initial distance. A system is chaotic when the rate of divergence is positive ie.

when λ > 0 and regular when λ ≤ 0. A negative Lyapunov exponent is a consequence

of a regular dissipative system. A system will generally have a spectrum of Lyapunov

exponents. We define the presence of chaos by a positive maximal Lyapunov exponent.

The sum of Lyapunov exponents must be negative for a dissipative system and one must

zero in a dynamical system that has flow along a trajectory. For a Hamiltonian system,

the sum of Lyapunov exponents is zero.

2.3 Quantum mechanics in phase space

For the comparison of the classical and quantum phase spaces, we require “semiclassical”

states that will survive for long times. Recall from the introduction that the process of

decoherence is key to a smooth transition from quantum mechanics to dissipative chaos.

This means that states that are robust to decoherence will survive, making them “semi-

classical” in a sense and the natural choice for comparison between classical and quantum

mechanics. These states lie on a classical phase space that is embedded within the quan-

tum Hilbert space. In the following section, we will use standard definitions from a few

references ([Walls:1994, 111, 77]).
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2.3.1 Harmonic oscillator

The harmonic oscillator is given by a single particle within a harmonic trap or by a single

mode of light [26]. And it is often the first system to be considered when we discuss the

connections between classical and quantum mechanics because the physics of the two are

the same. In the quantum case we have quantised energy levels of the particle. The state

of the particle sitting in the harmonic trap can be described by the occupation number of

the energy levels:

|ψ〉 =
∑
n

cn|n〉, (2.2)

where the coefficients cn are complex and satisfy
∑

n |cn|2 = 1.

2.3.2 Creation and Annihilation operators

The operators that we can act on the Hilbert space will change the number n of quanta of

energy in the harmonic mode. We can create or destroy a quantum from the mode. Now

we define these operators:

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉, (2.3)

These are called the creation â† and annihilation â operators and they do not commute,

ie. [â, â†] = 1. These operators act on particle to raise and lower the quantised energy

level. The annihilation operator cannot annihilate a quantum from the vacuum state. The

number operator in terms of the creation and annihilation operators is defined as n̂ = â†â,

and the Hamiltonian is given by

Ĥ =
∑

~ω
(
â†â+

1

2

)
. (2.4)

We can define the Fock state in terms of the creation operators acting on the vacuum state

|0, ...0〉 ≡ |0〉:
|n〉 =

(â†)n√
n!
|0〉. (2.5)

The energy of the system is given by the occupation number:

E = ~ω(n+
1

2
), (2.6)

and the vacuum energy (when there is no quanta) or zero point energy is E0 = ~ω/2 is

not zero.

2.3.3 Glauber Coherent States

Glauber proposed coherent states in 1963 [50], motivated by the need to understand

the quantum/ classical correspondence for optics and the wave/ particle duality of the

electromagnetic (EM) field. Coherent states of the field offer a convenient basis with

which the distinction and similarity of the quantum and classical theory can be made, as

we will discuss below. The classical EM field is a harmonic oscillator made up of many

bosonic modes which are each quantum harmonic oscillators. The coherent states |β〉 of
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the EM field must be the eigenstate of the annilhilation operators for each mode k.

âk|β〉 = αk|β〉, (2.7)

so the coherent state for each mode |αk〉 of the field must be the eigenstate of the annihi-

lation operator âk for that mode

âk|αk〉 = αk|αk〉. (2.8)

The coherent states of the field are then the product state of the individual states

|β〉 =
∏
k

|αk〉. (2.9)

To find the state |α〉 for a single bosonic mode which satisfies Eq. 2.8, we begin by taking

the scalar product of each side with the number state 〈n|:

〈n|â|α〉 = 〈n|α|α〉, (2.10)

which gives us the recursion relation

(n+ 1)1/2〈n+ 1|α〉 = α〈n|α〉. (2.11)

Solving the recursion relation gives

〈n|α〉 =
αn√
n!
〈0|α〉. (2.12)

Using the completeness of the number basis
∑

u |n〉〈n| = 1̂ we have

|α〉 =
∑
u

|n〉〈n|α〉

= 〈0|α〉
∑
n

αn√
n!
|n〉, (2.13)

and if we have a normalised coherent state 〈α|α〉 = 1 then we can find

〈0|α〉 = e−|α|
2/2, (2.14)

so that the coherent states are given by

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉. (2.15)

The coherent state is a coherent sum of number states. And α = |α| exp(iθ) is a complex

number which describes the location of the centre of the coherent state in phase space.

2.3.4 Displacement operator as a definition of a coherent state

We can also define the coherent states as a displacement of the ground state of the system.

If we start with a vacuum state of the electromagnetic field, a displacement of the state
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by a complex amplitude α will give a coherent state.

|α〉 = D̂(α)|0〉, (2.16)

where D(α) = exp(αâ†−α∗â). We express this in a form that easily acts upon the ket |0〉
by using the Baker Campbell Hausdorff (BCH) theorem. For two operators Â and B̂ that

do not commute but do commute with the commutator (ie. [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0),

then the reordering theorem can be expressed as [111]

eθ(Â+B̂) = ep(θ)Âeq(θ)B̂er(θ)[Â,B̂], (2.17)

where p(θ) = q(θ) = θ and r(θ) = −θ/2. So the displacement operator acting on the

vacuum state is simply given by

D(α)|0〉 = e[αâ†−α∗â]|0〉
= e(−|α|2/2)eαâ

†
e−α

∗â|0〉
= e(−|α|2/2)eαâ

† |0〉

= e(
−|α|2

2
)
∞∑
n=0

αn√
n!
|n〉, (2.18)

which agrees with the definition based on the eigenstates of the annihilation operator.

2.3.5 Connection to the classical phase space

Since coherent states are the eigenstates of the annihilation operator, they are robust to

quantum loss processes such as decoherence. Intuitively, we therefore expect coherent

states to behave semiclassically. We can confirm this intuition by expressing the wave-

function of a coherent state within the classical phase space given by the position and

momentum co-ordinate. We first introduce the canonical conjugate pair q̂, p̂ which obeys

the commutation relation [q̂, p̂] = i~, so that the annihilation and creation operators in

terms of the quadratures are

â =
1√
2~

(q̂ + ip̂)

â† =
1√
2~

(q̂† − ip̂). (2.19)

The conjugate pair represent the dimensionless position and momentum operators and

are referred to as the quadrature operators. The expectation values for the conjugate pair

〈q̂〉 = q and 〈p̂〉 = p give the real and imaginary parts of the coherent field respectively:

〈α|q̂|α〉 =
√
~〈α| 1√

2
(â+ â†)|α〉 =

√
~

1√
2

(α+ α∗) =
√

2~Re(α), (2.20)

〈α|p̂|α〉 =
√
~〈α| i√

2
(â− iâ†)|α〉 =

√
~
i√
2

(α− α∗) = −
√

2~Im(α), (2.21)

and

α =

√
~
2

(q + ip) . (2.22)
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If we look at the uncertainty of q̂ and p̂, we can see that the coherent states are in a

sense the “semiclassical” states of the Hilbert space. The Heisenberg uncertainty principle

tells us that we cannot know q̂ and p̂ precisely at the same time for a quantum system.

The more precisely we know the position, the less precisely we can know the momentum.

Formally this is given by the inequality:

∆q̂∆p̂ ≥ ~
2
. (2.23)

For the coherent states, the uncertainty is given by

(∆q̂)2 = 〈q̂2〉 − 〈q〉2

=
~
2
〈α|â2 + â†2 + ââ† + â†â|α〉 − 2~Re(α)2

=
~
2

(|α|2 + α2 + α∗2 + |α|2 + 1)− 2~Re(α)2

= ~/2 (2.24)

(∆p̂)2 = 〈p̂2〉 − 〈p〉2

= −~
2
〈α|â2â†2 − ââ† − â†â|α〉 − 2~Im(α)2

=
~
2

(|α|2 − α2 − α∗2 + |α|2 + 1)− 2~Im(α)2

= ~/2 (2.25)

(∆q̂)2(∆p̂)2 =
1

4
~2. (2.26)

The coherent states minimise the Heisenberg uncertainty principle, they are the most

classical states of the Hilbert space. We can visualise what a coherent state looks like in

the classical phase space easily using the “ball and stick” analogy that is commonly referred

to in quantum optics (shown in Fig 2.3). The coherent state is a ball displaced from the

origin by complex amplitude α. The size of the ball is determined by the uncertainty in q̂

and p̂.

What does the wavefunction of a coherent state look like in the position and momen-

tum bases? The wavefunction in quantum mechanics is complex so we must look at the

probability distribution instead. For comparison with the classical phase space we look at

the marginals |〈q|α〉|2 and |〈p|α〉|2. The wave function in coordinate space is given by the

overlap of the coherent state with the coordinate basis:

〈q|α〉 = (π)−1/4e{−ip0q0/2+ip0q−(q−q0)2/2}. (2.27)

In momentum space we similarly have

〈p|α〉 = (π)−1/4e{ip0q0/2−iq0p−(p−p0)2/2}. (2.28)

This shows that the quadrature probability distributions |〈q|α〉|2 and |〈p|α〉|2 are Gaussian,

centred around the displaced point α = q0 + ip0.

Let us now consider the overlap of two coherent states in the classical phase space:

〈α2|α1〉 = e−i(q1p2−p1q2)/2e−{(q2−q1)2+(p2−p1)2}/4, (2.29)

which gets smaller exponentially fast as the coordinate distance between the two states
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Figure 2.3: The coherent state can be easily visualised in phase space by a ball and stick analogy.

In the complex phase space of α, the coherent state is given by a ball that is centred around the

point (Re(α), Im(α)) = (〈q̂〉, 〈p̂〉). The width of the ball is given by the uncertainty in q̂, p̂ which

is equal. In the classical limit, the ball becomes a point that is infinitely narrow in phase space.

gets larger. Larger coordinate distance leads to a state that is somewhat more classical as

the interference between the two states diminishes. The greater the distance between the

two coherent states, the more classical they appear. The distance in classical phase space

tends to larger values as the classical limit is approached. The space of coherent states

is the classical phase space that is embedded in the infinite dimensional quantum Hilbert

space. In the case at hand, we have a 2 dimensional flat plane. The metric for the space

spanned by q and p gives the distance metric which we will use for calculating Lyapunov

exponents. This metric is given as the distance in phase space:

ds2 =
1

2
(dq2 + dp2). (2.30)

The benefit of considering coherent states is that there is a one-to-one mapping between

the space of coherent states and the classical phase space. A point in the classical phase

space corresponds to a coherent state.

2.3.6 Semiclassical limit

As the system becomes more classical, we can approximate our wave function by a Gaus-

sian function in the classical phase space. We have just seen that coherent states are in a

sense the classical states in the space of quantum states and that they saturate the Heisen-

berg uncertainty relation. However they are not the only states that do this. Coherent

states are special because they also satisfy ∆q = ∆p but we make the more general as-

sumption that the semiclassical state will be a Gaussian in phase space. This assumption

is also valid for squeezed states where the uncertainty in one observable is less than the

canonical conjugate observable. This approximation is valid in the semiclassical regime

where there is minimal quantum interference effects from superpositions but where there

is still uncertainty in the observables of the system. The classical limit is then approached

by taking the variance of the Gaussian to zero. For a Gaussian wavefunction, we can

describe the state by just the expectation values q̂ and p̂, the variances Vq, Vp and the
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covariance Vqp = 1
2(〈q̂p̂〉 + 〈p̂q̂〉 − 〈q̂〉〈p̂〉. This approximation is valid when there is no

quantum superposition states. When the state is coherent or a squeezed coherent state it

can be approximated as a Gaussian wavepacket [102]

ψ(q, t) = (2πµ)−1/4 exp{i[A(x− q)2 + p(x− q)]}, (2.31)

which implies the relations

〈∆q̂2m〉 =
(2m)!µm

m!2m
, (2.32)

〈∆q̂2m+1〉 = 0, (2.33)

4µ〈∆p̂2〉 = ~2 + α2, (2.34)

〈∆q̂∆p̂+ ∆p̂∆q̂〉 = α, (2.35)

where

A =
1

4µ
(i+ α). (2.36)

2.3.7 Visualising quantum states

We have shown above how the classical and quantum phase spaces can be connected

through coherent states, and that these states can be visualised in phase space by looking

at the marginals. But we also require a general method to visualise arbitrary states in

phase space. In order to compare general quantum states with the classical dynamics,

we require a quantum phase space distribution. Though in general the distribution can

be negative for quantum mechanics and the probability distribution cannot be a true

probability distribution because of incompatibility of the canonically conjugate observables

q̂ and p̂. However, it is still useful to describe quantum states with quasi-probability

distributions. Here we will introduce the density matrix formalism of quantum states that

we will see again in chapter 3. The general description of a quantum state is a density

matrix ρ̂S , with components giving the probabilities pi of being in the associated pure

states |ψi〉:
ρ̂S =

∑
i

pi|ψi〉〈ψi|, (2.37)

where the probabilities are positive pi > 0 and must sum to give
∑

i pi = 1. We introduce

this here because it will ensure we understand the following methods of visualising quantum

states. In general, a quantum state may not always be a pure state and in that case, the

density operator formalism is required.

Wigner Function

One of the quasi probability distributions used to visualise states is the Wigner func-

tion [151], which is given by

W (q, p) =
1

2π

∫ +∞

−∞
eipx〈q − x

2 |ρ̂|q + x
2 〉dx. (2.38)

The Wigner function takes a Hilbert space state ρ̂ and transforms it to a classical phase

space function which has the following properties:

• Its real for Hermitian ρ̂. W ∗(q, p) = W (q, p)
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• Its normalised.
∫ +∞
−∞

∫ +∞
−∞ W (q, p)dqdp = 1.

• It is easy to calculate expectation values for the state. For an operator F̂ , the

overlap formula gives tr{ρ̂F̂} = 2π
∫ +∞
−∞

∫ +∞
−∞ W (q, p)WF (q, p)dqdp, where WF (q, p)

is the Wigner function for the operator F̂

• The Wigner function cannot be completely positive in general.

• |W (q, p)| ≤ 1/π (proven with the Schwarz inequality).

One of the benefits of the Wigner function as a tool for visualising quantum states, as

we will see in examples below, is that it allows us to visualise and quantify the degree of

“quantum-ness” of the state which can be seen from the presence of interference fringes

that come from quantum superpositions. We will make use of this in Chapters 4 & 5.

The degree of “quantum-ness” (ie. how nonclassical the state is) can be quantified by the

amount of negativity in the Wigner function [69].

Examples of Wigner Functions

• For the vacuum state we have

W0(q, p) =
1

π
exp(−q2 − p2) (2.39)

• The coherent state is a displaced vacuum state with complex coherent amplitude√
2α = q0 + ip0.

WD(q, p) =
1

2π

∫ +∞

−∞
eipx〈q − x

2
|D̂ρ̂D̂†|q +

x

2
〉dx

=
1

2π

∫ +∞

−∞
ei(p−p0)x〈q − x

2
− q0|ρ̂|q +

x

2
− q0〉dx

= W (q − q0, p− p0), (2.40)

So the Wigner function for a coherent state is given by W (q, p) = 1/π exp(−(q −
q0)2 − (p− p0)2). This looks exactly as what we have shown above in Fig. 2.3. The

ball and stick is the Wigner function of a coherent state in phase space.

• Now if we consider the superposition of two coherent states located at different

positions in the phase space, we have what is known as a cat state [59], named

as such after Schrödinger’s thought experiment: (which will be discussed in much

greater detail in the next chapter).

W (q, p) ∝ e−(q−q0)2−p2 + e−(q+q0)2−p2 + 2e−q
2−p2 cos(2pq0), (2.41)

where we can see the interference fringes from the coherent superposition. The

Wigner function for the cat state is shown in Fig. 2.4. The Wigner function displays

quadrature amplitudes, their fluctuations and possible interferences.

Husimi Q function

What if we want something that is strictly positive? Something that more resembles a

classical probability distribution. If we smooth the Wigner function by convolving it with a
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q

p

Figure 2.4: The cat state can be best visualised with the Wigner function. This is what it looks

like in the phase space. As you can see the state is made up of the two coherent states in the

superposition and the interference fringes that are a clear sign of the quantum superposition state.

Gaussian distribution we can achieve this, and we end up with the Husimi Q function [65].

What this gives is the overlap of the quantum state with a coherent state centred at the

same point in phase space:

Q(q, p) =
1

π

∫ +∞

−∞

∫ +∞

−∞
W (q′, p′)e−(q−q′)2−(p−p′)2dq′dp′. (2.42)

The Q function gives the probability distribution for finding coherent states |α〉 in the

state ρ̂.

Q(q, p) =
1

2π
tr{ρ̂|α〉〈α|}

=
1

2π
〈α|ρ̂|α〉. (2.43)

The Husimi Q function is non-negative and normalised to unity. With the Husimi Q

function we can no longer quantify how quantum the state is since we cannot see the

interference fringes. A superposition state will look the same as a classical mixture of

coherent states. But it can be seen as a more classical probability distribution since the

probability is no longer negative.

Example of Q function

As an example we bring back the Schrödinger cat state:

Q(α) ∝ e−|α−α0|2 + e−|α+α0|2 + 2e−|α|
2−|α0|2 cos(2Im(α∗α0)). (2.44)

An exponentially small bump proportional to exp(−|α|2) is all that is left of the interference

structure in the Q function and the more macroscopic the cat state, the smaller the bump.

So the Q function cannot clearly discriminate between macroscopic superpositions and

statistical mixtures. This means that the Q function is not suitable to demonstrate the

“quantum-ness” of the quantum state. For this reason we will not use it in our treatment

of the Duffing Oscillator, however it is useful to highlight the advantages of the Wigner
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function for some things.

2.4 Models of chaotic systems

In this thesis we will focus on the quantum version of two different chaotic models of

interest, the Duffing oscillator (Ch. 4& 5) and the driven top (Ch. 6). In this section we

will discuss the physics needed to describe these two systems. For the Duffing oscillator

we have already described a lot of what is necessary in the previous sections, we require

the physics of the harmonic oscillator. While for the driven top we must introduce some

new physics and a new phase space for the classical limit.

2.4.1 The Duffing oscillator

The first system we will consider is the Duffing oscillator, which can be physically described

by a single particle in a double well potential. The quantum state can be described by the

Harmonic oscillator basis states given in section 2.3.1 and the classical phase space is the

2D plane given by x and p in section 2.3.5.

2.4.2 The driven top

The second system we will focus on in this thesis is the driven top, which can be physically

described by the Bose-Hubbard dimer [89] or as a collection of two level atoms or as the

spin of a single atom. All of these systems share the same physics that can be described by

an SU(2) algebra and the angular momentum operators. Let us focus on the description of

a Bose-Hubbard dimer. Physically this is the collection of atoms in two lattice sites that

are free to interact with each other and tunnel between the two wells. For this realisation

we have two bosonic modes. The two-mode Fock state is

|na〉 ⊗ |nb〉 =
(â†)na√
na!

(b̂†)nb√
nb!
|0, 0〉 ≡ |na, nb〉. (2.45)

Atoms cannot be created or destroyed so the total number N = na + nb is fixed. By

imposing the fixed number constraint we take the infinite space spanned by |na, nb〉 and

define the subspace spanned by N + 1 basis vectors |N − n, n〉 [n = 0, 1, ..., N ] which are

sometimes called Dicke states.

The Bose-Hubbard model can become quite complex with high numbers of atoms and

lattice sites. Fortunately for the case of two bosonic modes, the system can be conveniently

described by the SU(2) algebra which makes things a bit simpler. For three bosonic modes

(three lattice sites) the system could be described by an SU(3) algebra and in general N

lattice sites can be descibed by SU(N) algebra.

The Hamiltonian for the Bose-Hubbard dimer is

Ĥ = αâ†â+ βb̂†b̂+ γ(â†b̂+ b̂†â), (2.46)

where α and β correspond to the energy of the modes a and b, with the number of particles

in mode a given by n̂ = â†â acting on a particular state and similar for mode b. The γ term

describes the interaction between the two modes. Rather than looking at the action of the

individual atoms, we can conveniently cast this system into a problem of pseudo-angular
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momentum using the Jordan-Schwinger decomposition and use SU(2) algebra instead.

Ĵx =
1

2

(
â†b̂+ b̂†â

)
Ĵy =

1

2i

(
b̂†â− â†b̂

)
Ĵz =

1

2

(
â†â− b̂†b̂

)
. (2.47)

The Hermitian angular momentum operators obey the commutation relation

[Ĵi, Ĵj ] = iεijkĴk. (2.48)

The basis states of the SU(2) angular momentum states are also the eigenstates of the

number difference operator

Ĵz|N − n, n〉 = m|N − n, n〉, (2.49)

where

m =
1

2
(na − nb) =

N

2
− n. (2.50)

We usually denote the eigenstates of the number difference (Dicke states) as |j,m〉 where

j = N/2 is the total spin of the system. The N + 1 unique eigenvalues take values in

integer steps between −j ≤ m ≤ j. The maximal state |j, j〉 has all bosons in one mode

and the minimal state |j,−j〉 has all bosons in the other mode. The raising and lowering

operators for the spin are Ĵ+ = â†b̂ and Ĵ− = (Ĵ+)†, in terms of the Hermitian operators

they are given as

Ĵ− = Ĵx − iĴy
Ĵ+ = Ĵx + iĴy. (2.51)

Analogous to the creation and annihilation operators for a single oscillator, they act to

raise and lower the spin of the system, or for a two mode bosonic system, they take bosons

from one mode to the other mode and vice versa.

Ĵ−|j,m〉 =
√
J(J + 1)−m(m− 1)|j,m− 1〉 (2.52)

Ĵ+|j,m〉 =
√
J(J + 1)−m(m+ 1)|j,m+ 1〉, (2.53)

so that Ĵ+|j, j〉 = 0 and Ĵ−|j,−j〉 = 0, in the same way that we cannot apply the annihi-

lation operator on the vacuum state.

For Ĵz, Ĵ+ and Ĵ−, we have

[Ĵz, Ĵ±] = ±Ĵ± and [Ĵ+, Ĵ−] = 2Ĵz. (2.54)

2.4.3 Coherent spin states

The operator that gives the displacement in the SU(2) phase space is given by a rotation

operation on the surface of the sphere. SU(2) is isomorphic to SO(3), so the classical phase

space is the space of rotations on the surface of the sphere. We face the same problem as

with classical rotations on a 2-sphere in that the operation of rotation is not unique. In

an analogous way to Glauber coherent states, the coherent states for the SU(2) group can
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be given as the rotation of a maximal spin state to a coherent spin state (CSS) [110]

R̂(θ, φ)|j, j〉 = e(−iφĴz)e(−iθĴy)|j, j〉, (2.55)

where |j, j〉 is the state of all the bosons in one of the wells. Because SU(2) is isomorphic

to SO(3) this can be understood easily as the rotation of the CSS from about the Ĵy
axis by the angle θ and then another rotation applied about the Ĵz axis by the angle

φ. In the limit of large j the rotation becomes equivalent to the displacement operator

given in Eq. 2.18. In the classical limit, the conjugate pair is cos(θ), φ, this gives the two

dimensional plane on which the classical state lies. As we approach the classical limit (as

N/2 = j →∞) the surface of the sphere starts to look more and more like a 2D flat space.

One possible uncertainty relation for the SU(2) algebra is given by

(∆Ĵx)2(∆Ĵy)
2 ≥ 1

4
〈Ĵz〉2, (2.56)

and once again the general CSS in SU(2) saturates the relation giving the minimum

uncertainty state. The classical states for the SU(2) system (and the minimal uncertainty

states) will be Gaussians on the classical phase space given by the surface of the sphere.

Analogous to the Glauber coherent states, we have spin coherent states:

|j, θ, φ〉 =

j∑
m=−j

√(
2j

j −m

)
sin

(
θ

2

)j−m
cos

(
θ

2

)j+m
ei(j−m)φ|jm〉. (2.57)

The metric for this space is given by the arc length on the surface of the sphere.

ds2 =
j

2
(dθ2 + sin2(θ)dφ2). (2.58)

2.4.4 Husimi Q function for SU(2)

In much the same way as the Husimi Q function for the Glauber coherent states, the

Husimi Q function for an SU(2) system is the overlap of the state with a coherent spin

state (CSS) which is given by

Q(θ, φ) =
2J + 1

4π
〈α(θ, φ)|ρ̂|α(θ, φ〉. (2.59)

The visualisation of the Husimi Q function for a coherent spin state in SU(2) is given in

fig. 2.5. If we took the system to the limit of large j, this would look much the same as

the pictorial representation for the Glauber Coherent state in q, p phase space as a circle

in the 2D space.

2.5 Evolution of Closed Quantum Systems

A closed quantum system is completely isolated from its surrounding environment. Think

for example of an atom (or a cat, or a universe) in a box with no interaction with anything

outside the box. The evolution of such a system is unitary which means there is no loss of

information about the state and the process is reversible. The continuous time evolution of

the closed system is given by the well known differential equation known as the Schrödinger
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Figure 2.5: A coherent spin state on the surface of the sphere for N = 100 bosons. This coherent

spin state is made by the rotation of the maximal state R̂(θ, φ)|j, j〉, with the parameter choice

(θ = π/2, φ = 0) which corresponds to a rotation about the Ĵy axis of θ = π/2.

equation

i~
d|ψ〉
dt

= Ĥ|ψ〉, (2.60)

where ~ is Planck’s constant and H is the Hamiltonian of the closed system. Solving the

Schrödinger equation will give the state at time t:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉, (2.61)

where Û(t, t0) is the unitary operation that takes the state from time t0 to t and for a

time-independent Hamiltonian, is given by

Û(t, 0) = e
−i
~ Ĥ(t−t0). (2.62)

In the next chapter we will look at what happens when we open the quantum system

to interactions with an environment, which we will need in order to connect the quantum

dynamics with the chaos found in the classical limit.



3
Background II: Evolution of Open Quantum

Systems

In the previous chapter, we introduced classical chaos and the usual methods for studying

it. We also introduced the mathematical framework we will need for dealing with quantum

states and quantum mechanics and the evolution of a closed quantum system. In this

chapter we can now dive into the dynamics of open quantum systems . In this thesis, we

are interested in the nonlinear dynamics of chaotic systems and how this emerges from

the quantum system as we go towards the classical limit. We are specifically interested

in the emergence of chaos in open quantum systems that are continuously monitored. In

order to look at the dynamics of open quantum systems, we need to know how an open

quantum system evolves and how we can obtain the state of a quantum system at some

time. In section 3.1 we will introduce a quantum system interacting with an environment

and discuss the evolution of an open quantum system. In section 3.2, we discuss the

evolution of a quantum system under measurement which is one of the main focuses of

this thesis and therefore an important section for the rest of the thesis. We will look at

projection measurements and the measurement postulate and then cover the continuous

measurement of open quantum systems.

3.1 Open Quantum Systems

No quantum system is ever truly isolated from the surrounding environment, and if we

want to look at the dynamics of a quantum system in nature, often we need to also consider

the effect that the environment has on the quantum system. Think again of a cat in a

box, that box is sitting in a bigger box (also known as the universe) and the universe and

the cat in the box can interact with each other, for example electromagnetic waves of light

could penetrate the box and heat it up. When the principal system interacts with the

external environment, information is shared between the two which can couple the systems

and lead to entanglement. If the state of the environment and the coupling is known, then

we can treat the two systems as sub-systems of one larger system. The evolution of the

total system will remain unitary. However, if the state of the environment is ignored,

27
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information about the state of the system of interest (and coherence) will be lost. This

loss process is referred to as decoherence and is an irreversible process that generally (but

not always) leads to the state of the quantum system becoming a classical mixture. When

this is the case, we can no longer express the state of the principal system as a pure state

vector |ψ〉. Recall from section 2.3.7 that in this case we describe the quantum state in

the density operator formalism (Eq. 2.37). The density operator formalism can express a

pure state as well as a mixed state for the system of interest and is more general than the

state vector formalism.

In chapter 2 we briefly discussed the evolution of a closed quantum system. We can

redo this in the density operator formalism to obtain the same thing. The evolution of

the density operator for a closed system is given by

ρ̂T (t) = Û ρ̂T Û
†, (3.1)

where T stands for the total system and the equation of motion of the total system is now

given by the Von-Neumann equation

dρ̂T (t)

dt
= − i

~
[Ĥ, ρ̂T (t)]. (3.2)

In practice it can be near impossible to keep track of all information lost to the environ-

ment, inevitably leading to some amount of decoherence. It can also be quite challenging

to model the evolution of the total system, especially when the environment coupled to the

principal system has many degrees of freedoms. This motivates a simpler model for the

approximate evolution of the principal system where the information lost to the environ-

ment is disregarded. This evolution is described by what is known as a master equation.

⇢̂E
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Principal	
system

Environment

Total	system

Figure 3.1: Open quantum system coupled to the environment. Both are sub systems of a much

larger system.

3.1.1 Derivation of the Markovian master equation

The following derivation is based on the derivation given in the Wiseman and Milburn

textbook [158] and the Breuer and Petruccione textbook [12]. As stated above, the evolu-

tion of the total system can be difficult to solve when the environment, often referred to

a reservoir or bath, is much larger system than the principal system. In quantum optics

we often regard a principal system coupled to a heat bath constructed of many harmonic

oscillators. In this case, the problem can be much simpler if we disregard the information
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lost to the environment and model the approximate evolution of the principal system with

loss. If we focus solely on the principal quantum system with state ρ̂S , the evolution will

no longer be unitary. To begin with, the reduced density matrix (the state of the principal

system) with loss to the environment is given by tracing out the environmental degrees of

freedom.

ρ̂S(t) = TrE [ρ̂T ] =
∑
j

〈ej |ρ̂T (t)|ej〉, (3.3)

where the Hilbert spaces for the system and environment are HS and HE respectively and

{|ej〉} is an orthonormal basis of HE . For the total closed system, the Hilbert space is

HS ⊗HE and the Hamiltonian is given by

Ĥ = ĤS + ĤE + ĤI , (3.4)

where ĤS and ĤE are the free Hamiltonians of the system and environment (we define

Ĥ0 = ĤS + ĤE to be the interaction-free/time-independent Hamiltonian) and are in

general well understood and HI is the interaction term which is usually a more complicated

perturbation on the system. We assume that the system and environment are initially

uncorrelated, that is, the initial condition is a product state ρ̂T (0) = ρ̂S(0) ⊗ ρ̂E . In the

Schrödinger picture, the evolution of the total system is given by Eq. 3.2. It is useful

to move into the interaction frame and split the Hamiltonian into the time-independent

terms and the time dependent terms. In the interaction frame, we use

ĤI(t) = eiĤ0t/~ĤIe
−iĤ0t/~, (3.5)

so that the Schrödinger picture equation becomes

dρ̂T (IF )

dt
= − i

~
[ĤI(IF ), ρ̂T (IF )], (3.6)

and the solution to Eq. 3.2 is found by

ρ̂T (t) = e−iĤ0t/~ρ̂T (IF )(t)e
iĤ0t/~. (3.7)

We will drop the (IF ) notation from here on since we will remain in the interaction picture

for the rest of the derivation. Solving Eq. 3.6 implicitly we obtain:

ρ̂T (t) = ρ̂T (0)− i

~

∫ t

0
ds [ĤI(s), ρ̂T (s)]. (3.8)

Substituting Eq. 3.8 back into Eq. 3.2 and taking the partial trace over the environmental

degrees of freedom, we get

dρ̂S
dt

= − 1

~2

∫ t

0
dsTrE{[ĤI(t), [ĤI(s), ρ̂T (s)]]}, (3.9)

where TrE{[ĤI(t), ρ̂T (0)]} = 0 is assumed. This assumption can be made because we

assume the two systems are initially uncorrelated and the interaction Hamiltonian acts on

both subspaces (see below for the decomposition). This may be valid experimentally if we

have sufficiently weak coupling between the environment and the system.

Now we make the Born approximation, we assume the correlations between the sub-

systems are negligible at all times ρ̂T (t) ≈ ρ̂S(t)⊗ ρ̂E . Meaning that the coupling between
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the environment and system is sufficiently weak at all times and the environment is not

affected greatly by the system. Again, this is valid assuming we have a very large envi-

ronment coupled to the system. The equation of motion then becomes

dρ̂S
dt

= − 1

~2

∫ t

0
dsTrE{[ĤI(t), [ĤI(s), ρ̂S(s)⊗ ρ̂E ]]}. (3.10)

In this form, the future evolution of the system depends on the past state for times s < t.

This can be understood intuitively if we think in terms of the information that is trans-

ferred to the environment. The environment retains a memory given by the information

that is transferred and that means that the information can be transferred back to the

system. We can simplify this further by assuming that the system is only affected by the

present state. This is valid so long as the state does not change much in the time that

the environment correlations take to decay (the correlation time). In many cases, the

environment correlation time is much shorter than the timescale of the system so this is

valid and we can treat the environment effectively as memoryless. This will give us the

Redfield master equation:

dρ̂S
dt

= − 1

~2

∫ t

0
dsTrE{[ĤI(t), [ĤI(s), ρ̂S(t)⊗ ρ̂E ]]}. (3.11)

We have assumed so far that the state does not change much within the correlation time

of the environment; we can take it a step further by neglecting change altogether within

the correlation time by making a course graining in time. This is done by replacing the

top limit of the integral with ∞. And for convenience we replace s with t− s.

dρ̂S
dt

= − 1

~2

∫ ∞
0

dsTrE{[ĤI(t), [ĤI(t− s), ρ̂S(t)⊗ ρ̂E ]]}. (3.12)

The two-step approximation described in Eqs. 3.11 and 3.12 is known as the Markov ap-

proximation. We now have an equation that is suitable for weak coupling and memoryless

dynamics, and we will use the Markovian evolution for the entirety of this thesis. The

Markovian approximation is generally a valid approximation for a lot of systems that we

can engineer. While not all systems can be modelled by making this assumption, and a lot

of work is currently being done for non-Markovian systems, we will not encounter them

in this thesis.

3.1.2 Lindblad Master Equation

Throughout this thesis we will use the Master equation in Lindblad form [81] (also referred

to as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation) which we can arrive

at by making the Born, Markov and secular approximations on the evolution of our system.

This form of the Master equation is easily solvable and valid for the systems we will cover

in this thesis. The final steps to arrive at the Lindblad Master equation from Eq. 3.12

requires the secular approximation. The interaction Hamiltonian can be decomposed in

terms of the operators of the system and environment

ĤI =
∑
i

Âi ⊗ Êi (3.13)
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where Âi (Êi) are Hermitian operators of the system (environment). We assume the

spectrum of Ĥs is discrete and write the system operator in terms of eigenoperators of the

system.

Âi =
∑
ω

Âi(ω) =
∑
ω

Â†i (ω). (3.14)

Rewriting the interaction Hamiltonian in terms of the eigenoperators and moving to the

interaction picture where the eigenoperators are simply given by Âi(ω) = e−iωtÂi(ω), we

get

dρ̂S
dt

= − 1

~2

∑
i,j

∑
ω,ω′

∫ ∞
0

ds (eiωtÂ†i (ω)eiω
′(t−s)Âj(ω

′)ρ̂s(t)

− e−iω′(t−s)Âj(ω′)ρ̂s(t)eiωtÂ†i (ω))〈Ê†i (t)Êj(t− s)〉+H.c.

(3.15)

=
1

~2

∑
i,j

∑
ω,ω′

∫ ∞
0

ds eiω
′s〈Ê†i (t)Êj(t− s)〉ei(ω−ω

′)t(Âj(ω
′)ρ̂s(t)Â

†
i (ω)

− Â†i (ω)Âj(ω
′)ρ̂s(t)) +H.c.

(3.16)

where Êi(t) = eiĤEtÊie
−iĤEt are the environment operators in the interaction frame and

〈Ê†i Êj〉 = TrE{Ê†i Êj}. Now the secular approximation is made by assuming that the

timescale of the system τs ≈ |ω − ω′|−1 for ω 6= ω′ is much larger than the relaxation

time scale of the open system τR so that we can neglect all exponentials with frequencies

ω 6= ω′ because they oscillate fast and average out to zero. If we define the environment

correlation function as Γij(ω) =
∫∞

0 dseiωs〈Ê†i (t)Êj(t− s)〉 then we have

dρ̂S
dt

=
1

~2

∑
i,j

Γij(ω)
(
Âj(ω)ρ̂s(t)Â

†
i (ω)− Â†i (ω)Âj(ω)ρ̂s(t)

)
+H.c. (3.17)

Decomposing the environment correlation function into its real and imaginary components

Γij(ω) = 1
2γij(ω) + iSij(ω), we have

˙̂ρ = − i
~

[ĤLS , ρ̂s] +
1

~2

∑
ω

∑
i,j

γij(ω)

(
Âj(ω)ρ̂s(t)Â

†
i (ω)− 1

2
{Â†i (ω)Âj(ω), ρ̂s(t)}

)
, (3.18)

where ĤLS is the Lamb shift Hamiltonian given by

ĤLS =
∑
ω

∑
i,j

Sij(ω)Â†i (ω)Âj(ω), (3.19)

and Sij(ω) = 1
2i [Γij(ω) − Γ∗ij(ω)], and γij(ω) = Γij(ω) + Γji

∗(ω). If we now diagonalise

the coefficient matrix, we end up with the GKSL form of the master equation

˙̂ρ = − i
~

[ĤLS , ρ̂s] +
1

~2

∑
ω,k

γk(ω)

(
¯̂
Ak(ω)ρ̂s(t)

¯̂
A†k(ω)− 1

2
{ ¯̂
A†k(ω)

¯̂
Ak(ω), ρ̂s(t)}

)
. (3.20)

3.1.3 Example: Spontaneous Emission of a Two Level Atom

Let us now look at the example of a two level atom interacting with a surrounding elec-

tromagnetic field that is much larger than the system. The atom can spontaneously emit

a photon if it decays to the ground state. This photon could go in any direction. The
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Hamiltonian for the environment in this case with k field modes is just given by a sum of

harmonic oscillators (let us set ~ = 1 for convenience)

ĤE =
∑
k

ωk b̂
†
k b̂k, (3.21)

where b̂†k and b̂k are the creation and annihilation operators for the kth mode, which are

independent of all other modes. The free Hamiltonian for the two level atom is given by

ĤS =
ωs
2
σ̂z, (3.22)

where ωs is the natural frequency of the atom. This Hamiltonian describes the dynamics

of the closed system, which is just the precession around the σ̂z axis on the Bloch sphere.

The interaction Hamiltonian that describes the interaction between the system and envi-

ronment in this case is given by the coupling of the atom to the field modes, which will

be the electric dipole coupling

ĤI =
∑
k

(gk b̂k + gk b̂
†
k)(σ̂+ + σ̂−), (3.23)

where gk is the coefficient of the kth mode that depends on the structure of the mode and

σ̂+ and σ̂− are the raising and lowering operators for the atom, given by σ̂− = |g〉〈e| and

σ̂+ = (σ̂−)†. Moving into the interaction frame, the interaction Hamiltonian is

ĤI =
∑
k

(gk b̂ke
−iωkt + gk b̂

†
ke
iωkt)(σ̂+e

iωst + σ̂−e
−iωst)

=
∑
k

gk b̂kσ̂+e
−i(ωk−ωs)t + gk b̂

†
kσ̂−e

i(ωk−ωs)t + gk b̂kσ̂−e
−i(ωk+ωs)t + gk b̂

†
kσ̂+e

i(ωk+ωs)t.

(3.24)

Now we make the rotating wave approximation. The terms with ωk + ωa will rotate very

fast (≈ 1015s−1) over the timescale of the radiative decay (≈ 108s−1) so that they will

average out to zero. Next we make the Born approximation and obtain

dρ̂S
dt

= −
∫ t

0
ds{Γ(t− s)[σ̂+σ̂−ρ̂S(s)− σ̂−ρ̂S(s)σ̂+] + H.c., (3.25)

where H.c. is the hermitian conjugate term and

Γ(τ) =
∑
k

g2
ke
−i(ωk−ωs)τ . (3.26)

Next we make the Markov approximation and replace the sum in Eq. 3.26 by the integral

Γ(τ) =

∫ ∞
0

dωρ(ω)g(ω)2ei(ωs−ω)τ , (3.27)

where ρ(ω) is the density of field modes as a function of frequency. Our master equation

then becomes

ρ̇ = −i[ĤLS , ρ̂S ] + γD[σ̂−]ρ̂S , (3.28)
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where γ is the radiative decay rate, ĤLS = ∆ωa
2 σ̂z and the superoperator D is defined as

D[L̂]ρ̂ =

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
. (3.29)

The real parameters ∆ωa and γ are defined as

∆ωa − i
γ

2
= −i

∫ ∞
0

Γ(τ)dτ. (3.30)

3.1.4 Open quantum system treatment of a Bose Einstein condensate

One particular system of interest that we will refer to for experimental realisations in this

thesis is a Bose Einstein Condensate (BEC). A BEC is a collection of atoms that can act

as a single boson, with all atoms in the same quantum state, ie. the ground state of the

harmonic trap (as we will see in Ch. 4 and 5). But it can also act in the same way as a

system of many two level atoms in the case where we have two modes (Eq. 2.46) with the

same SU(2) algebra (as we will see in Ch. 6).

Dephasing

The process of dephasing is described by the Lindblad Master equation as

ρ̇ = γD[Ĵz]ρ̂. (3.31)

We will focus more on the effects of dephasing in Chapter 6.

Super radiance

At sufficiently low temperatures, the process of superradiance can be described by the

Lindblad Master equation

ρ̇ = γD[Ĵ−]ρ̂, (3.32)

The process of superradiance describes the collective emission of light from an ensemble

of atoms in the BEC.

3.2 Measurement of a Quantum System

3.2.1 Projection Measurements and the Measurement Postulate

The measurement postulate for quantum mechanics is given as follows [96]. Quantum

measurements are described by a collection {M̂m} of measurement operators. There are

m possible outcomes from the measurement with probability p(m) of occurring

p(m) = 〈ψ|M̂ †mM̂m|ψ〉. (3.33)

The state of the system after a measurement is given by

M̂m|ψ〉√
〈ψ|M̂ †mM̂m|ψ〉

. (3.34)
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The probabilities for the measurement outcomes must sum to
∑

m p(m) = 1 and so the

completeness equation ∑
m

M̂ †mM̂m = Î , (3.35)

must be satisfied. Projective measurements are the special case of the measurement pos-

tulate where the measurement operators M̂m are orthogonal projectors (Hermitian and

M̂mM̂n = δm,nM̂m).

We should also account for mixed states in our definition and so a more general form

of the measurement postulate is given in density matrix formalism. For an initial state ρ̂,

the probability of an outcome occurring is given by

P (m) = Tr[M̂mρ̂M̂
†
m], (3.36)

and the new state after the outcome has occurred is now

ρ̂(m) =
M̂mρ̂M̂

†
m

P (m)
. (3.37)

3.2.2 Continuous Measurement of Open Quantum Systems

Measurement of a quantum system usually disturbs the system in question, collapsing the

wave-function. But often, this consequence is unwanted in an experiment where we want

to control the quantum system for some purpose or we wish to understand the dynamics

of the system and how the state evolves. In these cases we want the weakest disturbance

to the system possible in order to estimate the state without destroying it. This kind of

measurement is called a weak measurement, where instead of projectively measuring the

system, the environment surrounding the system is measured to gain information about

the state of the system (note that this is not the same as Ahranov’s version of weak

measurement [1]). Let us go back to the cat in the box once again. Consider this scenario,

Figure 3.2: The cat, let us call him George.

Schrödinger’s cat is sitting in a box with a vial of poison and a hammer. The hammer

is connected to a Geiger counter with a small amount of radioactive substance in it. If a

radioactive atom decays and the geiger counter detects a photon, then the hammer will

drop, resulting in the death of the cat. If there is no detection, then the cat is still alive.

Considering the box as the quantum system, the cat is in a superposition of alive and dead

until a measurement is made. A projective measurement is made if the box is opened, the

result will either be a dead cat or a living cat. Now let’s assume that we don’t want to
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Figure 3.3: The cat is in a superposition of alive and dead state.

open the box to find out if our cat is dead or alive. What we can do instead of looking

in the box is look at how the box is interacting with the environment. In this case the

environment is a mouse that will go through the box and come out the other side. This

cat, like most cats, is fond of playing with mice (and eating them, yuck!) so whatever

happens to the mouse, we will gain some knowledge about the state of the cat. If the cat

is alive, then the mouse will surely be eaten before it can escape the box. But this would

still be a projective measurement, and if we want to not destroy the superposition state,

we only want to weakly interact with the cat, so the mouse and cat will weakly interact.

There is a probabilistic chance that the cat will decide to eat the mouse, and so there is a

probabilistic chance that we will know the cat is alive. And if the cat is dead, the mouse

Figure 3.4: We can send a mouse into the box to determine whether the cat is probabilistically

alive or dead.

will certainly be happy and continue on its way through and out of the box. We know with

some probability what has happened and we did not need to look at the cat! Now if we

need to know the state of the cat over time, we can send a continuous stream of mice into

the box and see what happens to the mice. But the system is quantum so there will be

some effect of the environment back on the system that will affect how the system evolves.

We are dealing with weak measurement so there is still some degree of projection here.

Some assumptions need to be made if we are to believe that the mouse has little effect

on the state of the cat. For a weak measurement we assume that the environment-system

interaction is weak, meaning the coupling between them is very small. This analogy is

not 100% accurate but its a nice introduction to weakly destructive measurements for the

purpose of this thesis.
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Figure 3.5: Send in a bunch of mice and we know with greater probability what the state of the

cat is.

3.3 Conditional evolution and quantum trajectories

From our cat and mouse analogy, it should be apparent that when we are dealing with the

evolution of quantum systems under measurement, we are talking about a probabilistic

process. When we use measurement devices such as a photon detector, the probabilistic

nature of the measurement requires us to build a stochastic formalism into the evolution.

Now we move onto the evolution of a quantum system that is conditioned by the mea-

surement outcomes. And because the act of measurement itself can effect the state of a

quantum system, we will have some sort of back-action that is applied to the system by

the act of measurement. A lot of the following section follows closely from Wiseman’s

texbook [158] which is an excellent reference for quantum trajectories.

A quantum trajectory is the path taken by the quantum state that is conditioned

by the continuous measurement of the system. It is also called an unraveling of the

master equation. The unconditional state of a quantum system is given by an ensemble

of quantum states that lead to the density matrix ρ̂ =
∑

k pk|ψk〉〈ψk|. As we saw earlier

the evolution of the density matrix is given by the Master equation (Eq. 3.20), and this

can be thought of as the evolution of an ensemble of pure quantum states. Each state

in the ensemble can correspond to a particular realisation of the continuous measurement

of the system. There is a one-to-infinitely many mapping from the density matrix to the

weighted ensemble [156] which means there is an infinite number of ways we can unravel

the Master equation.

If the system begins in a pure state, then it will remain pure as we continuously

monitor the environment (assuming perfect detection efficiency of course). For an ensemble

of unraveled states, we require that the stochastic average reproduces the unconditional

density matrix for each time t:

E[|ψ(t)〉〈ψ(t)|] ≡ ρ̂(t), (3.38)

where E denotes the ensemble average with respect to the noise process. In general, the

evolution of a quantum trajectory is given by a nonlinear Stochastic Schrödinger equation
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(SSE) [156, 158]
d|ψ〉
dt

= −iĤψ|ψ〉+ noiseψ, (3.39)

where Ĥψ is a non-Hermitian effective Hamiltonian that depends on the state. Let us begin

with some examples of different unravelings. Then we will move onto a more general form

for the SSE.

3.3.1 Example: Photodetection of a Two Level Atom in a Cavity

Figure 3.6: Photodetection of the the environment surrounding the two level system. We can

refer back to our cat in a box once again for analogy. The two level atom in this case is the cat

and the cavity surrounding the atom is our box. Light can escape our box/cavity and we are able

to detect it (our mice are equivalent to light).

Recall from the previous section that the evolution of an open quantum system that

consists of the two level atom coupled to the electromagnetic field is given by the master

equation in Lindblad form

˙̂ρ = − i
~

[Ĥ, ρ̂] + γD[σ̂−]ρ̂, (3.40)

where L̂ = γσ̂− describes the interaction with the field modes.

Let us now consider how we can measure the conditional state of the atom by weakly

measuring the environment. One possible way of doing this is to use photodetectors to

detect any photons that are emitted by the atom. Now if the atom emits a photon, the

atom will have gone from an excited state |e〉 to the ground state |g〉. Of course when this

happens, the photon will be emitted in any possible direction in space so it would be nearly

impossible to detect the photon with a single photodetector. We can make the system

simpler by placing the atom inside a cavity constructed from two mirrors, one completely

reflective and one leaky to transmission. The environment with which the atom interacts

is now the few (or single) modes in the cavity. Inside the cavity, any emitted photons will

be channelled out through the leaky mirror with a decay rate γ for the atom. In order

for the approximations that give the Lindblad Master equation to be valid in this case,

we need to make some assumptions on the rate of emission from the cavity, namely that

the photons escape quickly compared to the atomic frequency so that the photons do not

re-interact with the two level atom.

The quantum measurement resulting from the photodetection of the cavity emission

can be described by a set of measurement operators {M̂m} which act on the state space

of the two level atom. For the specific case of the two level atom in a leaky cavity, a click

on the detector occurs when the atom emits a photon and as a result jumps to the ground

state. This measurement result is given by the jump operator

M̂1 =
√
γ−dtσ̂−, (3.41)

with γ− describing the decay rate to the ground state and we now have a
√

dt term since
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we are continuously measuring over the inifinitesimal time interval dt. Upon inspection,

it is easy to see that this single measurement outcome does not satisfy the completeness

equation (3.35). And the reason for this is simple: This is not the only possible measure-

ment outcome for the photodetection. We are still measuring the system in some way

even when we do not detect a photon, the photodetector is switched on for more than the

infinitesimal time interval, so what is going on? During the time where no photons are

detected, we are still gaining information about the state of the system. The probability

that the system is in the ground state increases as time progresses with no detections.

The no-click operator

M̂0 = I −
(
R̂

2
+ iĤ

)
dt, (3.42)

will clearly satisfy completeness if R̂ = γ−σ̂
†
−σ̂− is chosen. This outcome occurs with a

probability that is equal to 1−O(dt).

The detection occurs randomly with a rate p(1)/dt, and we call this event a quantum

jump corresponding to a jump in the quantum state of the system. For each run of the

measurement, a new trajectory is obtained. A trajectory resulting from the photodetection

is stochastic in nature due to the random nature of the wavefunction collapse. So for

N(t) photodetections up to time t, dN(t) will be a stochastic increment which is Poisson

distributed [16], obeying the following equations [158]:

dN(t)2 = dN(t), (3.43)

and

E[dN(t)] = 〈M̂ †1M̂1〉, (3.44)

where the first equation signifies that it can only be 0 or 1 (click or no-click) in an in-

finitesimal time interval. The second equation gives the classical expectation (E[...]) or

mean of dN as the probability of detecting a photon given by the quantum expectation

value (〈...〉). The change to the state vector as a result of a click operation in the interval

dN(t) = 1 is given by

|ψ1(t+ dt)〉 =
M̂1|ψ(t)〉√

〈ψ(t)|M̂ †1M̂1|ψ(t)〉
=

σ̂−|ψ(t)〉√
〈ψ(t)|σ̂†−σ̂−|ψ(t)〉

, (3.45)

and the result of a no-click operation in the interval dN(t) = 0 is given by

|ψ0(t+ dt)〉 =
M̂0|ψ(t)〉√

〈ψ(t)|M̂ †0M̂0|ψ(t)〉
= {Î − dt[iĤ + 1

2 σ̂
†
−σ̂− − 1

2〈σ̂
†
−σ̂−〉]}|ψ(t)〉, (3.46)

where the denominator is expanded to first order in dt. The nonlinear evolution of the

state is given by the SSE

d|ψ(t)〉 =

dN(t)

 σ̂−√
〈σ̂†−σ̂−〉(t)

− I

+ [1− dN(t)]dt

(
〈σ̂†−σ̂−〉(t)

2
− σ̂†−σ̂−

2
− iĤ

) |ψ(t)〉.

(3.47)

The solution to this equation is a quantum trajectory and it preserves the purity of the

state. Since dN(t) is of the order of dt, we can say that any terms of higher order in
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dt (eg. dN(t)dt) is much smaller than dt and is negligable in the above equation. The

general form of the nonlinear SSE is given by:

d|ψ(t)〉 =

dN(t)

 L̂√
〈L̂†L̂〉(t)

− I

+ dt

(
〈L̂†L̂〉(t)

2
− L̂†L̂

2
− iĤ

) |ψ(t)〉, (3.48)

where the jump operator is given by M̂1 =
√

dtL̂. In density matrix formalism, the

evolution is given by the stochastic master equation (SME):

dπ̂ = {dN(t)G[L̂]− dtH[iĤ + 1
2 L̂
†L̂]}π̂, (3.49)

where the superoperators G and H are defined by:

G[Ĝ]ρ̂ =
Ĝρ̂Ĝ†

Tr[Ĝρ̂Ĝ†]
− ρ̂, (3.50)

H[Ĝ]ρ̂ = Ĝρ̂+ ρ̂Ĝ† − Tr[Ĝρ̂+ ρ̂Ĝ†]ρ̂. (3.51)

In order to get back the Lindblad master equation from this unraveling, we must take the

ensemble average:

ρ̂(t) = E[π̂(t)]. (3.52)

The point of this example is to introduce the stochastic nature of quantum measurement

which we will discuss further soon. Throughout this thesis we will not be dealing with jump

processes, but rather the smooth and continuous function given by diffusive evolution. So

let us move onto an example of a system where this is possible.

3.3.2 Example: Homodyne Detection

LO

LO

-

-

LO

LO

-

-

â
<latexit sha1_base64="A0rhpRXwvWwvUluNWkbn8RYpdaE=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKewa8XELevEYwTwgWULvZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE4CmnAnaNMxw2okUhTDgtB1MrlO//UCVZlLcmWlE/RBGgg0ZAWOlVm8MBkO/XHGrbga8SLycVFCORr/80RtIEodUGMJB667nRsZPQBlGOJ2VerGmEZAJjGjXUgEh1X6SXTvDR1YZ4KFUtoTBmfpzIoFQ62kY2M4QzFj/9VLxP68bm+GFnzARxYYKMl80jDk2Eqev4wFTlBg+tQSIYvZWTMaggBgbUCkL4TLF2ffLi6R1UvVq1drtaaV+lcdRRAfoEB0jD52jOrpBDdREBN2jR/SMXhzpPDmvztu8teDkM/voF5z3Lzbkjwc=</latexit>

�
<latexit sha1_base64="F4vN4+Bz77orLUGKmZFZH7+yeew=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQqftyKXjxWMG2hDWWznbRLN5uwuxFK6W/w4kERr/4gb/4bN2kQtT4YeLw3w8y8IOFMacf5tEpLyyura+X1ysbm1vZOdXevpeJUUvRozGPZCYhCzgR6mmmOnUQiiQKO7WB8k/ntB5SKxeJeTxL0IzIULGSUaCN5vQA16VdrTt3JYS8StyA1KNDsVz96g5imEQpNOVGq6zqJ9qdEakY5ziq9VGFC6JgMsWuoIBEqf5ofO7OPjDKww1iaEtrO1Z8TUxIpNYkC0xkRPVJ/vUz8z+umOrz0p0wkqUZB54vClNs6trPP7QGTSDWfGEKoZOZWm46IJFSbfCp5CFcZzr9fXiStk7p7Wj+9O6s1ros4ynAAh3AMLlxAA26hCR5QYPAIz/BiCevJerXe5q0lq5jZh1+w3r8A3J6O2w==</latexit>

Figure 3.7: Simple homodyne detection scheme in quantum optics.

Let us start with our system being a leaky cavity again where the system of interest

interacts only with a single mode of light. Then the coupling operator that describes the

interaction is L̂ =
√
γâ, where â is the annihilation operator for the single mode of light.

Our system could be anything, for example a two level atom in a cavity or the single mode
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of light in the cavity. Now suppose we combine the signal with a much stronger continuous

classical field β = |β| exp (iφ) called a local oscillator (LO). This type of measurement is

known as a simple homodyne detection (shown in the schematic in Fig. 3.7). The output

from the cavity and the LO are combined in a beam splitter before being detected by a

single photodetector. The photodetector is only able to count the number of photons that

hit the detector N (the current is given by I = dN(t)/dt). After the linear combination

of the light mode and the LO, the detector will see the current given by the expectation

value of the number operator. The measurement operator for a detection event is then

M̂1 =
√

dt(
√
γâ+ β) (3.53)

and when there is no detection event, the measurement operator is

M̂0 = Î − dt[iĤ + 1
2(
√
γâβ∗ −√γâ†β) + 1

2(
√
γâ† + β∗)(

√
γâ+ β)] (3.54)

The rate of photodetections is given by

E[dN(t)/dt] = 〈M̂ †1M̂1〉 = 〈(√γâ† + β∗)(
√
γâ+ β)〉

= 〈γâ†â+
√
γ(â†β + β∗â) + β∗β〉. (3.55)

We assume that the classical field is much larger than the output of the cavity so â†â is

much smaller than β∗β. So then we have a large constant plus a term that is proportional

to the quadratures of the system plus a small term. The phase of the LO is now important

as it decides what the information we will gain from the measurement. For instance, if β

is real (φ = 0), then the middle term is
√
γ|β|〈x̂〉 and if β is imaginary (φ = π/2), then the

middle term is
√
γ|β|〈p̂〉, where we define the quadratures of the system to be x̂ = â† + â

and p̂ = i(â† − â). The conditional evolution of the state is now given by

d|ψ(t)〉 =
[
dN(t)

 √
γâ+ β√

〈(√γâ† + β∗)(
√
γâ+ β)〉

− Î


+ dt

(
γ〈â†â〉

2
− γâ†â

2
+

√
γ〈â†β + β∗â〉

2
−√γâ†β − iĤ

)]
|ψ(t)〉. (3.56)

This is another unraveling of the master equation. As we mentioned at the beginning of this

chapter, these unravelings are not unique. By this we mean that by taking the ensemble

average we will get back to the same master equation. This is essentially ignoring the

measurement results from the detector. However, different measurement schemes result in

different evolutions of the single trajectories and a single unraveling will correspond to a

particular method of measurement. What we can take away from this example is that by

using homodyne detection, we are able to change the way we measure the system without

changing the measurement setup, this will be important later on, but we will come back

to this in section 3.3.5.

3.3.3 Weiner noise process

If we consider the limit where the amplitude of β goes to infinity, the number of photode-

tections will also go to infinity, but the effect that each one has on the evolution will go to

zero and we will end up with a photocurrent rather than a series of photo-detections. This
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leads to a smooth evolution that is continuous in time [16]. In the limit where the number

of detections δN is very large, the variance of δN will be dominated by the poissonian

number statistics of the local oscillator which will be approximately gaussian due to the

large number of counts. In this case the statistics of δN is consistant with a random gaus-

sian variable [157]. In the limit β → ∞, the point process photocurrent can be replaced

by a continuous photocurrent with white noise. Removing the constant local oscillator

contribution yields

J(t) =
√
γ〈â†eiφ + âe−iφ〉J(t) + ξ(t), (3.57)

where ξ(t) = dW/dt. Here dW is an infinitesimal Wiener increment that satisfies the

following properties

dW (t)2 = dt (3.58)

E[dW (t)] = 0. (3.59)

For pure initial states, this evolution can be described by the SSE

d|ψJ(t)〉 = −iĤ|ψ〉dt−1

2

(
â†â− 2〈(â†eiφ + âe−iφ)/2〉J(t)â+ 〈(â†eiφ + âe−iφ)/2〉2J(t)

)
|ψJ(t)〉

+ [â− 〈(â†eiφ + âe−iφ)/2〉J(t)]|ψJ(t)〉dW (t). (3.60)

The evolution is now diffusive rather than given by quantum jumps.

3.3.4 Ito stochastic integration

The above equation is an Ito stochastic differential equation [25]. In ordinary stochastic

integration, there is the choice of two integration methods, Ito and Stratonovich. The

Ito form has several mathematical advantages, because the increment is independent of

the integration variable and it is easy to derive. Ito calculus is an extension of ordinary

calculus with a small correction to what we would expect from ordinary calculus rules.

There are numerical methods to calculate stochastic differential equations in either Ito or

Stratonovich form, however, in this thesis we will be using the numerical software package

XMDS2 [24] which requires equations in Stratonovich form.

The general SSE in Ito form for multiple Lindblad operators L̂k is given as:

d|ψ〉 = −iĤ|ψ〉dt+
∑
k

(
− L̂

†
kL̂k
2

+ 〈L̂†k〉L̂k −
〈L̂†k〉〈L̂k〉

2

)
|ψ〉dt

+
∑
k

(
L̂k − 〈L̂k〉

)
|ψ〉dξk. (3.61)

The noise term dξ is a complex Wiener process with zero mean (E[dξ]= 0) and correlations

given by

dξ dξ∗ = dt and dξ dξ = udt, (3.62)

and now the difference between Ito and ordinary calculus will become clearer with the

equation of motion for the expectation of an operator, which is given by:

d〈Ĝ〉 = 〈dψ|Ĝ|ψ〉+ 〈ψ|Ĝ|dψ〉+ 〈dψ|Ĝ|dψ〉, (3.63)

where the state evolves via eq. 3.61.
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In the density matrix formalism, the state ρ̂ evolves via a stochastic master equation

(SME):

dρ̂(t) = −i[Ĥ, ρ̂(t)]dt+ dt
∑
k

D[L̂k]ρ̂(t) +
∑
k

H[L̂kdξk]ρ̂(t), (3.64)

and we define the superoperators:

D[L̂]ρ̂ = L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}, (3.65)

H[L̂dξ]ρ̂ = L̂ρ̂dξ + ρ̂L̂†dξ∗ − Tr[L̂ρ̂]ρ̂dξ − Tr[L̂†ρ̂]ρ̂dξ∗, (3.66)

where {...} is the anti commutator: {Â, B̂} = ÂB̂+ B̂Â. The first superoperator D is the

decoherence term and the second superoperator H is usually referred to as the innovation

term since this is the information that is obtained from the measurement. In this case the

equation of motion for an operator is given by

d〈Ĝ〉 = Tr[Ĝdρ̂]. (3.67)

3.3.5 Parametrisation of the measurement

From the homodyne example shown above, we can see that for diffusive measurement

processes, the information that is gained from the measurement can be chosen by a single

parameter. This will be important for our investigation since we wish to look at the effect

that the measurement choice itself has on the evolution of chaotic dissipative systems. We

also showed for the general SSE above that the choice of the complex noise increment

dξ is arbitrary with freedom to choose u where the complex number u must satisfy the

condition |u| ≤ 1 [118, 156]. In this thesis we are interested in dissipative chaotic systems

and it is natural to consider diffusive quantum trajectories (i.e. with diffusive noise) in

this case and so we will focus solely on these from now on. We will also assume perfect

monitoring of the environment throughout this thesis which will make things simple. As

discussed above, we are continuously monitoring the environment that is coupled to the

system. By doing this we are continuously applying a projective measurement on the state

of the environment which will result in the purification of the state of the system. In this

thesis we will consider the case where u ≡ |u| exp−2iφ. We can then write the complex

Wiener process as

dξ = e−iφ

(√
1 + |u|

2
dW1 + i

√
1− |u|

2
dW2

)
, (3.68)

where dW1 and dW2 are independent real Wiener processes. Note that the amplitude

|u| and phase φ fully characterize the noise process and therefore different choices of u

correspond to particular ways of unraveling the master equation into stochastic trajec-

tories. Physically, different u and φ correspond to different choices of continuous moni-

toring [117, 156]. Note that the often used form of this is the quantum state diffusion

equation (QSD) [125, 13, 105] for which |u| = 0. In this case there is a complex noise

dξ =dW1 + idW2/
√

2. At this point it is important to recognise that u, more than pro-

viding a convenient mathematical parametrization of the unravelings, also bears a direct

connection to a physical way of continuously monitoring the quantum system [156]. For

example, if the dissipation operator L̂ describes an optical channel observed using the

scheme shown in Fig. 3.8, there is a direct relationship between the beam splitter ratios
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Figure 3.8: Monitoring scheme for the unraveling parametrisation in terms of u. The first beam

splitter has transmittance η while the ones at the detectors end are balanced. The local oscillators

(LO) used in the homodyne-like measurements have phases φ1 and φ2.

and phases indicated in the figure and the value of u corresponding to that measurement:

u∗ = ηe2iφ1 + (1− η)e2iφ2 , (3.69)

and the complex Wiener noise can be written as

dξ∗ =
√
ηeiφ1dW1 +

√
1− ηeiφ2 dW2. (3.70)

By comparing equation (3.68) with equation (3.70), we can immediately establish a direct

connection between u and the physical parameters η, φ1 and φ2 of the monitoring. Note

that these diffusive quantum trajectories correspond to homodyne-like measurements that

are routinely implemented in quantum optical setups and that have been measured recently

in superconducting qubit systems [93, 119, 15]. The QSD type evolution corresponds to

the case of heterodyne detection where there is a 50:50 split at the first beam splitter.

3.3.6 Stratonovich form

As we stated above, for the numerical calculations done in XMDS2 we require the stochas-

tic differential equations in Stratonovich form. This can be easily done by a correction

term to the equations. Note that there are in fact other integration methods that work

for Ito form [121].

Stratonovich correction

The Stratonovich correction to the stochastic Ito differential equation is derived below.

Going between Ito and Stratonovich requires a correction term

X ◦ dY = XdY +
1

2
dXdY, (3.71)

where the term on the left is the Stratonovich form and the first term on the right is the

Ito form and the last term is the correction term to obtain Stratonovich. For the nonlinear

SSE, we have a stochastic term in Ito form given by

XdY = (L̂− 〈L〉)|ψ〉dξ, (3.72)
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where (L̂− 〈L̂〉)|ψ〉 is X and dξ is dY . For Stratonovich form we calculate the correction.

XdY = X ◦ dY − 1

2
dXdY

= (L̂− 〈L̂〉)|ψ〉 ◦ dξ − 1

2
d[(L̂− 〈L̂〉)|ψ〉]dξ. (3.73)

Since we are in the Schrödinger picture, the state is dependent on time, so dL̂|ψ〉 = L̂d|ψ〉.
However, the expectation 〈L̂〉 is state dependent and so will evolve in time. So we have

− 1

2
d[(L̂− 〈L̂〉)|ψ〉]dξ =

− 1

2
L̂d|ψ〉dξ +

1

2
(d〈L̂〉)|ψ〉dξ +

1

2
〈L̂〉d|ψ〉dξ +

1

2
(d〈L̂〉)d|ψ〉dξ. (3.74)

The last term is here because we are still using d|ψ〉 in Ito form, but it is easy to see that

this term will disappear because there will be no terms of O(dt) or lower. The other terms

will give us corrections, but it is also easy to see that the only surviving terms from these

will be dξdξ = udt and dξ∗dξ = dt since any higher order terms disappear. Now let us

work through the terms that will survive one at a time.

−1

2
L̂d|ψ〉dξ = −1

2
L̂(L̂− 〈L̂〉)|ψ〉dξdξ

= −u
2

(L̂2 − L̂〈L̂〉)|ψ〉dt. (3.75)

And then for the next term we use Eq. 3.63 for the equation of motion of an operator:

1

2
(d〈L̂〉)|ψ〉dξ = −1

2

(
〈dψ|L̂|ψ〉+ 〈ψ|L̂|dψ〉+ 〈dψ|L̂|dψ〉

)
|ψ〉dξ,

= −1

2

(
〈ψ|(L̂† − 〈L̂†〉)L̂|ψ〉dξ∗ + 〈ψ|L̂(L̂− 〈L̂〉)|ψ〉dξ

)
|ψ〉dξ,

= −1

2

(
〈L̂†L̂〉 − 〈L̂†〉〈L̂〉+ u(〈L̂2〉 − 〈L̂〉2)

)
|ψ〉dt. (3.76)

Then the final term is 1
2〈L̂〉d|ψ〉dξ

1

2
〈L̂〉d|ψ〉dξ =

1

2
〈L̂〉(L̂− 〈L̂〉)|ψ〉dξdξ

=
u

2

(
〈L̂〉L̂− 〈L̂〉2

)
dt. (3.77)

So the Stratonovich correction term is given by:

−1

2
dXdY =

1

2

(
〈L̂†L̂〉 − 〈L̂†〉〈L̂〉 − u

[
L̂2 − 2L̂〈L̂〉 − 〈L̂2〉+ 2〈L̂〉2

])
|ψ〉dt. (3.78)
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Stochastic Schrödinger equation in Stratonovich form

Now that we have calculated the correction term, we can express the SSE in Stratonovich

form:

d|ψ〉 =

(
−iĤ − L̂†L̂

2
+
〈L̂†L̂〉

2
+ 〈L̂†〉L̂− 〈L̂†〉〈L̂〉

)
|ψ〉dt

− u

2

(
L̂2 − 2L̂〈L̂〉 − 〈L̂2〉+ 2〈L̂〉2

)
|ψ〉dt+

(
L̂− 〈L̂〉

)
|ψ〉 ◦ dξ. (3.79)

Linear SSE

The SSE we have presented so far is the normalised, nonlinear version of the equation.

There is however another version that is linear and unnormalised which can be easier to

numerically integrate [156]. The quantum trajectory is invariant under the global gauge

transformation

|ψ(t)〉 → eiχ(t)|ψ(t)〉 = |φ(t)〉, (3.80)

where χ(t) is a complex function. Using this, we can derive a new SSE that is easier for

numerical calculations and will be used for simulations throughout this thesis

d|φ̄(t)〉 = dt(−iĤ − 1

2
L̂†kL̂k + J∗k L̂k)|φ̄(t)〉, (3.81)

where |φ̄(t)〉 is unnormalised and J∗k = (〈L̂†k〉 + 〈L̂k〉u)dt + dξ is the complex current

that comes from the measurement. This equation is in Ito form, in order to numerically

integrate, we apply the Stratonovich correction to the equation giving us

d|φ̄(t)〉 = dt(−iĤ − 1

2
L̂†kL̂k −

u

2
L̂2
k + J∗k L̂k)|φ̄(t)〉. (3.82)

Since the state is unnormalised, a normalisation step must be done every time step of the

simulation.
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4
Measurement of a Quantum Duffing Oscillator

Now that we have introduced both the tools to describe quantum states and the evolution

of quantum states under continuous measurement, we can finally start to delve into the

purpose of this thesis; to investigate how continuous measurement impacts the emergence

of chaos in an open quantum system. In this chapter, we do this by specialising to a very

simple model that presents chaos in the classical limit (the Duffing oscillator), one that is

easily modelled in the classical and quantum regimes and has a clear transition between the

two that is governed by a single parameter. There are many ways to continuously monitor

a quantum system. For concreteness, we choose a homodyne measurement scheme where

a single parameter can change the quadrature that is being continuously measured and

effectively changes the information received from the measurement signal.

This chapter contains work that has been published in:

‘Tuning quantum measurements to control chaos’, J. K. Eastman, J. J. Hope, A. R. R.

Carvalho, Scientific Reports, 7, 44684 (2017). DOI: https://doi.org/10.1038/srep44684

4.1 Introduction

Understanding how classical dynamics emerge from the more fundamental quantum the-

ory has proven to be a subtle problem when the system in question exhibits chaos in the

classical limit. Coherent interference effects lead to a rapid breakdown of the correspon-

dence between the classical and quantum dynamics. The inclusion of decoherence effects

destroys the interference and is a crucial step to achieve a smooth quantum to classical

transition [100, 28, 166, 55, 103, 18].

Many studies of classically chaotic systems undergoing environmental coupling have

focused on the ensemble average behaviour given by the master equation and the com-

parison of the classical phase space with its quantum counterpart via Wigner functions.

Others have adopted an approach based on continuously monitored quantum systems [27,

131, 13, 117, 6, 47, 54, 68]. As a reminder from chapter 3, the monitoring is said to

produce an “unraveling” of the master equation in terms of individual stochastic quantum

trajectories that evolve conditioned on the measurement record. Using this approach, it

has been shown that the Poincaré section (see chapter 1) of a single quantum trajectory

49
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reproduces the corresponding classical strange attractors in the macroscopic limit [131,

13], even when considering a few different monitoring strategies [117]. It also allowed a

quantitative comparison between classical and quantum Lyapunov exponents as the effec-

tive size of the system varies [6, 99, 54, 68]. In general, when the classical motion is large

compared to the quantum noise induced by the stochastic nature of the trajectories, the

quantum Lyapunov exponent approaches the classical value [6], while there is a crossover

to the quantum regime where noise predominates and chaos is suppressed [99]. Interest-

ingly, positive Lyapunov exponents have been found away from the classical limit [54] but

perhaps even more surprising is the fact that they have also been reported for parameters

where the corresponding classical system is regular [68, 107].

These results show not only that the onset of chaos at the quantum level is possible,

but also that it has a rich behaviour due to the interplay between the strength of the

nonlinear dynamics and the amount of noise introduced by the measurement back action.

But quantum mechanics allows us to go beyond that and explore more complex scenarios

where, even when the form and strength of the system-environment interaction are kept

unchanged, different choices of measurement schemes can have a drastic effect on the

dynamics of the system. This is the purpose of this contribution: we show that the

Lyapunov exponent of the quantum system is sensitive to the choice of monitoring strategy

and, consequently, one can control the degree of chaos in the system by tuning an easily

accessible measurement parameter. Our results show that this effect originates from a fine

balance between two competing factors: the appearance of interference at the quantum

level due to the underlying classical nonlinear dynamics, and the effectiveness of certain

monitoring schemes in destroying these very same interference fringes.

4.2 Quantum Duffing Oscillator

We begin by considering a driven-damped Duffing oscillator [30], a model that has been

extensively used in the investigation of chaotic dynamics in open quantum systems [108,

99, 113, 13, 125]. The model consists of a particle that oscillates in a double-well potential

that is periodically tilted by an external driving force with amplitude g and frequency Ω.

The dimensionless quantum Hamiltonian describing this model is given by

Ĥ =
1

2
P̂ 2 +

β2

4
Q̂4 − 1

2
Q̂2 +

Γ

2
(Q̂P̂ + P̂ Q̂)− g

β
Q̂ cos (Ωt), (4.1)

where time is in units of the trap period 2π/ω0 and Q̂ = x̂/
√
~/(mω0) and P̂ = p̂/

√
~mω0

are, respectively, the dimensionless position and momentum operators for a single particle

of mass m. The first term in the Hamiltonian describes the kinetic energy, the quartic and

quadratic terms in Q̂ describe the double-well potential, and the last term describes the

periodic driving of the particle. The term with the coefficient Γ is not essential for chaos

in this system, instead it works to effectively mix dissipation in Q̂ and P̂ which prevents

the wavefunction from spreading too much in phase space and lowers the computational

requirements for simulations. The dimensionless parameter β2 = ~/(ml2ω0) defines the

scale of the phase space relative to Planck’s constant [13, 99, 68] (where l characterizes

the size of the system). A larger β is therefore associated with a regime where quantum

fluctuations have a larger effect on the oscillator dynamics. Thus, by tuning β we can

study the transition from the quantum regime to the classical regime (β → 0).

To include damping, we model the quantum dynamics as an open quantum system
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as we saw in section 3.1 through the master equation (3.20) where dissipation effects

arise from choosing the system-environment coupling, L̂ =
√

Γ(Q̂ + iP̂ ) =
√

2Γâ, to be

proportional to the annihilation operator of the harmonic oscillator.

In the classical limit (β → 0), we can make the identifications 〈Q̂〉 → xcl and 〈P̂ 〉 → pcl
such that the equations of motion for 〈Q̂〉 and 〈P̂ 〉 correspond to the dimensionless classical

dynamics given by [13, 99, 68, 33]

ẍcl + 2Γẋcl + β2x3
cl − xcl =

g

β
cos (Ωt). (4.2)

Although the scaling factor β is crucial in determining the role of quantum effects in the

dynamics, classically it is a trivial scaling factor due to the definition of xcl and pcl. Indeed,

for rescaling X ≡ βxcl, the classical equation of motion is independent of β. Note also that

the quantum dissipation, given in terms of L̂, is symmetric with respect to position and

momentum. The extra term proportional to the damping rate Γ in the Hamiltonian (4.1),

breaks this symmetry in such a way that the dissipative force is proportional to the velocity,

exactly as expected in the classical limit.

Depending on the parameters, the classical model described by Eq. (4.2) exhibits

chaotic dynamics as illustrated by the strange attractor in phase space shown by the black

dots in Fig. 4.1. The steady state of the Wigner function, obtained by numerically solving

Eq. (3.20), is also shown in Fig. 4.1 for the same set of parameters and different values

of the scaling parameter β. This illustrates that the Wigner function of the ensemble-

averaged quantum state broadly matches the strange attractor as β → 0, which is a

signature of chaotic dynamics and shows the emergence of chaos for the open quantum

system. However, the degree of chaos cannot be quantified via the unconditional dynamics

of Eq. (3.20), since any two initial states evolve to the same asymptotic state, giving a

negative Lyapunov exponent. This does not mean that chaos is not present; indeed, the

same problem would arise in classical chaos if one decided to calculate classical Lyapunov

exponents by using the separation of average trajectories over a classical ensemble, rather

than the separation of two classical trajectories. To define the degree of chaos via a

quantum Lyapunov exponent, we need to use a conditional quantum trajectory approach

that has a direct comparison with the classical trajectory approach [131, 125, 7, 48].

4.3 Continuous Measurement of the Duffing Oscillator

The final step in the description of our model is to move from the master equation (3.20),

which corresponds to the ensemble averaged evolution of the open quantum system, to

an equation that describes a single realisation of the quantum system being continuously

monitored. Such a description is given by quantum trajectories governed by a stochastic

Schrödinger equation (SSE). As said in the previous chapter, we are focusing solely on

diffusive trajectories of the kind given by Eq. (3.61). Note that the amplitude |u| and

phase φ fully characterise the noise process and therefore different choices of u correspond

to particular ways of unraveling the master equation into stochastic trajectories.

Previous works on quantum Lyapunov exponents and the quantum to classical transi-

tion have adopted a fixed monitoring strategy (a particular case of Eq. (3.61) for a given

choice of u and L̂ operator) corresponding to either a continuous position measurement

(u = 1 and L̂ = x̂) [6, 54] or to the quantum state diffusion (QSD) model (u = 0) [99, 68].

In what follows, we choose u = exp (−2iφ) so that dξ = exp (−iφ) dW , where dW

is a real noise of zero mean and dW 2 = dt. Physically, this choice corresponds to a
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Figure 4.1: Wigner function for the steady state of the unconditional dynamics given by the

master equation (3.20), for the dimensionless parameters Γ = 0.10, g = 0.3, Ω = 1, and for several

values of β transitioning from quantum (β = 0.6) to semiclassical (β = 0.2). The Poincaré section

of the classical Duffing oscillator is also overlaid for these parameters (black dots). The system

exhibits chaos for these parameters, as seen by the emergence of the strange attractor and the

positive Lyapunov exponent λcl = 0.16. Here the Wigner function for the unconditional state also

follows the shape of the strange attractor in phase space, which is a signature of chaotic dynamics.

The shape of the strange attractor becomes pronounced as β decreases.

continuous measurement of the quadrature operator X̂φ = [exp (−iφ)â + exp (iφ)â†]/
√

2.

Experimentally, this could be achieved by performing a standard balanced homodyne

detection on the output of the system, as shown in Fig. 5.1. The output channel L̂ =
√

2Γâ

is combined with a local oscillator (LO) of phase φ at a beam splitter, while the readings

at the detectors are subtracted to yield a measurement signal Idt =
√

Γ〈X̂φ〉+ dW [156].

The phase φ of the LO is a controllable parameter that determines the quadrature to be

measured. For instance, φ = 0 results in a measurement of Q̂ = X̂φ=0, whereas φ = π/2

gives a measurement of P̂ = X̂φ=π/2.

4.4 Quantum Lyapunov Exponents

Within the context of quantum chaos, this quantum trajectory approach has proven useful

in the investigation of the quantum-classical transition [131, 13, 117, 118, 47]. Further-

more, it offers a way to calculate quantum Lyapunov exponents, thereby unambiguously

quantifying the degree of chaos within the system [6, 99, 54, 68, 33, 108]. Similar to

the classical protocol [159], this is done by following the separation of two initially close

wave-packet centroids in phase space (〈Q̂〉, 〈P̂ 〉) evolving according to Eq. (3.61) under

the same noise realization [33, 108].

Specifically, the quantum Lyapunov exponent is defined as

λ = lim
t→∞

lim
d0→0

ln (dt/d0)

t
, (4.3)
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where dt = [∆Q(t)2 + ∆P (t)2]1/2 is the dimensionless phase-space distance between two

quantum trajectories with differences in the average position and average momentum of

the two trajectories given by ∆Q(t) = 〈Q̂1〉− 〈Q̂2〉 and ∆P (t) = 〈P̂1〉− 〈P̂2〉, respectively.

The two quantum trajectories are initially prepared in coherent states displaced (in phase

space) from each other by a small distance d0 = dt=0 (i.e., |α1〉 = |α〉 and |α2〉 = |α+d0〉),
and then evolved stochastically via Eq. (3.61) under the same noise realization, which

corresponds to the same measurement record.

We are now in the position to investigate the dynamics of a chaotic quantum Duffing

oscillator under continuous monitoring. To establish a quantitative picture of the level of

chaos in the dynamics, we calculate the quantum Lyapunov exponent. For the numerical

calculations, one of the trajectories is periodically reset towards the other one to remain

within the linear regime using the displacement operator [125], and log (dt/d0), calculated

before every reset, is averaged over time. Convergence occurs within 500 cycles of the

driving term, and the final Lyapunov exponent is obtained after averaging over multiple

realisations (20 runs) of the stochastic noise. The numerical calculations can be compu-

tationally intensive as the size of the system is increased. However, since the state in a

chaotic system is confined to the strange attractor, we need only a large enough basis size

to encompass this region of phase space for a given choice of β. In this work we vary the

scaling parameter from β = 1 to 0.1, which requires a range of basis size from N = 35 to

200 (using the harmonic oscillator energy eigenstates). Note that this computation could

be made more efficient by using a moving basis [125], however we did not use this for the

purpose of this work.

The effect of the monitoring angle on the quantum Lyapunov exponents is shown

in Fig. 4.2-d for Γ = 0.10, g = 0.3, Ω = 1, and β = 0.3. The quantum dynamics is

chaotic (λ > 0) for most choices of the phase φ, with the quantum Poincaré section

(Fig. 4.2-b) roughly following the classical strange attractor, which is shown in Fig. 4.2-a

for comparison. For φ ≈ π/2, however, the quantum attractor is significantly blurred

(Fig. 4.2-c) leading to a strong suppression of chaos. This shows that we can tune the

behaviour of the system from chaotic to regular by simply changing which quadrature is

measured in the homodyne setup.

It is evident that in the classical limit, there is no dependence on the monitoring

scheme, so there must be a value of β beyond which the choice of monitoring can have an

effect on the complex behaviour of the system. To investigate that, we plotted in Fig. 4.3

the quantum Lyapunov exponents for φ = π (dashed black) and φ = π/2 (solid red),

corresponding approximately to the maximum and minimum values of λ, as a function of

our macroscopicity parameter β. The curves show that for large β, the quantum Lyapunov

exponent is always negative and it is not significantly affected by the choice of φ. This is

the region where the quantum noise is dominant, chaos is suppressed, and the exact form

of the monitoring is irrelevant. In the opposite limit, the quantum curve is always positive

and should approach the classical value of λcl = 0.16 for small enough β. This region

also shows very little dependence with φ, but now for a different reason: in this limit the

classical dynamics prevails over the quantum noise and the choice of measurement ceases to

affect the system. However, there is an intermediate region, highlighted in Fig. 4.3, where

there is a noticeable dependence on φ. This is exactly the window of the macroscopicity

parameter where controlling the onset of chaos through quantum measurements is possible.
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Figure 4.2: (a) Strange attractor for the classical Duffing oscillator with parameters Γ = 0.10,

g = 0.3 and Ω = 1. (b) Quantum Poincaré section for a single trajectory with 1000 points for

φ = π with points taken once every driving period (t = 2πn). (c) Quantum Poincaré section for

φ = π/2. (d) Average Lyapunov exponent λ (black curve) and average negativity δ (blue curve)

as a function of φ for |u| = 1, β = 0.3, Γ = 0.10, g = 0.3 and Ω = 1. The averages are constructed

from the Lyapunov exponents and negativities calculated for 20 different individual trajectories.

Error bars are given by the standard error in the mean. The arrows indicate the choice of φ that

correspond to the Poincaré sections in (b) and (c). For (b), (c) and (d), with the choice β = 0.3,

a basis size of N = 65 is used.

4.5 Semiclassical approach: comparison with Gaussian

wave packet dynamics

To utilise this window of control and predict the monitoring parameters that provide min-

imum or maximum Lyapunov exponents for a given chaotic system, one first needs to

understand the physical mechanism behind this dependency with the angle φ. A first hint

towards the explanation comes from considering the semiclassical results shown by the top

two curves in Fig. 4.3, obtained using a Gaussian approximation [102]. In this approxima-

tion, we restrict the wavefunction to always be of a form expressed mathematically as a

Gaussian function. Doing so leads to higher-order moments that can be described by just

the mean and the variance and the covariance of the Gaussian wavefunction. We can fully

describe the dynamics in this limit with the 5 equations of motion given for the centroid

(〈Q̂〉, 〈P̂ 〉) and the variances (VarQ, VarP , VarQP ). We will use the replacement variables

x = 〈Q̂〉, p = 〈P̂ 〉 for the semiclassical equations.
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Figure 4.3: (a) Average quantum Lyapunov exponent λ for |u| = 1, Γ = 0.10, g = 0.3 and Ω = 1.

The points are constructed from averaging 20 different noise realisations, each starting with a pair

of coherent states. Error bars give the standard error from the mean. In (a) λ is shown as a

function of the macroscopicity parameter β for the full quantum simulation with two values of the

phase φ = π (black, dashed) and φ = π/2 (red, solid). The straight line at the top corresponds to

the classical Lyapunov exponent λcl = 0.16 for these parameters. λ is also plotted as a function

of β using a semiclassical approximation (triangles) to obtain the equations of motion, again with

the same phases. (b) Negativity δ of the Wigner function, is averaged over the 20 trajectories for

the same parameters and phases as in (a) and plotted as a function of β. The region where we see

a qualitative, pronounced difference between monitoring strategies (roughly between β = 0.2 and

0.4) is highlighted in green.

The equations of motion are found in Ito form using Eq. (3.63) and using the fact

that we have a pure state (〈Ĝ〉 = 〈ψ(t)|Ĝ|ψ(t)〉). So that in the semiclassical limit, the
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equations of motion in Stratonovich form for the Duffing oscillator are given by

dx

dt
= p+

√
Γ(cos(φ)(−1 + 2Vx)− 2 sin(φ)Vxp)dW, (4.4)

dp

dt
=
g

β
cos(Ωt) + x− β2(x3 + 3xVx)− 2Γp+

√
Γ(sin(φ)(1− 2Vp) + 2 cos(φ)Vxp)dW,

(4.5)

dVx
dt

= 2Vxp +
1

2
Γ
[
1− 4(V 2

xp − Vx + V 2
x )
]

+
1

2
Γ
[
cos(2φ)(−1 + 4(V 2

xp + Vx − V 2
x )) + 4 sin(2φ)(−Vxp + 2VxpV x)

]
,

(4.6)

dVx
dt

= 2Vxp − 6β2Vxp(x
2 + Vx) +

1

2
Γ
[
1− 4Vp − 4V 2

p − 4V 2
xp

]
+

1

2
Γ
[
cos(2φ)(1− 4Vp + 4V 2

p − 4V 2
xp) + 4 sin(2φ)(−Vxp + 2VxpV p)

]
,

(4.7)

dVxp
dt

= − 2Γ

[
Vxp(Vp + Vx)− cos(2φ)Vxp(V p− V x)− 1

4
sin(2φ)(1− 2Vp + 4V 2

xp − 2Vx + 4V 2
x )

]
+ Vp + Vx − 3β2Vx(x2 + Vx).

(4.8)

From inspection of the Lyapunov exponent for the Gaussian approximation (Fig. 4.3),

We can see that in the classical limit, the semiclassical and quantum results both agree,

tending towards the classical Lyapunov exponent. However, further into the quantum

regime, the semiclassical tends to overshoot the quantum Lyapunov exponent, showing us

the breakdown of the approximation in this regime. The semiclassical dynamics are still

useful in their own right in this regime, and they help us to understand what is going on

for the quantum dynamics.

It is important to note that while the semiclassical results given by the Gaussian

approximation are not necessary (we are able to solve the exact quantum dynamics in this

regime) they do offer a valuable perspective of what is going on with the dynamics. We

see a negligible difference between the Lyapunov exponents for the two curves, indicating

that the difference we see in the quantum dynamics cannot be explained by the Gaussian

approximation. This approximation retains the measurement terms and the stochastic

aspect of the dynamics, but restricts the state to remain as a Gaussian in phase space.

The latter aspect prevents the formation of the complex interference fringes that we see

in the full quantum evolution (see Fig. 4.6) and indicates that the effect we observed is

intrinsically quantum, arising from the interplay between the interference generated by

the nonlinear dynamics and the way different monitoring strategies destroy them.

4.6 Negativity of the Wigner function

In order to assert that interference effects are indeed the key factor at play, we must quan-

tify the level of interference present in the evolution. To do this we use the negativity of the

Wigner function which has previously been proposed as an indicator of non-classicality [69]

and is defined as δψ =
∫ ∫
|Wψ(q, p)| dq dp− 1. Here, both the Wigner function and the

negativity are calculated for the pure state |ψ〉 evolved in each individual quantum tra-

jectory. The average negativity is then found by averaging over the 20 noise realisations

δ =
∑M=20

i δψi/M . In Fig. 4.4, where we show the average negativity as a function of

time, we see that for both choices of monitoring angles in the figure (red curve for φ = π/2
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and black for φ = π) the negativity starts from zero (initial coherent state) and has a

surge at around 0.8Ωt. This is the time taken for the quantum state to start probing the

shape of the classical stange attractor and start developing fringes in the Wigner function.

After this build up period, the effect of the monitoring on the dynamics becomes evident:

For φ = π/2 the negativity fluctuates around higher values than for φ = π. To make a

connection with the Lyapunov exponents calculated previously, we averaged the negativity

from Fig. 4.4 for the last two forcing periods and plotted the results in Fig. 4.2-d. We see a

clear anti-correlation between the negativity and the quantum Lyapunov exponents, which

is also observed for the different values of β in Fig. 4.3. The large negativity at φ ≈ π/2

explains the dip in the Lyapunov exponent: The larger the interference effects, the further

the quantum system is from the classical behaviour, leading to a stronger suppression of

chaos.

Figure 4.4: Evolution of the negativity of the Wigner function for φ = π/2 (red) and φ = π

(black) averaged over 20 noise realisations. The horizontal lines show the average negativity for

the last 2 forcing periods, a value that is used in Fig. 4.2-d. We see that smaller (higher) values of

negativity correspond to higher (smaller) values of the Lyapunov exponents.

The remaining issue to be explained is why the suppression is stronger at that particular

measurement angle. The best way to understand the role of the phase φ is to examine a

simple class of states that present interference. Here we look at superpositions of coherent

states in the form |ψ0〉 = c+|α〉 + c−| − α〉 (Schrödinger cat state), with α = |α|eiϕ.

The interference fringes in these states have a well defined structure, being aligned along

the direction defined by the angle ϕ. The evolution of the state conditioned on the

measurement only is given by Eq. (3.61) with Ĥ = 0. Looking just at the noise term

(â− 〈â〉) |ψ〉dξ for |u| = 1, we have

d|ψ0〉 = |α|
(
c+e

i(ϕ−φ)|α〉 − c−ei(ϕ−φ)| − α〉
)

dW, (4.9)

where we have assumed that the initial coefficients are equal (c+ = c−) and that α is large,

such that 〈−α|α〉 ≈ 0.

For each term, the evolution is given by

dc+ = c+|α|ei(ϕ−φ)dW, (4.10)

dc− = −c−|α|ei(ϕ−φ)dW. (4.11)
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Figure 4.5: Decay of negativity for four orientations of a cat state in phase space and four

different choices of measurement phase. The evolution of the state is given solely by the dissipation

and the measurement (Ĥ = 0). The above panels show the Wigner function for each initial

cat state orientation while the lower panels show the corresponding decay rate of the negativity

calculated over the evolution time for four different monitoring angles: φ = 0(blue), φ = π/4(red),

φ = π/2(green) and φ = 3π/4(black). The direction perpendicular to the orientation of the fringes

(given by the arrow in the top panel) corresponds to the slowest decay of negativity.

From these equations one can see that when the monitoring angle φ is parallel to the

interference fringes (ϕ − φ = 0), then in a short time the system stochastically evolves

to one of the components of the original superposition and interference fringes quickly

disappear. On the other hand, when the measurement direction is perpendicular to the

fringes (ϕ − φ = π/2), the short term evolution corresponds to a phase rotation between

the two components and the fringes survive for longer. Therefore, the efficacy of the

the stochastic term in equation (3.61) in eliminating interference depends directly on the

alignment between φ and ϕ. This can be seen in Fig. 4.5 where we have plotted the

initial Wigner functions for four orientations of cat states in phase space (top panels) and

the corresponding decay rate of the negativity calculated over the evolution time for four

different monitoring angles (bottom panels): φ = 0(blue), φ = π/4(red), φ = π/2(green)

and φ = 3π/4(black). The direction perpendicular to the orientation of the fringes (given

by the arrow in the top panel) corresponds to the slowest decay of negativity.

The alignment of the monitoring angle with the direction of the fringes, and the rate at

which this localises the state explains the dependency of the quantum Lyapunov exponent

with the monitoring parameter. Given the complexity of the dynamics and the geometric

structure of the strange attractor in phase space, it is non-trivial to justify that there is a

privileged direction where this effect can take place. However, by following the dynamics

of the Wigner function for a single trajectory in real time, it is possible to distinguish

certain structures that repeat over time. These structures, representing the stretching

region around the origin and also the left and right bending regions of the classical strange

attractor, are depicted in the snapshots of the Wigner function of Fig. 4.6. Even though

the interference fringes in these plots are not perfectly aligned, they are concentrated in
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Figure 4.6: (Top) Snapshots of the Wigner function (for a single noise realisation of the quantum

trajectory) for the full dynamics at three different times (for Γ = 0.10 and β = 0.3). These

quantum states are chosen as the initial condition for the evolution shown in the three bottom

panels. (Bottom) Decay of the negativity over time, with evolution of the state given solely by

the dissipation and the measurement (Ĥ = 0) from the initial condition given in the top panels.

The decay plots are a result of averaging over 20 noise realisations. As in the case of cat states,

negativity decays faster when the monitoring angle is parallel to the interference pattern, though

it is not as obvious here. (Insets) These show the polar density plot for the decay rate of the

negativity. These are found by fitting an exponential function to the curves in the bottom panels,

with the minimum (maximum) decay rate corresponding to the darker (brighter) colours. These

insets confirm that the direction of fastest decay is indeed parallel to the direction of the interference

fringes.

the range of angles orthogonal to the ones that lead to higher negativity (around φ = π/2).

This dependency with the angle is quantified by calculating the decay rate of the negativity

for the evolution of these states under monitoring dynamics only (bottom plots in Fig. 4.6),

and they match the region where the Lyapunov exponent dips in Fig. 4.2-d.

Given the evidence presented so far, it is tempting to always associate the presence of

negativity in the Wigner function with suppression of chaos. However, in certain cases a

large negativity seems to be connected with enhancement of chaos, as shown in Fig. 4.7,

where the quantum Lyapunov exponents for Γ = 0.05 are shown (all other parameters are

as in Fig. 4.2) . This is an interesting case recently investigated by Pokharel et al. [107]

where the classical dynamics is regular but chaos can emerge quantum mechanically. Al-

though this seems to be a counter example to our discussion so far, the fact that the

dependency of the Lyapunov exponent with the monitoring angle is also seen in the semi-

classical calculations (see Fig. 4.7-b) indicates that a different mechanism is at play in this

case, overshadowing the effects of negativity.

Indeed, simulations of the dynamics using the Gaussian approximation show that for

the phase φ corresponding to the smallest value of the Lyapunov exponent, the semiclas-

sical system remains most of the time concentrated along the classical stable orbit, rarely

making incursions into the central region corresponding to the classical chaotic transient

(see Fig. 4.8). In the stable region, the quantum state remains mostly Gaussian, explain-
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ing the small values for the negativity. On the other hand, for the phase linked to the

maximum Lyapunov exponent, the semiclassical system spends more time in the chaotic

region, visiting the stable classical orbit from time to time, but eventually coming back.

While visiting the chaotic region, the quantum state is allowed to stretch along the un-

stable direction and then fold, interfering with itself and producing negative values of the

Wigner function. The existence of negative values is therefore a consequence of a semi-

classical dynamical effect of the monitoring process which, for certain values of φ, induces

transitions between the coexisting regular and chaotic regions. These transitions seem

to be related to the recent analysis of the quantum-classical correspondence in terms of

transient chaos done by Wang et al. [148]. Note, however, that here the noise strength is

fixed, it is therefore the form of the coupling between the noise and the system variables,

determined by the measurement choice, that dictates the average time spent in each re-

gion. Once again, just a change in our measurement parameter allows us to radically alter

the complexity of the dynamical evolution of the system.

In conclusion, our results show that the choice of monitoring plays a crucial role in the

emergence of chaos in quantum systems, adding yet another layer of complexity to the al-

ready intriguing problem of the quantum to classical transition. We showed that the effect

of the measurement choice on the quantum Lyapunov exponent manifests in two distinct

ways: 1) at the semiclassical level, by inducing transitions between regions corresponding

to a classical periodic orbit and a transient chaotic regime & 2) at the quantum level,

by influencing the way interference fringes in the Wigner function are destroyed. In both

cases, the more ‘quantumness’ in the system, as measured by the amount of negativity,

the more its dynamical behaviour departs from the classical, by suppressing chaos in the

latter and creating it in the former. In the case where the corresponding classical system

is chaotic, the effectiveness of certain monitoring schemes in suppressing interference de-

pends on the relative angle between the measurement direction and the fringes induced by

the nonlinear dynamics. In this way, we have predictive power over the monitoring param-

eters that will lead to minimum or maximum quantum Lyapunov exponents by analysing

the geometrical structure of the classical attractor. In both cases the system size and

the form and amount of dissipation in the system are kept constant, so it is remarkable

that we can manipulate the onset of complex behaviour in the system by tuning a purely

quantum parameter associated with the appropriately chosen measurement scenario.

4.7 A different perspective on the semiclassical result for

Γ = 0.05

The work discussed in this section comes from the paper:

The effects of amplification of fluctuation energy scale by quantum measurement choice

on quantum chaotic systems: Semiclassical analysis, S. Greenfield, Y. Shi, J. K. East-

man, A. R. R. Carvalho, A. K. Pattanayak, Proceedings of the 5th International Confer-

ence on Applications in Nonlinear Dynamics, Springer, Cham, 72-83 (2019).

The main investigator for this work is S. Greenfield. This work offers more detail for the

case of Γ = 0.05, where the classical limit is regular and the onset of chaos can be seen in the

semiclassical regime. My contribution is the verification of the semiclassical results using

the exact quantum dynamics. This section is included in the thesis for completeness. We

refer to the paper itself for detailed equations, here we present a glimpse of the arguments.

Let us again focus on the case Γ = 0.05. Instead of looking at the evolution of five
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Figure 4.7: (a) Lyapunov exponent (black) and average negativity (blue) as a function of the

monitoring parameter φ for Γ = 0.05. The Lyapunov exponents for φ = π (black, dashed) and

φ = π/2 (red, solid) are given in (b) as a function of the macroscopicity parameter β for the

quantum and semiclassical (triangles) for values from 0.1 to 1.0. The points here are constructed

from 10 different noise realisations. The classical Lyapunov exponent in this case is λcl = −0.05

and is represented by the horizontal line in the plot. (c) Average negativity of the Wigner function

as a function of β for the same phases as in (b) . Each point is constructed from 20 different noise

realisations. The error bars give the standard error in the mean.

coupled equations of motion that give the mean, variance and covariance, we consider
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Figure 4.8: Phase space projection (left column) and momentum time series (right column) for:

(a) classical; and semiclassical with (b) φ = π and (c) φ = π/2. The bold black line corresponds to

the classical dynamics with the transient removed. Classically, the central chaotic region is only

visited in the initial transient before the system settles in its periodic behaviour. Semi-classically,

the system can transition from one region to another. Different choices of the monitoring parameter

φ induce preferences towards the classical periodic orbit (b), or the irregular region (c).

a different formalism where we describe the system as two coupled oscillators, the cen-

troid oscillator (x, p) and the ‘quantum’ spread oscillator (χ,Π) of the wave packet [102].

The spread oscillator is given by taking a change of variables for the variances given in

section 4.5:

VQQ = χ2, (4.12)

VQP = χΠ, (4.13)

VPP = 1/4χ2 + Π2. (4.14)

In this formalism the effective time dependent Hamiltonian is given by the term for the
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centroid oscillator, the term for the spread oscillator and the term that describes the

coupling between the two. When we exclude coupling to the environment we have:

H(x, p, χ,Π) =
1

2
p2 +

1

2
Π2 + U(x, χ, t), (4.15)

where U(x, χ, t) gives the 2D time dependent semiclassical potential

U(x, χ, t) = U1(x, t) + U2(χ) + U12(x, χ). (4.16)

For the Duffing oscillator, the potential terms are given as

U1(x, t) = −1

2
x2 +

1

4
β2x4 +

g

β
x cosωt, (4.17)

U2(χ) =
3

4
β2χ4 − 1

2
χ2 +

1

8χ2
, (4.18)

U12(x, χ) =
3

2
β2x2χ2. (4.19)

The plots in Fig. 4.9 show the semiclassical potential U(x, χ) as a function of both x and

(a) (b)

χ

β = 0.05 β = 0.3

χ

x x

U(x, χ) U(x, χ)

Figure 4.9: We plot the semiclassical potential given in Eq. (4.16) for two different values of β:

(a) 0.05 and (b) 0.3. The plots show the semiclassical potential as a function of both x and χ for

both values of β, showing the change in the effective potential as the dynamics moves to a quantum

regime. This was produced by S. Greenfield.

χ for both values of β, showing the change in the effective potential as the dynamics moves

to a quantum regime. As a result of changing β, the move from a double well potential to

a single well potential can be seen as as the quantum spread grows larger. This creates a

non-classical path between the two wells, altering the dynamics of the quantum system.

This effective potential assists in explaining why we see the onset of chaos in the quantum

regime even when the classical limit is regular. The quantum system is able to ‘tunnel’

between the two wells (which is classically forbidden) for large χ. This formalism also
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enables us to understand the measurement dependence of the dynamics in this regime. Let

us consider the equations of motion again. Using the above formalism, the wavefunction

is accurately described by just four equations of motion instead of the five equations given

in Eqs. ??. The new 4D phase-space vector gives the following dynamics:

ẋ = p+
√

ΓNx(φ, χ,Π)dW

ṗ = x− β2x3 +
g

β
cos(Ωt) + ΓFp + 3xβ2χ2 +

√
ΓNp(φ, χ,Π)dW

χ̇ = Π + ΓFx(φ, χ,Π)

Π̇ = χ(−3β2(x2 + χ2) + 1) +
1

4χ3
+ ΓFΠ(φ, χ,Π), (4.20)

where the equations are described in terms of a generalised dissipative force F(φ) =

(Fx, Fp, Fχ, FΠ) and noise N(φ) = (Nx, Np, Nχ, NΠ) which is dependent on the back-

action of the measurement. The noise terms couple only to the centroid oscillator (x, p),

with Nχ = NΠ = 0 while the dissipative force terms that are dependent on φ couple only

to the spread oscillator (χ,Π). It is particularly interesting to note that the φ-dependent

force acts to suppress large χ in the case of φ = 0, leading to the suppression of the non-

classical mechanism for inter-well transition. For the case of φ = π/2 however, the forces

that would suppress large χ are cancelled out by other dissipative forces which leads to

the widely different dynamics of the system. This is easily seen from the numerical results

shown in Fig. 4.10. The results plotted in this figure show the phase space portrait for

(a)

(c) (d)

(b)

Figure 4.10: (x,p) and (x,χ) phase space plots for both the trajectory (purple) and Poincaré

section (pink) for the Semiclassical Duffing oscillator for the parameters β = 0.3, Γ = 0.05, g = 0.3

and Ω = 1. This plot shows the results for both φ = 0 (a) & (b) and φ = π/2 (c) & (d). This

was produced by S. Greenfield.

(x, p) on the left and (x, χ) on the right for both the Poincaré section and the trajectory

and for both choices of monitoring. These plots show frequent excursions to large values

of χ are seen for φ = π/2 and not for φ = 0. This behaviour is verified by seeing the same

result in the exact quantum dynamics shown in Fig. 4.11 where we have plotted (〈Q̂〉, 〈P̂ 〉)
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on the left and (〈Q̂〉, χ̂) on the right, where we have VQ = 〈Q̂2〉 − 〈Q̂〉2 and χ̂ =
√
VQ.

Again we see the dynamics visiting large values of χ more often in the case of φ = π/2.

(a)

(c)

(b)

(d)

Figure 4.11: (〈Q̂〉,〈P̂ 〉) and (〈Q̂〉,χ̂) phase space plots for both the trajectory (purple) and

Poincaré section (pink) for the exact quantum dynamics of the Duffing oscillator for the parameters

β = 0.3, Γ = 0.05, g = 0.3 and Ω = 1. This plot shows the results for both φ = 0 (a) & (b) and

φ = π/2 (c) & (d).

This means that while the semiclassical may not be a valid description of the dynamics

of the quantum system, it can still accurately describe the mechanism by which the onset

of chaos is seen for a given choice of monitoring angle. Large χ values lead to the non-

classical mechanism of inter-well transitions that leads to chaotic dynamics. Excursions

to large χ are suppressed in the φ = 0 case due to the dissipative force that results from

the measurement back-action.
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5
Controlling Chaotic Systems with Adaptive

Measurement Techniques

The previous chapter showed that the choice of measurement can affect the emergence of

chaos. Here we use this information to find strategies to control chaos in experimental

systems where the presence of chaos may or may not be desired, and so the ability to

control the onset of chaos will assist greatly. This is done by using the measurement as a

control knob to control the dynamics to either enhance or suppress chaos.

This chapter contains work that has been published in the following paper: ‘Con-

trolling chaos in the quantum regime using adaptive measurements’, J. K. Eastman, S.

S. Szigeti, J. J. Hope, A. R. R. Carvalho, Phys. Rev. A. 99, 012111 (2018). DOI:

https://doi.org/10.1103/PhysRevA.99.012111

5.1 Introduction

Quantum systems possess uniquely nonclassical properties, such as coherence and entan-

glement, which can be manipulated for applications including quantum computation [96,

60], quantum communication [57, 80], and quantum sensing [49, 106]. Designing controls

that do this is a diverse and productive area of ongoing research [164, 147, 124, 95, 141,

52, 23, 62, 63, 139, 97, 165, 116]. However, these nonclassical properties also considerably

modify the kinds of control strategies and mechanisms available to quantum systems.

One key example of the differences is the role of measurement. It is a given in clas-

sical control that one can measure the system and act upon it based on the information

extracted about the system. However, for a quantum system measurement itself changes

the state of the system and this has to be carefully accounted for in the design of many

closed-loop control protocols [154, 155, 29, 58, 136, 56, 64]. Although measurement backac-

tion is usually considered undesirable—an unwanted effect to be minimised—from another

perspective measurement is an extra “control knob” unavailable in the classical context,

which can be used to develop new control strategies for quantum dynamical systems [8,

140]. In particular, adaptive measurements have been used to improve phase estima-

tion [153], in quantum state preparation [114], and to enhance the precision of quantum

69
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measurements [61].

Here, we explore how this uniquely quantum knob can be used to control the dynamics

of a chaotic system. Classically, controlling these systems is both a significant and non-

trivial problem. In some situations it is desirable to induce chaotic dynamics, as in the

case of embedding data into chaotic signals for secure transmission of information [76].

However, in other cases the task is to lock the system to stable orbits, as when aiming to

regularise the behaviour of cardiac rhythms [40] or improve energy harvesting in cantilever

devices [38, 75]. In many of these stabilisation problems, feedback methods are used to

turn an originally unstable orbit embedded in the chaotic attractor into a regular one [101,

109]. In this work, we show that transitioning at will from chaos to regularity is possible

by using a real-time adaptive measurement protocol. In particular, our protocol combines

the tunability of quantum measurement backaction on the quantum state with the under-

lying geometry of the classical dynamical system. This opens up regimes of control not

available to open-loop control schemes.

This quantum control strategy cannot be borrowed straightforwardly from an analo-

gous classical problem, not only because of the aforementioned peculiarities of quantum

measurement, but also due to subtleties associated with identifying emergent quantum

chaotic orbits. In a closed quantum system, coherent interference effects cause a break-

down in the correspondence principle such that chaotic classical dynamics do not emerge

when the underlying quantum model is taken to the macroscopic limit [35]. However, in

open quantum systems, decoherence destroys such quantum interference effects [166], al-

lowing emergent chaotic dynamics in the classical limit [100, 28, 166, 131, 55, 103, 18, 17].

In particular, by considering stochastic unravelings of an open quantum system, which

are physically associated with making particular continuous measurements on the sys-

tem [156, 158, 117], we can observe chaos in the conditional system dynamics [117, 131].

The stochastic unravelings allow chaos to be identified and quantified with the quantum

Lyapunov exponent [6, 99, 54, 68, 108] and also provide the necessary ingredient for a

closed-loop feedback control scheme.

In the previous chapter we showed that the behaviour of the system can be chaotic

or not depending on the initial (and fixed) choice of measurement, due to the interplay

between the interference effects induced by the nonlinear dynamics and the effectiveness of

the measurement in destroying them. This sensitivity to measurement choice was shown

to be absent both in the macroscopic limit, where the effects of quantum measurement are

naturally expected to disappear, and in a highly-quantum regime, where noise dominates

and measurement choice becomes irrelevant. Although the system behaves chaotically in

the former case, as in the classical analog, in the latter, chaos is suppressed by quantum

effects. As the main outcome of the control protocol presented here, we are able to show

that a judicious real-time choice of measurement can induce chaotic behaviour deeper in

the quantum regime, effectively pushing the quantum-classical boundary further towards

the microscopic domain.

5.2 Adaptive measurement protocol for controlling chaos

To illustrate our adaptive protocol, we once again consider the driven-damped Duffing

oscillator [30] given in Eq. 4.1. The continuous measurement approach described in Sec. 4.3

naturally sets the scene for our main result: the design of a protocol to control chaos by

using a tunable, and experimentally accessible, parameter. The parameter in question,

the LO phase φ, is intrinsically linked to the measurement backaction, making our control
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mechanism fundamentally quantum in nature.

The scheme we consider is shown in Fig. 5.1. The continuous monitoring of the system

gives a measurement signal, I(t), that allows for a real-time estimate of the quantum state.

In possession of this information, one can then design a feedback action to influence the

system. Motivated by the effect that measurement has on the system dynamics [33], here

we propose to adaptively change the phase φ in real time, with the intent to control the

Lyapunov exponent of the system.

!
I

LO

System |ψ〉

Control

Figure 5.1: Adaptive measurement scheme in a quantum optics setup. The state-dependent

controller chooses the LO phase φ at each time step in order to change the measurement backaction

applied to the system, which changes the evolution as desired.

The design of an effective control strategy relies on first understanding how the feed-

back action affects the system. For that, we recall a fact observed in the previous chapter:

The stretches and foldings induced by the chaotic dynamics generate interference fringes

in the Wigner function of the system (see top panel of Fig. 5.2), and these lead to the

suppression of chaos in the quantum regime. Since these interference fringes are associ-

ated with quantum coherence, destroying them shifts the dynamics towards the classical

chaotic behaviour. Therefore, in order to enhance (suppress) chaos, our state-dependent

controller chooses the LO phase φ such that the measurement destroys the interference

fringes in the state’s Wigner function at the fastest (slowest) possible rate. More precisely,

this rate of fringe destruction is determined by the direction of the interference fringes in

phase space (θf ) relative to the axis of measurement (determined solely by φ), with fast

destruction rates occurring when these axes are aligned. Our control protocol then consists

of estimating the fringe structure in real time and picking a φ(t) that would maximise the

control objective.

Automating the process of determining the direction of the interference fringes in

the Wigner function can be done by examining the probability distributions for different
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Figure 5.2: Wigner functions and corresponding phase quadrature projections Xθ=0 and Xθ=π/2

for (a) a Schrödinger cat state |ψcat〉 ∝ |α〉+ | − α〉 and (b)-(d) three snap shots typically seen in

the evolution of the quantum Duffing oscillator. Here θ = 0 (top) and θ = π/2 (side) are the only

projections plotted. The number of peaks in the probability distributions is plotted as a function

of quadrature θ for 32 different angles. The maximum in the number of peaks corresponds to the

direction perpendicular to the interference fringes (θmax−θf = π/2). Note that the number of peaks

in the bottom plots does not equal the number of peaks seen in the probability distributions. This

is a numerical noise associated with counting every turning point and does not affect the outcome

of the search.

quadrature measurements:

PXθ = |〈Xθ|ψ〉|2, (5.1)

where |Xθ〉 is an eigenstate of the quadrature operator X̂θ. To understand how this can be

used to estimate the fringe structure, let us look at the particular case of the Schrödinger

cat state |ψcat〉 ∝ |α〉 + | − α〉 shown in Fig. 5.2(a). Projection onto the X̂0 quadrature

is given by the top red plot in Fig. 5.2(a). Here, a measurement of X̂0 distinguishes

between the two coherent states, resulting in two peaks. In contrast, the projection onto

the X̂π/2 quadrature (the red plot to the left of the Wigner function plot) reveals the

overlap of the two coherent states, resulting in interference fringes and a large number of

peaks. As shown directly below the Wigner function plot, looking at the number of peaks

as a function of projection angle θ reveals that the peak distribution is narrowly centred

around θ = π/2 [the 〈P̂ 〉 axis], which is perpendicular to the interference fringe axis. This

shows that the angle that maximises the number of peaks (θmax) is a good indicator of

the direction that is perpendicular to the fringes in the Wigner function.

In the actual quantum Duffing oscillator, the nonlinear dynamics lead to interference

fringe patterns with more complexity than those of a Schrödinger cat state. Examples of

the Wigner functions for typical evolved states that arise during this evolution are plotted

in Figs. 5.2(b)-5.2(d). Although more complicated, these Wigner functions still present

a reasonably-well-defined direction in the fringe structure, which can be determined by

finding the angle that leads to the maximum number of peaks in PXθ , as explained above.

In summary, our protocol consists of the following steps:

(i) Starting from a given |ψ(t)〉, calculate PXθ for various θ;
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(ii) Count the number of peaks for each PXθ and find θmax;

(iii) To maximize (minimize) the Lyapunov exponent, choose φ(t) = θf = θmax − π/2
(φ(t) = θmax);

(iv) Use the value of φ(t) from (iii) in Eq. (3.61) to calculate the new state |ψ(t+ dt)〉;

(v) Repeat steps (i) to (iv).

Full details of the numerical implementation of these steps are given in the following

section.

5.3 Methods

We numerically simulated the SSE Eq. (3.61) on a finite subspace of N energy eigenstates

of the harmonic oscillator using the software package XMDS2 [24]. That is, we write the

conditional state as |ψ〉 =
∑N−1

n=0 Cn(t)|n〉 and numerically solve for the dynamics of the

coefficients Cn(t), governed by the set of Stratonovich stochastic differential equations

dCn = −i
[
β2

4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)Cn+4+

√
(n+ 1)(n+ 2)(β

2

4 (4n+6)−1
2(1+iΓ))Cn+2

− g√
2β

cos (Ωt)
√
n+ 1Cn+1 + β2

4 (6n2 + 6n+ 3)Cn − g√
2β

cos (Ωt)
√
nCn−1

+
√
n(n− 1)(β

2

4 (4n− 2)− 1
2(1− iΓ))Cn−2 + β2

4

√
n(n− 1)(n− 2)(n− 3)Cn−4

]
dt

− nΓCndt− e2iφΓ
√

(n+ 1)(n+ 1)Cn+2dt+ 2Γ
(
〈â†〉+ 〈â〉 e2iφ

)√
n+ 1Cn+1dt

+
√

2Γ
√
n+ 1Cn+1 e

iφ ◦ dW, (5.2)

where 〈â〉 =
∑N−2

n=0

√
n+ 1C∗nCn+1 and Cn = 0 for all n ≥ N . For our simulations, we

use N = 64 basis states, a large enough number such that |CN−4|2 + |CN−3|2 + |CN−2|2 +

|CN−1|2 < 10−4 at all times, whilst still small enough to be numerically tractable.

For the adaptive protocol, we calculate the probability distribution for a number of

quadratures, this is given by

PXφ = |〈Xφ|ψ〉|2

=

∣∣∣∣∣∑
n

Cnψn(x)e−inφ

∣∣∣∣∣
2

, (5.3)

where ψn(x) are the Hermite-Gauss functions:

ψn(x) = (2nn!
√
π)−1/2e−x

2/2 Hn(x), (5.4)

where Hn(x) are Hermite polynomials.

We use a grid-based search algorithm to determine the optimum measurement phase

for each time step. To do this, we use a finite difference method to calculate the derivative

of the probability distribution Eq. (5.1) for an equidistant grid of LO angles φ ∈ [0, π],

allowing the number of peaks in the distribution to be calculated. The angle θmax corre-

sponding to the maximum number of peaks gives an axis perpendicular to the interference

fringes (θf + π/2). To enhance chaos we adjust the LO phase to φ = θf (parallel to

fringes), whereas to suppress chaos we choose φ = θf + π/2 (perpendicular to fringes) for
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the next integration step of Eq. (5.2). In order for this grid-based search method to be

effective, the grid of LO angles used needs to be of sufficiently high resolution. We found

that when suppressing chaos (φ = θf +π/2), a grid of 32 angles was required, whereas for

enhancing chaos (φ = θf ) a coarser grid of 8 angles was sufficient.

We quantify the degree of chaos in our system by computing the quantum Lyapunov

exponent as in the previous chapter, which is based on an adaptation of the usual classical

procedure [159]. For our numerical calculations, one of the trajectories is periodically reset

towards the other one to remain within the linear regime and log (dt/d0), calculated before

every reset, is averaged over time. The perturbed trajectory after the reset is a displaced

version of the trajectory of interest. The displacement is given by the initial distance d0

in phase space, in the direction of expansion. The perturbed trajectory becomes |ψ2〉 =

D(α)|ψ1〉, where D(α) is the displacement operator and α = d0((〈Q̂2〉+ i〈P̂2〉)− (〈Q̂1〉+

i〈P̂1〉))/(dtβ) is the displacement in the direction of expansion.

The simulations are run over 10, 000 cycles of the driving term (t = 104/Ω) for both

the adaptive and the fixed LO cases, and the final Lyapunov exponent is averaged over

multiple realizations (10 runs) of the stochastic noise.

5.4 Results

We implemented the adaptive measurement scheme described in Sec. 5.2 for a range of

scaling parameters β (spanning the transition from the quantum regime to the classical

regime) and two distinguishable strategies: maximisation and minimisation of the Lya-

punov exponent (λ). The results are shown in Fig. 5.3 for both cases, specifically, where

the LO phase is set to always measure along an axis parallel (φ = θf , blue line, square

points) or perpendicular (φ = θf + π/2, green line, crosses) to the interference fringes. To

assess the effectiveness of our adaptive protocol, we compare with the best nonadaptive

strategy by displaying the curves that maximise (black line, triangles) and minimise (red

line, circles) λ for a fixed LO phase.

The adaptive maximisation strategy leads to Lyapunov exponents that are always

larger than the best fixed-angle scenario (φ = 0). By destroying coherent interference

effects and localising the state faster, the adaptive case allows the quantum system to

track the classical chaotic dynamics more closely, increasing λ. Further evidence of this is

provided by looking at the dynamical evolution of the Wigner function (see Fig. 5.4, top),

showing states that are more localised and possess less interference, and are therefore more

classical in nature. The opposite adaptive strategy, the one designed to suppress chaos,

also works effectively, giving negative Lyapunov exponents for all values of β. In this case,

the adaptive choice of monitoring angle leads to the preservation of quantum interference

effects and therefore to highly nonclassical states with a large spread in phase space, as

seen in the Wigner functions of Fig. 5.4 (bottom).

Interestingly, the adaptive λ-maximisation scheme gives positive Lyapunov exponents

for much larger values of β (up to 0.5), showing that the adaptive protocol pushes the

emergence of chaos deep into the quantum regime—and much further than what is possible

with a fixed LO phase. This is remarkable behaviour given that quantum noise is expected

to dominate the dynamics at these large values of β, and so one would think that the choice

of measurement is irrelevant. This is clearly the case for the fixed measurement (see

Fig. 5.3), where the quantum Lyapunov exponent for all monitoring schemes other than

λ-maximisation converge to roughly the same negative value, indicating regular dynamics.

In stark contrast, our λ-maximisation protocol is able to sustain chaotic dynamics even
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Figure 5.3: The quantum Lyapunov exponent (λ) as a function of β for adaptive measurements

(φ = θf , blue squares, and φ = θf + π/2, green crosses) and fixed LO measurements (φ = 0, black

triangles, and φ = π/2, red circles). Here Γ = 0.10, g = 0.3 and Ω = 1, and the classical system is

chaotic with λcl = 0.16. Each point is averaged over 10 different noise realizations and the shaded

area within the dashed lines signifies twice the standard error.

at this scale.

Although our adaptive λ-maximisation scheme can significantly enhance chaos, the

adaptive λ-minimisation scheme does not provide significantly enhanced regularity over the

fixed measurement. This is a consequence of using metric (5.1) to choose the measurement

quadrature angle φ at each time point. The aim is to find the direction of interference

fringes in the Wigner function, and choose a measurement angle parallel (perpendicular)

to this direction in order to enhance (suppress) chaos. However, the metric (5.1) becomes

less effective when the state is highly nonclassical and delocalised. This is shown clearly

in the Wigner function plots of Fig. 5.4(b), in particular at time Ωt = 70. In this case,

the large degree of delocalisation means that there is no well-defined single direction of

interference fringes. Consequently, in this regime the adaptive control does not provide

a substantially improved performance over a fixed-angle measurement. When trying to

suppress chaos by picking a measurement that has the least deleterious effect on quantum

interferences, it is exactly this highly delocalised regime that is encouraged. Therefore,

it is unsurprising that our adaptive measurement protocol provides little benefit over a

fixed measurement angle, if the goal is to suppress chaos. In contrast, our metric is more

effective when the Wigner function is localised and the fringe direction better defined [see

Fig. 5.4(a) for Ωt = 70]. This is the scenario arising from our strategy to enhance chaos:

choosing measurements that destroy coherence and keep the state localised.
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Figure 5.4: Snap shots of the Wigner function for the first 100 cycles of the driving for both

adaptive measurements [(a) φ = θ, and (b) φ = θ+π/2]. The snap shots only show a single quantum

trajectory (noise realisation); however, all trajectories have similar evolution to that depicted here.

The corresponding Lyapunov exponents are (a) λ = 0.057± 0.001 and (b) λ = −0.025± 0.001.

5.5 Discussion

We briefly discuss the experimental prospects of realising both the driven-damped quan-

tum Duffing oscillator and our adaptive measurement protocol. Superconducting circuits

are excellent candidate systems, due to their flexible architecture, wide range of experimen-

tal parameters, and the existence of demonstrated continuous probing [149]. Specifically,

superconducting circuits in a parallel circuit configuration (i.e., a rf-SQUID) could be used

to experimentally realise a quantum Duffing oscillator [86, 113]. For the scheme proposed

in Ref. [113], β2 = e2/[3~ωCp(1−Lp/LJ)], where ω = 1/
√
CpLp, Cp is the capacitance of

the Josephson junction in the circuit, L−1
p = L−1

J − L−1
p is the parallel inductance formed

from the Josephson inductance LJ and the geometric inductance Lpe, and e is the charge

of an electron. Using typical experimental parameters from Ref. [11], we estimate that

β ∼ 0.4 is currently achievable which, as shown in Fig. 5.3, is a regime ideally suited for

observing measurement-dependent effects on the emergence of chaos.

Realising our scheme with ultracold atomic gases is another potential option. Ultracold

atomic experiments have previously been used to experimentally investigate the emergence

of chaos in the quantum kicked rotor [112, 31, 144]. A Bose-Einstein condensate (BEC)

provides the high optical densities needed for real-time nondestructive imaging [150, 39].

A noninteracting BEC gives the single-particle behaviour required to realise the driven-

damped quantum Duffing oscillator. A noninteracting gas can be achieved by using an

extremely dilute sample or by extinguishing the interactions via a Feshbach resonance [87,

39]. The required double-well potential could be created by superimposing a Gaussian

barrier on a harmonic potential:

V̂exp =
1

2
mω2

0x̂
2 +Ae−x̂

2/2σ2

≈ ~ω0

[
1

2

(
1− A

mω2
0σ

2

)
Q̂2 +

1

4

(
~A

2m2ω3
0σ

4

)
Q̂4

]
. (5.5)

The choice of barrier height A = 2mω2
0σ

2 realizes the needed potential [see Eq. (4.1)] with

β2 = ~/(mω0σ
2). There are a number of techniques for creating this potential, including
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via an optical lattice [130] or spatial light modulation [45]. For the 780 nm transition of
85Rb, a barrier waist of σ ∼ 10µm is easily achievable. For typical trapping frequencies

ω0 ∈ 2π × [5, 100] Hz, this gives β ∼ 0.1− 0.5.

These simple estimates suggest that state-of-the-art experiments in both supercon-

ducting circuits and ultracold atomic gases are promising platforms for experimentally

investigating the relationship between measurement and chaos, and are capable of ob-

serving chaotic dynamics deep within the quantum regime. Experimentally, one possible

approach to infer the degree of chaos would be time series analysis [67, 146]. This requires

acquisition of large data sets, which is possible in experiments, but computationally ex-

pensive for large-scale quantum simulations. Theoretically, it is much simpler to calculate

Lyapunov exponents directly.

Although our initial investigations have revealed that this adaptive measurement

scheme shows promise, our model did not include the effect of detection inefficiency. Detec-

tion inefficiency could affect both the emergence of chaotic dynamics and the effectiveness

of our adaptive measurement protocol. For the quantum Duffing oscillator, numerical sim-

ulations have shown positive Lyapunov exponents with measurement efficiencies as low as

20% [113]. These Lyapunov exponents were also shown to be robust to small errors in

the system parameters. Measurement efficiencies as high as 80% have been reported in

recent superconducting circuit experiments [34]. Similar detection efficiencies are possible

in BEC systems at the cost of introducing heating, the effects of which would require

further investigation.

In addition to perfect detection efficiency, our model assumes that the underlying

estimate of the system state used to effect feedback (through the choice of quadrature

measurement angle) precisely corresponds to the underlying system state. Although con-

ditional master equations are known to be robust to imperfections in such estimates, which

arise due to imperfect estimates of the model parameters, technical noise sources, and time

delays, relaxing this assumption through a system-filter separation would provide crucial

detail needed for the experimental realisation of our adaptive measurement protocol [138].

This work has focused on the control of chaos with continuous measurement in a single-

particle system. Many-body quantum chaos is a growing research field, due to its potential

connections to random unitaries [37], information scrambling and holographic duality [85,

135, 88], nonequilibrium thermodynamics [94], and even quantum sensing [42]. Whether

measurement can be used to meaningfully control chaos in many-body quantum systems

is an intriguing question that warrants further investigation.

5.6 Conclusion

In this work we have shown that the degree of chaos in a quantum Duffing oscillator can be

controlled by applying real-time state-dependent feedback via an adaptive measurement

technique. The underlying mechanism for this control is the rate at which the measurement

backaction destroys interference fringes in the state’s Wigner function. By adaptively

choosing measurements that are more (less) destructive, the dynamics more (less) closely

resemble the corresponding classical trajectory, thereby enhancing (suppressing) chaos.

Using this adaptive measurement technique, we have shown that the presence of chaos

can be pushed further into the quantum regime. This regime is more easily accessible for

certain experimental setups, potentially enabling new, detailed studies into the emergence

of chaos in quantum systems.
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Quantum Chaos in a Driven Top
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6
Chaos in a Continuously Monitored Quantum

Driven top

Previously, our attention was focused on observing quantum chaos in a single-body quan-

tum system interacting with an environment. Now that we are somewhat familiar with the

role that measurement has to play in the emergence of chaos from a single-body quantum

system, let us ask the question: Can we see a measurement dependence in a many-body

quantum system? As mentioned in the previous chapter, the need to understand the mea-

surement of many-body quantum chaos is motivated by the growing research that makes

connections to many other areas of physics such as random unitaries [37], information

scrambling and holographic duality [85, 135, 88], nonequilibrium thermodynamics [94],

and quantum sensing [42]. In this chapter, we attempt to understand how continuous

measurement plays a role in the emergence of chaos in a many-body system that is exper-

imentally realisable with ultracold atoms: the quantum driven top. This is an interesting

system to consider because, in contrast to the Duffing oscillator, the corresponding clas-

sical system for the driven top is a closed system with no dissipation. In this chapter we

will investigate the continuous measurement of a quantum driven top. In the previous

chapters, we saw that by considering an open system treatment of the Duffing oscillator,

we were able to consolidate the dynamics of the quantum system with the classical system,

allowing us to understand the emergence of chaos in the classical world. Unlike the Duffing

oscillator, we start here with a system that is initially closed and by opening the quantum

system to environmental interactions, we will consequently drive the system away from

the chaotic system we wish to study. This is an important consideration, however, if we

want to study the realistic observed dynamics of a continuously monitoring the quantum

system. A fine balance comes between the benefits from opening the quantum system to

observe the continuous dynamics and the effect this has on the degree of chaos present in

the system. If the coupling to the environment is too strong, we will inevitably destroy

the chaos that we wish to measure, but if the coupling is not strong enough, we will not be

able to localise the quantum state in phase space and observe the dynamics that emerges

from the classical chaos. We will be using the quantum driven top as our model system,

where the top is continuously driven by a sinusoidal driving term. In the literature, the
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system that is most regularly studied is the kicked top, where the top is kicked by delta

kicks equally spaced in time [46, 19, 83, 53, 70, 90]. Perhaps because it is easily realised

experimentally in many different experimental set ups from a collection of two level atoms,

to a two mode BEC experiment [144], or even in the higher spin of a single atom [90]. All

of these systems obey the same SU(2) physics and so all have the potential to realise the

driven/kicked top. Recently the parameter sensitivity in the kicked top has been theoret-

ically demonstrated to be useful for sensitivity in precision measurements [42]. This work

showed that the amount of information that could be extracted about a parameter of the

system (ie. the Fisher information) was increased when the Hamiltonian was that of a

kicked top. The consequences of the presence of chaos in digital quantum simulations has

been explored [128]. More closely related to the work presented in this thesis, the mea-

surement of chaotic systems has been investigated by others using the Kicked top [163,

92]. However, what these works have not considered, and what is a large part of this

thesis, is exactly what the effect of the measurement is on the emergence of chaos from

the quantum regime, and in this chapter we tackle this question for the driven top as well.

Is there some general effect that can be seen for different chaotic systems or is it entirely

dependent on the system in question?

The driven top shares the same chaotic features as the kicked top and has recently

been experimentally realised in an ultra-cold atomic experiment [144]. Since we have

already considered a periodically driven system with the Duffing oscillator, we will also

consider the periodically driven version of the top. The work in this thesis follows closely

the experimental realisation of a driven top given in [144] and so we will be looking at the

same system with the same parameters used in the paper.

6.1 Quantum Driven Top as a Driven Bose Hubbard Dimer

The experimental realisation of the quantum driven top can be done in a spinor Bose

Einstein condensate that is driven by an external field. The Hamiltonian for this system

is given by the Bose Hubbard Hamiltonian that describes bosonic atoms in a lattice po-

tential. The following derivation comes from the paper by Xie et al. and the thesis by

Tomkovič [160, 145].

6.1.1 Undriven Bose Hubbard Dimer

The general Hamiltonian for the bosonic atoms is given by

Ĥ = Ĥ0 + Ĥcoupl + ĤMF + Ĥinter, (6.1)

where Ĥ0 describes the kinetic energy and trapping potential for the atoms

Ĥ0 =
∑
i=1,2

∫
d3rψ̂†i (r)

(−~2

2m
∇2 + V (r)

)
ψ̂i(r). (6.2)

Ĥcoupl is the coupling term that describes the hopping between the two modes,

Ĥcoupl =
−~ΩR

2

∫
d3r

(
ψ̂†1(r)ψ̂2(r)ei∆t + ψ̂†2(r)ψ̂1(r)e−i∆t

)
, (6.3)
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in rotating frame approximation. ĤMF describes the self interactions between atoms in

the same mode.

ĤMF =
∑
i=1,2

4π~2aii
2m

∫
d3rψ̂†i (r)ψ̂

†
i (r)ψ̂i(r)ψ̂i(r), (6.4)

where aii is the intra-species scattering length. Ĥinter describes the collision of two particles

in different spin states.

Ĥinter =
4π~2a12

m

∫
d3rψ̂†1(r)ψ̂†2(r)ψ̂1(r)ψ̂2(r), (6.5)

where a12 is the inter-species scattering length.

Two mode model

We now move to a two mode model for this system:

ψ̂i = Φ0âi, (6.6)

where â†i and âi are the creation and annihilation operators for each mode and Φ0 is a

scalar mode function. Φ0 is assumed to be equal for both spin species which us only valid

in the miscible regime and is a good approximation if the trapping is very tight. Now the

Hamiltonian terms become

Ĥ0 = E(â†1â1 + â†2â2)

Ĥcoupl = −Ω

2

(
â†1â2e

i∆t + â†2â1e
−i∆t

)
ĤMF = χ11â

†
1â
†
1â1â1 + χ22â

†
2â
†
2â2â2

Ĥinter = 2χ12â
†
1â
†
2â1â2, (6.7)

with

E =

∫
d3rΦ∗0

(
− ~2

2m
∇2 + V (r)

)
Φ0

χij =
4π~2aij

2m

∫
d3r|Φ0|4

Ω = ~ΩR

∫
d3rΦ∗0Φ0 (6.8)

Using the Jordan-Schwinger decomposition from Eqs. 2.47, we now arrive at a Hamiltonian

that is a lot simpler, given in terms of the angular momentum operators

Ĥ = χĴ2
z − ΩĴx + δĴz (6.9)

with

δ = ∆ + (2J − 1)(χ22 − χ11)

χ = χ11 + χ22 − 2χ12

=
1

2
(g11 + g22 − 2g12)

∫
d3r|Φ0|4 (6.10)
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where gij = 4π~2aij/m. The rescaled equations are then

χ̃ =
χ

2π~
(6.11)

Ω̃ =
Ω

2π~
(6.12)

δ̃ =
δ

2π~
(6.13)

Ĵi =
2

N
Ĵi (6.14)

Ĥ =
Λ

2
Ĵ 2
z − Ĵx + εĴz. (6.15)

where Λ = χ̃N/Ω̃ and ε = δ̃/Ω̃. The dimensionless quantities are ~eff = 2/N , ω̃ = ω/2πΩ̃

and t̃ = 2πΩ̃t. For this system the effective scaling parameter that allows us to go from

classical to quantum is the total spin ~eff = 2/N = 1/j (ie. the total number of bosonic

atoms in the two mode system).

What does the evolution of the undriven Hamiltonian given in Eq. 6.15 look like? This

system belongs to the SU(2) group, and the states of the system lie on the surface of the

sphere. Let us break down the Hamiltonian terms and what their action is on the sphere.

The evolution of the closed system is given by a unitary operation ψ(t) = Ûψ(0) which

will be the exponential operation of the operators. If we just look at Ĥ = Λ
2 Ĵ 2

z , this is just

one-axis twisting [71], which, when applied to a CSS leads to a shearing of the state along

the Jz direction. The Ĥ = εĴz term is simply a precession about the Jz axis, rotating

a state along that axis. The classical orbits that result from the Hamiltonian terms are

shown in Fig. 6.1. The classical dynamics comes from a mean field approximation (details

in section 6.3.1) for different initial conditions on the phase space of the SU(2) system (see

section 2.4.2). The undriven Hamiltonian has been used in the investigation of precision

measurements and non-classical state generation [132].

Jx
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(a) (b) (c) (d)

Figure 6.1: Classical orbits for different initial conditions for the undriven top. (a) shows the

orbits for Ĥ = Λ
2 Ĵ 2

z . (b) shows the orbits for Ĥ = Ĵx, which gives a simple precession around

the Jx axis. (c) shows the orbits for Ĥ = Λ
2 Ĵ 2

z − Ĵx and (d) shows the desymmetrised orbits for

Ĥ = Λ
2 Ĵ 2

z − Ĵx + εĴz.

6.2 Quantum Driven Top

Let us now consider the driven version of Eq. 6.15 which is given by

Ĥdriven = Ĥundriven −A sin(ωD[t+ t0])Ĵx, (6.16)
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where A and ωD is the dimensionless strength and frequency of the driving respectively.

The total Hamiltonian for the quantum driven top is then given by

Ĥ =
Λ

2
Ĵ 2
z − ΩD(t)Ĵx + εĴz, (6.17)

where we have the dimensionless term ΩD(t) = 1 + A sin(ωD[t + t0]) (we will omit

squiggles in further references to dimensionless parameters). The time dependent term

Ĥ = ΩD(t)Ĵx is also a precession about the Jx axis which rotates the state about that

axis. The time dependent driving of this term is what makes this system chaotic for certain

choices of parameters.

6.3 Equations of Motion for Closed System

The equations of motion for the closed system are found using the Heisenberg equations

of motion for the observables 〈Ĵi〉.

d〈Ĵi〉
dt

=
−i
~
〈[Ĵi, Ĥ]〉, (6.18)

where we have an effective ~eff = 2/N = 1/j. For the quantum system, we will explicitly

refer to the dimensionless angular momentum operators in the form Ĵi = Ĵi/j from here

on and we will refer to the observables in the mean field limit as 〈Ĵx〉 = Ji. Substituting

in Eq. 6.17 for the Hamiltonian:

dĴx
dt

= −ij
[
Ĵx,

Λ

2

Ĵ2
z

j2
− Ω(t)

Ĵx
j

+ ε
Ĵz
j

]
dĴy
dt

= −ij
[
Ĵy,

Λ

2

Ĵ2
z

j2
− Ω(t)

Ĵx
j

+ ε
Ĵz
j

]
dĴz
dt

= −ij
[
Ĵz,

Λ

2

Ĵ2
z

j2
− Ω(t)

Ĵx
j

+ ε
Ĵz
j

]
(6.19)

which gives the following equations of motion for the expectation values

d〈Ĵx〉
dt

= − Λ

2j
(〈ĴyĴz〉+ 〈ĴzĴy〉)− ε〈Ĵy〉

d〈Ĵy〉
dt

=
Λ

2j
(〈ĴxĴz〉+ 〈ĴzĴx〉) + Ω(t)〈Ĵz〉+ ε〈Ĵx〉

d〈Ĵz〉
dt

= −Ω(t)〈Ĵy〉 (6.20)

6.3.1 Coherent Spin States

To initialise our system, we start with the classical state of the system analogously to

the choice of the Glauber coherent state for the Duffing oscillator. We initialise with a

coherent spin state given in Eq. 2.57 with the three parameters (θ, φ, j). The appropriate

basis states is the Dicke states described in chapter 2.
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Semiclassical Limit for the Driven Top

We can investigate what happens when the system approaches the classical limit by taking

j →∞ and looking at the mean field expectation values (Jx,Jy,Jz) = (〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉).
Recall that the commutator is given by [Ĵi, Ĵj ] = iεijkĴk/j. In the semiclassical limit

we can also make the approximation 〈ĴiĴj〉 ≈ 〈Ĵi〉〈Ĵj〉 so that the equations of motion

become

J̇x =
Λ

2
(−2JyJz)− εJy

J̇y =
Λ

2
(2JxJz) + Ω(t)Jz + εJx

J̇z = −Ω(t)Jy (6.21)

Without driving (A = 0) the system is regular (see Fig. 6.2). However for A > 0,

regions of chaotic behaviour start to emerge in the phase space (see Fig. 6.3).
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Figure 6.2: Poincaré section and time evolution of the physical observables for parameters Λ =

1.5, ε = −0.07, ωD = 1.6 with driving turned off (A = 0). With no driving, the system behaves in

a regular fashion shown by the periodic motion and the Lyapunov exponent λ ≈ 0.
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Figure 6.3: Poincaré section and time evolution of the physical observables for parameters Λ =

1.5, ε = −0.07, ωD = 1.6 with driving turned on (A = 0.07). For this set of parameters, the

dynamics are chaotic with a non zero positive Lyapunov exponent λ = 0.093.

Regions of interest in the phase space

By scanning the initial choice of the parameters (θ, φ), the emergence of different dynamics

becomes apparent. Generally, as the strength of the driving is increased, the presence of

chaos in the phase space will increase. For the semiclassical dynamics, we have chosen

to look at one set of parameters for the system, (Λ = 1.5, ε = −0.07, ωD = 1.6) that

has also been investigated in [144] for different values of the driving. Scanning through
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Figure 6.4: Lyapunov exponent (values given in the colourbar) for different initial conditions φ

and θ for parameters Λ = 1.5, ε = −0.07, ωD = 1.6 for different values of the driving amplitude

A = 0.01 (a), 0.025 (b), 0.05 (c) and 0.1 (d).

the initial conditions produces a heat map of the Lyapunov exponent that is shown in

Fig. 6.4 & 6.5. Fig. 6.4 shows the heat map for increasing driving strengths A = 0.01 (a),

A = 0.025 (b), A = 0.05 (c) and A = 0.1 (d). These plots show how the sea of chaos gets

larger, spreading over the phase space as the driving strength is increased. More initial

conditions lead to chaotic dynamics as the driving is increased. This is the behaviour we

expect from the kicked top as well when the strength of the delta kicks is increased. Let

us look at the Poincaré section and time evolution of the physical observables for the case

with no driving (A = 0) (Fig. 6.2) and with driving (A = 0.07) (Fig. 6.3) for an initial

condition that gives chaos when driving is present (θ = π/2, φ = 2.51 and t0 = 0.9). These

parameters will be used later on as well.

The mixed phase space that we can see from looking at the Lyapunov exponent heat

map makes this system somewhat more complicated than the Duffing Oscillator. Just

looking at the classical system, we can see that for certain choices of initial condition, the

trajectory will tend towards islands of stability or end up in a chaotic sea. This will of

course add to the complexity of the quantum system when we introduce noise as a result

of the measurement. Does the possibility of tunnelling into one of the many stable islands

come into effect due to the noise?
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Figure 6.5: Lyapunov exponent for different initial conditions φ and θ for parameters Λ = 1.5,

ε = −0.07, ωD = 1.6 for the driving amplitude A = 0.07 (This is the value we will be using for the

quantum simulations as it is the same as that used in [144]).

6.3.2 Closed Quantum System

The dynamics of the closed quantum system will mimic that of the classical limit in the

very short time as can be seen from Fig. 6.6 where we have plotted the observables Jx,

Jy, Jz for the semiclassical and the closed quantum evolution for the total atom numbers:

(a) N = 200, (b) N = 500 and (c) N = 1000. The exact quantum evolution is found by

solving the Schrödinger equation (Eq. 2.60) for the state at time t taking the observables

to be Ji = 〈ψ(t)|Ĵi|ψ(t)〉/j. The two systems follow the same evolution in the short time

before the wavepacket spreads in phase space resulting in the loss of spin coherence and

behaviour far from the classical behaviour. This separation from the classical dynamics

happens over a time called the Ehrenfest time (shown by the red line in the plots). As the

size of the system is increased, the separation time will become longer until we reach the

classical limit. We can look at this separation time by looking at the expectation values

for Ĵx, Ĵy, Ĵz.

6.4 Driven Top as an Open Quantum System

6.4.1 Effect of Dissipation on the Driven Top

Because the classical system does not contain any dissipation, this system is very much

not like the system we have studied previously (the Duffing oscillator) and by adding

dissipation the system will diverge from the behaviour of the classical system. So how

will adding measurement affect the behaviour of this system when it is chaotic? The

stronger the measurement the more the measurement back-action will destroy the classical

dynamics. The strength of the coupling to the environment will have to be considered

carefully when deciding on the optimum balance between the localisation that comes

from the measurement and the backaction that drives the system away from the chaotic

behaviour that we see in the short time of the closed quantum system.

We will consider a Hermitian coupling to the environment for this system, the

L̂ =
√
γĴz dephasing is easily achieved in experiments with cold atoms [82, 91]. By

monitoring the environment with this Hermitian coupling, we can gain information about
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Figure 6.6: Time evolution of the physical observables for the closed quantum system (blue) and

the semiclassical (orange) for the parameters Λ = 1.5, ε = −0.07, ωD = 1.6, θ0 = π/2, φ0 = 2.51,

t0 = 0.9 with driving turned on (A = 0.07). For this set of parameters, the dynamics are chaotic

with a non zero positive Lyapunov exponent λ = 0.093. This is for (a) N = 200, (b) N = 500,

and (c) N = 1000 atoms for the quantum simulation. The red lines give the approximate time at

which the two trajectories separate.

the occupation number of the atoms. We want to see if something that is easily achievable

will allow us to observe the measurement dependence of chaos and the observation of chaos

for this system.

6.4.2 Ĵz Dephasing

Consider the master equation (3.20), which describes the unconditional evolution of the

system under Ĵz dephasing (no measurement). The equations of motion for 〈Ĵi〉 are given
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by
d〈Ĵi〉

dt
= Tr[Ĵiρ̇], (6.22)

where the Lindblad operator is given by L̂ =
√
γĴz in Eq. 3.20. If we ignore the Hamil-

tonian evolution, then the dephasing contributes the following terms to the equations of

motion

d〈Ĵx〉
dt

= −γ
2
〈Ĵx〉

d〈Ĵy〉
dt

= −γ
2
〈Ĵy〉

d〈Ĵz〉
dt

= 0, (6.23)

which looks like exponential decay of 〈Ĵx〉 and 〈Ĵy〉 while 〈Ĵz〉 remains constant. This is

why it is called a dephasing, its mixing the phase of the state.

Semiclassical limit for driven top with Ĵz dissipation

Once again we can obtain the semiclassical limit for the Driven top, but now we have

dissipation present in the system. The equations of motion now become

J̇x =
Λ

2
(−2JyJz)− εJy −

γ

2
Jx

J̇y =
Λ

2
(2JxJz) + Ω(t)Jz + εJx −

γ

2
Jy

J̇z = −Ω(t)Jy. (6.24)

For the case of Hermitian coupling, the terms for dephasing appear to be the same for the

quantum and the semiclassical case.

6.5 Continuous Measurement of a Driven Top

Now that we have opened the driven top to interactions with the environment we can

proceed further by considering the continuous measurement of the environment. If we

now monitor the environment coupled to the driven top in a continuous way, what will

the resulting effect be on the dynamics when the system is chaotic? By considering the

monitored system, we will once again produce single trajectories for the conditional system

state but will we see the same dependence on the measurement choice that we saw with

the Duffing oscillator? To investigate this we once again consider the stochastic evolution

of the system conditioned on the continuous measurement (Eq. 3.79). We will once again

need to quantify chaos using the Lyapunov exponent. For the driven top, we will need to

develop the calculation of the Lyapunov exponent in the new phase space. In this thesis

we discuss how we can go about doing that and the challenges that we face in doing so.

6.5.1 Homodyne monitoring of a Hermitian output (Ĵz Dephasing):
semiclassical approach

Before we look at the quantum system under continuous measurement, let us consider

the semiclassical approximation by taking the conditional dynamics to the mean field
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limit. By doing so we can take into consideration the interaction with the environment

and the continuous measurement in a way that is very easily simulated and will allow

us to calculate the Lyapunov exponent for the system easily. In order to obtain the

semiclassical equations of motion for the monitored system, we use the same method as

in section 6.4.2, taking the evolution of the state under the full nonlinear version of the

stochastic Schrödinger equation, given in Stratonovich form (Eq. 3.79). In this case we

have a Hermitian coupling L̂† = L̂. The full derivation of the equations of motion for the

Hermitian coupling can be found in the appendix (A.1).

dJx =

[
Λ

2
(−2JyJz)− εJy −

γ

2
(Jx + cos(2φmeas)Jx)

]
dt+

√
γ sin(φmeas)JydW

dJy =

[
Λ

2
(2JxJz) + Ω(t)Jz + εJx −

γ

2
(Jy + cos(2φmeas)Jy)

]
dt−√γ sin(φmeas)JxdW

dJz = −Ω(t)Jydt. (6.25)

From the equations above we see that the monitoring choice φmeas = 0 will lead to the

largest contribution from the dephasing to the dynamics (γ/2(Jx+cos(2φmeas)Jx) = γJx
and similar for Jy), so that as the strength of the measurement increases (ie. as γ in-

creases), the dephasing will contribute more to the evolution of the system and the tra-

jectory will depart more from the chaotic trajectory. This can be seen from the numerical

simulations of the trajectory, found by solving the stochastic differential equations in

XMDS [24]. Let us start with the trajectory given by the semiclassical dynamics and the

corresponding Poincaré section on the spherical phase space. Comparison of the evolution

for two choices of measurement strength γ = 0.0001(Fig. 6.7) and γ = 0.1 (Fig. 6.9) show

the significant change to the dynamics and the Lyapunov exponent that results from the

increase in the measurement strength, taking the behaviour from chaotic to regular. In

contrast, the monitoring choice φmeas = π/2 this leads to the cancellation of the dephas-

ing effects (γ/2(Jx + cos(2φ)Jx) = 0 and similar for Jy). This choice of measurement

for a Hermitian coupling is known as a no-knowledge measurement [138]. In this case,

increasing the strength of the measurement will not affect the deterministic evolution at

all, instead we get the closed evolution (which is chaotic in the mean field), altered by a

stochastic term. We again look at the numerical simulation for two choices of the mea-

surement strength γ = 0.0001(Fig. 6.8) and γ = 0.1 (Fig. 6.10). What might be somewhat

surprising is that the degree of chaos actually increases beyond that of the closed system

when the measurement strength is increased. And this leads to interesting dynamics that

seems to fill the entire sphere with points on the Poincaré section; that is, leading to

completely random dynamics. This in itself might be useful for other applications, such

as generating random quantum states.

Let us now consider the Lyapunov exponent for the monitoring choices in more detail

as we change the measurement strength. We show the Lyapunov exponent as a function

of the monitoring angle for different measurement strengths for both the undriven top

A = 0 (Fig. 6.11) and the driven top A = 0.07 (Fig. 6.12). As the measurement strength

is increased, we see a clear distinction between the measurement angle choices. With the

no-knowledge angle φmeas = π/2 corresponding to the smallest change as γ is increased.

What is perhaps more interesting is that for this angle, we also see the emergence of

chaos for the undriven top as the measurement strength is increased. These results seem

to suggest that the measurement itself acts as a driving force to drive the state of the

system towards the chaos. And that the increased stochasticity in the system leads to the
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emergence of chaos even when we do not expect it.
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Figure 6.7: Semiclassical trajectory under L̂ =
√
γĴz dephasing, for parameters Λ = 1.5, ε =

−0.07, ωD = 1.6, and A = 0.07. With initial condition θ = π/2 and φ = 2.51 and measurement

choice φmeas = 0 and γ = 0.0001.
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Figure 6.8: Semiclassical trajectory under L̂ =
√
γĴz dephasing, for parameters Λ = 1.5, ε =

−0.07, ωD = 1.6, and A = 0.07. With initial condition θ = π/2 and φ = 2.51 and measurement

choice φmeas = π/2 and γ = 0.0001.
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Figure 6.9: Semiclassical trajectory under L̂ =
√
γĴz dephasing, for parameters Λ = 1.5, ε =

−0.07, ωD = 1.6, and A = 0.07. With initial condition θ = π/2 and φ = 2.51 and measurement

choice φmeas = 0 and γ = 0.1.

6.5.2 Homodyne monitoring of a Hermitian output (Ĵz Dephasing)

Let us consider the full quantum version of the continuously monitored Hermitian output

(L̂ =
√
γĴz). From the previous section we found that for the choice of φmeas = π/2 for

the measurement angle, we have a no-knowledge measurement [140] which means that no

information will be gained about the system as a result of the measurement. If however,

we choose a different φmeas, we will have a normal homodyne measurement of the Ĵz.

So the choice of phase will now correspond to a choice in the effective strength of the
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Figure 6.10: Semiclassical trajectory under L̂ =
√
γĴz dephasing, for parameters Λ = 1.5,

ε = −0.07, ωD = 1.6, and A = 0.07. With initial condition θ = π/2 and φ = 2.51 and measurement

choice φmeas = π/2 and γ = 0.1.

measurement. Recall that the driven top Hamiltonian is given in Eq. 6.17. For the

numerical simulation of the driven top, we use the Dicke states |J,m〉 as our basis states.

And we calculate the evolution of the coefficients Cm. The SSE will then give us

dCn =
[
〈J, n|

N
2∑
−N2

Cm(−iĤ)|J,m〉 − 〈J, n|
N
2∑
−N2

Cm
1
2γĴ

2
z |J,m〉

− 〈J, n|
N
2∑
−N2

Cm
e−2iφ

2 γĴ2
z |J,m〉+ 〈J, n|

N
2∑
−N2

Cmγ〈Ĵz〉Ĵz(1− e−2iφ)|J,m〉
]
dt

+ 〈J, n|
N
2∑
−N2

Cm
√
γĴze

−iφ|J,m〉dW. (6.26)

For the simulations, this simplifies to give

dCn =
(
− i(CnΛ

2 n
2 − 1

2 [Cn−1(J2 − (n− 1)(n))
1
2 + Cn+1(J2 − (n+ 1)(n))

1
2 ] + εCnn)

− γCn2 n2 − γCn2 n2e−2iφ + γ〈Ĵz〉Cnn(1− e−2iφ)
)

dt+
√
γCnne

−iφdW. (6.27)

6.6 Quantum dynamics for short times

We can now present the results of the simulation of the driven top as a continuously

monitored open quantum system. As we mention above, we are unable to quantify chaos

without the Lyapunov exponent but we can still observe some interesting dynamical be-

haviour for the system. Without the quantitative result from the Lyapunov exponents, we

rely on the comparisons we can make with the classical dynamics in the short time. From

the short time behaviour we can still determine characteristics that differ for different

choices of the measurement angle.

We are very much interested in the behaviour of the quantum driven top for high degree

of spin where the long time evolution is hard to simulate. What we can instead look at is

the dynamics over a short time evolution of up to 100 cycles of the driving. We study the

physical observables of the system, given by the expectation values of (〈Ĵx〉,〈Ĵy〉,〈Ĵz〉) and
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Figure 6.11: Plot of φmeas vs λ for the semiclassical system under L̂ =
√
γĴz dephasing, for

parameters Λ = 1.5, ε = −0.07, ωD = 1.6 with driving turned off (A = 0.0) for different γ. With

initial condition θ = π/2 and φ = 2.51.

the associated variances (V ar(Ĵx), V ar(Ĵy), V ar(Ĵz)). We present the time evolution of

the expectation values and the variances and we also plot the Poincaré section (taking the

point every 2π/ω) and the trajectory on the spherical phase space. We can also look at

the spin coherence as the state evolves by looking at the length of the Bloch vector |J| =
(〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2)1/2. All of the above mentioned results are plotted in Fig. 6.13 and

Fig. 6.14. For these results we have used the parameters chosen by Tomkovic et al. [144]

so that we can compare with the results for the closed system dynamics presented in their

paper. The choice of γ will strongly influence the dynamics of the system. A dephasing

that is too strong will dominate the dynamics and result in uninteresting behaviour. If we

however choose to set γ = 0, we will of course obtain the result for the closed quantum

system that has already been shown in a previous section. The effect of the choice of

γ and the measurement strength is itself important to investigate so we consider several

values. The results presented are for two orthogonal measurement phases, φmeas = 0

(Fig. 6.13) and φmeas = π/2(Fig. 6.14). A direct comparison of the trajectory with the

semiclassical counterpart is shown in the bottom plots for both measurement choices. We

can immediately see a very large difference between the measurements for this single noise

realisation. We see that for φmeas = 0 the trajectory has been strongly driven by the

measurement to an island of stability, whereas for φmeas = π/2 the trajectory follows the

classical dynamics closely and appears to behave in the same chaotic way.
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Figure 6.12: Plot of φmeas vs λ for the semiclassical system under L̂ =
√
γĴz dephasing, for

parameters Λ = 1.5, ε = −0.07, ωD = 1.6 with driving turned on (A = 0.07) for different γ. With

initial condition θ = π/2 and φ = 2.51.

6.7 Breaking time between the classical and quantum

Since the calculation of quantum Lyapunov exponents for the driven top is beyond the

current scope of this thesis, we need another way to distinguish between different mea-

surement choices. One possible way to quantify the departure from the classical dynamics

is the separation time, which is the time at which the quantum dynamics breaks away

from the classical dynamics. The breaking time has been used for both Hamiltonian and

dissipative chaotic systems in the past in the investigation of the correspondance between

the classical and quantum system when chaos is present in the classical limit [167, 55,

66, 18]. To our knowledge, it has not been used for single quantum trajectories. Here we

will investigate whether the separation time could potentially be a useful quantifier for

distinguishing how well the quantum trajectories, conditioned by different measurement

choices, can track the classical dynamics. In order to validate the results presented here

we present the breaking time for the Duffing oscillator in section A.1.2 of the appendix.

For the closed quantum system, the breaking time is defined as the time scale over

which the wave function spreads across the available phase space and the quantum cor-

rections become comparable to the classical dynamics. The breaking time is analytically

given as [3]

τ~ =
1

λ
ln
( c
~

)
, (6.28)

where λ is the Lyapunov exponent of the system and c is a constant that depends on the

wave-packet dispersion.
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Figure 6.13: Short time evolution of the open quantum driven top for parameters Λ = 1.5,

ε = −0.07, ωD = 1.6, t0 = 0.9, (φ0, θ0) = (2.51, π/2), with driving turned on (A = 0.07), for

N = 1000 atoms and γ = 10−6. For this set of parameters, the dynamics are chaotic with a non

zero positive Lyapunov exponent λ = 0.093. This figure shows the results for the measurement

phase φmeas = 0.

6.7.1 Distance measure

In order to find the time of separation between the classical and quantum trajectories, we

require a distance measure between the two d. When the distance d reaches a threshold

ε, the time at which this occurs will be the separation time. Now of course we can choose

some arbitrary threshold to reach so we will investigate this for ε ± 5%, 10%, 15% and

20%. The distance measure has been previously calculated using the first [55] and second

moments of the classical and quantum distribution [18]. In the paper by Carvalho et

al. [18], the distance measure that was used was the difference between the variance of

the classical probability distribution and the variance of the quantum state. Here we do

not have the classical probability distribution but are instead considering the classical and

quantum trajectories so the distance measure that will be used is the distance between

the two systems in phase space, given by the distance in the expectation values:

dt =
√

∆Jx(t)2 + ∆Jy(t)2 + ∆Jz(t)2, (6.29)

where ∆Jx(t) = 〈Ĵx〉cl/j − 〈ψ|Ĵx|ψ〉/j and so on. The distance is calculated at each

time step. For an example of what the distance measure looks like for φmeas = π/2, see

Fig. 6.15.
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Figure 6.14: Short time evolution of the open quantum driven top for parameters Λ = 1.5,

ε = −0.07, ωD = 1.6 , t0 = 0.9, (φ0, θ0) = (2.51, π/2), with driving turned on (A = 0.07), for

N = 1000 atoms and γ = 10−6 . For this set of parameters, the dynamics are chaotic with a non

zero positive Lyapunov exponent λ = 0.093. This figure shows the results for the measurement

phase φmeas = π/2.

6.7.2 Breaking time τ~

The breaking time is the first point that dB > ε in the time series. The separation time

is averaged over multiple noise realisations for each measurement choice for meaningful

comparison. From Fig. 6.15, it is clear that the breaking time occurs for this measurement

choice around τ~ = 15Ω/2π. Let us look at the average separation time for five noise reali-

sations for different choices of measurement phase. Fig. 6.16 shows the average separation

time for both the driven (A = 0.07 shown on left) and undriven (A = 0 shown on right)

case for γ = 10−5 (top), 10−4 (middle), and 10−3 (bottom) with the following parameters:

Λ = 1.5, ε = −0.07, ωD = 1.6 , t0 = 0.9, (φ0, θ0) = (2.51, π/2) and N = 1000 atoms. The

first thing to notice is that there is a definite trend that occurs no matter the leeway on

the threshold: the choice φmeas = π/2 consistently leads to a separation time that occurs

later than any other measurement choice. The orthogonal phase leads to the fastest break

down between the classical and quantum, which we would expect given the results for the

Lyapunov exponent for the semiclassical system under continuous monitoring. What do

these results mean? For the Hermitian coupling to the environment, the measurement

phase which corresponds to no gain in knowledge about the system seems to disturb the

system the least away from the chaotic dynamics of the classical system. Which seems to

hint that the choice of measurement will have some effect on the dynamics of the quantum
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Figure 6.15: Distance measure over time for parameters Λ = 1.5, ε = −0.07, Ω = 1.6 , t0 = 0.9,

(φ0, θ0) = (2.51, π/2), with driving turned on (A = 0.07), for N = 1000 atoms and γ = 10−5 .

This figure shows the results for the measurement phase φmeas = π/2.

driven top.

6.8 Non-Hermitian coupling to the environment: L̂ =
√
γĴ−

For the Duffing oscillator we considered the non-Hermitian coupling to an environment

given by L̂ =
√

Γâ. The analogous non-Hermitian coupling for the driven top is L̂ =
√
γĴ−.

A measurement of this form can be engineered in cold atom systems [126]. In this case

we do not have the semiclassical dynamics for this coupling but we do have the results for

the quantum short time dynamics and we can look at the breaking time in this case. We

present the breaking time for non-Hermitian coupling for γ = 10−5 to 10−3 with driving

turned on (A = 0.07) and with driving off (A = 0.0) ??.

6.9 Calculating Lyapunov exponents for the driven top

To quantify chaos for the quantum driven top, we once again need to calculate the max-

imal Lyapunov exponent from the conditional dynamics. In this section, we outline the

procedure for achieving this, leaving its numerical implementation a task for future work.

Distance between two states on the sphere

To calculate the Lyapunov exponent for the quantum Driven top, we need to utilise a

similar method to that which was used for the quantum Duffing oscillator. However now

our phase space is confined to the surface of the sphere rather than a plane. If we naively

follow the method used for the Duffing oscillator and use the metric for R(3), the distance

between two states would be given by:

dt =
√

∆Jx(t)2 + ∆Jy(t)2 + ∆Jz(t)2, (6.30)
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⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>⌧~

<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

A = 0
<latexit sha1_base64="PqAgH+boHfvReybs4FkkBkZXRT4=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRWfCyEqhuXFe0D2lAm00k7dDIJMxOhhH6CGxeKuPWL3Pk3TtIgaj1w4XDOvdx7jxdxprRtf1qFhcWl5ZXiamltfWNzq7y901JhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75O/fYDlYqF4l5PIuoGeCiYzwjWRrq7vLD75YpdtTOgeeLkpAI5Gv3yR28QkjigQhOOleo6dqTdBEvNCKfTUi9WNMJkjIe0a6jAAVVukp06RQdGGSA/lKaERpn6cyLBgVKTwDOdAdYj9ddLxf+8bqz9MzdhIoo1FWS2yI850iFK/0YDJinRfGIIJpKZWxEZYYmJNumUshDOU5x8vzxPWkdVp1at3R5X6ld5HEXYg304BAdOoQ430IAmEBjCIzzDi8WtJ+vVepu1Fqx8Zhd+wXr/AptxjX0=</latexit>

A = 0.07
<latexit sha1_base64="Y3ejks0MxvkYBLMKhH48cjM0lfU=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkVwVRIrVhdC1Y3LCvYBbSiT6aQdO5kJMxOhhP6DGxeKuPV/3Pk3TtIgvg4MczjnXu69x48YVdpxPqzCwuLS8kpxtbS2vrG5Vd7eaSsRS0xaWDAhuz5ShFFOWppqRrqRJCj0Gen4k6vU79wTqajgt3oaES9EI04DipE2Uvvi3Kk69UG5Yr4M9l/i5qQCOZqD8nt/KHAcEq4xQ0r1XCfSXoKkppiRWakfKxIhPEEj0jOUo5AoL8m2ndkHRhnagZDmcW1n6veOBIVKTUPfVIZIj9VvLxX/83qxDk69hPIo1oTj+aAgZrYWdnq6PaSSYM2mhiAsqdnVxmMkEdYmoFIWwlmKk6+T/5L2UdWtVWs3x5XGZR5HEfZgHw7BhTo04Bqa0AIMd/AAT/BsCevRerFe56UFK+/ZhR+w3j4B7qiOMA==</latexit>

� = 10�5
<latexit sha1_base64="CEXuR+OhkIayb1Y81v9d/14KaWQ=">AAAB9XicbVDLSsNAFJ34rPVVdelmsAhuLIn1uRCKblxWsA9o03IznbRDZyZhZqKU0P9w40IRt/6LO//GJC2i1gMXDufcy733eCFn2tj2pzU3v7C4tJxbya+urW9sFra26zqIFKE1EvBANT3QlDNJa4YZTpuhoiA8Thve8Dr1G/dUaRbIOzMKqSugL5nPCJhE6rT7IARcOnYnPjwZdwtFu2RnwLPEmZIimqLaLXy0ewGJBJWGcNC65dihcWNQhhFOx/l2pGkIZAh92kqoBEG1G2dXj/F+ovSwH6ikpMGZ+nMiBqH1SHhJpwAz0H+9VPzPa0XGP3djJsPIUEkmi/yIYxPgNALcY4oSw0cJAaJYcismA1BATBJUPgvhIsXp98uzpH5Ucsql8u1xsXI1jSOHdtEeOkAOOkMVdIOqqIYIUugRPaMX68F6sl6tt0nrnDWd2UG/YL1/AWwvkfI=</latexit>

� = 10�5
<latexit sha1_base64="CEXuR+OhkIayb1Y81v9d/14KaWQ=">AAAB9XicbVDLSsNAFJ34rPVVdelmsAhuLIn1uRCKblxWsA9o03IznbRDZyZhZqKU0P9w40IRt/6LO//GJC2i1gMXDufcy733eCFn2tj2pzU3v7C4tJxbya+urW9sFra26zqIFKE1EvBANT3QlDNJa4YZTpuhoiA8Thve8Dr1G/dUaRbIOzMKqSugL5nPCJhE6rT7IARcOnYnPjwZdwtFu2RnwLPEmZIimqLaLXy0ewGJBJWGcNC65dihcWNQhhFOx/l2pGkIZAh92kqoBEG1G2dXj/F+ovSwH6ikpMGZ+nMiBqH1SHhJpwAz0H+9VPzPa0XGP3djJsPIUEkmi/yIYxPgNALcY4oSw0cJAaJYcismA1BATBJUPgvhIsXp98uzpH5Ucsql8u1xsXI1jSOHdtEeOkAOOkMVdIOqqIYIUugRPaMX68F6sl6tt0nrnDWd2UG/YL1/AWwvkfI=</latexit>

� = 10�4
<latexit sha1_base64="RqAeYaf/lyr+ReGut5W2TNP/y38=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHcWBJbfCyEohuXFewD2rRMptN26EwSZiZKCf0PNy4Uceu/uPNvnKRB1HrgwuGce7n3Hi/kTGnb/rQWFpeWV1Zza/n1jc2t7cLObkMFkSS0TgIeyJaHFeXMp3XNNKetUFIsPE6b3vg68Zv3VCoW+Hd6ElJX4KHPBoxgbaRuZ4iFwJeO3Y2PK9NeoWiX7BRonjgZKUKGWq/w0ekHJBLU14RjpdqOHWo3xlIzwuk034kUDTEZ4yFtG+pjQZUbp1dP0aFR+mgQSFO+Rqn6cyLGQqmJ8EynwHqk/nqJ+J/XjvTg3I2ZH0aa+mS2aBBxpAOURID6TFKi+cQQTCQztyIywhITbYLKpyFcJDj9fnmeNE5KTrlUvq0Uq1dZHDnYhwM4AgfOoAo3UIM6EJDwCM/wYj1YT9ar9TZrXbCymT34Bev9C2qqkfE=</latexit>

� = 10�4
<latexit sha1_base64="RqAeYaf/lyr+ReGut5W2TNP/y38=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHcWBJbfCyEohuXFewD2rRMptN26EwSZiZKCf0PNy4Uceu/uPNvnKRB1HrgwuGce7n3Hi/kTGnb/rQWFpeWV1Zza/n1jc2t7cLObkMFkSS0TgIeyJaHFeXMp3XNNKetUFIsPE6b3vg68Zv3VCoW+Hd6ElJX4KHPBoxgbaRuZ4iFwJeO3Y2PK9NeoWiX7BRonjgZKUKGWq/w0ekHJBLU14RjpdqOHWo3xlIzwuk034kUDTEZ4yFtG+pjQZUbp1dP0aFR+mgQSFO+Rqn6cyLGQqmJ8EynwHqk/nqJ+J/XjvTg3I2ZH0aa+mS2aBBxpAOURID6TFKi+cQQTCQztyIywhITbYLKpyFcJDj9fnmeNE5KTrlUvq0Uq1dZHDnYhwM4AgfOoAo3UIM6EJDwCM/wYj1YT9ar9TZrXbCymT34Bev9C2qqkfE=</latexit>

� = 10�3
<latexit sha1_base64="N00z1hS4MOaFy/zZ5PPMJwOLDN4=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwY0ms+FgIRTcuK9gHtGm5mU7boTNJmJkoJfQ/3LhQxK3/4s6/cZIGUeuBC4dz7uXee7yQM6Vt+9PKLSwuLa/kVwtr6xubW8XtnYYKIklonQQ8kC0PFOXMp3XNNKetUFIQHqdNb3yd+M17KhUL/Ds9CakrYOizASOgjdTtDEEIuHTsbnxUmfaKJbtsp8DzxMlICWWo9YofnX5AIkF9TTgo1XbsULsxSM0Ip9NCJ1I0BDKGIW0b6oOgyo3Tq6f4wCh9PAikKV/jVP05EYNQaiI80ylAj9RfLxH/89qRHpy7MfPDSFOfzBYNIo51gJMIcJ9JSjSfGAJEMnMrJiOQQLQJqpCGcJHg9PvledI4LjuVcuX2pFS9yuLIoz20jw6Rg85QFd2gGqojgiR6RM/oxXqwnqxX623WmrOymV30C9b7F2klkfA=</latexit>

� = 10�3
<latexit sha1_base64="N00z1hS4MOaFy/zZ5PPMJwOLDN4=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwY0ms+FgIRTcuK9gHtGm5mU7boTNJmJkoJfQ/3LhQxK3/4s6/cZIGUeuBC4dz7uXee7yQM6Vt+9PKLSwuLa/kVwtr6xubW8XtnYYKIklonQQ8kC0PFOXMp3XNNKetUFIQHqdNb3yd+M17KhUL/Ds9CakrYOizASOgjdTtDEEIuHTsbnxUmfaKJbtsp8DzxMlICWWo9YofnX5AIkF9TTgo1XbsULsxSM0Ip9NCJ1I0BDKGIW0b6oOgyo3Tq6f4wCh9PAikKV/jVP05EYNQaiI80ylAj9RfLxH/89qRHpy7MfPDSFOfzBYNIo51gJMIcJ9JSjSfGAJEMnMrJiOQQLQJqpCGcJHg9PvledI4LjuVcuX2pFS9yuLIoz20jw6Rg85QFd2gGqojgiR6RM/oxXqwnqxX623WmrOymV30C9b7F2klkfA=</latexit>

Figure 6.16: Average breaking time τ~ for L̂ =
√
γĴz with threshold ε = 0.25±5%, 10%, 15%, 20%,

for parameters Λ = 1.5, ε = −0.07, Ω = 1.6 , t0 = 0.9, (φ0, θ0) = (2.51, π/2), for N = 1000 atoms.

The figure shows both the driven (A = 0.07 shown on left) and undriven (A = 0 shown on right)

case for γ = 10−5 (top), 10−4 (middle), and 10−3 (bottom). Each point is averaged over 5 noise

realisations and the error bars signify twice the standard error.

where ∆Jx(t) = 〈ψp(t)|Ĵx|ψp(t)〉 − 〈ψf (t)|Ĵx|ψf (t)〉 and so on... The problem with using

this method is that the distance in R(3) does not give the distance on the surface of the

sphere within which our phase space lies on. We should instead use the metric on the unit

2-sphere which is given by Eq. 2.58. However, as j → ∞, the sphere will be accurately

approximated by a flat plane and the distance between the states will be sufficiently

infinitesimal to be accurately described by Eq. 6.30. So we can use this for the semiclassical

simulations. Then the Lyapunov exponent is given by Eq. 4.3.

Note on expectation values for quantum system

Because we are now dealing with quantum states that lie on the sphere, the more spread

the state is, the more likely we are to see the mean value of the state lying within the

sphere which may have consequences on the way we have defined our Lyapunov exponent
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⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>⌧~

<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

⌧~
<latexit sha1_base64="esh3pbp6eLUlUDSslbepdeGPZZA=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRIrPnZFNy4r2Ac2odxMJ+3QySTMTIQS+hduXCji1r9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jng+KciZoWzPNaS+WFEKf064/uc787gOVikXiTk9j6oUwEixgBLSR7l0NycAd+yAH1Zpdt3PgReIUpIYKtAbVD3cYkSSkQhMOSvUdO9ZeClIzwums4iaKxkAmMKJ9QwWEVHlpfvEMHxlliINImhIa5+rPiRRCpaahbzpD0GP118vE/7x+ooMLL2UiTjQVZL4oSDjWEc7ex0MmKdF8aggQycytmIxBAtEmpEoewmWGs++XF0nnpO406o3b01rzqoijjA7QITpGDjpHTXSDWqiNCBLoET2jF0tZT9ar9TZvLVnFzD76Bev9C7S3kRM=</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

�meas
<latexit sha1_base64="n6EVuXw3RUObvF4jAeZ3F52qdNE=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7APSUCbT23boZCbMTIQS+hluXCji1q9x5984SYOo9cCFwzn3cu89YcyZNq776ZSWlldW18rrlY3Nre2d6u5eW8tEUWhRyaXqhkQDZwJahhkO3VgBiUIOnXByk/mdB1CaSXFvpjEEERkJNmSUGCv5vXjM+mkERM/61Zpbd3PgReIVpIYKNPvVj95A0iQCYSgnWvueG5sgJcowymFW6SUaYkInZAS+pYJEoIM0P3mGj6wywEOpbAmDc/XnREoiradRaDsjYsb6r5eJ/3l+YoaXQcpEnBgQdL5omHBsJM7+xwOmgBo+tYRQxeytmI6JItTYlCp5CFcZzr9fXiTtk7p3Wj+9O6s1ros4yugAHaJj5KEL1EC3qIlaiCKJHtEzenGM8+S8Om/z1pJTzOyjX3DevwDKo5G5</latexit>

A = 0
<latexit sha1_base64="PqAgH+boHfvReybs4FkkBkZXRT4=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRWfCyEqhuXFe0D2lAm00k7dDIJMxOhhH6CGxeKuPWL3Pk3TtIgaj1w4XDOvdx7jxdxprRtf1qFhcWl5ZXiamltfWNzq7y901JhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75O/fYDlYqF4l5PIuoGeCiYzwjWRrq7vLD75YpdtTOgeeLkpAI5Gv3yR28QkjigQhOOleo6dqTdBEvNCKfTUi9WNMJkjIe0a6jAAVVukp06RQdGGSA/lKaERpn6cyLBgVKTwDOdAdYj9ddLxf+8bqz9MzdhIoo1FWS2yI850iFK/0YDJinRfGIIJpKZWxEZYYmJNumUshDOU5x8vzxPWkdVp1at3R5X6ld5HEXYg304BAdOoQ430IAmEBjCIzzDi8WtJ+vVepu1Fqx8Zhd+wXr/AptxjX0=</latexit>

A = 0.07
<latexit sha1_base64="Y3ejks0MxvkYBLMKhH48cjM0lfU=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkVwVRIrVhdC1Y3LCvYBbSiT6aQdO5kJMxOhhP6DGxeKuPV/3Pk3TtIgvg4MczjnXu69x48YVdpxPqzCwuLS8kpxtbS2vrG5Vd7eaSsRS0xaWDAhuz5ShFFOWppqRrqRJCj0Gen4k6vU79wTqajgt3oaES9EI04DipE2Uvvi3Kk69UG5Yr4M9l/i5qQCOZqD8nt/KHAcEq4xQ0r1XCfSXoKkppiRWakfKxIhPEEj0jOUo5AoL8m2ndkHRhnagZDmcW1n6veOBIVKTUPfVIZIj9VvLxX/83qxDk69hPIo1oTj+aAgZrYWdnq6PaSSYM2mhiAsqdnVxmMkEdYmoFIWwlmKk6+T/5L2UdWtVWs3x5XGZR5HEfZgHw7BhTo04Bqa0AIMd/AAT/BsCevRerFe56UFK+/ZhR+w3j4B7qiOMA==</latexit>

� = 10�5
<latexit sha1_base64="CEXuR+OhkIayb1Y81v9d/14KaWQ=">AAAB9XicbVDLSsNAFJ34rPVVdelmsAhuLIn1uRCKblxWsA9o03IznbRDZyZhZqKU0P9w40IRt/6LO//GJC2i1gMXDufcy733eCFn2tj2pzU3v7C4tJxbya+urW9sFra26zqIFKE1EvBANT3QlDNJa4YZTpuhoiA8Thve8Dr1G/dUaRbIOzMKqSugL5nPCJhE6rT7IARcOnYnPjwZdwtFu2RnwLPEmZIimqLaLXy0ewGJBJWGcNC65dihcWNQhhFOx/l2pGkIZAh92kqoBEG1G2dXj/F+ovSwH6ikpMGZ+nMiBqH1SHhJpwAz0H+9VPzPa0XGP3djJsPIUEkmi/yIYxPgNALcY4oSw0cJAaJYcismA1BATBJUPgvhIsXp98uzpH5Ucsql8u1xsXI1jSOHdtEeOkAOOkMVdIOqqIYIUugRPaMX68F6sl6tt0nrnDWd2UG/YL1/AWwvkfI=</latexit>

� = 10�4
<latexit sha1_base64="RqAeYaf/lyr+ReGut5W2TNP/y38=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHcWBJbfCyEohuXFewD2rRMptN26EwSZiZKCf0PNy4Uceu/uPNvnKRB1HrgwuGce7n3Hi/kTGnb/rQWFpeWV1Zza/n1jc2t7cLObkMFkSS0TgIeyJaHFeXMp3XNNKetUFIsPE6b3vg68Zv3VCoW+Hd6ElJX4KHPBoxgbaRuZ4iFwJeO3Y2PK9NeoWiX7BRonjgZKUKGWq/w0ekHJBLU14RjpdqOHWo3xlIzwuk034kUDTEZ4yFtG+pjQZUbp1dP0aFR+mgQSFO+Rqn6cyLGQqmJ8EynwHqk/nqJ+J/XjvTg3I2ZH0aa+mS2aBBxpAOURID6TFKi+cQQTCQztyIywhITbYLKpyFcJDj9fnmeNE5KTrlUvq0Uq1dZHDnYhwM4AgfOoAo3UIM6EJDwCM/wYj1YT9ar9TZrXbCymT34Bev9C2qqkfE=</latexit>

� = 10�4
<latexit sha1_base64="RqAeYaf/lyr+ReGut5W2TNP/y38=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHcWBJbfCyEohuXFewD2rRMptN26EwSZiZKCf0PNy4Uceu/uPNvnKRB1HrgwuGce7n3Hi/kTGnb/rQWFpeWV1Zza/n1jc2t7cLObkMFkSS0TgIeyJaHFeXMp3XNNKetUFIsPE6b3vg68Zv3VCoW+Hd6ElJX4KHPBoxgbaRuZ4iFwJeO3Y2PK9NeoWiX7BRonjgZKUKGWq/w0ekHJBLU14RjpdqOHWo3xlIzwuk034kUDTEZ4yFtG+pjQZUbp1dP0aFR+mgQSFO+Rqn6cyLGQqmJ8EynwHqk/nqJ+J/XjvTg3I2ZH0aa+mS2aBBxpAOURID6TFKi+cQQTCQztyIywhITbYLKpyFcJDj9fnmeNE5KTrlUvq0Uq1dZHDnYhwM4AgfOoAo3UIM6EJDwCM/wYj1YT9ar9TZrXbCymT34Bev9C2qqkfE=</latexit>

� = 10�3
<latexit sha1_base64="N00z1hS4MOaFy/zZ5PPMJwOLDN4=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwY0ms+FgIRTcuK9gHtGm5mU7boTNJmJkoJfQ/3LhQxK3/4s6/cZIGUeuBC4dz7uXee7yQM6Vt+9PKLSwuLa/kVwtr6xubW8XtnYYKIklonQQ8kC0PFOXMp3XNNKetUFIQHqdNb3yd+M17KhUL/Ds9CakrYOizASOgjdTtDEEIuHTsbnxUmfaKJbtsp8DzxMlICWWo9YofnX5AIkF9TTgo1XbsULsxSM0Ip9NCJ1I0BDKGIW0b6oOgyo3Tq6f4wCh9PAikKV/jVP05EYNQaiI80ylAj9RfLxH/89qRHpy7MfPDSFOfzBYNIo51gJMIcJ9JSjSfGAJEMnMrJiOQQLQJqpCGcJHg9PvledI4LjuVcuX2pFS9yuLIoz20jw6Rg85QFd2gGqojgiR6RM/oxXqwnqxX623WmrOymV30C9b7F2klkfA=</latexit>

� = 10�3
<latexit sha1_base64="N00z1hS4MOaFy/zZ5PPMJwOLDN4=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwY0ms+FgIRTcuK9gHtGm5mU7boTNJmJkoJfQ/3LhQxK3/4s6/cZIGUeuBC4dz7uXee7yQM6Vt+9PKLSwuLa/kVwtr6xubW8XtnYYKIklonQQ8kC0PFOXMp3XNNKetUFIQHqdNb3yd+M17KhUL/Ds9CakrYOizASOgjdTtDEEIuHTsbnxUmfaKJbtsp8DzxMlICWWo9YofnX5AIkF9TTgo1XbsULsxSM0Ip9NCJ1I0BDKGIW0b6oOgyo3Tq6f4wCh9PAikKV/jVP05EYNQaiI80ylAj9RfLxH/89qRHpy7MfPDSFOfzBYNIo51gJMIcJ9JSjSfGAJEMnMrJiOQQLQJqpCGcJHg9PvledI4LjuVcuX2pFS9yuLIoz20jw6Rg85QFd2gGqojgiR6RM/oxXqwnqxX623WmrOymV30C9b7F2klkfA=</latexit>

� = 10�5
<latexit sha1_base64="CEXuR+OhkIayb1Y81v9d/14KaWQ=">AAAB9XicbVDLSsNAFJ34rPVVdelmsAhuLIn1uRCKblxWsA9o03IznbRDZyZhZqKU0P9w40IRt/6LO//GJC2i1gMXDufcy733eCFn2tj2pzU3v7C4tJxbya+urW9sFra26zqIFKE1EvBANT3QlDNJa4YZTpuhoiA8Thve8Dr1G/dUaRbIOzMKqSugL5nPCJhE6rT7IARcOnYnPjwZdwtFu2RnwLPEmZIimqLaLXy0ewGJBJWGcNC65dihcWNQhhFOx/l2pGkIZAh92kqoBEG1G2dXj/F+ovSwH6ikpMGZ+nMiBqH1SHhJpwAz0H+9VPzPa0XGP3djJsPIUEkmi/yIYxPgNALcY4oSw0cJAaJYcismA1BATBJUPgvhIsXp98uzpH5Ucsql8u1xsXI1jSOHdtEeOkAOOkMVdIOqqIYIUugRPaMX68F6sl6tt0nrnDWd2UG/YL1/AWwvkfI=</latexit>

Figure 6.17: Average breaking time τ~ for L̂ =
√
γĴ− with threshold ε = 0.25 ±

5%, 10%, 15%, 20%, for parameters Λ = 1.5, ε = −0.07, Ω = 1.6 , t0 = 0.9, (φ0, θ0) = (2.51, π/2),

for N = 1000 atoms. The figure shows both the driven (A = 0.07 shown on left) and undriven

(A = 0 shown on right) case for γ = 10−5 (top), 10−4 (bottom). Each point is averaged over 5

noise realisations and the error bars signify twice the standard error.

using the expectation values of the state.

6.9.1 Rotation of an arbitrary quantum state in SU(2)

The next step in the numerical calculation of the Lyapunov exponent is to reset the

perturbed trajectory for the next iteration just as we did with the Duffing oscillator. We

perform the reset by replacing the perturbed trajectory with a displaced version of the

fiducial trajectory. The trajectory is displaced by the displacement operator. For the

SU(2) case where our phase space is now the surface of the sphere, this is given by the

rotation of the state on the sphere. In chapter 2 the rotation of a coherent spin state is

given by Eq. 2.55. But during the evolution of the system, our state is no longer described

as a CSS. This means that we need to apply a rotation on the arbitrary fiducial state at

each reset to get the new perturbed state. The rotation of an arbitrary state is given by:

e−iδn̂·Ĵ = e−iδ(nxĴx+ny Ĵy+nz Ĵz), (6.31)

where n̂ = nxx̂+nyŷ+nz ẑ is the normal vector to the plane of rotation and δ is the angle

of rotation. We also need to ensure that the state is rotated in the correct direction (the

direction of expansion) so that we end up with the maximal Lyapunov exponent. This is

done by considering the geometry of the states on the sphere. Considering the two states
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on the sphere, the vector pointing from the origin to each state is given by:

vf = 〈ψf (t)|Ĵx|ψf (t)〉x̂+ 〈ψf (t)|Ĵy|ψf (t)〉ŷ + 〈ψf (t)|Ĵz|ψf (t)〉ẑ, (6.32)

vp = 〈ψp(t)|Ĵx|ψp(t)〉x̂+ 〈ψp(t)|Ĵy|ψp(t)〉ŷ + 〈ψp(t)|Ĵz|ψp(t)〉ẑ. (6.33)

We require that the normal vector to the plane of rotation is orthogonal to both trajectories

so that the plane of rotation is the same plane that the two states lie on. The vector

orthogonal to both trajectories is given by the cross product:

vf×p = (〈Ĵy〉f 〈Ĵz〉p−〈Ĵz〉f 〈Ĵy〉p)x̂+(〈Ĵx〉f 〈Ĵz〉p−〈Ĵz〉f 〈Ĵx〉p)ŷ+(〈Ĵx〉f 〈Ĵy〉p−〈Ĵy〉f 〈Ĵx〉p)ẑ,
(6.34)

then the normal vector is given simply by n̂ = vf×p/|vf×p|.

Acting the rotation operator on the arbitrary state

We can use the ordering theorem given in [111] to put the rotation operator into a form

that can easily be acted on an arbitrary state. For Ĵz, Ĵ+ and Ĵ−, we have

[Ĵz, Ĵ±] = ±Ĵ± and [Ĵ+, Ĵ−] = 2Ĵz, (6.35)

then the operator ordering formula gives

e(λ+Ĵ++λ−Ĵ−+λz Ĵz) = e(Λ+Ĵ+)e(ln(Λz)Ĵz)e(Λ−Ĵ−) (6.36)

= e(Λ−Ĵ−)e(− ln(Λz)Ĵz)e(Λ+Ĵ+), (6.37)

where

Λz =

(
cosh(α)− λz

2α
sinh(α)

)−2

(6.38)

Λ± =
2λ± sinh(α)

2α cosh(α)− λz sinh(α)
(6.39)

α2 =
1

4
λ2
z + λ+λ−. (6.40)

Rearranging the rotation in Eq. 6.31 to be in the same form, we have:

e−iδn̂·Ĵ = e−iδ[
1
2

(nx−iny)Ĵ++ 1
2

(nx+iny)Ĵ−+nz Ĵz], (6.41)

so that λ+ = −iδ(1/2)(nx − iny), λ− = −iδ(1/2)(nx + iny) and λz = −iδnz. Applying

the ordering formula to the rotation, our rotation operator will be in the form given by

Eq. A.18 with the coefficients:

Λz =

(
cos[ δ2 ]− nz sin[ δ2 ]

δ

)−2

(6.42)

Λ− =
(−inx + ny)δ sin[ δ2 ]

2δ cos[ δ2 ]− 2nz sin[ δ2 ]
(6.43)

Λ+ =
−(inx + ny)δ sin[ δ2 ]

2δ cos[ δ2 ]− 2nz sin[ δ2 ]
. (6.44)
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For further details of how this can be acted on the arbitrary state for our simulations, we

refer to section A.1 of the appendix.



7
Conclusions and Outlook

This thesis has presented theoretical work on the continuous measurement of open quan-

tum systems whose classical counterpart is chaotic. In the past it has been assumed that

the choice of measurement does not have an effect on the emergence of chaos. If we con-

sider the average over noise realisations after all, we obtain the unconditional dynamics

given by the Master equation. However it is known that the back-action applied to the

quantum system as a result of the measurement can have an effect on the localisation of

the wavefunction and control protocols are constructed for quantum systems using the

measurement strategy. It is clear in the field of quantum control that measurement can

play a role so we should expect it to have an effect on the onset of chaos. Here we quantita-

tively show that this is in fact true by calculating the Lyapunov exponent in the quantum

regime. The aim of this thesis was to shed light on the role that measurement plays in the

emergence of chaos from the quantum limit, in order to further our understanding of how

chaos comes about from the quantum particles that form the basis of all matter. Given

the recent excitement and connection of quantum chaos to much broader fields of research

and the rapid increase in quantum technology over past decades, it seems vital that we

understand how chaos emerges from quantum systems and study methods of controlling

chaos.

7.1 Emergence of chaos from a continuously monitored

quantum system

In this thesis we have demonstrated the interplay between the quantum interference effects

that are induced by the nonlinear dynamics of the quantum Duffing oscillator and the

localisation and decoherence given by the choice of continuous measurement. We have

quantified through the calculation of the quantum Lyapunov exponent the effect that

the continuous measurement has on the quantum Duffing oscillator. When the classical

limit is chaotic (dissipation strength Γ = 0.10), there is a regime in the transition from

quantum to classical where the measurement choice influences the emergence of chaos.

Depending on the choice of the measurement phase of a homodyne detection scheme,
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the dynamics of the system can be regular or chaotic. The rate of the decoherence due

to the measurement is what determines this result. Specifically, the measurement phase

that is parallel to the interference fringes of the state’s Wigner function gives the fastest

destruction of these interference fringes and the fastest collapse to a localised state that

closely follows the chaotic dynamics of the classical limit. What is perhaps more surprising

is that measurement can also induce chaos when the classical system is regular. We show

that for a different set of parameters (Γ = 0.05) where the classical limit is regular, the

choice of measurement in the same regime between classical and quantum also leads to a

measurement dependence on the quantum Lyapunov exponent, with chaos being present

for the quantum and semiclassical case for a certain choice of measurement. In this case

the noise from the measurement drives the system to a large spread in position enabling

inter-well transitions which are classically forbidden.

7.2 Controlling chaos with adaptive measurement tech-

niques

We have developed a quantum control technique that adaptively changes the measurement

phase using a real time feedback in order to control the onset of chaos in the quantum

regime. This thesis has demonstrated that adaptive measurement can be used to suppress

the onset of chaos in the system and as a result create non-classical states that could be

used as a resource. This control can also be used to enhance chaos, pushing its onset

further into the quantum regime where it might be more experimentally accessible. We

have also discussed in detail the feasibility of implementing this control technique in two

experimental realisations: an ultracold atoms experiment and a superconducting qubit

experiment.

7.3 Opening the quantum driven top

So far we have shown the emergence of chaos from a continuously monitored quantum

system, using only one toy model, the Duffing oscillator to obtain numerical results. The

question is then is there a general effect that could be seen in other chaotic systems or is

this system dependent?

This thesis also investigated the effect of continuous measurement on quantum chaos

in another quantum system whose classical limit is chaotic: the driven top. This system

was chosen for several reasons, the most important being that it is a system that has been

experimentally realised in ultracold atomic experiments in the past [19, 144, 94]. Here, we

demonstrate both the effect of continuous measurement on this system and the effect that

opening this system to the environment can have on the dynamics. However, the classical

limit that is often studied is a closed system governed solely by Hamiltonian dynamics.

We show that the effect of opening the system can be detrimental to the degree of chaos,

unless the measurement is chosen such that it cancels out the decoherence. In this case

the system evolves via the Hamiltonian but with the added noise from the measurement.

This system is interesting because it is also a many body system where the interaction

between atoms plays a role in the evolution of the system. It is also a system that closely

resembles the Hamiltonian that is often considered for quantum metrology. It has also

been shown that the presence of chaos in precision measurement with this system may be

useful for increasing the Fisher information [42] and therefore the amount of information
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that can be gained from the precision measurement in sensors.

7.4 Future work

Lyapunov exponent for quantum driven top

It is clear that the work on the continuous measurement of the driven top is far from

done. In chapter 6 we have attempted to ask the same questions that we have asked for

the Duffing oscillator. However we are restricted by the inability to calculate the quantum

Lyapunov exponents for the SU(2) system. We have detailed a possible method by which

it could be done but further investigations are necessary to ensure the validity of the

method.

Imperfect measurement

Throughout this thesis, we have assumed an ideal measurement of the open quantum sys-

tem, of course this is not entirely feasible. The practicality of the adaptive measurement

for an experimental realisation would require further investigation into the use of the tech-

nique with imperfect measurement signal. The technique as it is relies on the information

from the measurement signal to inform the next phase choice for the homodyne measure-

ment scheme. It is expected that there will be some robustness in the technique but this

would need to be shown by considering the effect that the signal efficiency will have on

the Lyapunov exponent as an outcome. This could be done by considering a stochastic

master equation and considering a system-filter separation.

Adaptive control of driven top

Can we apply the same control technique using adaptive measurement in order to control

the onset of chaos in the driven top? This question is beyond the scope of this thesis but

it is one that would be very interesting as a further investigation of the system. Using an

adaptive measurement technique enabled us to conclusively demonstrate one mechanism

by which chaos emerges from the quantum Duffing oscillator. Whether or not the same

technique could be used for the driven top is an intriguing and non-trivial question for

future work. The use of an adaptive measurement for Duffing oscillator when the classical

system is regular is also something that was beyond the scope of this thesis but is something

that has been investigated by Sacha Greenfield concurrent to the research presented here

and discussed with collaborators [51].

Measures of chaos

Here we have shown the quantum Lyapunov exponent as a method to measure the onset

of chaos in the quantum Duffing oscillator and proposed a technique to do the same in the

theoretical treatment of the driven top. We have also investigated the possibility of using

the breaking time [66, 18] between the classical and quantum dynamics for the same pur-

pose, investigating whether it is suitable to distinguish between different measurements,

however there are other methods that probe the signatures of chaos in the quantum system

which are experimentally being calculated. The Out of Time Order Correlator (OTOC)

is one possible technique that is being studied in the field of quantum chaos at the mo-

ment [78, 44, 79, 123, 43, 161, 162, 115]. It remains an open question what the OTOC
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would look like for a continuously monitored chaotic system. This would be intriguing to

study in future works.

Negativity

For the quantum Duffing oscillator, we discussed the use of the measure of negativity

of the Wigner function as a means to distinguish between the different measurements.

This enabled us to understand one of the mechanisms by which chaos emerges from the

quantum dynamics. The rapid destruction of interference effects leads to the localisation

of the state and this results in the onset of chaos. The question of how the Wigner function

behaves for the SU(2) system is intriguing as well however it is beyond the scope of this

thesis because of the non-triviality of calculating the Wigner function for the SU(2) states.

But if we were to calculate it, would we see the same behaviour as the Duffing oscillator?

It seems unlikely given that the measurement induces chaos because of the cancellation of

the dephasing terms, leading to the chaotic dynamics and random noise dominating. In

this case, should we expect a less localised wavefunction?
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[53] F. Haake, M. Kuś, and R. Scharf. “Classical and quantum chaos for a kicked top”.

In: Zeitschrift für Physik B Condensed Matter 65.3 (1987), pp. 381–395. doi: 10.

1007/BF01303727. url: http://dx.doi.org/10.1007/BF01303727.

[54] Salman Habib, Kurt Jacobs, and Kosuke Shizume. “Emergence of Chaos in Quan-

tum Systems Far from the Classical Limit”. In: Physical Review Letters 96.1, 010403

(2006), p. 010403. doi: 10.1103/PhysRevLett.96.010403. url: http://link.

aps.org/abstract/PRL/v96/e010403.

[55] Salman Habib, Kosuke Shizume, and Wojciech Hubert Zurek. “Decoherence, Chaos,

and the Correspondence Principle”. In: Phys. Rev. Lett. 80 (20 1998), pp. 4361–

4365. doi: 10.1103/PhysRevLett.80.4361. url: http://link.aps.org/doi/10.

1103/PhysRevLett.80.4361.

[56] Ryan Hamerly and Hideo Mabuchi. “Coherent controllers for optical-feedback cool-

ing of quantum oscillators”. In: Phys. Rev. A 87 (1 2013), p. 013815. doi: 10.1103/

PhysRevA.87.013815. url: https://link.aps.org/doi/10.1103/PhysRevA.

87.013815.

[57] Klemens Hammerer, Anders S. Sørensen, and Eugene S. Polzik. “Quantum interface

between light and atomic ensembles”. In: Rev. Mod. Phys. 82 (2 2010), pp. 1041–

1093. doi: 10.1103/RevModPhys.82.1041. url: https://link.aps.org/doi/10.

1103/RevModPhys.82.1041.

[58] Ramon van Handel, John K Stockton, and Hideo Mabuchi. “Modelling and feedback

control design for quantum state preparation”. In: Journal of Optics B: Quantum

and Semiclassical Optics 7.10 (2005), S179. url: http://stacks.iop.org/1464-

4266/7/i=10/a=001.

[59] Serge Haroche and Jean-Michel Raimond. Exploring the Quantum: Atoms, Cavities,

and Photons (Oxford Graduate Texts). 1st ed. Oxford University Press, USA, Oct.

2006. isbn: 0198509146. url: http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20\&path=ASIN/0198509146.

[60] Aram W. Harrow and Ashley Montanaro. “Quantum computational supremacy”.

In: Nature 549 (Sept. 2017), 203 EP –. url: https : / / doi . org / 10 . 1038 /

nature23458.

[61] B. L. Higgins et al. “Entanglement-free Heisenberg-limited phase estimation”. In:

Nature 450 (Nov. 2007), 393 EP –. url: http : / / dx . doi . org / 10 . 1038 /

nature06257.

https://doi.org/10.1103/PhysRevLett.96.010401
https://link.aps.org/doi/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRev.131.2766
https://link.aps.org/doi/10.1103/PhysRev.131.2766
https://link.aps.org/doi/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.115.060402
https://link.aps.org/doi/10.1103/PhysRevLett.115.060402
https://doi.org/10.1007/BF01303727
https://doi.org/10.1007/BF01303727
http://dx.doi.org/10.1007/BF01303727
https://doi.org/10.1103/PhysRevLett.96.010403
http://link.aps.org/abstract/PRL/v96/e010403
http://link.aps.org/abstract/PRL/v96/e010403
https://doi.org/10.1103/PhysRevLett.80.4361
http://link.aps.org/doi/10.1103/PhysRevLett.80.4361
http://link.aps.org/doi/10.1103/PhysRevLett.80.4361
https://doi.org/10.1103/PhysRevA.87.013815
https://doi.org/10.1103/PhysRevA.87.013815
https://link.aps.org/doi/10.1103/PhysRevA.87.013815
https://link.aps.org/doi/10.1103/PhysRevA.87.013815
https://doi.org/10.1103/RevModPhys.82.1041
https://link.aps.org/doi/10.1103/RevModPhys.82.1041
https://link.aps.org/doi/10.1103/RevModPhys.82.1041
http://stacks.iop.org/1464-4266/7/i=10/a=001
http://stacks.iop.org/1464-4266/7/i=10/a=001
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0198509146
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0198509146
https://doi.org/10.1038/nature23458
https://doi.org/10.1038/nature23458
http://dx.doi.org/10.1038/nature06257
http://dx.doi.org/10.1038/nature06257


112 REFERENCES

[62] Masashi Hirose and Paola Cappellaro. “Coherent feedback control of a single qubit

in diamond”. In: Nature 532 (Apr. 2016), 77 EP –. url: https://doi.org/10.

1038/nature17404.

[63] O. Hosten et al. “Quantum phase magnification”. In: Science 352.6293 (2016),

pp. 1552–1555. issn: 0036-8075. doi: 10.1126/science.aaf3397. eprint: http:

//science.sciencemag.org/content/352/6293/1552.full.pdf. url: http:

//science.sciencemag.org/content/352/6293/1552.

[64] M R Hush et al. “Controlling spontaneous-emission noise in measurement-based
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A
Appendix

A.1 Appendix for Chapter 6

A.1.1 Derivation of the equations of motion for a Hermitian coupling
operator

We begin with the SSE in Stratonovich form given in Eq. 3.79. In stratonovich form, the

equations of motion obey regular calculus. For a general operator Ĝ, the equations of

motion for the expectation values for a continuously monitored system is given by

d〈Ĝ〉 = 〈ψ|Ĝd|ψ〉+ d〈ψ|Ĝ|ψ〉. (A.1)

Let’s break this down into each term from the SSE: We have the Hamiltonian term first

d〈Ĝ〉Ĥterm =
i

~
〈[Ĥ,G]〉, (A.2)

where we have assumed we are dealing with a hermitian Hamiltonian. Now for the next

dt term.

d〈Ĝ〉L̂term = 〈ψ|Ĝ
(
− L̂

†L̂

2
+
〈L̂†L̂〉

2
+ 〈L̂†〉L̂− 〈L̂†〉〈L̂〉

)
|ψ〉dt

+ 〈ψ|
(
− L̂

†L̂

2
+
〈L̂†L̂〉

2
+ 〈L̂〉L̂† − 〈L̂†〉〈L̂〉

)
Ĝ|ψ〉dt

(A.3)

=

(
〈ĜL̂〉〈L̂†〉+ 〈L̂†Ĝ〉〈L̂〉 − 〈ĜL̂

†L̂〉
2

− 〈L̂
†L̂Ĝ〉
2

+ 〈Ĝ〉〈L̂†L̂〉 − 2〈Ĝ〉〈L̂†〉〈L̂〉
)

dt.

(A.4)
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Now we make the assumption that we are dealing with a hermitian coupling operator

L̂ = L̂†.

d〈Ĝ〉L̂term =

(
〈ĜL̂〉〈L̂〉+ 〈L̂Ĝ〉〈L̂〉 − 〈ĜL̂

2〉
2
− 〈L̂

2Ĝ〉
2

+ 〈Ĝ〉〈L̂2〉 − 2〈Ĝ〉〈L̂〉〈L̂〉
)

dt.

(A.5)

Next we use the fact that 〈ĜL̂2〉 = 〈L̂ĜL̂〉+ 〈[Ĝ, L̂]L̂〉 and 〈L̂2Ĝ〉 = 〈L̂ĜL̂〉 − 〈L̂[Ĝ, L̂]〉.

d〈Ĝ〉L̂term =

(
〈ĜL̂〉〈L̂〉+ 〈L̂Ĝ〉〈L̂〉 − 〈L̂ĜL̂〉+

1

2
(〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉) + 〈Ĝ〉〈L̂2〉 − 2〈Ĝ〉〈L̂〉〈L̂〉

)
dt.

(A.6)

In the meanfield limit the only surviving term will be

d〈Ĝ〉L̂term =
1

2
(〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉)dt. (A.7)

Now for the u terms:

d〈Ĝ〉uterm = − u

2
〈ψ|Ĝ

(
L̂2 − 2L̂〈L̂〉 − 〈L̂2〉+ 2〈L̂〉2

)
|ψ〉dt

− u∗

2
〈ψ|
(
L̂†2 − 2L̂†〈L̂†〉 − 〈L̂†2〉+ 2〈L̂†〉2

)
Ĝ|ψ〉dt

(A.8)

= − u

2

(
〈ĜL̂2〉 − 2〈ĜL̂〉〈L̂〉+ 2〈Ĝ〉〈L̂〉2 − 〈Ĝ〉〈L̂2〉

)
dt

− u∗

2

(
〈L̂†2Ĝ〉 − 2〈L̂†Ĝ〉〈L̂†〉+ 2〈Ĝ〉〈L̂†〉2 − 〈Ĝ〉〈L̂†2〉

)
dt.

(A.9)

For hermitian coupling L̂ = L̂†:

d〈Ĝ〉uterm = −u
2

(
〈ĜL̂2〉 − 2〈ĜL̂〉〈L̂〉+ 2〈Ĝ〉〈L̂〉2 − 〈Ĝ〉〈L̂2〉

)
dt

− u∗

2

(
〈L̂2Ĝ〉 − 2〈L̂Ĝ〉〈L̂〉+ 2〈Ĝ〉〈L̂〉2 − 〈Ĝ〉〈L̂2〉

)
dt, (A.10)

and using our definition of u = exp(−2iφ):

d〈Ĝ〉uterm = − 1

2

(
cos(2φ)

[
〈ĜL̂2〉+ 〈L̂2Ĝ〉 − 2〈ĜL̂〉〈L̂〉 − 2〈L̂Ĝ〉〈L̂〉+ 4〈Ĝ〉〈L̂〉2 − 2〈Ĝ〉〈L̂2〉

]
+ sin(2φ)

[
−i(〈ĜL̂2〉 − 〈L̂2Ĝ〉) + 2i(〈ĜL̂〉〈L̂〉 − 〈L̂Ĝ〉〈L̂〉)

] )
dt

(A.11)

= − 1

2

(
cos(2φ)

[
2〈L̂ĜL̂〉+ (〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉)− 2〈ĜL̂〉〈L̂〉 − 2〈L̂Ĝ〉〈L̂〉+ 4〈Ĝ〉〈L̂〉2 − 2〈Ĝ〉〈L̂2〉

]
+ sin(2φ)

[
−i(〈[Ĝ, L̂]L̂〉+ 〈L̂[Ĝ, L̂]〉) + 2i(〈L̂〉〈[Ĝ, L̂]〉)

] )
dt.

(A.12)

For the meanfield approximation, we are left with

d〈Ĝ〉uterm = −1

2
cos(2φ)

(
〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉

)
dt. (A.13)



§A.1 Appendix for Chapter 6 123

And finally the noise terms

d〈Ĝ〉noiseterm = 〈ψ|Ĝ(L̂− 〈L̂〉)|ψ〉dξ + 〈(|L̂† − 〈L̂†〉)Ĝ|ψ〉dξ∗

=
(
〈ĜL̂〉 − 〈Ĝ〉〈L̂〉

)
dξ +

(
〈L̂†Ĝ〉 − 〈Ĝ〉〈L̂†〉

)
dξ∗. (A.14)

For hermitian coupling and using our definition dξ = exp(−iφ)dW :

d〈Ĝ〉noiseterm = cos(φ)
(
〈ĜL̂〉+ 〈L̂Ĝ〉 − 2〈Ĝ〉〈L̂〉

)
dW + sin(φ)

(
−i(〈ĜL̂〉 − 〈L̂Ĝ〉)

)
dW

= − sin(φ)
(
i〈[Ĝ, L̂]〉

)
dW. (A.15)

So the equation of motion for a general operator Ĝ is given by:

d〈Ĝ〉 =
i

~
〈[Ĥ,G]〉+

1

2
(〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉)dt− 1

2
cos(2φ)

(
〈[Ĝ, L̂]L̂〉 − 〈L̂[Ĝ, L̂]〉

)
dt

− sin(φ)
(
i〈[Ĝ, L̂]〉

)
dW. (A.16)

A.1.2 Validating the separation time using results from the Duffing os-
cillator

To be sure that we can use the separation time as a measure to distinguish between

the different measurement choices, we need to do the same for the Duffing oscillator as

well, a system for which we have quantum Lyapunov exponents that also quantify the

difference. So let us look at the Duffing oscillator for two orthogonal measurement choices

φ = π/2 and φ = 0. We will use the same technique that we have used for the Driven top,

looking at the time that the quantum trajectory in phase space departs from the classical

counterpart.

dt =
√

∆Q(t)2 + ∆P (t)2. (A.17)

Fig. A.1 shows the average separation time for different measurement choices for the

Duffing oscillator. First we notice that the difference in the separation time is not so

large for this system. But we also see that the result for φ = 0 and φ = π/2 follow the

trend of the quantum Lyapunov exponents in this case. So perhaps this warrants that the

separation time could be a useful tool for distinguishing the effect that the measurement

has on the chaotic dynamics?

A.1.3 Deriving the rotation of an arbitrary state for SU(2)

Recall from the main text, that the arbitrary rotation of a state in SU(2) is given by

e(λ+Ĵ++λ−Ĵ−+λz Ĵz) = e(Λ+Ĵ+)e(ln(Λz)Ĵz)e(Λ−Ĵ−) (A.18)

= e(Λ−Ĵ−)e(− ln(Λz)Ĵz)e(Λ+Ĵ+), (A.19)

Now lets apply the operators to the state in parts to simplify it and use the series

expansion of an exponential:

e(Λ−Ĵ−)|m〉 =

∞∑
k=0

(Λ−)k

k!
Ĵk−|m〉. (A.20)
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Figure A.1: Average breaking time τ~ for the quantum Duffing oscillator with threshold ε =

2± 5%, 10%, 15%, 20%. Each point is averaged over 5 noise realisations and the error bars signify

twice the standard error.

What is Ĵk−|m〉?

Ĵ−|m〉 =
(
J2 −m(m− 1)

)1/2 |m− 1〉 (A.21)

Ĵ−Ĵ−|m〉 =
(
J2 − (m− 1)(m− 2)

)1/2 (
J2 −m(m− 1)

)1/2 |m− 2〉 (A.22)

... (A.23)

Ĵk−|m〉 =
(
J2 − (m− (k − 1))(m− k)

)1/2
...
(
J2 −m(m− 1)

)1/2 |m− k〉
=

k∏
i=1

(
J2 − (m− (i− 1))(m− i)

)1/2 |m− k〉. (A.24)

The action of the exponential operator on the arbitrary state is then given by:

e(Λ−Ĵ−)|m〉 =

∞∑
k=0

(Λ−)k

k

k∏
i=1

(
J2 − (m− (i− 1))(m− i)

)1/2 |m− k〉. (A.25)

Moving onto the next operation on the state:

e(ln(Λz)Ĵz)e(Λ−Ĵ−)|m〉, (A.26)

this is easier since we are dealing with the eigenstates of the Ĵz operator, exp(Ĵz)|m〉 =

exp(m)|m〉.

=

∞∑
k=0

(Λ−)k

k!

k∏
i=1

(
J2 − (m− (i− 1))(m− i)

)1/2
e(ln(Λz)Ĵz)|m− k〉, (A.27)

=

∞∑
k=0

(Λ−)k

k!

k∏
i=1

(
J2 − (m− (i− 1))(m− i)

)1/2
e(ln(Λz)(m−k))|m− k〉. (A.28)
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Now, finally we include the final operation:

e(Λ+Ĵ+)e(ln(Λz)Ĵz)e(Λ−Ĵ−)|m〉, (A.29)

=

∞∑
k=0

(Λ−)k

k!

k∏
i=1

(
J2 − (m− (i− 1))(m− i)

)1/2
e(ln(Λz)(m−k))

.
∞∑
q=0

(Λ+)q

q!
Ĵq+|m− k〉. (A.30)

What is Ĵq+|m− k〉?

Ĵ+|m− k〉 =
(
J2 − (m− k)(m− k + 1)

)1/2 |m− k + 1〉 (A.31)

Ĵ+Ĵ+|m− k〉 =
(
J2 − (m− k + 1)(m− k + 2)

)1/2 (
J2 − (m− k)(m− k + 1)

)1/2 |m− k + 2〉
(A.32)

... (A.33)

Ĵq+|m− k〉 =
(
J2 − (m− k + (q − 1))(m− k + q)

)1/2
...
(
J2 − (m− k)(m− k + 1)

)1/2 |m− k + q〉
(A.34)

=

q∏
p=1

(
J2 − (m− k + (p− 1))(m− k + p)

)1/2 |m− k + q〉. (A.35)

Therefore we have

=

∞∑
k=0

(Λ−)k

k!

k∏
i=1

[(
J2 − (m− (i− 1))(m− i)

)1/2]
e(ln(Λz)(m−k))

.
∞∑
q=0

(Λ+)q

q!

q∏
p=1

[(
J2 − (m− k + (p− 1))(m− k + p)

)1/2] |m− k + q〉. (A.36)

So the entire thing is now

e−inφ
∑
m

cm [...] 〈n|m− k + q〉 (A.37)

= e−inφ
∑
m

cm [...] δn,m−k+q

= e−inφcm→n+k−q [...] ,

where [...] is Eq.A.36 above. Now, what are the limits on this equation for the code?

The sums will not be infinite since we are dealing with a truncated basis. We can’t go

below c0 so we must have q ≤ n We must have n+ k − q < N , so k < N − n+ q. For the

simulations we then have
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〈n|ψPB〉 = e−inφ
q≤n∑
q=0

(Λ+)q

q!

q∏
p=1

[(
J2 − (n− q + (p− 1))(n− q + p)

)1/2]
e(ln(Λz)(n−j))

.

k<N−n+q∑
k=0

(Λ−)k

k!

k∏
i=1

[(
J2 − ((n+ k − q)− (i− 1))(n+ k − q − i)

)1/2]
cn+k−q (A.38)
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