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Abstract

Ultracold atomic Fermi gases are the leading platform for analogue quantum simulation,

and provide a promising avenue to study the origin of high-temperature superconductiv-

ity in cuprates. However, current experimental approaches to cooling Fermi gases use

evaporative cooling, which is limited by poor thermalisation properties of fermions and

is non-number-conserving. This prevents the creation of useful analogue simulators of

many collective phenomena. This thesis is the first theoretical investigation into the use

of continuous-measurement feedback control as an alternative means of cooling an atomic

Fermi gas. Since tractable simulation of Fermi gas dynamics requires simplifications to

the full quantum field theory, we derive and simulate a fermionic equivalent to the Gross-

Pitaevskii equation, generalising a model of feedback-controlled BECs by Haine et al. [2]

to multimode ultracold atomic Fermi gases. We demonstrate that in the absence of mea-

surement effects, a suitable control can drive an interacting Fermi gas arbitrarily close to

its ground state. However, although control schemes based upon damping spatial density

fluctuations work well for single-spatial-mode BECs, we show that they perform poorly

for Fermi gases with a large number of atoms due to counter-oscillation of multiple spatial

modes, which must exist due to Pauli exclusion. We generalise a feedback-measurement

model of BECs by Szigeti et al. [3, 4] to a multimode atomic Fermi gas, and perform

stochastic simulations of measured, feedback-controlled fermions in the single-atom and

many-atom mean-field limits. The effects of measurement backaction are an important

consideration, since in a realistic experiment knowledge of the system state used for feed-

back must be obtained from measurement, leading to competition between measurement-

induced heating and feedback cooling. We show that weaker and less precise measurements

cool the system to a lower equilibrium excitation energy, but are unable to place practical

lower bounds on measurement strength due to the lack of a system-filter separation. When

measurement-induced heating is accounted for, we find that the equilibrium energy per

particle scales superlinearly, suggesting that existing control schemes which work well for

bosons would not be effective for fermions. In light of this, we propose several avenues of

future investigation to overcome this limitation, leaving open the possibility of feedback

control of atomic Fermi gases as a pathway to analogue quantum simulation.
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Notational conventions

By convention sweet is sweet, bitter is

bitter, hot is hot, cold is cold, colour is

colour; but in truth there are only

atoms and the void.

Democritus, c. 400 BC

This thesis largely follows established notational conventions, but here we clarify notation

that may be ambiguous.

For a many-body system, operators with hats of the form Ô will always indicate an oper-

ator on the full many-body Fock space, and state kets of the form |ψ〉 indicate elements

of this Fock space. When dealing with Hartree-Fock wavefunctions we will write expres-

sions exclusively in the wavefunction formalism, and tildes (eg Õ(x)) indicate operators

on L2(Rn) which act on these wavefunctions. We will suppress tensor products, and write

|a〉 |b〉 ≡ |a〉 ⊗ |b〉. We will frequently make use of commutators and anticommutators in

Fock space, with the notation: [
Â, B̂

]
≡ ÂB̂ − B̂Â{

Â, B̂
}
≡ ÂB̂ + B̂Â.

Expectation values of the form 〈Ô〉 will always indicate the usual quantum-mechanical

expectation value Tr{Ôρ̂} for some state ρ̂. Stochastic expectation values will be written

in the form E {·}.

We will write measures before our integrands in the form
∫
dxf(x). We will often write

sums and integrals without explicit limits; these should be assumed to be over the entire

relevant domain. We will use the normalised angular frequency convention for the Fourier

transform F {·}:

F
{
f(x)

}
(k) =

1√
2π

∫
dxf(x)e−ikx

F−1
{
g(k)

}
(x) =

1√
2π

∫
dxg(k)eikx.
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Chapter 1

Introduction

In the 24 years since the first experimental realisations of Bose-Einstein condensates

(BECs) in dilute atomic gases [5–7], ultracold atomic physics has matured rapidly. Cold

atoms have shown great promise for applications in many fields of physics, emerging as

a leading platform for precision sensing [8, 9] and quantum simulation [10–12]. With re-

gard to the latter, there is a pressing need to produce large, extremely cold systems of

fermionic atoms. However, standard techniques for producing ultracold atomic gases dis-

card an overwhelming majority of atoms from the trap, and work very poorly for fermionic

species [13]. It is for this reason that we seek to develop a new cooling technique for Fermi

gases. In this thesis, we investigate continuous-measurement feedback control as an al-

ternative method to overcome these limitations. This introduction outlines the context

and motivation of this thesis: we outline the basics of quantum simulation (Sections 1.1

and 1.2), and the use and limitations of ultracold atoms for quantum simulation (Sections

1.3 and 1.4). With this motivation in mind, we review the state of the art in theory of

feedback control of cold atoms (Section 1.5), and outline our approach and the structure

of this thesis (Section 1.6).

1.1 The many-body problem is intractable

Quantum mechanics is hard. This simple fact is at the heart of both the rich results and

tremendous difficulties in all branches of the study of quantum matter.

Early in our study of physics, we learn that the fundamentals of quantum mechanics are

rather easy to state. Every quantum system is described by its state vector |ψ〉, itself an

element of some system-dependent Hilbert space H. This state vector is a complete de-

scription from which one may compute any observables and their projective measurement

probabilities. The Hamiltonian Ĥ is a Hermitian linear operator which corresponds to the

total energy, and is the generator of translations in time. This leads to the Schrödinger

equation

ih̄
d

dt
|ψ〉 = Ĥ |ψ〉 , (1.1)

which one can in principle integrate to determine the full dynamics of any system, given

its Hamiltonian and an initial state. For a sufficiently low-dimensional system, this is

eminently doable on a computer. In many branches of physics, it is trivial to write down

the Hamiltonian for any system of interest.1 Successfully simulating the resulting quantum

1For example, it is easy to write down a Hamiltonian for charged bodies interacting by a Coulomb force
for quantum chemistry. Many exceptions exist - like nuclear physics, where nucleon-nucleon interactions

1



2 Introduction

mechanical problems could resolve many open problems in quantum optics, atomic physics,

condensed matter physics, quantum chemistry, nuclear physics, and related fields.

Most modern research problems in the quantum sciences involve many-body systems.

Unfortunately, the dimensionality of quantum mechanics increases exponentially with the

number of particles, putting anything beyond a small handful of interacting particles

beyond our reach. Suppose we have N quantum systems,2 with corresponding Hilbert

spaces H1, H2, . . . , HN . When we consider interaction between these systems, we must

evolve a state vector in the tensor product Htotal of these Hilbert spaces

Htotal = H1 ⊗H2 ⊗ . . .⊗HN . (1.2)

Consider the case where these systems are identical (theHn are isomorphic) and have finite

dimension D. Then Htotal has dimension DN , leading to the aforementioned exponential

scaling with particle number. One should not underestimate how seriously limiting this

is. Consider the interaction of N identical two-level systems. To even write down the

state vector for N = 70 would require ∼1022 bytes of classical computer memory (more

than a reasonable estimate of the combined storage space of all the computers on the

planet), and to do so for N = 300 would require ∼1091 bytes (orders of magnitude more

than the number of protons in the observable universe). Whether we wish to deal with

tens of particles (nuclear physics and quantum chemistry) or orders of magnitude more

(condensed matter physics), for most research-level problems we truly have no hope of

directly solving the full quantum field theory on a classical computer.

The situation is even worse for fermionic systems.3 Exchanging identical fermions results

in a change of sign of a system’s wavefunction. Thus, unless there are cancellations due

to some symmetry, the evaluation of expectation values for strongly interacting fermionic

systems involves highly oscillatory integrals that are extremely difficult to solve numerically

[15], particularly in high-dimensional systems (that is, for a large number of particles).

This is known as the fermion sign problem, and presents major challenges for condensed

matter theory [16, 17], nuclear physics [18] and lattice quantum chromodynamics [19, 20].

Clearly, there are fundamental challenges in simulating the behaviour of quantum systems,

particularly large or strongly interacting fermionic systems. Regardless, problems in the

study of quantum matter must be solved, and we are motivated to seek alternatives.

1.2 The Hubbard model

Before we discuss alternative approaches to calculations in many-body quantum mechan-

ics, it is pertinent to introduce an archetypal example of a many-body Hamiltonian: the

Hubbard model. It describes particles localised to sites on a periodic lattice, which may

‘hop’ between sites, and interact with other particles at the same site (Figure 1.1). It

is the simplest model that captures all the richness of many-body quantum mechanics,

including the essential physics of competition between kinetic, potential and interaction

energies [21]. The original version of the model was proposed by Hubbard4 [24] as a model

are extremely complicated and cannot be written down in a simple form [14].
2These may be identical (e.g. the Hn are isomorphic) or nonidentical, and in the case of the former,

distinguishable or indistinguishable - or any combination thereof.
3For a review of the basic properties of bosons and fermions, refer to Sections 2.1 and 2.2.
4The model was also independently conceived by Gutzwiller [22] and Kanamori [23] in the same year.



§1.2 The Hubbard model 3

Figure 1.1: A diagram illustrating the 2D Fermi-Hubbard model. Fermions are created
at site j with creation operator ĉ†jσ. They hop between sites with coupling strength J ,
but cannot hop to a site containing a fermion of the same spin due to the Pauli exclusion
principle. If a spin-up and spin-down fermion exist at the same site, they interact with
energy U .

for electrons in solid state materials - this is now sometimes known as the Fermi-Hubbard

model, since its fields are fermionic. A variant describing interacting bosons on a lattice,

known as the Bose-Hubbard model, was later introduced [25–27].5 In modern notation,

the Fermi-Hubbard Hamiltonian is

Ĥ =

Hopping between lattice sites︷ ︸︸ ︷
−J

∑
〈j,k〉σ

(
ĉ†jσ ĉkσ + h.c.

)
+

Local interactions︷ ︸︸ ︷
U
∑
j

n̂j↑n̂j↓ +

Potential energy︷ ︸︸ ︷∑
jσ

εjσn̂jσ , (1.3)

where the ĉ†jσ, ĉjσ are creation and annihilation operators6 for lattice site j and spin

σ ∈ {↑, ↓}}, n̂jσ = ĉ†jσ ĉjσ is the corresponding density operator, the εjσ are site-dependent

potential energies, and the angular brackets 〈j,k〉 denote summation over adjacent lattice

sites only. The first term describes hopping between adjacent lattice sites, with coupling

strength J . The second term describes the interaction of particles at the same lattice site,

with corresponding energy U : these may be repulsive (U > 0) or attractive (U < 0), both

of which lead to important physics. The final term describes potential energy, which may

be site-dependent (in the case of detunings between lattice sites), and often includes a

chemical potential µ to fix particle number.

Despite its conceptual simplicity, the Hubbard model is difficult to solve: the exponential

scaling of complexity described in Section 1.1 applies, and in the case of the Fermi-Hubbard

model, the fermion sign problem further complicates attempts at numerical simulation [15–

17]. Numerically exact solutions only exist in very specific limits, such as half-filling, weak

coupling, and carrier concentrations far from half-filling [30] - much interesting physics

exists away from these limits, in parameter regimes that are extremely difficult to simulate.

5Throughout this thesis, the ‘Hubbard model’ will always be inclusive of both the Fermi-Hubbard and
Bose-Hubbard models: we will refer specifically to the Fermi-Hubbard or Bose-Hubbard models when the
quantum statistics are relevant.

6We have assumed familiarity with second-quantised notation for many-body quantum mechanics: a
brief overview is presented in Section 2.2, and a comprehensive introduction can be found in Refs. [28, 29].
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This complexity gives rise to rich physics, and the eigenstates of the Hubbard model tend

to be complex and highly correlated [21].

The Hubbard model quickly outgrew its original purpose, later emerging as an impor-

tant model in the study of superconductivity. Although some superconductors are well

described by the BCS theory of superconductivity [31], it is inadequate to describe high-

temperature superconductors (Tc > 30K) such as the cuprate superconductors. High-

temperature superconductivity has perhaps the most promising engineering applications

of any unresolved physics phenomenon, and thus significant research is currently devoted

to understanding it. The Hubbard model has emerged as a leading model for the su-

perconducting cuprates [32, 33], and it is believed by many (though not proven) that it

captures the essential physics [13]. Quantum simulation of the Hubbard model is thus a

promising route to understanding high-temperature superconductivity.

Beyond high-temperature superconductivity in cuprates, there are a number of other areas

where simulating the Hubbard model could provide insight. The Hubbard model can be

used to study analogues to quantum chromodynamics, and so could shed light on open

problems in quantum field theory [34]. Its ability to simply model electron interactions

also leads to uses in chemistry, where it has been applied to systems such as aromatic

compounds [35–37], single-molecule magnets [38], and organic charge-transfer salts [39].

1.3 Cold atoms as a quantum simulator

If simulating quantum mechanics with a classical system is so hard, can we overcome these

fundamental limitations by simulating it on a quantum system? This question was the

root of Feynman’s 1981 talk [40] which is generally credited with introducing the concepts

of quantum computing and simulation. Subsequent research formalised the notion of a

universal quantum simulator [41] - a quantum system that can simulate the dynamics of

any Hamiltonian.7 To realise this, significant research effort is currently focused towards

the construction of universal quantum computers (see Ref. [42]) that can perform arbitrary

unitary operations in Hilbert space. In principle, this would enable scalable simulation of

the Hubbard model, and provide insight into problems discussed in Section 1.2 such as

high-temperature superconductivity.

Current attempts to build universal quantum computers are hindered by short decoherence

times (that is, quantum states are quickly destroyed by coupling to the environment) and

difficulties in scaling to a large number of qubits [43]. Many consider it unlikely that

such a device will be realised in a useful form in the near future, and significant further

research is required. Despite the very recent claim of quantum supremacy [44], we are still

very far from the circuit depths and fidelities required for quantum simulation on a digital

quantum computer. However, a more immediately achievable realisation of Feynman’s

proposition can be achieved by constructing analogue quantum simulators (sometimes

known as quantum emulators). Rather than build a quantum system that can simulate

the behaviour of any quantum system as envisaged by Lloyd [41], we may instead construct

a highly controllable device that replicates a specific Hamiltonian of interest, such as the

Hubbard Hamiltonian. By performing experiments with such a device, we may study the

dynamics of the original Hamiltonian by proxy; this is analogue quantum simulation. As an

7Lloyd [41] considered only local systems, but one could in principle simulate a Hamiltonian with
nonlocal terms.
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analogy, one may think of analogue quantum simulation as being the quantum equivalent

of studying aerodynamics in a wind tunnel, as opposed to a computer simulation. A more

detailed comparison of the advantages and disadvantages of these approaches to quantum

simulation can be found in Ref. [45].

Ultracold atoms are well-suited to this ‘impersonation’ of a target Hamiltonian and study

by proxy, and are therefore currently the leading platform for analogue quantum simulation

[10–12]. They are pure,8 free of unwanted thermal effects, and can easily be isolated from

the environment. Furthermore, they can be easily controlled: they can be optically trapped

[46], subjected to high-bandwidth, high-resolution arbitrary perturbing potentials [47], and

their scattering properties can be controlled by manipulating them close to a Feshbach

resonance, enabling a high degree of control over interatomic interaction strengths [48].

These methods of control may include time dependence, allowing experimental control

over system dynamics. Both fermionic and bosonic Hamiltonians may be realised, since

atomic species of both types exist.9 A range of destructive [49–51] and non-destructive

[49, 52–54] imaging techniques exist, enabling easy observation of experimental results.

Ultimately, this provides a favourable environment to study our systems of interest. For

example, studying Hubbard model dynamics in an ultracold atomic gas would be much

easier than directly experimenting on superconducting cuprates, so long as we can realise

the Hubbard Hamiltonian in such a system.

Fortunately, with periodic optical potentials and sufficiently low energy scales, ultracold

atoms do realise the Hubbard model, a fact originally proven for bosonic atoms and the

Bose-Hubbard model by Jaksch et al. [55] in 1998. Crucially for the purposes of this

thesis, fermionic atoms also realise the Fermi-Hubbard model (see Appendix A.1 for a

proof). They are therefore an ideal platform for the analogue quantum simulation of the

Hubbard model, and experiments with ultracold fermions in optical lattices have been

proposed that would provide critical insight into the origin of high-Tc superconductivity

in cuprates [56].

We have thus far mostly focused on analogue quantum simulation of the Hubbard model

as it is arguably the most promising application of ultracold Fermi gases, for which this

thesis aims to develop new cooling techniques. However, ultracold atomic gases have many

more diverse applications. Artificial gauge fields can be applied to such a system, opening

the way to simulation of quantum Hall systems, topological insulators, and exotic strongly

correlated topological phases [57]. Cold atoms are also a candidate for qubits in full-blown

universal quantum computers [58], single-atom transistors [59], and analogue models of

white dwarf stars [60]. Bosonic species are also ideal sources for atom interferometers,

which enable state-of-the-art precision measurements [9]: these have diverse applications

including inertial sensing [8] and precision measurement of fundamental physical constants

[61, 62]. Future atom interferometers with improved sensitivity could be capable of im-

proved tests of general relativity [63] and gravitational wave detection [64].

8They are produced in high vacuum, and the trapping methods are selective of not only particular
atomic species, but even particular internal components. Thus, there are essentially no defects or dopants.

9Refer to Section 2.2.2 for an explanation of exchange statistics of neutral atoms.
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1.4 Creating ultracold atomic gases

Presently, the main experimental approach for cooling atomic gases is a two-stage pro-

cess: laser cooling followed by evaporative cooling. This approach was pioneered10 to

produce the world’s first Bose-Einstein condensates in dilute atomic gases [5–7], and has

subsequently been the leading method for cooling both fermionic and bosonic species [13].

The details of laser cooling are not relevant to the present work, but a detailed review

may be found in Ref. [66] - it is sufficient to note that laser cooling is highly effective

in cooling atoms from room temperature to the microkelvin regime, and is in principle

number-conserving. A detailed review of progress and challenges for cooling cold atoms

in optical lattice systems is presented in Ref. [13].

Evaporative cooling is based on preferential removal of high-energy atoms from a confined

sample, followed by rethermalisation through scattering (Figure 1.2). Although it has been

successfully employed to achieve quantum degeneracy in both bosonic [5–7] and fermionic11

[67, 68] species, it has been suggested that it is unlikely to ever achieve sufficiently low

entropy per particle to investigate phenomena such as d-wave superfluidity in an optical

lattice [13]. Furthermore, it is limited in a much more general sense. Evaporative cooling

is extremely non-number-conserving (almost all the atoms in the trap are lost over the

evaporation process), which is a serious limitation for the study of collective phenomena

like superconductivity, since we cannot reliably study collective phenomena with a small

sample size. It is also species-dependent, as it relies upon scattering properties. This

is particularly limiting for fermions, since they have minimal wavefunction overlap and

thus small scattering cross-sections, leading to extremely poor thermalisation. In the

low-energy regimes of interest, s-wave scattering dominates [69], and fermions of the same

internal component do not scatter at all in this limit. Beyond these limitations, the details

of evaporative cooling are not relevant, but a detailed review12 may be found in Ref. [70].

This motivates the development of a new cooling technique. We wish to develop an

alternative to evaporative cooling that is number-conserving, independent of scattering

properties, and capable of achieving low temperatures and low entropy per particle.

1.5 Feedback cooling

In this thesis, we investigate continuous-measurement feedback control as a possible so-

lution to the limitations of evaporative cooling. This involves continuously measuring a

quantum system in order to gain partial information about the system state, then using

this information to make active decisions about how to perturb the system in order to

force it towards a desired state (feedback control). In our case, our desired state is the

10Evaporative cooling of atoms was first performed by Masuhara et al. [65], but this was without an
initial laser cooling stage, and only achieved temperatures in the milikelvin regime: orders of magnitude
hotter than the temperatures achieved by the first stage (laser cooling) of the approach introduced in Refs.
[5–7]

11This is typically done by sympathetic cooling (e.g. Ref [67]). Bosonic and fermionic atoms are trapped
in a spatially overlapping configuration, and the bosons are evaporated. The fermions exchange energy with
the bosons via scattering (Pauli exclusion only applies to identical fermions, so the scattering properties
are reasonable), and so the fermions are cooled by this process.

12Although this review is relatively old, little has changed in the techniques applied beyond the appli-
cation of machine learning to optimise cooling curves (e.g. Ref. [54]).
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Figure 1.2: An example of evaporative cooling of a classical system. A thermal (Maxwell-
Boltzmann) sample of temperature T = 3

(
mv2

0/2kB
)

(for arbitrary velocity scale v0) has
all atoms with speed above v/v0 = 3 removed (the fastest 39%), lowering its average energy
per particle. After re-thermalisation, the system is in a thermal distribution with the same
lower average energy, achieved at T = 0.9

(
mv2

0/2kB
)
. The temperature is reduced at the

cost of discarding the highest-energy atoms.

many-body ground state of a quantum gas, and thus we will investigate feedback cooling

- a type of feedback control in which we seek to bring a system as close to its ground

state as possible. We will use the terms ‘feedback cooling’ and ‘feedback control’ inter-

changeably throughout this thesis as a result. Developing effective feedback control often

involves optimising a trade-off between having enough information about the system state

to control it well and measurement backaction, the unwanted changes in a system due

to wavefunction collapse under measurement. In our case, measurement backaction will

always take the form of a heating effect.

Feedback control of quantum systems is an extensive topic. We will only cover directly rel-

evant aspects, but a comprehensive review of current theoretical and experimental progress

can be found in Ref. [71]. Modelling of feedback control of cold atoms has thus far been

entirely focused on BECs, with a particular goal of reducing the linewidth of outcoupled

atom lasers. The first such studies were conducted by Wiseman and Thomsen [72, 73],

with a single-mode model to reduce phase noise caused by interactions. The first investiga-

tion of spatial structure was performed by Haine et al. [2], who used a simple semiclassical

mean-field model to investigate how effectively one could force a BEC to its ground state

given perfect knowledge of the system state and control over time-dependent potentials.

Their feedback scheme was later applied to a more realistic model of an atom laser in-

cluding pumping, damping and outcoupling [74]. However, these semiclassical models did

not include the important effect of measurement backaction. Drawing on previous work

[75], Wilson et al. [76] derived a single-mode model for a single atom in a cavity including

measurement effects. However, this assumed that the atom was confined to a region small

relative to the wavelength of light in the cavity, an assumption that does not hold for a

modestly sized BEC. Following on from this, Szigeti et al. developed a full-field model of

a BEC under a measurement process more feasible for a BEC [3] and simulated it under a

mean-field approximation [4]. Due to the mean-field approximation, this did not capture

higher-order quantum field effects, and so the full-field model of Szigeti et al. [3, 4] was

simulated by Hush et al. [77] using the number-phase Wigner (NPW) phase-space rep-

resentation [78, 79] which does include correlation effects. Subsequent unpublished work
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by Taylor et al. has further advanced the application of the NPW representation to the

simulation of BECs under measurement and feedback control at finite temperature. We

review in much greater detail the work of Haine et al. in Chapter 4, and the work of

Szigeti et al. in Chapter 5.

Despite this extensive work in modelling feedback cooling of BECs, until now there have

been no attempts to generalise these results to fermionic species, where the prospect of an

alternative to evaporative cooling is most tantalising. In this thesis, we extend the results

of Haine et al. [2] and Szigeti et al. [3, 4] to atomic Fermi gases, and thus take the very

first steps towards achieving degeneracy in fermions with feedback cooling.

1.6 Outline of this thesis

The key goal of this thesis is to generalise existing quantum feedback control techniques

for BECs to fermionic species. In particular, we aim to model techniques that can be used

to bring an atomic Fermi gas close to its many-body ground state, in order to guide future

experimental approaches to developing fermionic systems suitable for analogue quantum

simulation. Roughly speaking, this thesis consists of alternating theory (Chapters 2, 3

and 5) and simulation (Chapters 4 and 6). We develop and simulate models of increasing

complexity (fermionic equivalents of Refs. [2–4], respectively) in order to understand the

roles of both measurement and control in the successful feedback control of an atomic

Fermi gas.

A more detailed synposis of the thesis is as follows. In Chapter 2, we present useful

background theory underlying our approach: discussing the fundamentals of bosons and

fermions, quantum field theory, numerical simulation, and stochastic calculus. Chapter 3

is dedicated to the discussion of mean-field theory, and contains both background theory

and new work - we review existing techniques for bosons, generalise these to fermions, and

outline existing methods to calculate ground states for both. We then use these mean-field

theory techniques in Chapter 4 to simulate feedback control of (predominantly fermionic)

quantum gases in the absence of the measurement effects, exploring the important role of

the control scheme in bringing a system to its ground state. However, these techniques do

not account for the competing measurement-induced heating rate; in Chapter 5 we review

tools to describe the dynamics of a quantum system undergoing continuous measurement

and use these to generalise the mean-field theory of a BEC under measurement derived

by Szigeti et al. [4] to a multimode fermionic system. This enables tractable simulation

of feedback control of an atomic Fermi gas with measurement effects. In Chapter 6,

we simulate our mean-field theory of fermions under measurement, examining parameter

dependence of the model and the scaling of feedback control to large atom numbers. We

find evidence to suggest that existing control schemes are ineffective for large numbers of

fermionic atoms due to multimode effects, and so in Chapter 7 we review our findings and

propose a number of future avenues of investigation to overcome these limitations.



Chapter 2

Background theory

In this chapter, we present a selection of theory and tools that are used throughout this

thesis. In Section 2.1, we review the basic properties of bosons and fermions from a

statistical perspective. In Section 2.2, we discuss the fundamentals of quantum field theory

and its application to the dynamics of cold atoms. Much of this thesis involves computer

simulation of these dynamics, and so we discuss useful numerical techniques in Section 2.3.

Finally, in Section 2.4, we describe the fundamentals of stochastic calculus, allowing us to

model the dynamics of probabilistic processes like quantum measurement.

This chapter does not contain all of the background theory in this thesis. Mean-field theory

is discussed in Chapter 3 and conditional quantum measurement theory is introduced in

Chapter 5. Both Chapters 3 and 5 contain a combination of background theory and new

work; this chapter is purely a review of existing techniques.

2.1 Bosons and fermions: a statistical perspective

In classical mechanics, particles are typically distinguishable. However, identical particles

in quantum mechanics are indistinguishable; if their wavefunctions ever have any overlap,

there is no experiment that could later determine which is which. Consider a two-level

system with Hilbert space H and basis states {|↑〉 , |↓〉}. The Hilbert space for two coupled

two-level systems H1 ⊗H2 is spanned by {|α〉 , |β〉 , |γ〉 , |δ〉}, where:

|α〉 = |↑〉1 |↑〉2 , |β〉 = |↑〉1 |↓〉2 ,
|γ〉 = |↓〉1 |↑〉2 , |δ〉 = |↓〉1 |↓〉2 .

(2.1)

Suppose now that the two-level systems are indistinguishable particles. Since no experi-

ment can distinguish between the particles, exchanging them must preserve all observable

quantities in the system, and can therefore result in at most a global phase rotation of the

state vector. Consider a permutation operator P̂ that performs this exchange:

P̂ |ψ〉1 |φ〉2 = eiθ |φ〉1 |ψ〉2 . (2.2)

If we exchange the particles twice, we must end up with exactly the same state, so P̂ 2 = 1̂,

and it follows that θ = nπ for n ∈ Z. Equation 2.2 thus reduces to

P̂ |ψ〉1 |φ〉2 = ± |φ〉1 |ψ〉2 . (2.3)

9
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Thus, the state vector must be symmetric or antisymmetric under exchange of identi-

cal particles. This significantly constrains the allowable states. In the symmetric case

(positive sign), the only allowable states (up to a global phase rotation) are |α〉, |δ〉 and
1√
2

(|β〉+ |γ〉). The particles may occupy the same state, so long as exchange symme-

try is maintained. In the antisymmetric case (negative sign), the only allowable state is
1√
2

(|β〉 − |γ〉). There is no way of writing an antisymmetrised state for which the particles

occupy the same state. These features generalise to an arbitrary number of particles (we

will shortly discuss such a generalisation in Section 2.2), leading to two classes of identical

particle:

• Identical bosons can occupy the same quantum state. A state vector is symmetric

under the exchange of identical bosons.

• Identical fermions cannot occupy the same state. A state vector is antisymmetric

under the exchange of identical fermions.

This simple difference in exchange (anti)symmetry leads to very different physics. By

taking into account whether or not multiple particles may occupy the same state, and

considering the most probable distribution at a given temperature, one can derive the

mean occupancy of each energy state1 at a given temperature without the use of quantum

mechanics (see Chapter 8 of Huang [80] for a full derivation). For bosons, we obtain the

Bose-Einstein distribution

n̄i =
1

e(εi−µ)/kBT − 1
, (2.4)

and for fermions, we obtain the Fermi-Dirac distribution

n̄i =
1

e(εi−µ)/kBT + 1
, (2.5)

where εi is the energy of the ith state, µ is the chemical potential, T is the temperature, and

kB is the Boltzmann constant. In the high-temperature limit (T � εi/kB), both (2.4) and

(2.5) approach the Boltzmann distribution. In the low-temperature limit (T → 0), they

differ significantly. For the Bose-Einstein distribution, the occupation of the ground state

grows without bound. In fact, below a critical temperature Tc, a macroscopic occupation

of the ground state occurs. This is the phenomenon of Bose-Einstein condensation, in

which a collection of bosons occupy a single spatial mode. It was predicted by Einstein in

1925 [81], and first observed in atomic gases many decades later in 1995 [5–7]. In stark

contrast, multiple fermions cannot occupy the same mode: Equation 2.5 is bounded above

by 1. This is the well-known Pauli exclusion principle and is largely responsible for the

interesting behaviour of fermions. As T → 0, Equation 2.5 tends towards a step function:

Θi =

{
1 , if εi ≤ µ,
0 , if εi > µ.

(2.6)

This is the Fermi sea: all states below the Fermi energy εF = µ are filled with exactly one

fermion, while all states above are completely empty. A comparison of the distributions

is presented in Figure 2.1.

Many important behaviours of bosons and fermions can be qualitatively understood from

1For simplicity, we have assumed the energy states are nondegenerate; this is merely a sketch to provide
intuition.
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(a) The Bose-Einstein distribution. (b) The Fermi-Dirac distribution.

Figure 2.1: The Bose-Einstein and Fermi-Dirac distributions across a continuous, nonde-
generate energy spectrum for a range of temperatures. Note that the occupation of the
ground state in the Bose-Einstein distribution grows without bound. For the Fermi-Dirac
distribution, the occupation of each state is no greater than 1, and in the limit T → 0, it
approaches a step function, indicating a ‘Fermi sea’ in which all states below µ are filled
with one particle, and all states above are empty.

this simple picture. The aforementioned prediction of Bose-Einstein condensation [81] was

on similar statistical grounds to what we have discussed here. The properties of semicon-

ductors can be understood in terms of particle-hole excitations to the Fermi sea, and the

Fermi degeneracy pressure guiding the structure of neutron stars can be derived with little

more than the distribution described here and basic tools of thermodynamics [80].

2.2 Quantum field theory

To move beyond a simple qualitative understanding, we require the tools of quantum field

theory: the fundamental description of many-body quantum states and their dynamics.

We will provide only a brief treatment of the essential tools here. Many of the texts cited

elsewhere in this thesis serve as excellent introductions to the topic [29, 82–84], and the

interested reader is strongly encouraged to consult these for further details.

2.2.1 Second quantisation and quantum field operators

Writing large many-body states in the (anti)symmetrised tensor product form described

in Section 2.1 is unwieldy; fortunately, more convenient representations exist. Quantum

field theory takes place in Fock space: a Hilbert space that supports N -particle states

for arbitrary N .2 Choose a discrete, orthonormal single-particle basis {|φj〉} and let the

number of particles in state |φk〉 be written as nk. A state with a definite number of

particles in each mode is called a Fock state and is written in occupation number notation

as |n1, n2, . . . , nk, . . .〉. We will write the vacuum state |0, 0, . . . , 0, . . .〉 as |0〉. Fock space

2The mathematical details of Fock space are not important for this thesis. It is sufficient to merely note
that it is the Hilbert space spanned by the states we have described here. Full details are provided in the
original paper by Fock [85].
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is spanned by Fock states, and so a general many-body quantum state may be written as

|Ψ(t)〉 =
∞∑

n1,n2,...,nk,···=0

cn1,n2,...,nk,...(t) |n1, n2, . . . , nk, . . .〉 . (2.7)

In order to compute dynamics and represent operators, it is convenient to introduce cre-

ation and annihilation operators for each mode in the single-particle basis: this is known

as second quantisation. For a given mode |φk〉, we introduce the annihilation operator ĉk

ĉk |n1, n2, . . . , nk, . . .〉 =
√
nk |n1, n2, . . . , nk − 1, . . .〉 , (2.8)

where nk ≥ 1,3 and its adjoint, the creation operator ĉ†k:

ĉ†k |n1, n2, . . . , nk, . . .〉 =
√
nk + 1 |n1, n2, . . . , nk + 1, . . .〉 . (2.9)

These are aptly named - we can see from the above that ĉk and ĉ†k create and annihilate

identical particles, respectively, in the mode |φk〉. The action of the creation and annihi-

lation operators is the same as the ladder operators for a harmonic oscillator, except they

change the number of particles rather than energy quanta.

Exchange (anti)symmetry is encoded in the (anti)commutation relations of creation and

annihilation operators. If the particles are bosons, the operators have the following com-

mutation relations: [
âj , âk

]
=
[
â†j , â

†
k

]
= 0,

[
âj , â

†
k

]
= δjk, (2.10)

and if they are fermions, the operators have the following anticommutation relations:{
âj , âk

}
=
{
â†j , â

†
k

}
= 0,

{
âj , â

†
k

}
= δjk. (2.11)

It is easy to see the usual properties of bosons and fermions from these (anti)commutation

properties. Consider a state containing one particle in the mode |φj〉, and one in

|φk〉, which we may write in second-quantised notation as ĉ†j ĉ
†
k |0〉. Applying the

(anti)commutation relations, we see that exchanging these particles is equivalent to ex-

changing the operators with an appropriate choice of sign

ĉ†j ĉ
†
k |0〉 = ±ĉ†k ĉ

†
j |0〉 , (2.12)

where we should have a positive sign for bosons, and a negative sign for fermions. For-

tunately, Equation 2.12 holds trivially due to the (anti)commutation relations. The Pauli

exclusion principle emerges naturally as a consequence of the anticommutation relations

(2.11), since these imply that ĉ†j ĉ
†
j = 0 for fermionic operators;4 thus two particles cannot

be placed in the same state. For bosonic operators, ĉ†j ĉ
†
j 6= 0, allowing the creation of

multiply-occupied modes.

We may easily transform creation and annihilation operators between single-particle bases.

Consider a single-particle bases {φj} and {|ψα〉}, with annihilation operators ĉj and d̂α,

3We cannot have a negative number of particles. If nk = 0, then ĉk |n1, n2, . . . , nk, . . .〉 = 0.
4We have

{
ĉ†j , ĉ

†
j

}
= 2ĉ†j ĉ

†
j = 0, which implies that ĉ†j ĉ

†
j = 0.
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respectively. The following transformations apply:

d̂α =
∑
j

〈ψα|φj〉 ĉj , d̂†α =
∑
j

〈φj |ψα〉 ĉ†j . (2.13)

This extends to continuous bases, such as position or momentum. In this case, we refer to

the creation and annihilation operators as field operators. For example, the field operators

ψ̂†(x), ψ̂(x) create and annihilate identical particles at position x. For a discrete single-

particle basis {|φj〉}, they may be written

ψ̂(x) =
∑
j

φj(x)ĉj , ψ̂†(x) =
∑
j

φ∗j (x)ĉ†j , (2.14)

where φj(x) = 〈x|φj〉 is the spatial wavefunction for |φj〉. This is simply a continuous

generalisation of Equation 2.13. The inverse transform is:

ĉj =

∫
dxφ∗j (x)ψ̂(x), ĉ†j =

∫
dxφj(x)ψ̂†(x). (2.15)

For field operators, the (anti)commutation relations are essentially the same, but with

Dirac delta functions rather than Kronecker delta functions, since the variables are con-

tinuous. For bosons, we have[
ψ̂(x), ψ̂(y)

]
=
[
ψ̂†(x), ψ̂†(y)

]
= 0,

[
ψ̂(x), ψ̂†(y)

]
= δ(x− y), (2.16)

and for fermions{
ψ̂(x), ψ̂(y)

}
=
{
ψ̂†(x), ψ̂†(y)

}
= 0,

{
ψ̂(x), ψ̂†(y)

}
= δ(x− y). (2.17)

Second-quantised notation allows a convenient representation of observables. For example,

to promote the 1D position operator x̂ =
∫
dx |x〉x 〈x| from first to second quantisation,

we make the transformation∫
dx |x〉x 〈x| →

∫
dxψ̂†(x)xψ̂(x). (2.18)

Hamiltonians are also typically written in second-quantised notation. We have already

encountered the Fermi-Hubbard Hamiltonian (1.3), written in terms of creation and an-

nihilation operators for each discrete lattice site. It is common to construct Hamiltonians

out of field operators in the position basis; we will present such an example in the following

section.

2.2.2 Quantum field theory of cold atoms

The systems under consideration throughout this thesis are ultracold atomic gases. A

deep knowledge of atomic physics is not required to read this thesis - however, for a

comprehensive introduction, we encourage the reader to consult Ref. [86].

As discussed in Section 2.1, exchanging two identical fermions results in a sign change

in the system’s state vector. However, exchanging two pairs of fermions results in two

sign changes, and thus no change overall. Therefore, pairs of fermions can be considered

bosonic, and they have the same exchange symmetry properties of lone bosons. Neutral
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atoms are composed of fermions: protons, neutrons5 and electrons. At sufficiently cold

temperatures (energy scales well below an atom’s first ionisation energy), an atom will

remain bound as a single unit, and can therefore be treated as a single particle. If the

atom contains an odd number of fermions, exchanging two identical atoms will result in a

sign change of the state vector, and the atom will itself be fermionic. In the case of an even

number of fermions, exchanging two identical atoms results in the exchange of an integer

number of pairs of fermions, and so the sign changes cancel out, making the atom itself a

boson. In fact, since a neutral atom contains an equal number of protons and electrons,

we can simply note that at these energy scales, atoms with an even number of neutrons

are bosonic, and atoms with an odd number of neutrons are fermionic.

We note that we may treat an atom as a single particle in this regime and that atoms

may have an internal spin component6 σ. Consequently, throughout this thesis, we will

use field operators ψ̂σ(x), ψ̂†σ(x) for atoms, which may be bosonic (even neutron num-

ber) or fermionic (odd neutron number). We will model them with the non-relativistic

Hamiltonian:

Ĥ =

Single-particle potential and kinetic energy︷ ︸︸ ︷∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m
∇2

x + V (x, t)

)
ψ̂σ(x)

+
∑
σσ′

∫
dx

∫
dyUσσ′(x− y)ψ̂†σ(x)ψ̂†σ′(y)ψ̂σ′(y)ψ̂σ(x)︸ ︷︷ ︸

Pair interaction (scattering)

. (2.19)

The particles have kinetic energy, and are subjected to a potential V (x, t), which may

include both time-independent trapping terms and time-dependent control terms. They

also interact by scattering, represented in (2.19) by a quartic pair interaction Uσσ′(x−y).

Throughout this thesis, we will exclusively consider atomic gases with one or two spin

components, and so we will not need to consider spin-dependence of the pair interac-

tion. Furthermore, at low energy scales in dilute atomic gases, scattering beyond s-wave

is negligible (see Chapter 5 of Pethick and Smith [69] for a detailed discussion of this

approximation). Consequently, the pair interaction simplifies to

Uσσ′(x− y) =
U0

2
δ(x− y), (2.20)

where

U0 =
4πh̄2a

m
, (2.21)

for characteristic scattering length a and atoms of mass m. The scattering length a varies

in the vicinity of a Fano-Feshbach resonance [87, 88], and it is commonplace in cold atom

laboratories to tune it precisely by exploiting this [48]. Thus, we will generally assume

that U0 can be arbitrarily varied in our models. Nonetheless, it is still important to model

the effect of interatomic scattering, since in a realistic experiment we cannot completely

5Protons and neutrons are composite particles composed of three quarks (elementary fermions), but
since they have an odd number of fermions, they are fermionic by the same principle we have applied to
the atom.

6This can be any internal component, and it is common to use two hyperfine states. However, the
description remains the same.
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remove interactions, only minimise them by manipulating the atoms near a Fano-Feshbach

resonance. Applying the approximation in Equation 2.20, the Hamiltonian (2.19) reduces

to:

Ĥ =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m
∇2

x + V (x, t)

)
ψ̂σ(x)+

U0

2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x).

(2.22)

We will frequently use this Hamiltonian to model cold atomic gases throughout this the-

sis. U0 can be negative (attractive interactions) or positive (repulsive interactions). The

semiclassical methods applied in this thesis are not suitable to describe attractive interac-

tions in fermions, and so we will always have U0 ≥ 0. Future approaches to overcome this

limitation are described in Section 7.1.2.

In cold-atom experiments, it is common to confine the system tightly in one or two dimen-

sions, by applying optical and/or magnetic traps of greater strength along these axes. By

separability,7 the system’s state will be a product of states along each axis. If the trapping

frequency is sufficiently high along the tightly-confined axes, then the system will be in

its ground state along these axes,8 and only the loosely confined axes will have non-trivial

dynamics. For example, ωx = ωy � ωz leads to a ‘pancake’ system that is comparatively

thin and has no dynamics in the z direction, and thus is an effective 2D system in the x

and y directions. For two tightly-confined axes (ωx � ωy = ωz), we obtain a ‘cigar’ shape

that is comparatively thin and has no dynamics in the y and z directions, and is therefore

an effective 1D system in the x direction. Both types have been experimentally realised

for both bosonic [89, 90] and fermionic [91, 92] species, and much of this thesis will study

feedback control of effective 1D systems.

2.2.3 Dynamics in quantum field theory: the Heisenberg picture

Expectation values of a quantum system evolve with time, and so some mathematical

objects used in their computation must also evolve with time. A common approach is to

view the observable operators as being static, and the state vectors themselves evolving:

this is the Schrödinger picture. Many calculations in this thesis are significantly easier in

the Heisenberg picture, which views the state vectors as being static, and the operators as

evolving. Consider a system with initial state vector |Ψ〉 and initial observable operator

Ô at time t0. Then the expectation value will evolve as

〈Ô〉(t) =

Heisenberg picture: Ô(t) = Û†(t, t0)ÔÛ(t, t0)︷ ︸︸ ︷
〈Ψ| Û †(t, t0)ÔÛ(t, t0) |Ψ〉︸ ︷︷ ︸

Schrödinger picture: |Ψ(t)〉 = Û(t, t0) |Ψ〉

, (2.23)

where Û(t, t0) is the time evolution operator from time t0 to t. Only the observables matter:

we will obtain equivalent dynamics regardless of what object we choose to group the time

evolution with. Grouping the time evolution operators with the states by defining |Ψ(t)〉 =

Û(t, t0) |Ψ〉 leads to the Schrödinger picture, and grouping them with the operators by

defining Ô(t) = Û †(t, t0)ÔÛ(t, t0) leads to the Heisenberg picture.

7Assuming a trap of the form V (x) = 1
2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
.

8A large trapping frequency will lead to a large excitation energy along these axes. At sufficiently low
energy scales, the system therefore cannot become excited except along the loosely-confined axes.
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We may solve for this time evolution of operators using the Heisenberg equation of motion

[28], even for a time-dependent Hamiltonian Ĥ(t):9

ih̄
dÔ

dt
=
[
Ô(t), Ĥ(t)

]
+ ih̄

∂Ô

∂t
. (2.24)

Throughout this thesis, we will only consider the evolution of operators that lack explicit

time dependence, and so the second term will always be zero. Our observables and Hamil-

tonians will always be written in terms of second-quantised field operators, and so this

enables us to compute quantum dynamics entirely in terms of the field operator algebra

described in this section.

Operators in Fock space are enormous mathematical objects, and it is impractical to

directly represent them on a computer and integrate Equation 2.24 to compute a system’s

dynamics. A class of approximations known as mean-field theories can be used to make

equations of motion tractable, at the cost of neglecting certain quantum effects. Chapter

3 is dedicated to this topic.

2.3 Numerical techniques and basis choice

Many of the simulations in this thesis are computationally expensive, and it is crucial to

optimise by choosing a sensible basis. In this section, we describe techniques for efficient

and accurate computation in mixed bases.

2.3.1 The harmonic oscillator

Throughout this thesis, we consider models built upon the harmonic oscillator. Recall

that the single-particle, 1D harmonic oscillator obeys the following Schrödinger equation:

ih̄
dψ(x)

dt
=

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2

)
ψ(x). (2.25)

It is common to non-dimensionalise this by defining time in units of t0 = ω−1 and position

in units of x0 =
√
h̄/mω, yielding:

i
dψ(x)

dt
=

(
−1

2

∂2

∂x2
+

1

2
x2

)
ψ(x). (2.26)

This removes all parameters without loss of generality, which is extremely helpful for

numerical simulations. When we introduce extra terms, it will also reduce the dimensionful

parameters of our models to a smaller number of dimensionless ones, allowing greater

insight with simulations of fewer parameter combinations. With this non-dimensionalised

length scale, the stationary states of Equation 2.26 are given by [93]:

φn(x) =
π−1/4

√
2nn!

Hn(x)e−x
2/2, (2.27)

9This is crucial, since we will always include time-dependent control terms.
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where Hn(x) is the nth Hermite polynomial10 and ξ = x/x0 is a dimensionless position

variable. These span L2(R) and are known as the Hermite-Gauss basis.

2.3.2 Diagonalisation of evolution terms

The approximated unitary dynamics in this thesis11 involve nonlinear Schrödinger-like

equations with an analytically solvable harmonic oscillator component, plus perturbing

components that are diagonal in the position basis (and may depend on time). These may

be written in the form:

Diagonal in k-space Diagonal in x-space︷ ︸︸ ︷ ︷ ︸︸ ︷
ih̄
dψn(x)

dt
= − h̄2

2m

∂2ψn(x)

∂x2
+

1

2
mω2x2ψn(x) + f(x, t)ψn(x)︸ ︷︷ ︸ ︸ ︷︷ ︸

Diagonal in Hermite-Gauss basis Diagonal in x-space

. (2.28)

Finite differencing is imprecise, so for accurate computation it is preferable to transform

nonlocal terms into a basis where they are diagonalised - such as computing the kinetic

energy term in k-space. Noting the diagonalisation properties of Equation 2.28, we have

two options:

1. Store the wavefunction(s) in x-space, and transform to k-space every time step

in order to compute the kinetic energy term. For D grid points, this is O(D logD)

since we can use a fast Fourier transform (FFT) for the basis transformation. We

refer to this as the spectral method.

2. Store the wavefunction(s) in the Hermite-Gauss basis (that is, store the

cn in the expansion |Ψ〉 =
∑

n cn |φn〉, where the |φn〉 are the harmonic oscillator

eigenstates), and project onto x-space every time step to compute the perturbing

terms. There is no known accelerated algorithm for the Hermite-Gauss transform,

so this is O(D2), but significantly less coefficients need to be stored for an accurate

state representation. We refer to this as the Hermite-Gauss method.

In practice, the spectral method is the easiest to implement and construct desired initial

states in. However, it is inappropriate for very high-energy states and/or states with many

fermions. In the former case, the wavefunctions tend to be extremely narrow at points

due to high kinetic energy, and in the latter case the wavefunctions are highly oscillatory

to preserve Pauli exclusion; both require a prohibitively large number of grid points. In

comparison, we typically only need a basis size on the order of the number of particles to

accurately represent states in the Hermite-Gauss basis.

2.3.3 Harmonic oscillator field products with Hermite-Gaussian quadra-
ture

As stated previously, the spectral method relies on reversible FFTs, which are easy to

implement exactly on a computer. In the case of the Hermite-Gauss method, we must be

more careful. The basis transform may not be exactly reversible and requires computation

10Two main conventions exist for Hermite polynomials, roughly corresponding to their use in physics
and probability. We will always use the physicists’ convention, corresponding to α2 = 1 in Equation 7.8.5
of Ref. [94]

11Specifically, this refers to the GPE (3.1) for bosons, and the FGPE (3.33) for fermions.
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of the coefficients via the following integral:

cj,n =

∫
dxφj(x)ψn(x), (2.29)

where the φj(x) are the Hermite-Gauss modes (harmonic oscillator eigenfunctions, Equa-

tion 2.27). However, the higher-order Hermite-Gauss modes are highly oscillatory, and

cannot be accurately integrated over on an evenly-spaced grid of tractable size. We now

describe a method by which they can be exactly integrated with a modest number of grid

points. Although this method is outlined elsewhere [95], we choose to explain it in full in

this thesis as existing explanations are difficult to follow.

The discretisation and numerical approximation of an integral is known as quadrature. For

a single-variable function f(x), we typically evaluate an integral
∫ b
a dxf(x) by choosing

quadrature weights wj and quadrature points xj ∈ [a, b], then summing over them to

approximate the integral∫ b

a
dxf(x) =

∑
j

wjf(xj) + ε (f, {xj}, {wj}) , (2.30)

where ε (f, {xj}, {wj}) is an error term that we hope to minimise. Often, the weights and

points are chosen geometrically: we could choose the xj to be N equally spaced points

with step size δx, leading to the Riemann-sum-like integral approximation∫ b

a
dxf(x) = δx

N−1∑
j=0

f(a+ jδx) + ε (f, δx}) , (2.31)

where ε(f, δx) → 0 as δx → 0 for a well-behaved function. For finite step size, there

will almost always be a finite error, and the use of equally-spaced quadrature points is

particularly ineffective for highly oscillatory functions, such as high-order Hermite-Gauss

modes (harmonic oscillator wavefunctions, Equation 2.27).

The quadrature weights and points need not be chosen geometrically. Gaussian quadrature

refers to a class of methods for selecting the wj and xj such that the error is zero for

certain types of functions. A variant known as Hermite-Gaussian quadrature allows us to

calculate integrals over Hermite polynomials with Gaussian weighting functions exactly.

Choose some D ∈ N: this determines the order of Hermite polynomials up to which we will

be able to integrate exactly. We write the jth Hermite polynomial as Hj(x). If we choose

our quadrature points such that xj is the jth root of HD(x), and choose the quadrature

weights

wj = − 2D(D − 1)!
√
π

H ′D(xj)HD−1(xj)
, (2.32)

then the error for the integral
∫∞
−∞ dxf(x)e−x

2
is given by [94]:

ε (f) =
D!
√
π

2D(2D)!
f (2D)(η), (2.33)

where f (2D)(x) is the 2Dth derivative of f , and η ∈ R is unknown. If f(x) is a polynomial of

order 2D−1 or less, then trivially the error (2.33) is exactly zero, and the quadrature will be

exact to machine precision. Fortunately, this is often true for integrals over wavefunctions
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constructed from the Hermite-Gauss basis. Suppose now that we have two wavefunctions

ψ1(x), ψ2(x) written in the energy eigenbasis truncated at D dimensions, such that

ψ1(x) =

D−1∑
j=0

cjφj(x), ψ2(x) =

D−1∑
j=0

djφj(x), (2.34)

where the φj(x) are harmonic oscillator eigenfunctions (2.27). We wish to evaluate the

integral ∫ ∞
−∞

dxψ∗1(x)ψ2(x) =

D−1∑
j,k=0

cjdk

∫ ∞
−∞

dxφ∗j (x)φk(x). (2.35)

Noting the functional form of the Hermite-Gauss modes (2.27), we may write the integral

on the right-hand side of Equation 2.35 as
∫∞
−∞ dxf(x)e−x

2
, where f(x) is a polynomial of

degree 2D − 2 or less. By Equation 2.33, it follows that the error will be exactly zero for

the given weights and points, and thus the quadrature will be exact.

We refer to Equation 2.35 as an integral over a two-field product, since the integrand

contains two wavefunctions constructed from the Hermite-Gauss basis. By an essentially

identical argument to the above, we may compute an N -field product exactly by using

ND − N quadrature points. An N -field product requires the transformed quadrature

points12 x′j = 2xj/N , where xj is the jth root of the appropriate Hermite polynomial.

For example, in Chapter 4, we will frequently need to calculate nonlinear interatomic

scattering terms in the Hermite-Gauss basis. To do so, we must evaluate integrals of the

form:

I =

∫
dx |ψ1(x)|2 ψ2(x)φn(x), (2.36)

where the ψj(x) are in the form of Equation 2.34 and φn(x) is some arbitrary Hermite-

Gauss mode (2.27) for n < D. This is a four-field product, and can be computed exactly

with 4D − 4 quadrature points, chosen as x′j = xj/2.

Using this technique, when simulating Schrödinger-like equations in the Hermite-Gauss

basis, we can exactly compute any perturbing term that is diagonal in the position basis

with only modest computational effort. This is why the Hermite-Gauss method is so

effective for fast, precise calculations in systems based on the harmonic oscillator.

2.4 Stochastic calculus and Wiener processes

In order to model probabilistic dynamical process like quantum measurement, we must

introducess randomness to calculus, leading to an area of mathematics broadly known as

stochastic calculus. Detailed pedagogical treatments of the topic in a physical sciences

context can be found in Refs. [96, 97].

Chiefly, we will consider stochastic differential equations (SDEs) that are driven by white

noise - a noise process with zero mean that is completely uncorrelated at different times.

For our purposes, this is best represented13 in terms of the Wiener increment dW (t),

12This transformation is required to preserve the exponent of the Gaussian weighting function.
13One can directly formulate stochastic calculus in terms of the white noise itself, but this is a far more

convenient representation. The Wiener increment can be derived directly from white noise [97].
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Figure 2.2: Five example trajectories of the SDE dx = ◦dW (t), integrated with the
Stratonovich integral using the XMDS2 package [98]. Since the evolution is conditioned
on random noise, the dynamics are not deterministic.

which has the properties:14

E {dW (t)} = 0,

E
{
dW (t)2

}
= dt,

E
{
dW (t)dW (t′)

}
= dtdt′δ(t− t′),

(2.37)

where E {·} denotes a stochastic average - an average over all possible choices of random

white noise. It can be shown that the Wiener increment is sampled from a Gaussian

distribution [96], with probability density:15

P (dW ) =
exp

(
(−dW 2)(2dt)

)
√

2πdt
. (2.38)

Consider a first-order differential equation for some physical variable x varying with time

t. In the absence of any random processes, we have a deterministic equation of motion

dx = f(x, t)dt. (2.39)

Introducing a Wiener increment dW (t), we may construct an SDE

dx = f(x, t)dt︸ ︷︷ ︸
Deterministic

+ g(x, t)dW (t)︸ ︷︷ ︸
Random

. (2.40)

This can be used to describe a physical process, with deterministic (f(x, t)) and random

(g(x, t)dW (t)) driving terms in its evolution. Since Equation 2.40 depends on a random

noise process, it is not deterministic. There are now infinite trajectories (possible outcomes

14We have assumed use of the Itô integral in Equation 2.37, which we introduce later in this section.
15Strictly speaking, this is only true for discrete increments ∆t and ∆W . However, this is of little

consequence since any computer implementation will integrate in discrete steps. Consequently, many texts
present the distribution in this form (e.g. Ref [96]).
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of the system), conditioned on the outcomes of the random noise process - a simple example

is depicted in Figure 2.2. One can think of the stochastic average E {·} as an average over

these trajectories. To time-evolve this system, we integrate over equation 2.40:

x(t) = x(t0) +

∫ t

t0

dt′f(x(t′), t′) +

∫ t

t0

dt′g(x(t′), t′)dW (t′). (2.41)

However, there is an ambiguity in the stochastic term
∫ t
t0
dt′g(x(t′), t′)dW (t′) - different

elementary definitions of the integral yield different results. Recall that one can define

integration as a limit of a sum (the Riemann-Stieltjes integral). Consider a definite integral

over a single-variable function

I =

∫ t

t0

dt′f(t′). (2.42)

Recall from elementary calculus that we divide up the interval [t0, t] into n partitioning

points t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ t. We define the intermediate points τj such that tj−1 ≤
τj ≤ tj , and compute the sum

Sn =
n∑
j=1

f(τj) (τj − τj−1) . (2.43)

For a well-behaved function f(t), in the limit of infinite partitioning points we have the

convergence Sn → I, regardless of the choice of intermediate points τj . The situation is

more complicated for a stochastic integral. If we were to similarly define our stochastic

term in Equation 2.41 as the limit16 of a Riemann-Stieltjes-like integral, we would find

that its limit actually depends on how we choose our intermediate points τj . We will

provide only a heuristic treatment here - for the full mathematical details, we refer the

interested reader to Chapter 4 of Ref. [97].

The choice τj = tj−1 leads to the Itô integral. When describing quantum noise, the Itô

integral is a convenient choice for analytics, and so the stochastic master equations in

previous works [3, 4, 72, 73, 76, 77] and this thesis are formulated using the Itô integral.

This integral also has a different chain rule and product rule, with the latter given by

d(xy) = x (dy) + (dx) y + (dx) (dy) . (2.44)

An alternative definition of the stochastic integral is given by the Stratonovich integral,

which corresponds to the choice of the midpoint τj = (tj−1 + tj)/2. This integral actually

has the standard chain rule from deterministic calculus. Throughout this thesis, we will

always denote the Wiener increement for an SDE in the Stratonovich formulation as

◦dW (t), and in the Itô formulation as dW (t).

Since the randomness in the models of this thesis is quantum in origin, our master equa-

tions will always be in Itô form for the reasons stated previously. However, for numerical

simulations, we prefer the Stratonovich form. We implement all stochastic simulations

in this thesis in the open-source software package XMDS2 [98], which only has efficient

routines for the Stratonovich integral. Fortunately, there is a simple expression that can

be used to cast between the two formulations. An Itô SDE in the form of equation 2.40

16In practice, this is actually a mean-square limit. Details are provided in Chapter 2 of Ref. [97].
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can be cast to Stratonovich form by the following equation:

dx = f(x, t)dt︸ ︷︷ ︸
Deterministic

− 1

2
g(x, t) · ∇g(x, t)︸ ︷︷ ︸

Stratonovich correction

+ g(x, t) ◦ dW (t)︸ ︷︷ ︸
Stochastic noise

, (2.45)

where we have moved from the Itô to Stratonovich integral and corrected by a deterministic

term known as the Stratonovich correction. We will often consider coupled SDEs of the

Itô form

dxj = Ajdt+
∑
k

BjkdWk(t), (2.46)

where the xj are separate variables,17 and the dWj are corresponding independent Wiener

processes. This may be cast to the following Stratonovich form:

dxj = Ajdt︸︷︷︸
Deterministic

− 1

2

∑
kl

Bkl∂lBjkdt︸ ︷︷ ︸
Stratonovich correction

+
∑
k

Bjk ◦ dWk(t)︸ ︷︷ ︸
Stochastic noise

. (2.47)

We now have the mathematical tools to model stochastic processes. We will apply these

tools in Chapter 5 to model quantum measurement of cold atoms, and simulate these

models numerically in Chapter 6.

17Although we have written this as a set of discrete variables, this may be a discretised continuous
variable, like a grid in position space.



Chapter 3

The art of mean-field theory

As outlined in Section 1.1, full quantum field theoretic calculations for our systems are

computationally intractable due to exponential scaling of the Hilbert space. We thus seek

low-dimensional dynamical approximations that enable a simpler description. By making

assumptions about the form of our quantum state, we may be able to reduce the full

many-body dynamics to that of a simpler order parameter. This is an approach broadly

known as mean-field theory, where the full quantum field theory can be approximated by

a simpler, lower-dimensional ‘mean field’.

Mean-field theory discards significant information about the system. All mean-field the-

ories used in this thesis ignore the effect of quantum correlations, which are a crucial

aspect of phenomena like superconductivity. They are therefore incapable of describing

the richest behaviour of many-body quantum mechanics that inspired the development of

quantum simulators to begin with. Nonetheless, mean-field theory is often sufficient to

capture the bulk or average behaviour of a system, and is therefore a reasonable choice

to model cooling processes. Previous studies of feedback cooling in bosonic systems have

mostly used mean-field theory [2–4], with the notable exception of Ref. [77].

This chapter contains both a review of existing background and new work. In Section 3.1,

we review existing methods for BECs: we discuss the well-known Gross-Pitaevskii equation

and how it can be derived from two different uncorrelated state approximations. In Section

3.2, we derive a multimode fermionic equivalent using the Hartree-Fock approximation,

which we call the fermion GPE (FGPE). This is a first step towards extending the results

of Refs. [2–4] to fermions. In Section 3.3, we review ground state finding algorithms:

imaginary time evolution for bosons, and the Hartree-Fock self-consistent field method for

fermions. This enables us to calculate ground states for all systems simulated in Chapters

4 and 6, allowing us to quantify how close a quantum gas is to its ground state in our

simulations.

3.1 Mean-field theory of BECs

We have thus far been intentionally vague about the details of mean-field theory, since

there are many types of approximation that fall under this banner. We now illustrate the

key concepts by deriving a mean-field theory for bosons at zero temperature,1 which will

later be used to simulate feedback control of a BEC (as was originally done by Haine et

1This is a ‘zero-temperature’ formalism since we consider pure states only. A thermal state at finite
temperature must be a mixed ensemble.

23
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al. [2]).

We will derive the Gross-Pitaevskii equation (GPE):

ih̄
dφ(x)

dt
=

(
− h̄2

2m
∇2

x + V (x, t) + U0 |φ(x)|2
)
φ(x), (3.1)

originally proposed by Gross [99, 100] and Pitaevskii [101]. This equation describes the

evolution of a wavefunction-like object with a single set of spatial coordinates, and is

therefore much simpler than the full quantum field theory.

3.1.1 Approximation by an order parameter

Consider a system of identical bosons of mass m in a trapping potential V0(x) with time-

varying controls VC(x, t), interacting by a pair interaction of the form U(x − y). The

bosons are created and annihilated at position x by bosonic field operators ψ̂†(x) and

ψ̂(x), respectively. We assume that the system is in a coherent state of a single mode,

and therefore the state |Ψ〉 of the system may be written as a tensor product of coherent

states in the spatial basis (see Appendix A.2 for a proof of this property):

|Ψ〉 =
⊗
x′

∣∣φ(x′)
〉
, (3.2)

and thus the state is an eigenstate of the field annihilation operator for any position:

ψ̂(x) |Ψ〉 = φ(x) |Ψ〉 . (3.3)

Since all observables may be written in terms of field operators, we may calculate any prop-

erty of the system from the order parameter alone. Expectation values of all observables

of interest may be written in the form:

〈Ô〉 =

∫
dx
〈(
ψ̂†(x)

)n
Õ(x)

(
ψ̂(x)

)m〉
, (3.4)

which, applying Equation 3.3, yields:

〈Ô〉 =

∫
dx (φ∗(x))n Õ(x) (φ(x))m . (3.5)

Thus, all observables can be calculated in terms of φ(x), which is the order parameter

of our mean-field theory: a mathematical object that fully describes the approximate

system state, and is far less complicated than the full state vector. If we can compute its

evolution, we can describe the full many-body dynamics entirely in terms of an object

with the dimensionality of a single-particle wavefunction.

3.1.2 Dynamics: the Gross-Pitaevskii equation

Since the approximate system state is completely described by φ(x), we wish to find

its equation of motion. We consider the cold-atom Hamiltonian (Equation 2.22) in the
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bosonic, single-spin-component case:

Ĥ =

∫
dx ψ̂†

(
− h̄2

2m
∇2

x + V (x, t)

)
ψ̂(x) +

U0

2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (3.6)

where the field operators have bosonic commutation relations. The time-evolution of a

field operator is determined from the Heisenberg equation of motion (Equation 2.24).

Applying expectation values, we find:

ih̄
dφ(x)

dt
= ih̄

d
〈
ψ̂(x)

〉
dt

=
〈[
ψ̂(x), Ĥ

]〉
=

〈
− h̄2

2m
∇2

xψ̂(x) + V (x, t)ψ̂(x) + U0ψ̂
†(x)ψ̂(x)ψ̂(x)

〉
. (3.7)

Applying Equation 3.3, we obtain the desired equation of motion for φ(x):

ih̄
dφ(x)

dt
= − h̄2

2m
∇2

xφ(x) + V (x, t)φ(x) + U0 |φ(x)|2 φ(x), (3.8)

which is exactly the GPE (Equation 3.1). The astute reader will note that it resembles the

Schrödinger equation of a single-particle wavefunction, with the addition of a nonlinear

term U0 |φ(x)|2 φ(x) describing interatomic scattering interactions. We have successfully

reduced the intractable quantum field theory to a problem barely any more complicated

than the quantum mechanics of a single particle.

It is crucial to note the normalisation of the order parameter, and the free parameters

of the GPE. Unlike the Schrödinger wavefunction of a single particle, which is typically

normalised to unity, the order parameter is normalised to the average number of particles

(see Appendix A.2 or Ref. [102]):∫
dx|φ(x)|2=

∫
dx
〈
ψ̂†(x)ψ̂(x)

〉
= N. (3.9)

Unlike the Schrödinger equation of a single particle, changes in the norm will alter the

dynamics of the system due to the nonlinearity. However, the norm N and interaction

strength U0 are not independent free parameters: the dynamics depend only on the value

of NU0,2 so an increase in N is equivalent to a proportional increase in U0. There is only

one free parameter, and so we may fix the norm to unity and vary U0 when considering

the change in effective interaction strength.

The GPE neglects quantum correlations.3 Regardless, it is a very accurate model in

cases where these are negligible. It captures the wave-like nature of a BEC, and thus

accurately models interference [103, 104], reflection [105] and tunnelling [106, 107] effects.

The nonlinear term allows interactions to be included, and therefore the GPE correctly

models solitons [108–110] and vortices [111–113]. Most importantly for this thesis, the

GPE has previously been used to model feedback control of a BEC [2].

It is crucial to note that there is nothing special about the coherent-state approximation

2The only term for which changing the norm will change the dynamics is the nonlinear term
U0|φ(x)|2φ(x). Any multiplier on the norm of φ(x) (N) could be absorbed into U0: for example, doubling
N for fixed U0 would be equivalent to doubling U0 for fixed N .

3This is a trivial consequence of the separability in Equation 3.2.
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(Equation 3.2) beyond the fact that it ignores correlations: a BEC is not necessarily a co-

herent state, and there are different state approximations that lead to the same dynamics.

In fact, under a density-like measurement of the type used in Refs. [3, 4] (and that we will

apply in Chapters 5 and 6), a coherent-state approximation is completely inappropriate.

This is due to a fundamental mismatch between the approximation and the underlying

physics; a coherent state has non-negligible uncertainty in particle number (it is a Pois-

sonian distribution of number states [102]), whereas a density-like measurement projects

the system into a state of low number uncertainty.

3.1.3 The Gross-Pitaevskii equation in the Hartree-Fock approximation

The GPE can also be derived from other mean-field theories that neglect correlations,

including by the assumption of a number state (the Hartree-Fock approximation, which

also neglects quantum correlations [29]). This approach was used by Szigeti et al. [4] to

derive a mean-field theory of BECs that is numerically stable under measurement; a full

derivation can be found therein. The derivation uses the same Hamiltonian, and assumes

that the system is Bose-condensed and certain in number, such that the state vector may

be written as a single-mode Fock state:

|Ψ〉 = |N, 0, 0, . . .〉 . (3.10)

The occupied mode has a spatial wavefunction χ(x), which is the order parameter of this

mean-field theory. Unfortunately, there is no simple expression for 〈ψ̂(x)〉, necessitating a

more complicated order parameter. By computing an equation of motion for the two-point

correlation function 〈ψ̂†(x1)ψ̂(x2)〉 = Nχ∗(x1)χ(x2) in the Heisenberg picture and finding

an ansatz for the evolution of χ(x) that satisfies it, this leads to an equation of motion

for χ(x):4

ih̄
dχ(x)

dt
=

(
− h̄2

2m
∇2

x + V (x) + (N − 1)U0|χ(x)|2
)
χ(x). (3.11)

This is the GPE (3.1), normalised to N − 1 rather than N . In the large-N limit these two

different state approximations lead to the same dynamics, illustrating our claim that there

is nothing special about the state approximation beyond ignoring quantum correlations.

3.2 Mean-field theory of fermions: the Hartree-Fock ap-

proximation

We now use this approach as inspiration to develop a similar mean-field theory for fermions,

so that we can simulate feedback control of fermionic systems. For the system’s Hamilto-

nian, we will use the cold-atom Hamiltonian (Equation 2.22) in the fermionic, two-spin-

component case:

Ĥ =
∑
σ

∫
dxψ̂†σ

(
− h̄2

2m
∇2

x + V (x, t)

)
ψ̂σ(x)+

U0

2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x),

(3.12)

4We are considering only the unitary evolution; this corresponds to α = 0 in Ref. [4].
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where σ, σ′ ∈ {↑, ↓} and the field operators have fermionic anticommutation relations.

Constructing a mean-field theory is harder in the fermionic case. Fermions obey the Pauli

exclusion principle and cannot multiply occupy the same mode. We thus cannot use a

coherent-state approximation or a single-mode Fock state.

A density-like measurement of the sort we intend to apply will approximately project

the system onto a state of definite number [4]. We therefore approximate our system’s

quantum state by a Fock state (number state):

|Ψ〉 =
∏
n∈S

ĉ†n,↑ĉ
†
n,↓ |0〉 , (3.13)

where the {ĉ†n,σ} are the creation operators for some arbitrary single-particle basis with

principal index n and spin index σ, and S is some set of distinct principal indices in this

basis.5

3.2.1 An order parameter for fermions

Much like the approach in Section 3.1.3, we use as our order parameter the two-point

correlation function:

mσσ′(x1,x2) = 〈Ψ| ψ̂†σ(x1)ψ̂σ′(x2) |Ψ〉 . (3.14)

Expanding |Ψ〉 in the form of Equation 3.13, expanding the field operators into the same

basis, using linearity and noting that ĉn,σ |Ψ〉 = 0 for n /∈ S, we obtain:

mσσ′(x1,x2) =
∑
n,m∈S


(
〈0|
∏
a∈S

ĉa,↓ĉa,↑

)(
ĉ†n,σ ĉm,σ′

)(∏
b∈S

ĉ†b,↑ĉ
†
b,↓ |0〉

)
︸ ︷︷ ︸

δnmδσσ′

χ∗n,σ(x1)χm,σ′(x2)

 ,
(3.15)

where the χn,σ(x) are the spatial wavefunctions for the modes of the number state |Ψ〉.
Identifying the remaining bra-ket expression as δnmδσσ′

6 and summing over m yields:

mσσ′(x1,x2) = δσσ′

(∑
n∈S

χ∗n,σ(x1)χn,σ′(x2)

)
. (3.16)

Since the spin off-diagonal is zero, we often write only the diagonal components as:

mσ(x1,x2) =
∑
n∈S

χ∗n,σ(x1)χn,σ(x2). (3.17)

Much like the bosonic case, all observables of interest may be written in the form:

〈Ô〉 =
∑
n∈S,σ

∫
dx

〈(
ψ̂†n,σ(x)

)a
Õ(x)

(
ψ̂n,σ(x)

)b〉
. (3.18)

5It should be noted that we have assumed an equal number of spin-up and spin-down fermions. There
is also a sign ambiguity in the ordering of creation operators under the product, but this cancels when
computing expectation values and is thus irrelevant.

6To see this without tedious operator algebra, note that this expression is equivalent to removing a
particle in state |m,σ′〉 from |Ψ〉, removing a particle in state 〈n, σ| from state 〈Ψ|, and taking the inner
product, which is zero if particles were removed from different states.
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Expanding out |Ψ〉 and the field operators into the usual basis and simplifying the operator

expressions (a similar procedure to that of Equation 3.15, except with an arbitrary number

of field operators and an operator on L2(Rn) between the wavefunctions), we find:

〈Ô〉 =
∑
n∈S,σ

∫
dx
(
χ∗n,σ(x)

)a
Õ(x) (χn,σ(x))b . (3.19)

Instead of a single wavefunction-like order parameter, we now have N wavefunction-like

order parameters. In fact, since our state approximation has no quantum correlations, we

may treat the particles as independent, and these are actually the single-particle wave-

functions of each fermion.7 This is a much more complicated state representation than we

had in the bosonic case; nonetheless this grows linearly in complexity with respect to N ,

rather than exponentially as the full quantum state would.

3.2.2 Dynamics of the fermionic mean field

We now derive an equation of motion for the two-point correlation function. Once again,

the Heisenberg equation of motion (2.24) gives:

dψ̂σ1(s)

dt
= − i

h̄

[
ψ̂σ1(s), Ĥ

]
. (3.20)

Defining:

H̃a(x) = − h̄2

2m
∇2

x + V (x, t), (3.21)

and expanding out Equation 3.20 by linearity, we obtain:

dψ̂σ1(s)

dt
= − i

h̄

∑
σ2

∫
dz
[
ψ̂σ1(s)︸ ︷︷ ︸
Â1

,

B̂1︷ ︸︸ ︷
ψ̂†σ2(z) H̃a(z)ψ̂σ2(z)︸ ︷︷ ︸

Ĉ1

]

− iU0

2h̄

∑
σ2σ3

∫
dz
[
ψ̂σ1(s)︸ ︷︷ ︸
Â2

,

B̂2︷ ︸︸ ︷
ψ̂†σ2(z)ψ̂†σ3(z) ψ̂σ3(z)ψ̂σ2(z)︸ ︷︷ ︸

Ĉ2

]
. (3.22)

Applying the commutator-anticommutator identity
[
Â, B̂Ĉ

]
=
{
B̂, Â

}
Ĉ − B̂

{
Ĉ, Â

}
to

both commutators as labelled, and using anticommutation relations, we obtain:

dψ̂σ1(s)

dt
= − i

h̄

∑
σ2

∫
dzδσ1σ2δ(s− z)H̃a(z)ψ̂σ2(z)

− iU0

2h̄

∑
σ2σ3

∫
dz
{
ψ̂†σ2(z)ψ̂†σ3(z), ψ̂σ1(s)

}
ψ̂σ3(z)ψ̂σ2(z). (3.23)

7We can construct the full many-body wavefunction from these single-particle wavefunctions using a
Slater determinant (see Chapter 2 of Ref. [114]).
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Expanding the anticommutator, normal ordering with fermion anticommutation relations

and simplifying yields:{
ψ̂†σ2(z)ψ̂†σ3(z), ψ̂σ1(s)

}
= 2ψ̂†σ2(z)ψ̂†σ3(z)ψ̂σ1(s)−δσ1σ3δ(s−z)ψ̂†σ2(z)+δσ1σ2δ(s−z)ψ̂†σ3(z).

(3.24)

Substituting Equation 3.24 into Equation 3.23, integrating and summing over all delta

functions, relabelling sums, and applying an anticommutation relation to combine the last

two terms yields:

dψ̂σ1(s)

dt
= − i

h̄
H̃a(s)ψ̂σ1(s)− iU0

h̄

∑
σ2σ3

∫
dzψ̂†σ2(z)ψ̂†σ3(z)ψ̂σ1(s)ψ̂σ3(z)ψ̂σ2(z)

+
iU0

h̄

∑
σ2

ψ̂†σ2(s)ψ̂σ1(s)ψ̂σ2(s). (3.25)

We now use this to construct an equation of motion for the two-point correlation function.

By the product rule and linearity, we find:

dmσ1σ2(x1,x2)

dt
=

〈(
dψ̂†σ1(x1)

dt

)
ψ̂σ2(x2)

〉
+

〈
ψ̂†σ1(x1)

(
dψ̂σ2(x2)

dt

)〉
. (3.26)

Substituting Equation 3.25 into Equation 3.26 and applying anticommutation relations,

we obtain:

dmσ1σ2(x1,x2)

dt
= − i

h̄

(
H̃a(x2)− H̃a(x1)

)〈
ψ̂†σ1(x1)ψ̂σ2(x2)

〉
− iU0

h̄

∑
σ3

(〈
ψ̂†σ3(x1)ψ̂†σ1(x1)ψ̂σ3(x1)ψ̂σ2(x2)

〉
−
〈
ψ̂†σ1(x1)ψ̂†σ3(x2)ψ̂σ2(x2)ψ̂σ3(x2)

〉)
.

(3.27)

So far, this equation of motion is still exact for any state, and we have not made use of

our state approximation (3.13). By a corollary of Wick’s Theorem (see Appendix B for

a proof and detailed discussion), our Fock state approximation allows the factorisation of

quartic terms: 〈
ĉ†αĉ
†
β ĉγ ĉδ

〉
=
〈
ĉ†αĉδ

〉〈
ĉ†β ĉγ

〉
−
〈
ĉ†αĉγ

〉〈
ĉ†β ĉδ

〉
, (3.28)

where these may be fermionic creation and annihilation operators in any basis.8 Applying

this factorisation to the quartic terms in Equation 3.27 yields:

dmσ1σ2(x1,x2)

dt
= − i

h̄

(
H̃a(x2)− H̃a(x1)

)〈
ψ̂†σ1(x1)ψ̂σ2(x2)

〉
− iU0

h̄

∑
σ3

(〈
ψ̂†σ1(x1)ψ̂σ3(x2)

〉〈
ψ̂†σ3(x2)ψ̂σ2(x2)

〉
+
〈
ψ̂†σ1(x1)ψ̂σ2(x2)

〉〈
ψ̂†σ3(x2)ψ̂σ3(x2)

〉
−
〈
ψ̂†σ3(x1)ψ̂σ2(x2)

〉〈
ψ̂†σ1(x1)ψ̂σ3(x1)

〉
−
〈
ψ̂†σ3(x1)ψ̂σ3(x1)

〉〈
ψ̂†σ1(x1)ψ̂σ2(x2)

〉)
.

(3.29)

8Including a continuous basis, so these may be fermionic field operators.
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All expecation values in Equation 3.29 are now two-point correlation functions and may

be identified with mσ1σ2(x1,x2):

dmσ1σ2(x1,x2)

dt
= − i

h̄

(
H̃a(x2)− H̃a(x1)

)
mσ1σ2(x1,x2)

− iU0

h̄

∑
σ3

(
mσ1σ3(x1,x2)mσ3σ2(x2,x2) +mσ1σ2(x1,x2)mσ3σ3(x2,x2)

−mσ3σ2(x1,x2)mσ1σ3(x1,x1)−mσ3σ3(x1,x1)mσ1σ2(x1,x2)
)
. (3.30)

It can be trivially seen from Equation 3.30 that since mσ1σ2(x1,x2) = 0 for σ1 6= σ2, the

spin off-diagonal does not evolve and remains zero: we will therefore write only the spin

diagonal component from here onwards in the form of Equation 3.17. Expanding the sum

in Equation 3.30 gives the time evolution for the two non-zero spin components:

dmσ(x1,x2)

dt
= − i

h̄

(
H̃a(x2)− H̃a(x1)

)
mσ(x1,x2)

− iU0

h̄
mσ(x1,x2) (m!σ(x2,x2)−m!σ(x1,x1)) , (3.31)

where:

!σ =

{
↓ , if σ =↑,
↑ , if σ =↓ .

(3.32)

For simulation purposes, it is computationally favourable to evolve the basis functions

χn,s(x, t) rather than the two-point correlation function, since it is significantly easier to

solve N 1D PDEs over a 2D PDE for small to moderate N .

Now that we have the dynamics of the two-point correlation function ms(x1,x2), we may

find the corresponding dynamics of the χn,σ(x). Taking inspiration from the GPE (3.1)

but accounting for the unique physics of fermions,9 we construct the following ansatz for

the evolution of the χn,σ(x):

dχn,σ(x, t)

dt
= − i

h̄

(
− h̄2

2m
∇2

x + V (x, t)

)
χn,σ(x, t)− iU0

h̄

∑
m∈S
|χm,!σ(x, t)|2 χn,σ(x, t).

(3.33)

One can easily verify that this ansatz is correct by Equation 3.17 with the product rule,

substituting in Equation 3.33 and simplifying. This yields Equation 3.31, verifying the

ansatz.

We have successfully derived a GPE-like mean field theory for uncorrelated fermions, gen-

eralizing the unitary component of the approximation in Ref. [4] to fermions. Throughout

the remainder of this thesis, we will refer to Equation 3.33 as the fermion GPE (FGPE).

9We expect an interaction field summed over the other particles, since we have multiple modes. Fermions
with the same internal spin component do not interact by s-wave scattering at all [115], and so we expect
the interaction field to be constructed from atoms of the opposite spin component only.
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3.2.3 Notable properties of the FGPE

The χn,σ(x) are the single-particle wavefunctions of each fermionic atom. They each

experience a potential proportional to the total density of atoms in the opposite spin

component - the ‘mean field’ of our mean-field theory.

The Pauli exlcusion principle manifests itself as orthogonality of single-particle wavefunc-

tions of the same spin component. We must construct creation and annihilation operators

from an orthogonal single-particle basis to obtain the correct commutation relations, so

the modes included in our Fock state are orthogonal:∫
dxχ∗n,σ(x)χm,σ(x) = δnm. (3.34)

The evolution of χn,σ(x) is inner-product preserving for particles in the same spin com-

ponent:

d

dt

∫
dx
(
χ∗n,σ(x, t)χm,σ(x, t)

)
=

∫
dx

(
dχ∗n,σ(x, t)

dt
χm,σ(x, t) + χ∗n,σ(x, t)

χm,σ(x, t)

dt

)
=

ih̄

2m

∫
dx
(
χ∗n,σ(x, t)∇2

xχm,σ(x, t)− χm,σ(x, t)∇2
xχ
∗
n,σ(x, t)

)
= 0.

(3.35)

Hence, Pauli exclusion is maintained; the wavefunctions in a given spin component may

never evolve in such a way that they become non-orthogonal.10

Unlike the GPE, the FGPE has two free parameters: the particle number N and inter-

action strength U0 are independent free parameters. Increasing N for a fixed U0 will still

increase the strength of the mean field experienced by the particles, but not necessarily in

an equivalent manner to a proportional increase in U0 for fixed N . The model also encap-

sulates the poor scattering properties of fermions; for a given N and U0, the total effect of

scattering is much less for an atomic gas governed by the FGPE than for the GPE. In the

case of the GPE, a given atom scatters with every other atom: for the FGPE, a given atom

only scatters with half 11 the atoms. Furthermore, since the GPE order parameter φ(x)

interacts with its own density field, the scattering is greatest where the particle density is

highest, maximising the effect. In the case of the FGPE, a given particle’s wavefunction

interacts with a density field formed by all particles in the opposite spin component. In

principle, these could be localised anywhere, and thus the effect is weaker than the bosonic

case.

As described in Section 2.2.2, we will frequently consider an effective 1D system of

harmonically-trapped atoms with an arbitrary control potential, and so V (x, t) =
1
2mω

2x2 +VC(x, t). Using the dimensionless units for the harmonic oscillator described in

Section 2.3.1, and defining a dimensionless interaction strength:

Υ0 =
U0x0

h̄ω
, (3.36)

10This constraint does not apply to atoms in different spin components: the interaction term in Equation
3.35 only cancels because particles of the same spin component experience the same mean field.

11Assuming an equal number of particles in each spin component, which is an assumption we will use
consistently throughout this thesis.
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we may rewrite the FGPE in dimensionless form:

dχn,σ(x, t)

dt
= −i

(
−1

2

∂2

∂x2
+

1

2
x2 + VC(x, t)

)
χn,σ(x, t)− iΥ0

∑
m

|χm,!σ(x, t)|2 χn,σ(x, t),

(3.37)

where x is in units of x0 and t is in units of t0 = ω−1. We will use this form for our

numerical simulations. The exact same nondimensionalisation applies to the GPE (3.1).

3.3 Ground states

In previous studies of feedback cooling, the systems under simulation often failed to reach

the ground state, being cooled to dark states: states which are not stationary, but the

feedback schemes could not cool any further [2]. In Chapter 4, we will show how a different

choice of feedback scheme can overcome this limitation. However, to demonstrate that we

can always cool to the ground state, and not just some dark state, we must know the

ground state energy. This is trivial for both bosons and fermions in the non-interacting

case,12 but the addition of a repulsive pair interaction changes the structure and raises the

energy of the ground state in a non-trivial way. In this section, we describe methods to

calculate ground states and their energies for the bosonic and fermionic mean-field theories

described in Chapter 3.

Our Hamiltonians of interest may be written in the form Ĥ = Ĥ0 + Û+ V̂C(t), where Ĥ0 is

a single-particle term containing kinetic energy and a (typically harmonic) static trapping

potential, Û is a quartic scattering pair interaction, and V̂C(t) is a time-dependent control

potential. We seek the ground states of the trap itself, and so we always seek to find the

state that minimises E0 =
〈
Ĥ0 + Û

〉
.

3.3.1 Mean-field ground states of a BEC: imaginary-time evolution

It is relatively straightforward to compute the ground state of a BEC in the mean-field

approximation presented in Section 3.1. This is done by evolution in imaginary time.

For intuition, we first consider the linear full quantum field theory. For a system described

by Hamiltonian Ĥ with eigenstates |ψn〉, corresponding eigenenergies En and initial state

|Ψ(0)〉 =
∑

n cn |ψn〉, we could compute the time evolution in the spectral basis as:

|Ψ(t)〉 =
∑
n

cn exp

(
− iEnt

h̄

)
|ψn〉 . (3.38)

If we instead evolve in imaginary time τ = it, we obtain:

|Ψ(τ)〉 =
∑
n

cn exp

(
−Ent

h̄

)
|ψn〉 . (3.39)

Each component decays exponentially, with the higher-energy components decaying faster.

This is, of course, not norm-preserving. We thus start with an inital guess of the ground-

12In the bosonic case, the ground state consists of all particles in the single-particle ground state: that is,
a state of the form |N, 0, . . .〉 in the energy eigenbasis. In the fermionic case, it is the ‘Fermi sea’ described
in Section 2.1 - in occupation number notation, a state of the form |1, 1, . . . , 1, 0, . . .〉. For a harmonic trap,
the energy can be calculated analytically - see Appendix A.4.
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Figure 3.1: Computing the ground state of a harmonically-trapped one-dimensional BEC
with Υ0 = 10.0 using the imaginary-time Gross-Pitaevskii equation with continuous renor-
malisation. All quantities are relative to the natural scales described in Section 2.3.1. The
initial guess (τ = 0) is the non-interacting ground state (a Gaussian). The evolution
quickly produces the interacting ground state (convergence occurs by τ/t0 u 1). The
addition of repulsive pair interactions widens the density profile.

state, evolve in imaginary time, and then renormalise the state. For sufficiently long

evolution, what remains is approximately the ground state, since the higher-energy com-

ponents decay away exponentially faster. In practice, the convergence is extremely fast.

Imaginary time evolution also works in the nonlinear problem, though the situation is

more complicated. The method is not foolproof, and may converge to a false minimum

for sufficiently poor initial guesses. Nonetheless, for a good initial guess it succeeds in

finding the ground state. The method can be rigorously derived as a gradient-descent

minimisation of energy [116].

Throughout this thesis, whenever a BEC ground state is required, we will start with

the non-interacting ground state as an initial guess, and propagate it using the GPE in

imaginary time:

dφ(x)

dτ
= −1

h̄

(
− h̄2

2m
∇2

x + V (x) + U0|φ(x)|2
)
φ(x), (3.40)

renormalising the order parameter at each integration time step, and testing the energy

for convergence. This propagation will always be done with the XMDS2 package [98]. An

example of our renormalised imaginary-time evolution is given in Figure 3.1.



34 The art of mean-field theory

3.3.2 Fermionic ground states: the Hartree-Fock self-consistent field
method

It is much harder to find the ground state of an interacting fermionic system. The orthog-

onality preservation property of the FGPE (3.35) does not hold in imaginary time, and

so the GPE ground state algorithm described in Section 3.3.1 evolves the system towards

an unphysical state that violates Pauli exclusion. We therefore require another method to

compute ground states. In this section, we present a full treatment of the Hartree-Fock

self-consistent field (SCF) method, which is often used to this end in nuclear physics [117]

and quantum chemistry [114] and is used to calculate all interacting fermionic ground

states in this thesis. We then follow up with a brief justification of our choice of method.

Optimised variational estimates

Substituting the non-control terms of the Hamiltonian into Equation 3.19, the energy can

be calculated from the single-particle wavefunctions:

E0 =
〈
Ĥ0 + Û

〉
=
∑
n∈S,σ

∫
dx

(
χ∗n,σ(x)

(
− h̄2

2m
∇2

x + V0(x)

)
χn,σ(x)

+
U0

2
|χn,σ(x)|2

∑
m∈S
|χm,!σ(x)|2

)
. (3.41)

To compute ground states, recall the variational theorem: the expectation value of the

Hamiltonian of any quantum state is bounded below by the ground state energy [28]. We

may construct a variational estimate of the ground-state energy in the Hartree-Fock mean

field by choosing a set of orthogonal single-particle wavefunctions {χn,s(x)} and substi-

tuting these into Equation 3.41. We wish to find the ‘best’ set of wavefunctions {χn,s(x)}
that minimise E0; these are the basis wavefunctions of our ground state, and substituting

them into Equation 3.41 yields our ground state energy. We perform a constrained13 op-

timisation of Equation 3.41 using the method of Lagrange multipliers to find states which

locally minimise energy. The full calculation for a general system is presented in Ref. [114].

This yields the Hartree-Fock equations in canonical form:

F̃s(x)χn,s(x) = εn,sχn,s(x), (3.42)

where for our system,

F̃s(x) =

(
− h̄2

2m
∇2

x + V0(x) + U0

∑
m∈S
|χm,!s|2

)
. (3.43)

The operator F̃s(x):L2(Rn) → L2(Rn) (3.43) is known as the Fock operator. It may be

thought of as the Hamiltonian for the single-particle wavefunctions, and thus the Hartree-

Fock equations for our system are essentially time-independent Schrödinger equations for

the single-particle wavefunctions with a GPE-like nonlinear coupling.14 This is a major

caveat, however: F̃s(x) is dependent on all wavefunctions of the opposite spin state, which

13Subject to the normalisation constraint
∫
dx |χn,s(x)|2 = 1.

14The GPE-like form is particular to s-wave scattering as a pair interaction: more general interactions
will involve an extra spatial integral to construct the mean field. See Ref. [114] for a full treatment.



§3.3 Ground states 35

form the density-like interaction field. We cannot simply numerically solve Equation 3.42

as we would with a linear uncoupled eigenvalue problem.

The Roothan equations

One may easily verify if a set of wavefunctions {χn,s(x)} corresponds to a stationary state15

by substituting into the left-hand side of Equation 3.42 and comparing to the right-hand

side. If we can construct an iterative method that produces successively better guesses of

the {χn,s(x)}, we can apply this test to within some tolerance to determine whether it has

converged. This is the essence of the Hartree-Fock self-consistent field method; we seek to

find a set of wavefunctions that are eigenstates of their own mean field in a self-consistent

fashion.

We choose some basis {φd(x)} of L2(Rn). Truncating the basis at some finite dimension

D, we rewrite Equation 3.42 in matrix form as [114]:

F (C)C = SCε. (3.44)

This form is typically known as the Roothan equations. Here, C is a D×N matrix whose

columns are the coefficients of each single-particle state in the chosen basis, ε is an N ×N
diagonal matrix whose diagonal components are the eigenenergies of these single-particle

states, and F (C) is a D ×D matrix representation of the Fock operator (written in this

form to emphasise that it depends on the state C). S is a D × D matrix of overlaps

between the basis functions including an internal spin index, with components:

Sµσ1,νσ2 = δσ1σ2

∫
dxφ∗µ(x)φν(x). (3.45)

For our purposes this will always be the identity matrix, since we will exclusively use

orthonormal bases.16 The Fock matrix has components of the form:17

Fµσ1,νσ2 = δσ1σ2

∫
dxφ∗µ(x)F̃σ1(x)φν(x). (3.46)

Iterative solution for the self-consistent field

There are iterative procedures that may be used to find a self-consistent field for the

ground state. The simplest18 is the original algorithm proposed by Roothan [119]:

1. Construct a reasonable estimate of the ground state, and thus an initial guess for C.

2. Construct F (C) for the current guess of C.

3. Discard the current guess of C, and numerically solve for the eigenvalue decompo-

sition of F (C). Take the eigenvectors corresponding to the lowest N eigenvalues;

15Typically, this will be the ground state. Due to the way we numerically solve the eigenproblem, it is
extremely unlikely that the algorithm would ever converge to an excited eigenstate of the Hamiltonian,
especially for a good initial guess.

16Basis sets are almost never orthogonal in quantum chemistry, where this formalism originates. We are
interested in the behaviour of a harmonically-trapped Fermi gas, so we will use the the Hermite-Gauss
basis, which is orthonormal.

17We assume spin symmetry, since the algorithm does not converge if the ground state is phase-separated.
18Modern applications in quantum chemistry typically use convergence-acceleration algorithms (see [118]

for examples), but the Roothan algorithm is more than adequate for our simple system.
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these are the columns of the new guess of C.

4. Repeat steps 2-3 until the field is self-consistent to within some desired tolerance:

that is, some iteration produces approximately the same guess of C as the previous

iteration.

Let us denote the iterative step as I:L2(Rn) × N → L2(Rn) × N . We seek to find a

fixed point of I. On a sufficiently restricted domain (if the initial guess is good enough),

I may define a contractive mapping with respect to some metric, and therefore repeated

applications may converge to the fixed point by the Banach fixed-point theorem19 [120,

121]. The method is not guaranteed to converge, however, and care must be taken to

supply the algorithm with a good initial guess.

There are several important details for successful implementation of the Roothan algo-

rithm. In practice, when comparing the state at the nth iteration with that at the (n−1)th

iteration, we chose to use a relative measure of the energy difference

∆n−1,n =
|En−1 − En|

En
(3.47)

as a proxy for state similarity. This may seem risky, as one can easily construct non-

identical states with the same energy. It would therefore be tempting to instead use the

fidelity:

|〈Ψn−1|Ψn〉|2 , (3.48)

since it is an exact measurement of similarity between states that cannot be ‘fooled’

in such a way. However, computing the overlap of two Slater determinant states is a

computationally demanding task [122] that would be impractical to use as part of an

iteration loop. We can justify energy as a safe proxy for state similarity by considering the

limiting behaviour of the Roothan algorithm. There are only two possible behaviours of

the iteration: either it converges, or it oscillates between two states, possibly accompanied

by slow drifts of these two states [123]. Therefore, in the case where the algorithm does

not converge, the relative energy difference (3.47) will never be vanishingly small, and our

approach is safe.

Initial guesses and convergence

As discussed in Section 3.3.2, the Roothan algorithm only converges for a sufficiently

good initial guess. Fortunately, for the purposes of this thesis, it is easy to construct a

good initial guess. We will always consider a harmonically-trapped one-dimensional Fermi

gas, corresponding to the choice V0(x) = 1
2mω

2x2. In the non-interacting case (U0 = 0),

Equation 3.42 is just the time-independent Schrödinger equation for a one-dimensional

harmonic oscillator, the solution to which is well known. The ground state in this case

for N fermions per spin component is just a Fermi sea, with one fermion in each of the

first N eigenstates of the harmonic oscillator. For low interaction strengths, we expect the

many-body ground state to be a small perturbation to the non-interacting ground state, so

the Fermi sea is a sufficiently close initial guess. When we require ground states for higher

interaction strengths where the Roothan algorithm does not converge with the Fermi sea

as an initial guess, we may ‘bootstrap’ our way to an acceptable initial guess: use the

19This is sometimes known as the Contraction Mapping Theorem. The theorem was originally proven
by Banach [120], and a more modern treatment can be found in Ref. [121].
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Figure 3.2: The total density per spin component ρσ(x) =
∑

n∈S |χn,σ(x)|2 for a one-
dimensional, harmonically-trapped, spin-symmetric, two-component Fermi gas of 100 par-
ticles, in the non-interacting limit (Υ0 = 0) and with moderate interactions (Υ0 = 7.0).
Position is given relative to the natural length scale described in Section 2.3.1. The ad-
dition of repulsive interactions widens the total density profile slightly, and increases the
ground state energy: for Υ0 = 0, the ground state energy is 2500h̄ω, but for Υ0 = 7.0, it
is ∼3413h̄ω.

Fermi sea as an initial guess for a lower interaction strength, use the resulting weakly

interacting ground state as the initial guess for a slightly higher interaction strength, and

repeat until one has the ground state at the desired value of Υ0.

Ground states of the interacting Fermi gas

We now have all the tools to calculate the ground state of an interacting Fermi gas within

the Hartree-Fock approximation. Throughout this thesis, whenever a ground state of an

interacting Fermi gas is required, we apply the tools described thus far. Qualitatively,

at low interaction strengths where the dominant effects are due to kinetic and potential

energy, the ground states obtained are extremely similar to the non-interacting case, and

are spin-symmetric. The crucial difference is a widening of the state: adding repulsive

pair interactions introduces an additional energy cost to localisation, leading to an overall

widening of the density profile (Figure 3.2). The widening effect is more extreme for atoms

in higher-energy modes, since they have broader density profiles in the non-interacting

limit and thus see the lower-energy atoms as a localised perturbing potential at the centre

of the trap (Figure 3.3). This results in a modest increase in the total energy of the ground

state (for example, the non-interacting ground state of 100 atoms depicted in Figure 3.2

has an energy of 2500h̄ω, while the interacting ground state at Υ0 = 7.0 has an energy of

∼3413h̄ω).

The situation is more complicated for large interaction strengths, in the regime where

repulsive effects dominate. Two-component atomic gases can be miscible (it is relatively

favourable for the components to mix spatially) or immiscible (it is unfavourable for the

components to mix spatially); this is true for Fermi-Fermi mixtures of the type we are
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Figure 3.3: Ground-state wavefunctions for n = 0, n = 11, n = 23, n = 35,
n = 47 in the non-interacting limit (Υ0 = 0, solid lines) and with moderate interactions
(Υ0 = 7.0, dashed lines) for a one-dimensional, harmonically-trapped, spin-symmetric,
two-component Fermi gas of 100 particles in the Hartree-Fock approximation. Position
is given relative to the natural length scale described in Section 2.3.1. The harmonic
potential is superimposed in black. The addition of repulsive interactions widens the
wavefunctions slightly, with this effect being more extreme for higher-order modes.

considering [124] as well as Bose-Fermi mixtures [125, 126]. For sufficiently high interac-

tion strengths, it becomes favourable for the spin components to separate, since there is

no s-wave scattering within the same spin component, but there is an enormous energy

cost to particles in opposite components occupying the same space. Consequently, the

strongly-interacting ground states are no longer spin-symmetric (and may even be highly

degenerate). As we increase interaction strength from zero, the ground state will initially

be a widened spin-symmetric state (as seen in Figures 3.2 and 3.3); this is the miscible

regime. At some threshold interaction strength, spin symmetry becomes energetically

unfavourable due to strong inter-component repulsion - beyond this threshold, the spin-

symmetry is spontaneously broken, and the ground states are degenerate and have strong

spatial separation between spin components. We found that the Roothan algorithm fails

to converge beyond this threshold, and so we will be mostly limited to weakly repulsive

interactions and the miscible regime in this thesis.

Alternative methods

It is important to justify our choice of method. Finding ground states of interacting

fermions is a common problem in condensed matter physics, nuclear physics and quantum

chemistry, and several approaches exist. We also considered using the perturbative Green’s

function method [82], and adiabatic real-time evolution [93].

The Green’s function method for calculating expectation values involves a perturbative

expansion of the system’s full interacting equilibrium Green’s function, which can be

evaluated to a given order by constructing a set of Feynman diagrams and evaluating
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their amplitudes. We will not detail the method here, but an excellent treatment of the

zero-temperature version can be found in Chapter 5 of Ref. [82]. This approach includes

the full effect of quantum correlations and provides a single expression that can be re-

evaluated for various parameters. However, it does not produce the state vector for the

ground state, but only the ground state energy. Furthermore, the first-order correction for

our system is zero (see Appendix A.3 for the calculation), and so a much more involved

calculation is required to successfully apply the method.

In contrast to the Green’s function method, the Hartree-Fock SCF method we have elected

to use is advantageous for a number of reasons. It is completely self-consistent with the

approximation used to derive the FGPE, and so we can be confident that the ground

state energy produced by a successful application of the method will be exactly the same

as that of the ground state in our simulation. We do not actually want to model the

full quantum correlations, since we want a reference value with which to compare an

uncorrelated dynamical approximation. Furthermore, it produces the single-particle-like

wavefunctions χn,s(x, t) for the ground state, a tool we will use often. It is computationally

cheap and based on a simple iteration that can easily be implemented on a computer.

Adiabatic real-time evolution also produces ground states that are self-consistent with

our mean-field theory. It involves initializing the system in a known ground state of the

non-interacting system (in our case, the Fermi sea of a harmonic oscillator), and slowly

turning on interactions. By the adiabatic theorem [93], if the evolution is slow with respect

to the natural timescales of the system, the evolved state will approximately remain in

the ground state of the evolved Hamiltonian. In principle, this would produce the same

ground states as the Hartree-Fock SCF method, but we found it to be too computationally

expensive in practice - the Roothan algorithm produces the same output with far less

computational resources. However, this can produce ground states that are self-consistent

with any dynamical approximation, and should be considered for future works that model

higher-order quantum field effects.

3.4 Summary of mean-field theory

This chapter has reviewed existing techniques for mean-field dynamics of BECs, and gen-

eralised them to derive a mean-field description of multimode atomic Fermi gases. Using

state approximations that neglect quantum correlations (coherent state and Fock state),

we derived the GPE (3.1) for BECs, by which we can simulate the unitary dynamics of

a BEC under feedback control. Using a Fock state approximation, we derived an equiv-

alent mean-field equation of motion for Fermi gases (Equation 3.33, which we dubbed

the FGPE), which describes uncorrelated fermions with single-particle-like wavefunctions

interacting with a density field formed by atoms of the opposite spin. This enables us

to simulate the unitary dynamics of a Fermi gas under feedback control, which is the

focus of Chapter 4. We then described algorithms which could be used to find the ground

states of these mean-field theories - imaginary-time evolution for bosons, and the Roothan

algorithm (Hartree-Fock SCF) for fermions. This provides us with the tools to simu-

late feedback control of interacting quantum gases in the no-measurement and mean-field

limits, and benchmark successful cooling by comparing to the ground state.
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Chapter 4

Feedback cooling without

measurement effects

We have now developed the tools for a simple description of feedback cooling. Recall

from Section 2.2.2 that our cold-atom Hamiltonian for bosons or fermions (2.22) could be

written as:

Ĥ =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m
∇2

x + V (x, t)

)
ψ̂σ(x)+

U0

2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x),

(4.1)

where V (x, t) is an arbitrary time-dependent potential. We will now separate this out

as V (x, t) = V0(x) + VC(x, t), where V0(x) is a time-independent trapping potential,

and VC(x, t) is the control potential - a time-dependent perturbation that we may use

to influence the system’s dynamics. In an experimental setting, it is possible to create

arbitrary optical potentials at high resolution and bandwidth using digital-micromirror

devices [47], and so we will assume throughout this thesis that VC(x, t) can be arbitrarily

be varied by the experimenter in real time. We will thus often write our Hamiltonian in

the form:

Ĥ = Ĥ0 + Û + V̂C(t), (4.2)

where:

Ĥ0 =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m
∇2

x + V0(x)

)
ψ̂σ(x),

Û =
U0

2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x),

V̂C(t) =
∑
σ

∫
dxψ̂†σ(x)VC(x, t)ψ̂σ(x).

(4.3)

Therefore, Ĥ0 is a time-independent, single-particle Hamiltonian describing kinetic en-

ergy and trapping (for our numerical simulations, it will always be the harmonic oscillator

Hamiltonian and thus analytically solvable), Û describes two-body atom-atom interac-

tions, and V̂C(t) describes a time-dependent control potential applied to the system.

In this chapter, we assume that we have perfect knowledge of the system observables,

and investigate how a judicious choice of the form and dynamics of the control poten-

41
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tial VC(x, t) can be used to remove energy and therefore cool the system. This treat-

ment neglects the effect of measurement backaction, which as we will show in Chapters

5 and 6, does have a significant effect. Nonetheless, investigating the no-measurement

limit illustrates the best-case behaviour of feedback cooling. This will be done using the

mean-field and numerical simulation techniques presented in Chapter 3. The absence of

measurement effects and many-particle quantum correlations allow for rapid prototyping

of measurement-independent properties, such as the best choice of control potential.

This chapter is structured as follows. In Section 4.1, we will briefly discuss the approach

and results of a similar study for BECs by Haine et al. [2], and compare two choices of

VC(x, t). In Section 4.2, we will prove that both choices of control remove energy from

appropriate states, and discuss the implications of this. We motivate our simulations of

the GPE (3.1) and FGPE (3.33) under feedback control in Section 4.3. In Section 4.4, we

simulate an atomic Fermi gas under the ‘moment control’ used in previous studies [2–4].

We then compare this to the new ‘energy-damping control’ in Section 4.5. We find that

the key physics of feedback-controlled fermions is captured by a two-fermion model, which

we simulate and discuss in Section 4.6. We briefly discuss single-component Fermi gases

in Section 4.7. Finally, in Section 4.8, we summarise the chapter’s results in the context

of the key questions posed in Section 4.3.

4.1 Previous work and control choice

Feedback cooling of atomic gases was first studied in a mean-field, no-measurement limit

by Haine et al. [2], who simulated the dynamics of a feedback-controlled BEC using the

Gross-Pitaevskii equation (3.1). They considered a control potential of the form:

VC(x, t) =
∑
n

an(t)fn(x), (4.4)

where the fn(x) may be any set of spatial functions. We will refer to this as the mo-

ment control. They considered an effective 1D condensate for which the trap position and

strength could be changed, and thus had spatial functions f1(x) = x, f2(x) = x2, and

fn(x) = 0 for n > 2. This study was conducted in 2004, when optical trap technology

was significantly less advanced - the control was chosen for its ease of experimental im-

plementation, since it only requires one to change the position and strength of the trap.

In the intervening years, there have been major developments in trap technology, and it

is now possible to create high-bandwidth, high-resolution optical potentials of arbitrary

shape using digital-micromirror devices [47]. This control scheme was used in subsequent

studies including measurement effects [3, 4]. When applied to a BEC, it damps oscillations

in 〈x̂〉 and
〈
x̂2
〉

very efficiently, hence the name ‘moment control’. However, it does not

directly remove oscillations in the higher-order moments of atomic density, and relies upon

the condensate’s nonlinear interactions to slowly couple oscillations into the controllable

moments. Haine et al. found that this limited the effectiveness of the control scheme, and

the system often entered dark states: states which are not eigenstates of the Hamiltonian,

but nonetheless cannot be further cooled. This limitation is in principle even more signif-

icant for fermions due to their poor scattering properties, and a different control scheme

is required.

We will compare this to a different choice of control potential, which we will refer to as
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the energy-damping control. The potential is given as:

VC(x, t) = −kED∇x ·
〈
ĵ(x)

〉
, (4.5)

where kED > 0 is a constant that may alter the effectiveness of the feedback, and ĵ(x) is

the particle current:

ĵ(x) =
h̄

2mi

∑
σ

[
ψ̂†σ(x)

(
∇xψσ(x)

)
−
(
∇xψ̂

†
σ(x)

)
ψ̂σ(x)

]
. (4.6)

This control potential is inspired by the energy-damping term of the simple-growth pro-

jective Gross-Pitaevskii equation (SPGPE) (see Ref. [127]). The details of the SPGPE

are irrelevant to this thesis, and it is merely sufficient to note that the functional form is

known to efficiently remove energy from a single-spatial-mode BEC.

4.2 Why feedback works

We are interesting in minimising the system’s energy in the absence of feedback, and so

we will define its energy as:1

E0 =
〈
Ĥ0 + Û

〉
. (4.7)

Combining this definition with the Heisenberg equation of motion (2.24), we obtain:

dE0

dt
= − i

h̄

〈[
Ĥ0 + Û, Ĥ

]〉
=
i

h̄

〈[
Ĥ0 + Û + V̂C(t), Ĥ0 + Û

]〉
=
i

h̄

〈[
V̂C(t), Ĥ

]〉
=
i

h̄

〈∑
j

∫
dxψ̂†j(x)VC(x, t)ψ̂j(x), Ĥ

〉 .
(4.8)

Substituting the moment control (4.4) and using linearity, we obtain:

dE0

dt
=
i

h̄

∑
n

an(t)

〈∑
j

∫
dxψ̂†j(x)fn(x)ψ̂j(x), Ĥ

〉

= −
∑
n

an(t)
d 〈fn(x)〉

dt
.

(4.9)

It is immediately clear from Equation 4.9 that choosing an(t) = cn (d 〈fn(x)/dt〉) gives
dE0
dt ≤ 0, meaning that energy is non-increasing for this feedback scheme, and furthermore

that energy is strictly decreasing when there are oscillations in a controlled moment of

the system. Hence, this choice of control removes energy from the system, unless it is in

a ‘dark state’ with no fluctuations in the 〈fn(x)〉. The fluctuations d 〈fn(x)〉 /dt are the

1The quantity
〈
Ĥ0 + Û + V̂C(t)

〉
is not important, since we will switch off the feedback once we have

cooled the system, and minimising it does not minimise E0 in general. One could make this quantity
instantaneously very small by simply making V̂C(t) very negative, but this would achieve nothing.
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error signals of this control: they are a measurable quantity that, when nonzero, provide

information that can be used to cool the system.

A similar result can be shown for the energy-damping control. First, we note the continuity

equation [128]:

−∇x ·
〈
ĵ(x)

〉
=
d 〈ρ̂(x)〉
dt

=
d
〈∑

j ψ̂
†
j(x)ψ̂j(x)

〉
dt

. (4.10)

If we substitute the energy-damping control (4.5) into Equation 4.8, and apply linearity

and the continuity equation, we obtain:

dE0

dt
=
i

h̄

〈∑
j

∫
dxψ̂†j(x)

(
−kED∇x ·

〈
ĵ(x)

〉)
ψ̂j(x), Ĥ

〉

= kED
i

h̄

∫
dx

(
d 〈ρ̂(x)〉
dt

)∑
j

ψ̂†j(x)ψ̂(x), Ĥ


= −kED

∫
dx

(
d 〈ρ̂(x)〉
dt

)2

≤ 0.

(4.11)

Clearly, the energy is also non-increasing for this control, and is strictly decreasing as long

as there are fluctuations in the atomic density. The density fluctuations at each position

d 〈ρ̂(x)〉 /dt are the error signals of this control. Hence, the energy-damping control can

cool from the dark states of the moment control seen in Ref. [2], since it can in principle

cool any state with density fluctuations. In fact, for a single spatial mode with linear

evolution (such as a BEC or single atom) in a 1D harmonic trap, it can cool from any

state that is not an eigenstate of the Hamiltonian, since all superpositions have density

fluctuations (see Appendix A.5 for a proof), and thus it provably has no dark states in this

case. It appears that the energy-damping control resolves the limitations of the moment

control, which we will investigate in our simulations.

These two proofs do not rely upon (anti)commutation relations, and thus both controls

work for both Bose and Fermi gases. Furthermore, they do not rely upon any particu-

lar state approximation or mean-field theory. We will use the mean-field techniques of

Chapter 3 to numerically simulate these controls. However, since these proofs apply to

any atomic gas,2 these controls may be effective for more complex systems beyond the

scope of this thesis, including strongly correlated atomic gases, ‘hot’ Bose gases above the

critical temperature Tc, and atomic gases with attractive interactions.

4.3 Aims of numerical simulation

The remainder of this chapter is dedicated to numerically simulating the mean-field atomic

dynamics under the influence of these two controls. We will conduct extensive simulations

of Fermi gases using the FGPE (3.33), and a small number of BEC simulations using the

GPE (3.1) for comparison. We will use the XMDS2 open-source software package [98]

to numerically solve all PDEs in this chapter. All simulations will be conducted in an

2Assuming energy scales well below the first ionisation energy, such that we may safely consider each
atom to be a self-contained particle. It is not necessary to approximate scattering solely as s-wave, since
all orders of scattering are diagonal in the position basis, and thus commute with V̂C(t).
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effective 1D harmonically-trapped system (see Section 2.2.2), with trapping potential:

V0(x) =
1

2
mω2x2. (4.12)

Thus, all quantities in this chapter are given in the natural units of the harmonic oscillator

described in Section 2.3.1. Unless stated otherwise, all times are given in units of the

trapping period t0 = ω−1, all positions are given in units of x0 =
√
h̄/mω, all energies

are in units of h̄ω (the energy quantum of the harmonic oscillator), and all interaction

strengths are given in the dimensionless form Υ0 (3.36).

By numerically simulating feedback control in the absence of measurement backaction, we

seek to answer the following questions:

• Can the new ‘energy-damping control’ overcome the limitations of the ‘moment

control’ used in Refs. [2–4]?

• Do the results for BECs obtained in Haine et al. [2] generalise to Fermi gases?

• Are there any fundamental differences between cooling Bose gases and Fermi gases?

• Can we directly cool a large number of fermions effectively?

The higher-order Hermite-Gauss modes (2.27) are extremely oscillatory, and thus repre-

senting many Pauli-excluded fermions in x-space requires a prohibitively large number of

grid points. Consequently, most simulations in this chapter are conducted in the Hermite-

Gauss basis (using the exact quadrature methods of Section 2.3.3), to enable scaling up to

large particle number. The BEC simulations (Section 4.5.1) and the two-fermion model

(Section 4.6) are conducted in the position basis using Fourier methods (as discussed in

Section 2.3.2).

We will frequently compare the excitation energy per particle:

∆E

N
=
E0(t)− Eg

N
, (4.13)

where Eg is the ground state energy. The ground state energy of many non-interacting

atoms in a harmonic trap can be calculated analytically (Appendix A.4), and for inter-

acting systems, we calculate the ground state energy numerically using the methods of

Section 3.3. This quantity approaches zero as the system approaches its ground state, and

allows a fair comparison of systems with different N .

4.4 Simulation of the moment control

We are now equipped to numerically simulate feedback control of an atomic Fermi gas up to

a relatively large number of particles (∼400 atoms). We will initially consider application

of the moment control to a one-dimensional Fermi gas of 100 atoms (50 per spin state).

For our initial state, we use the ground-state for Υ0 = 1.0 (slightly widened compared to

the non-interacting case), displaced3 by 10x0. This is similar to the initial states used in

3This is slightly challenging to construct in the Hermite-Gauss basis: the quadrature points are not
evenly spaced, and the integral c′n =

∑
m cm

∫
dxφ∗n(x)φm(x+L) cannot accurately be computed for large

D with equally spaced grid points nor with Hermite-Gaussian quadrature. Instead, we use the Roothan
algorithm and add a term to the Fock operator such that the trap centre is shifted, causing the ground
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Figure 4.1: Oscillations in the first two moments of atomic density (a) 〈x̂〉 and (b)
〈
x̂2
〉

for a
non-interacting, two-component, 100-atom Fermi gas, across a range of control parameters.
Feedback is switched on at t/t0 = 1.0, denoted by the vertical black dashed line. Optimal
control occurs in the case of critical damping, and the scheme is slower for an underdamped
or overdamped control.

studies of BEC feedback control [2–4].

We will follow the example of Haine et al. [2] and consider linear and quadratic feedback

of the form:

VC(x, t) =

(
c1
d 〈x̂〉
dt

)
x+

(
c2
d
〈
x̂2
〉

dt

)
x2, (4.14)

corresponding to the choice f1(x) = x, f2(x) = x2, and fn(x) = 0 for n > 2 in Equation 4.4,

and the appropriate time-dependent coefficients to decrease energy. We now consider how

to select values of feedback strength c1 and c2 that optimise this control. By Ehrenfest’s

theorem [28] we find that:4

d2 〈x̂〉
dt2

= −
〈
∂V (x, t)

∂x

〉
= −

(
1 + 2c2

d
〈
x̂2
〉

dt

)
〈x〉 − c1

d 〈x̂〉
dt

. (4.15)

This is the equation of motion for a damped, coupled classical harmonic oscillator (un-

coupled when c2 = 0). In the uncoupled limit, setting c1 = 2.0 leads to critical damping,

causing the fastest removal of energy. One must choose parameters carefully: overdamped

and underdamped controls are slower at removing energy from the system.

A simple expression for the motion of
〈
x̂2
〉

does not exist [2], so we independently optimised

for c2 numerically, finding that c2 = 0.025 was close to critical damping. A comparison of

feedback strengths on each moment is presented in Figure 4.1.

Due to the coupling between the first and second moment (apparent in Equation 4.15), the

exact optimal combination of parameters may depend on the initial state. However, the

choice c1 = 2.0, c2 = 0.025 is in practice always close to optimal. It is highly effective and

rapidly removes all oscillations in the first and second moments of atomic density within a

few oscillator cycles. For this particular initial state (a displaced, slightly widened ground

state finder to converge to the desired initial state.
4See Sakurai [28] for a version of the proof that holds for a general many-body system.
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Figure 4.2: Successfully cooling a non-interacting, two-component, 100-atom Fermi gas
from a displaced, widened ground state using the moment control for c1 = 2.0, c2 = 0.025.
We have plotted (a) the excitation energy per particle, (b) the error signals in the first
two moments of atomic density and (c) the initial, final and ground state density profiles.
Feedback is switched on at t/t0 = 1.0, corresponding to the vertical black dotted line. The
system approaches the ground state (horizontal grey dotted line), and the error signals
vanish. All quantities are in the harmonic oscillator units of Section 2.3.1.

state), the moment control is successful in cooling close to the ground state (Figure 4.2).

However, this initial state is biased towards being easily cooled by the moment control,

since almost all of its energy corresponds to oscillations in 〈x̂〉 and
〈
x̂2
〉
. The moment

control fails to be effective for more general initial states. We constructed a ‘random’ initial

state for a 100-atom Fermi gas by randomly populating Hermite-Gauss modes, subject to

an exponential windowing and orthogonality constraints to ensure Pauli exclusion (Figure

4.3c). This initial state is spin-asymmetric. The moment control is only able to remove a

tiny fraction of the system’s energy: it hits a dark state with no oscillations in 〈x̂〉 or
〈
x̂2
〉
,

but significant oscillations in other moments of atomic density. Although we can use the

nonlinear interatomic scattering interactions to couple oscillations into the controllable

moments as Haine et al. did for BECs [2], this is still ineffective for fermions. We have

provided plots of the energy, error signals, initial state, and density profiles for an example

of the moment control failing to cool such an initial state in both the interacting (Υ0 = 1.0)

and non-interacting cases (Figure 4.3). To cool complicated initial states, we will need to

look beyond the moment control.
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Figure 4.3: Unsuccessful attempt at cooling a two-component, 100-atom Fermi gas from
a complicated initial state using the moment control for c1 = 2.0, c2 = 0.025 in both the
interacting (Υ0 = 1.0) and non-interacting cases. Feedback is switched on at t/t0 = 2.0.
We have plotted (a) the excitation energy per particle, with both y-axes on the same
scale, (b) the error signals in the first two moments of atomic density, (c) the initial mode
occupation in the energy eigenbasis and (d) the initial, final and ground state density
profiles. The control is only able to remove a miniscule fraction of the excitation energy,
and the error signals vanish even though the system is far from the ground state. With
interactions on, the cooling is better but still extremely ineffective. All quantities are in
the harmonic oscillator units of Section 2.3.1.
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Figure 4.4: Successfully cooling a BEC from a complicated initial state with the energy-
damping control across a range of interaction strengths. Feedback is switched on at t/t0 =
10.0. We have plotted (a) the excitation energy per particle and (b) the density profile of
the initial state and ground states at each simulated interaction strength. The cooling is
extremely efficient, rapidly bringing the system to its ground state within tens of oscillator
cycles. All quantities are in the harmonic oscillator units of Section 2.3.1.

4.5 Simulation of the energy-damping control

4.5.1 Energy-damping control of a BEC

As noted in Section 4.1, the energy-damping control is inspired by the energy-damping

term of the SPGPE [127], which is known to efficiently remove energy from a single-mode

BEC. Since it has not been presented in any published works, we simulated feedback

cooling with the energy-damping control for a BEC. We constructed a complicated initial

state by randomly populating the first 20 Hermite-Gauss modes, and found that it is

extremely efficient in cooling to the ground state for a wide range of interaction strengths

(Figure 4.4).

For a given initial state and parameter choice, there is an optimal value of feedback

strength kED which removes energy the fastest. This depends on the initial state, but

the control is not particularly sensitive to small variations in kED, and any value of kED

around the right order of magnitude works extremely well. As discussed in Section 3.1.2,

the dynamics depend only on the value of NU0. However, we can show analytically that

the optimal value of kED depends solely on N . Expanding our choice of potential in the

GPE (3.1) yields:

ih̄
dφ(x)

dt︸ ︷︷ ︸
∼
√
N

= − h̄2

2m

∂2φ(x)

∂x2︸ ︷︷ ︸
∼
√
N

+
1

2
mω2x2φ(x)︸ ︷︷ ︸
∼
√
N

+ kED

d
(
|φ(x)|2

)
dt

φ(x)︸ ︷︷ ︸
∼N
√
N

+U0 |φ(x)|2 φ(x)︸ ︷︷ ︸
∼NU0

√
N

. (4.16)

To preserve identical dynamics as we change the expected number of particles N , we would

require all terms of Equation 4.16 to scale by the exact same factor whenN is changed. The

time-derivative, kinetic and potential terms scale proportionally to
√
N , and as discussed in

Section 3.1.2, so does the interaction term as long as we also scale U0 proportionally to 1/N

(thus making NU0 the only free parameter). The control term, however, is proportional to
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N
√
N . Therefore, when changing particle number, we must also scale kED proportionally

to 1/N to obtain identical dynamics and thus preserve optimal control.

4.5.2 Energy-damping control of a Fermi gas

We now turn our attention to the Fermi gas, and investigate whether the energy-damping

control is actually successful in cooling it. Although the energy-damping control is ex-

tremely efficient in cooling a single spatial mode such as a BEC, there is no guarantee it

will be as effective for multiple spatial modes sharing the same control potential (such as

the many orthogonal wavefunctions χn,s(x) for a Fermi gas). Unlike the single-mode case,

the total particle density is now a sum over the densities of many individual particles, and

so fluctuations in density may cancel out.

Despite this, the energy-damping control is successful in cooling the initial state that

the moment control failed to cool (Figure 4.3c). As depicted in Figure 4.5, with no

scattering interactions it succeeds in removing a majority of the energy, but cools to a

dark state, with a non-negligible excitation energy above the ground state (∼5.47h̄ω per

particle). Although dark states do not exist in the case of a single spatial mode with

linear evolution, we have shown the existence of dark states in the many-fermion case.

Much like the moment control of a BEC in Ref. [2], the addition of scattering interactions

(Υ0 = 1.0) provides a coupling which perturbs the system from the dark state, allowing

cooling arbitrarily close to the ground state. However, this cooling is much slower. While

the energy-damping control was able to cool a BEC extremely close to its ground state

within 30 harmonic oscillator periods (Figure 4.4), an optimised energy-damping control

for a Fermi gas takes hundreds of harmonic oscillator cycles to achieve the same result.

Regardless, this suggests that interactions play an important role in cooling a Fermi gas

with the energy-damping control.

We are particularly interested in how the method’s effectiveness scales with particle num-

ber, so it is important to consider how the optimal value of kED should scale with N . As

discussed in Section 4.5.1, to maintain optimal control of a BEC, we require kED ∝ 1/N .

For a Fermi gas, however, U0 and N are separate parameters, and no such result can be

proven analytically. We must numerically investigate whether this scaling is appropriate.

We constructed a set of random orthogonal initial wavefunctions χn,σ(x) with similar

energies, and found that the energy-damping control had similar optimal values of kED for

each of these states (kED ∼ 15). We constructed simulations across a range of feedback

strengths kED and atom numbersN , sampling the initial single-particle wavefunctions from

this set (in a spin-asymmetric manner). Although the behaviour is more complicated, we

found that the scaling kED ∝ 1/N produced close to optimal feedback as we varied N ,

and so this scaling rule is a sensible choice for both fermionic and bosonic species. Figure

4.6 demonstrates this scaling for a Fermi gas.

Now that we are able to appropriately scale our feedback strength, we are equipped to

consider how the effectiveness of cooling depends on atom number N . We constructed two

sets of 200 orthogonal wavefunctions with similar energies and optimal values of kED by

randomly populating Hermite-Gauss modes. We simulated the energy-damping control

with near-optimal kED (scaled by kED ∝ 1/N), varying N and sampling our initial states

from these wavefunctions. For the multi-particle configurations, we did this for both no

interactions (Υ0 = 0) and moderate repulsive interactions (Υ0 = 1.0). The results are
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Figure 4.5: Successfully cooling a two-component, 100-atom Fermi gas from the compli-
cated initial state in Figure 4.3c using the energy-damping control for kED = 0.6. Feedback
is switched on at t/t0 = 50.0. With interactions turned off, the cooling removes significant
amounts of energy, and asymptotes to a dark state. With interactions on, the system con-
tinues to cool towards the ground state, suggesting that interactions play an important
role in energy-damping control of a Fermi gas. All quantities are in the harmonic oscillator
units of Section 2.3.1.

Figure 4.6: The excitation energy per particle after 10 trapping periods of a two-component
Fermi gas cooled by the energy-damping control, across a range of values of kED and N .
For each N , the ‘valley’ in the centre corresponds to near-optimal control, which has the
expected scaling kED ∝ 1/N . All quantities are in the harmonic oscillator units of Section
2.3.1.
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Figure 4.7: Cooling a two-component Fermi gas with the energy-damping control, for a
range of values of N and near-optimal kED (kED = 5/N). Feedback is active for the entire
simulation. Solid lines correspond to Υ0 = 0, and dashed lines correspond to Υ0 = 1.0.
The interacting case for N = 400 is not included due to difficulties in computing its ground
state energy.5 Cooling becomes significantly worse for just two atoms, and the cooling rate
continues to decrease with increasing N . All quantities are in the harmonic oscillator units
of Section 2.3.1.

depicted in Figure 4.7.

For one fermion, we have a single spatial mode, and the cooling works extremely well.

This is to be expected as it is mathematically identical to a non-interacting BEC, which

we previously noted was efficiently cooled by the energy-damping control (Section 4.5.1).

For this initial state, the energy settles into a steady exponential decay after about 10

harmonic oscillator cycles.

For just two particles, however, the cooling becomes significantly worse. In the non-

interacting case, it initially removes some energy, but cools to a dark state with a non-

negligible excitation energy above the ground state (∼2h̄ω per atom) - much like the

100-particle example in Figure 4.5. Crucially, as the number of particles increases, the

cooling becomes much slower, and at least in the case of 4 and 20 atoms, asymptotes at a

higher excitation energy per particle. Not only is it harder to cool multiple fermions, but

it becomes harder with increasing N . With interactions on, the cooling is slightly better,

but still extremely slow beyond a certain threshold.

4.6 The two-fermion model: why are fermions hard to cool?

We now attempt to understand why multi-component Fermi gases are hard to cool. The

dark states of the energy-damping control are those for which there are no fluctuations in

the total atomic density. Thus, it seems likely that in these dark states, the probability

density of each atom oscillates in a non-trivial way, but the oscillations cancel out when

5Hermite-Gaussian quadrature converges with double-precision floating point arithmetic up to D =
371. This ground state cannot be accurately represented without a larger basis set, and higher-precision
arithmetic is non-trivial to implement.
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Figure 4.8: Feedback cooling in the two-fermion model with the energy-damping control for
near-optimal control (kED = 5.0). The individual density fluctuations d|χσ(x, t)|2/dt and
total density fluctuations

∑
σ d|χσ(x, t)|2/dt are depicted for both (a) the non-interacting

case and (b) the interacting case (Υ0 = 2.0). In the non-interacting case, the atoms settle
into a total counter-oscillation, in which they have identical periodic density fluctuations
with a phase difference of π, causing the total fluctuations to cancel out despite the
significant individual motion. In the interacting case, the system is weakly perturbed
from counter-oscillation by the scattering-induced asymmetry, and so there are always
small density fluctuations through which the system may be cooled.

summed over all atoms. We say that the atoms are counter-oscillating. The essential

physics of this phenomenon should be captured in a two-atom model, with one atom in

each spin component. The FGPE (3.33) reduces to two coupled equations (corresponding

to σ =↑ and σ =↓):

ih̄
dχσ(x, t)

dt
=

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2 + kEDVC(x, t) + U0 |χ!σ(x, t)|2

)
χσ(x, t). (4.17)

The atoms are coupled both symetrically (both atoms experience the same control poten-

tial VC(x, t)) and asymetrically (each atom interacts with the density field of its counter-

part, and these density fields are necessarily non-identical due to Pauli exclusion).

We simulated the two-fermion model for both the non-interacting (Υ0 = 0) and moderately

interacting (Υ0 = 1.0) case, using initial wavefunctions from the ensemble in Section 4.5.2.

We plotted the density fluctuations for both cases, depicted in Figure 4.8.

The mechanism behind dark states is extremely clear. In the non-interacting case (Figure

4.8a), the individual densities |χ↑(x, t)|2 and |χ↓(x, t)|2 quickly settle from their compli-
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Figure 4.9: Feedback cooling in the two-fermion model with the energy-damping control
for near-optimal control (kED = 5.0). In the non-interacting case, the system asymptotes
to a dark state due to the total counter-oscillation of the atoms. In the interacting case, the
system is weakly perturbed from counter-oscillation by the scattering-induced asymmetry,
allowing the system to slowly further cool. All quantities are in the harmonic oscillator
units of Section 2.3.1.

cated initial states to a well-defined periodic oscillation that is antisymmetric about the

centre of the trap. However, the two atoms have a phase difference of π in their oscilla-

tions, and when summed together, cancel out. As the atoms are coupled in a symmetric

manner - they both see the same control and trapping potentials - there is no asymmetry

that can perturb them from this counter-oscillation, leading to a dark state that cannot be

cooled. In the interacting case (Figure 4.8b), there is a weak asymmetry due to the differ-

ence in density fields. This continuously perturbs the system from the counter-oscillating

state, ensuring that there are always total density fluctuations. The energy of the counter-

oscillation is therefore gradually coupled out - albeit very slowly. Figure 4.9 compares the

energy removal for the non-interacting and interacting cases: they have a nearly identical

initial behaviour as most of the energy is rapidly removed, but the non-interacting system

asymptotes to a dark state, while the interacting system slowly couples out energy via this

asymmetry.

4.7 Single-spin-component Fermi gases

It should be noted that the total counter-oscillation is unique to multi-component Fermi

gases. In the absence of feedback or interactions (e.g. for a dark state of the energy-

damping control), we may write the evolution of the single-particle wavefunctions χn,σ(x, t)

in the energy eigenbasis:

χn,σ(x, t) =
∑
m

cmφm(x)e−iωmt, (4.18)

where the φm(x) are the harmonic oscillator energy eigenfunctions, and the ωm = Em/h̄

are the characteristic rotation frequencies of each component. For the 1D trap we are
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Figure 4.10: Cooling a single-component Fermi gas with the energy-damping control, for
a range of values of N and near-optimal kED (kED = 5/N). Feedback is active for the
entire simulation. The cooling rate decreases with increasing N . All quantities are in the
harmonic oscillator units of Section 2.3.1.

considering, the ωm are nondegenerate. The oscillations can only cancel out totally if

multiple atoms oscillate at the same frequency with the same spatial structure, which

is only possible if we have more than one internal component. Thus, dark states of the

energy-damping control should not exist for a Fermi gas with a single spin component

as there will always be some total density fluctuations, and so energy must be strictly

decreasing according to Equation 4.11.

Discarding one spin component from the FGPE (3.33), we obtain a set of single-particle

Schrödinger equations, coupled by a shared control potential VC(x, t) (as there are no

s-wave interactions for fermions in the same spin component):

ih̄
dχn(x, t)

dt
=

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2 + VC(x, t)

)
χn(x, t). (4.19)

We simulated Equation 4.19 for near-optimal kED across a range of atom numbers N . The

results are depicted in Figure 4.10. Although the system does not asymptote to a dark

state, the cooling rate still decreases as we increase N , since density fluctuations may still

partially cancel out, and are more likely to for larger N .

However, spin-polarised ultracold Fermi gases have negligible interactions,6 and so are of

little use to directly produce analogue quantum simulators. We thus choose to focus on

two-component Fermi gases for the remainder of this thesis.

4.8 Conclusions from no-measurement simulations

Although we have not included measurement effects in the simulations presented in this

chapter, we have still produced significant insights into the challenges of cooling Fermi

6As discussed in Section 2.2.2, ultracold atoms are dominated by s-wave scattering, and fermions of the
same internal component experience no s-wave scattering.
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gases. Before we progress to a measurement-feedback model, we summarise and discuss

the results obtained in the no-measurement limit. We will review the four questions posed

in Section 4.3 in the context of our results.

4.8.1 Can the new ‘energy-damping control’ overcome the limitations
of the ‘moment control’?

Yes. The energy-damping control is unequivocally better than the moment control applied

to the first two moments of atomic density. Our simulations showed that the moment

control was ineffective in cooling complicated initial states, reaching ‘dark states’ with

high excitation energies above the ground state. The energy-damping control resolved

this limitation. It may, however, be more difficult to impliment experimentally: this is a

prospect we will discuss in Chapter 7.

4.8.2 Do the results for BECs obtained in Haine et al. generalise to
Fermi gases?

Mostly. We have succesfully implemented a fermionic version of the model in Haine

et al. [2]. We have demonstrated that many of their key results apply to Fermi gases:

we demonstrated that the moment control can be used to successfully cool simple initial

states, that feedback is optimised for certain parameters, that ‘dark states’ exist from

which the system cannot be cooled, and that interactions can be used to slowly perturb

the system from a dark state (for both controls). There are some differences, however,

which we will shortly address.

4.8.3 Are there any fundamental differences between cooling Bose gases
and Fermi gases?

Yes. Although near-optimal control seems to be preserved for both BECs and Fermi

gases by the scaling kED ∝ 1/N , fermions are harder to cool directly. A BEC has only one

spatial mode to control, but a Fermi gas of N atoms has N spatial modes, all competing for

the same control potential. Their individual density fluctuations may partially or totally

cancel out when looking at the total atom density. In the non-interacting case, we even

saw dark states of the energy-damping control, where atoms exactly counter-oscillated,

cancelling out the total density fluctuations. Although we showed that interactions could

slowly perturb the system from a counter-oscillating state, this coupling is slow.

4.8.4 Can we directly cool a large number of fermions effectively?

Possibly not for the energy-damping control. However, until we introduce measure-

ment effects, this question will remain open. It seems that in the no-measurement limit,

with interactions on, we can continue to remove energy indefinitely, as there will always

be some total density fluctuations. However, we saw that the cooling rate decreased as

we increased N . Once again, this is caused by density fluctuations cancelling out: at

each position, each atom contributes either a positive or negative value to the total den-

sity fluctuation, and the more atoms in the trap, the more likely that these will cancel

out on average. When we introduce measurement, our cooling rate will compete with a

measurement-induced heating rate: it seems likely that the slower cooling for many atoms

will be problematic. Nonetheless, it is impossible to ascertain how these rates actually

compete without simulating measurement effects, which we do in Chapter 6.



Chapter 5

Theory of quantum gases under

continuous measurement

In Chapter 4, we assumed perfect knowledge of the system’s state vector and ignored the

effects of measurement backaction, implementing a fermionic version of the model of Haine

et al. [2]. Although this provides useful insights into the control-specific aspects and best-

case performance of feedback cooling, it is unrealistic. In practice, we only have imperfect

knowledge of the system’s quantum state, and must continuously measure it to obtain this

knowledge. As our control schemes are based on density fluctuations, we will attempt to

continuously measure the system’s spatial density. This will cause measurement-induced

heating, as it will narrow the position-space wavefunction, leading to increased kinetic

energy. A realistic model of feedback control must account for the competition between

the rates of feedback cooling and measurement-induced heating.

This chapter contains both background theory and original work. In Section 5.1, we

introduce system-reservoir techniques from quantum optics to describe open quantum

systems. In Section 5.2, we will discuss a generalisation of these techniques suitable for

modelling active feedback control of a continuously-monitored system. In Section 5.3, we

summarise the model and results of Szigeti et al. [3, 4], who applied these techniques to

model a BEC under measurement. We will then develop a new fermionic version of this

model in Section 5.4, and show that the single-fermion limit agrees with the single-boson

limit of Ref. [3].

5.1 Open quantum systems

The quantum-mechanical methods used thus far describe closed systems that do not in-

teract with their environment (beyond the removal of energy due to a time-dependent

external potential). Almost all realistic quantum systems have non-negligible interactions

with their surrounding environment, but a full quantum model of the environment would

be computationally intractable. We refer to such systems that have non-negligible inter-

actions with their environment as open quantum systems. In this section, we present a

brief introduction to system-reservoir methods from quantum optics used to describe open

quantum systems. For a more comprehensive introduction, we refer the interested reader

to the treatment of Gardiner and Zoller [102].

57
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5.1.1 The density matrix

A classical ensemble of quantum states may be represented by a density matrix, given by

ρ̂ =
∑
j

Pj |ψj〉 〈ψj | , (5.1)

where the |ψj〉 can be any quantum states (not necessarily orthonormal or spanning), and

the Pj ∈ [0, 1] are their associated probabilities in the ensemble, and thus
∑

j Pj = 1.

When there is exactly one state (denoted |Ψ〉) in the ensemble, the associated probability

is 1, and the density matrix (5.1) reduces to:

ρ̂ = |Ψ〉 〈Ψ| . (5.2)

We call this a pure state, as opposed to a mixed state, which is an ensemble of multiple

states. Expectation values in a mixed state take the form of an ensemble average, defined

as1

〈Ô〉 = Tr
{
Ôρ̂
}

=
∑
j

Pj 〈ψj | Ô |ψj〉 , (5.3)

which clearly reduces to the usual definition for a pure state. In a closed quantum system,

density matrices have a Heisenberg-like unitary evolution:

dρ̂

dt
= − i

h̄

[
Ĥ, ρ̂

]
, (5.4)

where Ĥ is the system’s Hamiltonian. This can in principle be integrated to find ρ̂(t), and

thus the full dynamics of the state.

5.1.2 System-reservoir methods: Lindbladian master equations

Consider an open quantum system with Hilbert space HS , coupled to a reservoir with

Hilbert space HR. Suppose that the system and reservoir are initially separable, such that

ρ̂SR(0) = ρ̂S(0) ⊗ ρ̂R(0), where the subscript S denotes the system, R the reservoir, and

SR the full space formed by both. In principle, we could compute the full dynamics of

the system by finding the full Hamiltonian evolution:

dρ̂SR
dt

= − i
h̄

[
ĤSR, ρ̂SR

]
, (5.5)

then finding the reduced density matrix for the system as ρ̂S(t) = TrR {ρ̂SR(t)} [28].

However, this method is generally computationally intractable when HR hosts a system

large enough to act as a reservoir.

Fortunately, there are tractable methods to simplify this. Suppose the following approxi-

mations hold:

1. The system and reservoir are always separable, and the reservoir can be treated as

unchanging, such that ρ̂SR(t) = ρ̂S(t)⊗ ρ̂R(0). This is the Born approximation.

2. The system is Markovian: the dynamics are unaffected by the past history of the

1To verify the second equality, expand out the trace in a complete basis {|φn〉}, rearrange, and use the
completeness relation

∑
n |φn〉 〈φn| = 1̂.
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system and depend only on the current system state.2

3. Terms of the form TrR

{[
ĤSR(t), ρ̂SR(0)

]}
are zero.3

Under these approximations, we can derive a master equation in Lindblad form describing

the evolution of the system’s density matrix:

dρ̂S
dt

= − i
h̄

[
ĤS , ρ̂S

]
︸ ︷︷ ︸

Hamiltonian evolution

+
∑
j

D
[
L̂j

]
ρ̂S︸ ︷︷ ︸

Decoherence

, (5.6)

where D denotes the decoherence superoperator defined by:

D
[
L̂
]
ρ̂ ≡ L̂ρ̂L̂† − 1

2
L̂†L̂ρ̂− 1

2
ρ̂L̂†L̂. (5.7)

This formalism describes the system’s behaviour without also needing to account for the

state of the reservoir, since ρ̂S ∈ HS . The intractable system-reservoir problem can there-

fore be reduced to a problem barely any more complex than the dynamics of the system

in isolation. Inspecting Equation 5.6, we see that Lindbladian evolution is composed of

the usual unitary evolution according to the system’s Hamiltonian (the first term), and an

additional term describing decoherence. Loosely speaking, decoherence is the introduction

of classical uncertainty to a quantum system due to interactions with the environment.

As a quantum system decoheres, information contained in phase relations of the state is

lost, and a pure state will typically become mixed.

5.1.3 Decoherence demystified

We will now consider a simple example in order to gain an intuitive understanding of

decoherence. Consider an observable Ô with eigenbasis {|n〉}, such that Ô |On〉 = On |On〉.
We assume a nondegenerate spectrum, such that On 6= Om for n 6= m. Suppose our system

(described by density matrix ρ̂) is dominated by decoherence in this observable, such that

the master equation may be written:

dρ̂

dt
= D[Ô]ρ̂. (5.8)

Suppose that the system begins in a pure state ρ̂ = |Ψ〉 〈Ψ| of some superposition in the

eigenbasis of Ô:

|Ψ〉 =
∑
n

cn |On〉 . (5.9)

It can be shown (see Appendix A.6 for the derivation) that in the long-term limit, we have

ρ̂(t→∞) =
∑
n

|cn|2|On〉 〈On| . (5.10)

2Naively, this may seem equivalent to the Born approximation. However, they must be stated separately:
the Born approximation does not by itself exclude the possibility of the system being non-Markovian, but
it is a much stronger approximation on the reservoir.

3For many systems, these terms include exectation values of single field operators in the vacuum due
to bilinear couplings, and so this is often the case.
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Thus, over time, this decoherence process projects the pure state onto the eigenbasis of

Ô according to the Born rule (i.e. the classical probability for a state |On〉 is given by

|cn|2). The state becomes mixed, and the information contained in the phase relationships

between the cn is lost. This is why decoherence is often understood as a loss of informa-

tion from the system, making it the most significant barrier to reliably storing quantum

information for quantum computing [43].

5.2 Conditional quantum measurement theory

We require a dynamical theory of quantum measurement to describe experiments con-

ditioned on measurement outcomes, such as feedback control. Although the methods

described in Section 5.1 can describe decoherence, they are insufficient to describe quan-

tum measurement. It was a necessary assumption that the reservoir be completely passive

and time-invariant, and thus it cannot ‘react’ to the system. Furthermore, there is no

mechanism in the theory for wavefunction collapse. Further generalisations are required

in order to describe behaviour conditioned on measurement results. Broadly, these tech-

niques are known as conditional quantum measurement theory. We will only review the

essentials: for further details, the interested reader is directed to the leading texts on the

topic [129, 130].

We will model nondestructive continuous measurement processes. These are not fully

projective measurements that collapse a system into an eigenstate, but rather a weaker way

of gathering information about the system state. The system is coupled to a reservoir (such

as the optical field of an incident laser), which then undergoes projective measurement.

Due to this coupling, information from projective measurement of the reservoir can be used

to gain information about the system state, without fully collapsing it into an eigenstate.

The system can thus be continuously weakly measured without completely arresting its

dynamics (e.g. the quantum Zeno effect [131]).

5.2.1 Stochastic master equations

Quantum measurement is inherently probabilistic, and so to describe a system undergoing

measurement we follow the evolution of a conditional density matrix ρ̂c, representing the

system state conditioned on a particular measurement result. The average behaviour of the

system is recovered by taking a stochastic average over all possible trajectories (different

dynamical outcomes of the system, dependent on the history of random noise processes):

ρ̂ = E {ρ̂c} . (5.11)

The evolution of ρ̂c is described by a stochastic master equation in Itô form,4 given by

(c.f. Equation 5.6):

dρ̂c = − i
h̄

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Hamiltonian evolution

+
∑
j

D
[
L̂j

]
ρ̂cdt︸ ︷︷ ︸

Decoherence

+
∑
j

H
[
L̂j

]
ρ̂cdWj(t)︸ ︷︷ ︸

Innovations

, (5.12)

4The use of the Itô integral is a natural consequence of the formalism used for quantum stochastic
calculus: see Ref. [102] for details. We will later cast our mean-field equations to Stratonovich form.
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where Ĥ is the system’s Hamiltonian, the L̂j are Lindblad operators describing the mea-

surement process, and the dWj(t) are Wiener increments (see Section 2.4), which are

totally uncorrelated such that E {dWjdWk} = δjkdt. D is the usual Lindbladian decoher-

ence superoperator (Equation 5.7), and the innovations superoperator H is defined:

H
[
L̂
]
ρ̂ ≡ L̂ρ̂+ ρ̂L̂† − Tr

{(
L̂+ L̂†

)
ρ̂
}
ρ̂. (5.13)

The first term of Equation 5.12 describes the usual unitary evolution according to the

system’s evolution. The second term describes decoherence due to the measurement pro-

cess, in exactly the same manner as the Lindbladian evolution described in Section 5.1.

The third term is known as the innovations term, and represents new information gath-

ered about the state via the measurement process. Quantum measurement is inherently

probabilistic, and so it may depend on a number5 of Wiener processes6 dWj(t).

This is not a priori different to the theory of open quantum systems discussed in Section

5.1, and the difference is quite subtle. Suppose that Ĥ does not depend on the system

state. If we compute the average behaviour of the system by taking dρ̂ = E {dρ̂c} in

Equation 5.12, then we obtain:

dρ̂ = E {dρ̂c} = − i
h̄

[
Ĥ,E {ρ̂c}

]
dt+

∑
j

D
[
L̂j

]
E {ρ̂c} dt+

∑
j

H
[
L̂j

]
E {ρ̂cdWj(t)} ,

(5.14)

where we have used the fact that Ĥ and the L̂j do not vary between trajectories. We note

that ρ̂c is a nonanticipating function of t (see Section 4.2.4 of Ref. [97] for elaboration on

this property), and thus the noise and conditional state at time t are uncorrelated:

E {ρ̂cdWj(t)} = E {ρ̂c}E {dWj(t)} = 0, (5.15)

where we have used the fact that E {dWj(t)} = 0 in the last step. Therefore, the last term

of Equation 5.14 is zero, and identifying E {ρ̂c} = ρ̂, this reduces to:

dρ̂ = − i
h̄

[
Ĥ, ρ̂

]
dt+

∑
j

D
[
L̂j

]
ρ̂dt, (5.16)

which is exactly the standard Lindbladian evolution of an open quantum system (c.f.

Equation 5.6).

Thus, the stochastic master equation (5.12) represents an unravelling of the Lindbladian

dynamics, conditioned on particular measurement outcomes, but the average dynamics

are preserved. This may seem redundant: why would we compute many conditional

trajectories and average over them, if we could just compute the average behaviour with

standard Lindbladian evolution (5.6)? In most cases, this would be sufficient, but recall

from Chapter 4 that the control terms of a Hamiltonian for a feedback-controlled system

include expectation values in the system state. In Equation 5.14, we assumed that Ĥ did

5The index may be a continuous one, such as position, in which case the sum becomes an integral.
6It is also possible to describe a fully projective measurement onto a discrete basis with the same

techniques, which leads to a Poissonian noise process dN rather than a Wiener process. This is irrelevant
to this thesis, and thus not treated here: further details may be found in Chapter 3 of Ref. [130].
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not depend on the system state, allowing the simplification:

E
{[
Ĥ, ρ̂c

]}
= E

{
Ĥρ̂c

}
− E

{
ρ̂cĤ

}
= ĤE {ρ̂c} − E {ρ̂c} Ĥ =

[
Ĥ, ρ̂

]
. (5.17)

If Ĥ depends on the system state, then it varies between trajectories; Ĥ and ρ̂c are highly

correlated, and thus it is not true that E{Ĥρ̂c} = E{Ĥ}E{ρ̂c}. Therefore, there is no

way to describe the average behaviour without individually evolving each trajectory if our

system is feedback-controlled.

The upshot is that we require a conditional treatment that follows each trajectory if

we actively respond to the information gained from measurement, such as in feedback

control. It is extremely important to realise that these trajectories have physical meaning.

Each trajectory corresponds to a physical realisation of the experiment under continuous

measurement, conditioned on the measurement outcomes. We want to perform feedback

in real time based on measurement results, not ‘on average’. Thus, we need a description

that follows a single quantum state, not the ensemble average. The general strategy for

simulating a quantum system undergoing measurement and feedback control is as follows:

1. Construct an initial state ρ̂(t = 0). We wish to know the average state at some later

time t.

2. Create many7 copies of this initial state, and designate them ρ̂c.

3. Evolve each ρ̂c separately according to the stochastic master equation (Equation

5.12), using a pseudorandom number generator to generate the Wiener noise dWj(t),

with a different seed for each trajectory.

4. Each trajectory will evolve differently due to differing noise. After evolution, average

the observables of interest over all trajectories: this is our estimate of their average

value, with uncertainty calculated by taking the standard error in the mean over all

trajectories.

This enables us to calculate the average behaviour of a continuously monitored quantum

system, allowing us to model feedback control.

5.2.2 Filtering theory and system-filter separation

Ideally, solving the stochastic master equation (Equation 5.12) gives knowledge of the

current condition system state ρ̂c, which can be used to decide upon an effective control

potential at the next time step. However, we cannot simply use ρ̂c to determine our feed-

back without justification. ρ̂c describes the ‘true’ full quantum state of the system, yet it

is impossible to measure all information about a quantum state, and thus an experimenter

will never actually know the full state ρ̂c. Measurement can only give limited information

about the composition of a quantum state, and so we must account for this in our model.

We can model the effect of an experimenter’s imperfect knowledge of the underlying system

by simulating two coupled stochastic master equations for the system ρ̂c and the filter π̂c
[132, 133]. Both are density matrices; the system ρ̂c describes the true state of the system

(hidden from the experimenter), and evolves according to Equation 5.12. The filter π̂c

7For the purposes of this thesis, several hundred trajectories are sufficient for an excellent prediction of
the average behaviour.
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describes the experimenter’s best guess of the system state, given the measurement record.

The filter evolves by a similar stochastic master equation, of the form:

dπ̂c = − i
h̄

[
Ĥ, π̂c

]
dt+

∑
j

D
[
L̂j

]
π̂cdt+

∑
j

H
[
L̂j

]
π̂c

(
dỸj(t)−

〈
L̂j + L̂†j

〉
π̂c

)
. (5.18)

We define the measurement signal as:

dYj(t) =
〈
L̂j + L̂†j

〉
ρ̂c

+ dWj(t). (5.19)

The subscripts π̂c and ρ̂c indicate that the expectation values are calculated with respect to

the filter and the true system state, respectively. The filter is updated by measurements on

the system, whereas the filter is used to choose the control that influences both the system

and filter. All expectation values used in the control Hamiltonian are calculated with

respect to the filter, since this is the only information the experimenter has access to. The

same Hamiltonian is used in both Equations 5.12 and 5.18. In a realistic experiment, the

measurement signal dYj(t) will be corrupted by some classical noise channel8 dηj(t) (also

a Wiener process, assuming the noise is Gaussian), leading to the corrupted measurement

signal :

dỸj(t) = dYj(t) +
√
νdηj(t), (5.20)

which appears in the filter equation (5.18). Here, ν is the strength of the measurement

noise process. This process forms a continuous measurement-feedback loop, depicted in

Figure 5.1.

In the limit of no corrupting noise (ν = 0), if π̂c = ρ̂c, then the filter equation (5.18) reduces

exactly to the stochastic master equation of the system itself (5.12). We say that the

system and filter have converged if they are approximately the same, and unless severely

perturbed by interfering classical noise, they will stay converged due to this property.

Except in pathological cases, it is typically safe to assume that the system and filter will

eventually converge, and that the convergence thereafter will be fairly robust to realistic

experimental imperfections (see Ref. [132] for an in-depth example and discussion of the

robustness of system-filter separation). The convergence rate is determined by system

parameters: stronger measurement9 will result in faster convergence.

Most previous works [3, 4, 77] assumed best-case performance of measurement and ne-

glected the classical noise channel dηj(t). Due to the eventual convergence and robustness

to experimental imperfections, they assumed that the system and filter are initially con-

verged (and thus converged for all time). This leads to a single, uncoupled stochastic

master equation of the form in Equation 5.12, and it is common to refer to the filter and

quantum state interchangeably in this limit. This is likely a good assumption provided

that the measurement strength is not too weak. We will mostly follow this convention,

but will discuss the prospect of separately simulating the coupled equations of the system

(5.12) and filter (5.18) in Section 7.1.3, an approach known as a system-filter separation.

8This is equivalent to just having imperfect detection efficiency.
9We will give a concrete example of measurement ‘strength’ in Section 5.3.
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Figure 5.1: A diagrammatic representation of the measurement-feedback process. Mea-
surement signals dYj(t) are obtained, corresponding to (Hermitian) measurement of system
expectation values 〈L̂j〉ρ̂c corrupted by unavoidable white noise associated with random
wavefunction collapse. These signals may be further corrupted by classical noise channels
dηj(t) (e.g. due to technical noise sources), before being used by the experimenter to
update the filter π̂c. The filter is then used to calculate the control potential, which is
applied to the system ρ̂c. This forms a measurement-feedback loop.
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5.3 Previous work: BECs under continuous measurement

We will now summarise the measurement model introduced by Szigeti et al. [3] and

used in subsequent works [4, 77]. Consider a harmonically-trapped atomic gas, with

ωx � ωy = ωz, leading to tight confinement in the y and z directions,10 and thus a ‘cigar’

shape that is comparatively thin in the transverse directions. As discussed in Section

2.2.2, this leads to an effective 1D system. In the limit of no measurement (and assuming

perfect knowledge of the state), this reduces to the one-dimensional model used for the

simulations of Chapter 4.

Szigeti et al. considered the case of a Bose gas undergoing continuous density measure-

ments via phase-contrast imaging [52, 53]. This is a technique which non-destructively

images a quantum gas by shining coherent light highly detuned from resonance onto the

system, and using the scattered phase profile to reconstruct the density profile of the

condensate. Although this is minimally destructive, it still heats the system, causing de-

coherence. Since information about the atomic density is encoded in the phase of the

light, this information can be extracted via homodyne detection. This signal is then used

to update the filter. Knowledge of the observables from the filter is used to configure

the control potential VC(x, t) in a way that removes energy, as discussed extensively in

Chapter 4. A diagram of the system is provided in Figure 5.2

As discussed in Section 5.2.2, filter convergence is a reasonable assumption, and so they

derived a single filter equation. We will not follow the full filter derivation - it is an

extremely involved process that is well beyond the scope of this thesis. The full derivation

can be found in the Appendix of Ref. [3], and leads to the stochastic master equation:

dρ̂c = − i
h̄

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Unitary evolution

+α

∫
dxD

[
M̂(x)

]
ρ̂cdt︸ ︷︷ ︸

Decoherence

+
√
α

∫
dxH

[
M̂(x)

]
ρ̂cdW (x, t)︸ ︷︷ ︸

Innovations

. (5.21)

This contains the full quantum field theory of the BEC: no approximations are made yet

on ρ̂c. It is of the same form discussed in Section 5.2. It consists of unitary evolution

according to the system’s Hamiltonian Ĥ, (the usual cold-atom Hamiltonian (2.22) in

the bosonic, single-spin-component case, plus control terms), decoherence in the quantum

field due to application of the laser, and updates to the filter due to new knowledge from

measurement (innovations). The ‘measurement strength’ α is factored out of the Lindblad

operator to emphasise its role as the driving strength of the measurement backaction. It

is given by:11

α =
3

4

Γsp

ωx

Ω2

∆2
, (5.22)

where Γsp is the rate at which a single atom spontaneously emits into the environment,12

Ω is the Rabi frequency and ∆ is the detuning of the laser. In principle, this could be

controlled arbitrarily, as the Rabi frequency Ω increases with laser intensity. A larger α

10A more general model with tight- confinement only in the z direction, leading to a ‘pancake’ shape, is
discussed in Ref. [3] but has never been simulated.

11Szigeti et al. made minor modifications to the parameter definitions between the initial derivation of
the filter equation [3] and the subsequent Hartree-Fock mean-field study [4]. We present the conventions of
the latter in this section, but have slightly altered some notation for consistency with more modern work.

12Our model does not explicitly include the effect of spontaneous emission. Spontaneous emission cannot
be entirely avoided, but the effect has been shown to be negigible in carefully contructed experiments based
on dispersive imaging [54].
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Figure 5.2: A diagram of the measurement-feedback scheme studied for BECs in Refs. [3,
4, 77] and for Fermi gases in this thesis. A harmonically-trapped atomic gas is illuminated
with laser light highly detuned from resonance, which is scattered and subjected to a
homodyne measurement. This measurement signal is used to update the filter ρ̂c. Feedback
control is then applied via an additional control potential, the form of which is calculated
based on expectation values in the filter. This forms a continuous measurement-feedback
loop (see Figure 5.1).
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gathers more information about the state through the innovations term, but also results

in greater heating through the decoherence term. Both terms are a direct result of the

measurement, with ‘measurement operator’:

M̂(x) =

∫
dx′ψ̂†(x′)K(x− x′)ψ̂(x′), (5.23)

where the measurement kernel K(x) is defined (in the harmonic oscillator units of Section

2.3.1) as:

K(x) =

√
η

2πη⊥

∫
dk exp

(
− 1

16

(
η⊥
η2

)
k4

)
eikx. (5.24)

We write the wavenumber of the incoming laser light as k0 = 2π/λ, where λ is the

wavelength of the laser. The Lamb-Dicke parameter is defined in the x direction as η =

k0x0 and in the transverse directions as η⊥ = k0R⊥, for condensate width R⊥ in the

transverse directions. The measurement M̂(x) consists of a density operator convolved

with the kernel K(x): therefore, the kernel is a point-spread function which ‘blurs’ the

density measurement, making it imperfect (as perfect measurement of density is physically

impossible). The width of the kernel thus gives the measurement resolution, and so a larger

η leads to more precise measurement.

The stochastic master equation (5.21) is an equation of motion for a full-field quantum

model. For the reasons outlined in Section 1.1, it is computationally intractable to inte-

grate directly. The techniques of mean-field theory are therefore required to numerically

simulate it for multiple particles.13 Szigeti et al. proposed the use of mean-field theory

in their original paper [3], but found that the use of a coherent-state approximation (see

Section 3.1.1) led to numerically unstable equations, since a coherent state is a Poissonian

distribution of particle numbers, and a density-like measurement projects the system to-

wards a state of well-defined number. They thus conducted all their simulations in the

single-particle limit (which we will discuss in Section 5.5).

In a subsequent paper [4], Szigeti et al. used the Fock state approximation discussed

in Section 3.1.3 to derive mean-field dynamics for a strongly interacting BEC. Although

the coherent state and number state approximations give the same unitary dynamics (up

to the approximation N u N − 1), the form of the measurement terms differs greatly

between the two. This resulted in a tractable and numerically stable mean-field theory

with measurement. In the following section, we pursue a fermionic generalisation of this

approach.

5.4 Fermions under measurement

5.4.1 Full-field quantum model

We now generalise the results of Szigeti et al. [3, 4] to fermions, using the mean-field

approach used to derive the unitary dynamics of an atomic Fermi gas in Section 3.2 and

simulated in Chapter 4. We now consider fermionic atoms subjected to the measurement

process discussed in Section 5.3 and depicted in Figure 5.2. Intuitively, we expect a density-

like measurement of fermionic atoms to be similar to that of bosonic atoms. This is indeed

13In the bosonic case, it is actually possible to include higher-order quantum field effects with the
number-phase Wigner (NPW) method [78, 79], an approach used by Hush et al. [77]. This, however, is
beyond the scope of this thesis, particularly as a fermionic generalisation of the method does not yet exist.
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the case, which can be shown by a straightforward (but lengthy) minor modification14 to

the full quantum filter derivation of Szigeti et al. [3]. This leads to the full-field Itô

stochastic master equation:

dρ̂c = − i
h̄

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Unitary evolution

+α

∫
dxD

[
M̂(x)

]
ρ̂cdt︸ ︷︷ ︸

Decoherence

+
√
α

∫
dxH

[
M̂(x)

]
ρ̂cdW (x, t)︸ ︷︷ ︸

Innovations

, (5.25)

where the filter ρ̂c now describes a fermionic field, and the measurement operator M̂(x)

now accounts for measurement of multiple spin components:

M̂(x) =
∑
σ

∫
dx′ψ̂†σ(x′)Kr(x− x′)ψ̂σ(x′). (5.26)

As before, Kr(x) is the measurement kernel, a function which is convolved with the spa-

tial density operator in order to ‘blur’ it, representing imperfect measurement. We will

once again use the harmonic oscillator units of Section 2.3.1, but use a different kernel

normalisation to Szigeti et al. (c.f. Equation 5.24):

Kr(x) =
1√
2π

∫
dk

(√
r

2Γ(5/4)
e(−rk)4/2

)
eikx, (5.27)

where Γ(s) is the gamma function, and we now parameterise measurement precision by

the measurement resolution r:

r ≡
√
R⊥λ/π

2x0
, (5.28)

where R⊥ is the transverse width of the Fermi gas, λ is the wavelength of the measurement

laser, and x0 =
√

h̄
mωx

is the natural length scale in the x direction. Equation 5.28 is in

fact the smallest possible measurement resolution - it is the diffraction limit, and r may be

effectively varied to longer length scales by controlling imperfections in the measurement

scheme. This normalisation convention ensures that
∫
dx|Kr(x)|2= 1, and thus we may

vary the measurement resolution independently of the measurement strength. We will use

this in Section 6.1 to re-investigate the parameter effects of Szigeti et al. [3] that were

affected by this inability to vary measurement strength and resolution individually. As a

consequence of this normalisation, there is a slight rescaling of the measurement strength

α:

α ≡ 3Γ(5/4)

16
√

2π4

(
λ

R⊥

)3/2 Γsp
ωx

Ω2

∆2
, (5.29)

where as before, Γsp is the rate at which a single atom spontaneously emits into the

environment, Ω is the Rabi frequency and ∆ is the detuning of the laser. This is purely a

rescaling of parameters, and so the measurement strength α has the same interpretation as

before: a larger α gathers more information about the system state, but also heats it more.

It can essentially be arbitrarily controlled by varying the intensity of the measurement

laser. The kernel in this form has some useful properties that we use in Section 5.4.2. It

14The modified derivation differs only in the (anti)commutation relations of the atomic field, which is
of little consequence as most operator algebra in the derivation is for the optical field, which is bosonic in
either case. It has been verified [134] to lead to a stochastic master equation of the same form as Equation
5.21.
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is even and real, and thus M̂(x) is Hermitian. Furthermore, we have:∫
dyKr(x− y)Kr(x

′ − y) =

√
πr

21/4Γ(5/4)
K21/4r(x− x

′). (5.30)

We will also have to evaluate the kernel at the origin:

Kr(0) =
1√
2π

∫
dk

(√
r

2Γ(5/4)
e(−rk)4/2

)
= 21/4

√
Γ(5/4)

πr
. (5.31)

5.4.2 Mean-field theory: the stochastic FGPE

The fermionic stochastic master equation (5.25) is a full-field quantum model. Once

again, for the reasons outlined in Section 1.1, it is computationally intractable to directly

integrate. We therefore use a mean-field approach in the vein of Section 3.2, and derive a

stochastic version of the FGPE (3.33): that is, the usual mean-field Hamiltonian evolution

captured in the FGPE, plus the appropriate stochastic and deterministic terms to account

for the probabilistic quantum measurement. This is unfortunately a more involved process

than the BEC mean-field theory of Szigeti et al. [4] due to the N occupied modes for N

fermions, but is nonetheless tractable. The density-like measurement of this model will

approximately project the system into a state of well-defined number [4]. Thus, we once

again approximate our system’s quantum state by a Fock state (number state):

|Ψ〉 =
∏
n∈S

ĉ†n,↑ĉ
†
n,↓ |0〉 , (5.32)

where the {ĉ†n,σ} are the creation operators for some arbitrary single-particle basis with

principal index n and spin index σ, and S is some set of distinct principal indices in this

basis. We consider a pure state:

ρ̂c = |Ψ〉 〈Ψ| . (5.33)

Once again, we seek an equation of motion for the two-point correlation function:

mσ(x1, x2) =
〈
ψ̂†σ(x1)ψ̂σ(x2)

〉
=
∑
n∈S

χ∗n,σ(x1)χn,σ(x2). (5.34)

Noting that dmσ(x1, x2) = Tr
{
ψ̂†σ(x1)ψ̂σ(x2)dρ̂c

}
and substituting the dimensionless form

of the stochastic master equation (5.25), we obtain:

dmσ(x1, x2) = −iTr
{
ψ̂†σ(x1)ψ̂σ(x2)

[
Ĥ, ρ̂c

]}
dt+α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)D

[
M̂(x)

]
ρ̂c

}
dt

+
√
α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)H

[
M̂(x)

]
ρ̂c

}
dW (x, t). (5.35)
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As we are considering a pure state, the unitary evolution term of Equation 5.35 is exactly

what we derived in Section 3.2. For convenience, we write it as:

− iTr
{
ψ̂†σ(x1)ψ̂σ(x2)

[
Ĥ, ρ̂c

]}
= −i

[∑
n∈S

(
χ∗n,σ(x1)H̃a(x2)χn,σ(x2)

−χn,σ(x2)H̃a(x1)χ∗n,σ(x1)
)

+U0

∑
n,m∈S

χ∗n,σ(x1)χn,σ(x2)
(
|χm,!σ(x2)|2 − |χm,!σ(x1)|2

)]
dt,

(5.36)

where H̃a(x) = − h̄2

2m
∂2

∂x2
+V0(x)+VC(x, t) is the position-space representation of the single-

particle terms in the Hamiltonian. We now consider the decoherence term of Equation

5.35. Expanding out the decoherence superoperator D (5.7), using linearity of trace and

identifying expectation values, normally ordering the field operators using anticommuta-

tion relations, and simplifying, we obtain:

α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)D

[
M̂(x)

]
ρ̂c

}
dt = α

∫
dx
(
Kr(x− x1)Kr(x− x2)

− 1

2
Kr(x− x1)Kr(x− x1)− 1

2
Kr(x− x2)Kr(x− x2)Kr(x− x2)

)〈
ψ̂†s(x1)ψ̂s(x2)

〉
dt.

(5.37)

Applying the kernel product property (5.30), evaluating the kernel at the origin (5.31)

expanding the expectation value in the Hartree-Fock approximation, and simplifying, this

becomes:

α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)D

[
M̂(x)

]
ρ̂c

}
dt = α

√
πr

21/4Γ(5/4)

(
K21/4r(x1 − x2)− 23/8π

)
·

(∑
n∈S

χ∗n,σ(x1)χn,σ(x2)

)
dt. (5.38)

We now compute the innovations term of Equation 5.35. Expanding the innovations

superoperator (5.13) and noting that M̂(x) is Hermitian, we have:

H
[
M̂(x)

]
ρ̂c = M̂(x)ρ̂c + ρ̂cM̂(x)− 2

〈
M̂(x)

〉
ρ̂c. (5.39)

Inserting Equation 5.39 into the innovations term, using linearity of trace, identifying

expectation values, normally ordering with anticommutation relations and simplifying, we

obtain:

√
α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)H

[
M̂(x)

]
ρ̂c

}
dW (x, t)

=
√
α
∑
σ′

∫
dx
[

(Kr(x− x1) +Kr(x− x2))
〈
ψ̂†σ(x1)ψ̂σ(x2)

〉
− 2

∫
dyKr(x− y)

(〈
ψ̂†σ′(y)ψ̂σ′(y)

〉〈
ψ̂†σ(x1)ψ̂σ(x2)

〉
+
〈
ψ̂†σ′(y)ψ̂†σ(x1)ψ̂σ′(y)ψ̂σ(x2)

〉)]
dW (x, t). (5.40)
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Applying Wick’s Theorem (see Appendix B) to the quartic term, expanding out quadratic

expectation values in the Hartree-Fock approximation and simplifying:

√
α

∫
dxTr

{
ψ̂†σ(x1)ψ̂σ(x2)H

[
M̂(x)

]
ρ̂c

}
dW (x, t) =

√
α

∫
dx
(

(Kr(x− x1) +Kr(x− x2))

·
∑
n

χ∗n,σ(x1)χn,σ(x2)− 2

∫
dyK(x− y)

∑
nm

χ∗n,σ(y)χ∗m,σ(x1)χn,σ(x2)χm,σ(y)
)
. (5.41)

Substituting Equations 5.36, 5.38 and 5.41 into Equation 5.35, our equation of motion for

the two-point correlation function is:

dmσ(x1, x2) = −i

[∑
n∈S

(
χ∗n,σ(x1)H̃a(x2)χn,σ(x2)− χn,σ(x2)H̃a(x1)χ∗n,σ(x1)

)
+ U0

∑
n,m∈S

χ∗n,σ(x1)χn,σ(x2)
(
|χm,!σ(x2)|2 − |χm,!σ(x1)|2

)]
dt

+ α

√
πr

21/4Γ(5/4)

(
K21/4r(x1 − x2)− 23/8π

)(∑
n∈S

χ∗n,σ(x1)χn,σ(x2)

)
dt

+
√
α

∫
dx
(

(Kr(x− x1) +Kr(x− x2))
∑
n∈S

χ∗n,σ(x1)χn,σ(x2)

− 2

∫
dyK(x− y)

∑
n,m∈S

χ∗n,σ(y)χ∗m,σ(x1)χn,σ(x2)χm,σ(y)
)
. (5.42)

By the Itô product rule (2.44) and the Hartree-Fock approximation on mσ(x1, x2) (3.17),

this must match the form:

dmσ(x1, x2) =
∑
n∈S

(
χ∗n,σ(x1)dχn,σ(x2) + dχ∗n,σ(x1)χn,σ(x2) + dχ∗n,σ(x1)dχn,σ(x2)

)
,

(5.43)

We will attempt to find an ansatz for dχn,σ(x) such that Equations 5.42 and 5.43 are

consistent. Finding such an ansatz is difficult without a systematic approach: we will

first constrain its form to aid in this process. It must have deterministic terms (that may

depend on particle index and spin) and purely local stochastic terms. Thus, the ansatz

must be of the form:

dχn,σ(x) = An,σ(x)dt+

∫
dyBn,σ(x, y)dW (y, t), (5.44)

where the An,σ(x) and Bn,σ(x, y) are functions of the χn,σ(x, t) and are yet to be de-

termined. Substituting Equation 5.44 into Equation 5.43, applying the properties of the

Wiener increment dt2 = 0, dW (y, t)dt = 0, and dW (y1, t)dW (y2, t) = δ(y1 − y2)dt, and

simplifying, we find:

dmσ(x1, x2) =
∑
n∈S

[
χ∗n,s(x1)An,σ(x2)dt+

∫
dyB∗n,σ(x1, y)Bn,σ(x2, y)dt

+

∫
dy
(
χ∗n,σ(x1)Bn,σ(x2, y) +B∗n,σ(x1, y)χn,σ(x2)

)
dW (y, t)

]
. (5.45)
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Comparing Equation 5.45 to Equation 5.42 allows us to determine15 the necessary form

of An,σ(x) and Bn,σ(x, y). The correct expressions are:

An,σ(x) = −iH̃(x)χn,σ(x)− 2−5/8παχn,σ(x)

+ α

√
πr

21/4Γ(5/4)

(∑
a∈S

∫
dzK21/4r(x− z)χ

∗
a,σ(z)χa,σ(x)χn,σ(z)

− 1

2

∑
a,b∈S

∫
dz1

∫
dz2K21/4r(z1 − z2)χ∗a,σ(z1)χ∗b,σ(z2)χn,σ(z1)χb,σ(x)χa,σ(z2)

)
(5.46)

Bn,σ(x, y) =
√
α

(
Kr(y − x)χn,σ(x)−

∑
a∈S

∫
dzK(y − z)χ∗a,σ(z)χa,σ(x)χn,σ(z)

)
. (5.47)

One can easily verify that this choice is correct by substituting Equations 5.46 and 5.47 into

Equation 5.45, and observing that this yields Equation 5.42. Thus, we have successfully

found the Itô SDE describing the mean-field evolution.

For simulation purposes, it is convenient to cast our SDE to Stratonovich form (as the

XMDS2 package [98] is significantly more efficient when performing the Stratonovich in-

tegral). The Stratonovich SDE for dχn,σ(x) can be written:

dχn,s(x) = (An,σ(x) + cn,σ(x)) dt+

∫
dyBn,σ(x, y) ◦ dW (y, t), (5.48)

where the ◦dW (y, t) now indicates that the SDE should be integrated using the

Stratonovich integral, not the Itô integral, and cn,σ(x) is the Stratonovich correction,

given by (c.f. Equation 2.47):

cn,σ(x) = −1

2

∑
m∈S,σ′

∫
dy

∫
dx′Bm,σ′(x

′, y)∂χm,σ′ (x′,t)Bn,σ(x, y)

− 1

2

∑
m∈S,σ′

∫
dy

∫
dx′B∗m,σ′(x

′, y)∂χ∗
m,σ′ (x

′,t)Bn,σ(x, y). (5.49)

This can be computed by substituting Equations 5.46 and 5.47 into Equation 5.49, sum-

ming and integrating over all delta functions, combining identical terms, using the kernel

product property (5.30), and applying the identity:∑
m∈S

∫
dzχ∗m,σ(z)χm,σ(x)χn,σ(z) =

∑
m∈S

δmnχn,σ(x) = χn,σ(x). (5.50)

15We are able to match the necessary form of Bn,σ(x, y) by comparing the stochastic terms. Then, the
deterministic term in Equation 5.45 can be expanded out, and the necessary form of the An,σ(x) can be
determined to offset this and yield the correct expression.
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Thus, the Stratonovich correction is:

cn,σ(x) = −2−5/8παχn,σ(x)+α

√
πr

21/4Γ(5/4)

(∑
m∈S

∫
dzK21/4r(x−z)χ

∗
m,σ(z)χm,σ(x)χn,σ(z)

− 3

2

∑
a,b∈S

∫
dz1

∫
dz2K21/4r(z1 − z2)χ∗b,σ(z2)χ∗a,σ(z1)χb,σ(x)χa,σ(z2)χn,σ(z1)

)
. (5.51)

Substituting Equations 5.46, 5.47 and 5.51 into Equation 5.48 and simplifying, the mean-

field Stratonovich SDE for the wavefunctions χn,σ(x) is:

dχn,σ(x) =

[
−iH̃(x)χn,σ(x)+2α

√
πr

21/4Γ(5/4)

(∑
a∈S

∫
dzK21/4r(x−z)χ

∗
a,σ(z)χa,σ(x)χn,σ(z)

−
∑
a,b∈S

∫
dz1

∫
dz2K21/4r(z1 − z2)χ∗a,σ(z1)χ∗b,σ(z2)χb,σ(x)χa,σ(z2)χn,σ(z1)

)]
dt

+
√
α

∫
dy

(
Kr(y − x)χn,σ(x)−

∑
a∈S

∫
dzKr(y − z)χ∗a,σ(z)χa,σ(x)χn,σ(z)

)
◦ dW (y, t).

(5.52)

We will henceforth refer to Equation 5.52 as the stochastic fermion GPE (SFGPE). We

have successfully reduced the full-field quantum model of fermions under measurement

(5.25) to a much simpler problem with the dimensionality of the FGPE (3.33), since we

need only follow the evolution of N single-particle wavefunctions. This is still more compli-

cated than the FGPE: each trajectory is an FGPE driven by white noise and decoherence,

but we must average over hundreds of these trajectories for a good estimate of the system’s

average behaviour. Nonetheless, we may still tractably study the system for a moderate

number of particles by following the procedure described in Section 5.2.1. It is once again

important to realise that each of these individual trajectories has real physical meaning,

and is the actual outcome of the system for particular measurement results.

5.5 The single-particle limit

Much of the essential physics of feedback control - in particular, parameter dependence

of measurement backaction effects - can be seen in the single-particle limit. This also

provides an important comparison to previous works in feedback cooling of bosonic species.

Exchange symmetry has no effect for a single particle, and so we should expect the single-

particle limit of the fermionic model to agree with the single-particle limit of the bosonic

model, which was derived and studied in Ref. [3]. In the limit of a single particle, our

system is described by a single wavefunction χ(x). Thus, the SFGPE (5.52) reduces to

the stochastic Schrödinger equation:

dχ(x) =
[
−iH̃a(x)χ(x) + 2α

(
m(x)− m̄

)
χ(x)

]
dt+

√
α
[
ϑ(x)− ϑ̄

]
χ(x), (5.53)
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where:

m(x) =

√
πr

21/4Γ(5/4)

∫
dzK21/4r(x− z)|χ(z)|2,

m̄ =

∫
dzm(z)|χ(z)|2,

ϑ(x) =

∫
dyKr(y − x) ◦ dW (y, t),

ϑ̄ =

∫
dzϑ(z)|χ(z)|2.

(5.54)

As we would expect, this is the same as the single-particle limit of the bosonic model (see

Ref. [3], or set N = 1 in the mean-field theory of Ref. [4]). There is a minor difference

in some constants due to the different normalisation of the measurement kernel, but this

is exactly what we would obtain by using our kernel normalisation (5.27) in the model of

Ref. [3].

We now have the tools to simulate a single particle under measurement. Although we used

mean-field theory to derive the SFGPE (5.52), the assumption of well-defined number is

exactly true for a single particle. Thus, the stochastic Schrödinger equation (5.53) is exact:

there is no approximation made to simplify the quantum field.16

5.6 Summary of measurement theory

In this chapter, we have introduced the theory to include measurement effects in quantum

dynamics, and used this to derive the tools to simulate continuously measured fermions. In

Section 5.1, we reviewed the fundamentals of system-reservoir methods for open quantum

systems, introducing Lindbladian evolution and decoherence processes. In Section 5.2,

we discussed generalisations to these techniques that allowed us to model open quantum

systems for which the Hamiltonian was correlated with the quantum state (such as a

feedback-controlled system in which measurement results are used to make decisions about

how to control the system). In Section 5.3, we summarised the model and results of Szigeti

et al. [3, 4], introducing phase-contrast imaging to continuously monitor the density of a

Bose or Fermi gas. In Section 5.4, we introduced a fermionic version of this model, and

derived a multimode fermionic equivalent to the mean-field theory of BECs in Ref. [4],

culminating in the SFGPE (5.52), which is of much higher dimension than the mean-

field theory of Szigeti et al., since it requires N wavefunctions for N fermions. Finally,

in Section 5.5, we showed how a stochastic Schrödinger equation (5.53) emerges as the

single-fermion limit of the SFGPE, and noted that this agrees with the single-boson limit

studied in Ref. [3].

16We have assumed system-filter convergence, but this is unrelated to the dimensionality of the system.



Chapter 6

Feedback cooling with

measurement effects

In Chapter 4, we considered a simple model of feedback control of fermions which neglected

the effect of measurement backaction. Using this model, we showed that an atomic Fermi

gas can be feedback cooled arbitrarily close to its ground state using the energy-damping

control, given sufficient time. However, the cooling rates became extremely slow closer to

the ground state, and furthermore, were slower for more particles. In a realistic model

of feedback control, these cooling rates must compete with measurement-induced heating

rates, casting doubt on the best-case results obtained in Chapter 4. In this chapter, we

use the tools developed in Chapter 5 to simulate feedback control of an atomic Fermi gas

undergoing a continuous density measurement, providing a more realistic assessment of

the capabilities and limitations of our feedback control schemes.

In Section 6.1 we simulate the stochastic Schrödinger equation (5.53) to understand the

dynamics (Section 6.1.3) and parameter dependence (Sections 6.1.4 and 6.1.5) of a single

fermion undergoing measurement and feedback control. In Section 6.2 we extend these re-

sults to many fermions by simulating the SFGPE (5.52), showing that the energy-damping

control scales poorly for a large number of atoms (Section 6.2.2) and discussing the effect

of interatomic scattering interactions (Section 6.2.3).

All simulations in this chapter were implemented using the XMDS2 open-source software

package [98] and executed on the Raijin supercomputer at the National Computational

Infrastructure. All quantities in this chapter are given in the harmonic oscillator units of

Section 2.3.1.

6.1 Feedback control of a single fermion with measurement

effects

The limit of a single atom contains much of the essential physics of feedback control. Recall

that in Section 5.5, we derived the (Stratonovich) stochastic Schrödinger equation for the

conditional state of a single fermion undergoing density measurement via phase-contrast

imaging:

dχ(x) =
[
−iH̃a(x)χ(x) + 2α

(
m(x)− m̄

)
χ(x)

]
dt+

√
α
[
ϑ(x)− ϑ̄

]
χ(x), (6.1)
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where:

m(x) =

√
πr

21/4Γ(5/4)

∫
dzK21/4r(x− z)|χ(z)|2,

m̄ =

∫
dzm(z)|χ(z)|2,

ϑ(x) =

∫
dyKr(y − x) ◦ dW (y, t),

ϑ̄ =

∫
dzϑ(z)|χ(z)|2.

(6.2)

The system dynamics will depend on the measurement strength α, the measurement res-

olution r, and the feedback parameters (kED for the energy-damping control and cj for

the moment control). These all alter the effectiveness of feedback control. We are lim-

ited in the number of simulations we can conduct for many particles with the SFGPE

(5.52), since it is O(N3) for fixed dimension and must also be averaged over hundreds of

trajectories. Thus, the single-atom limit is an opportunity to tractably study how mea-

surement effects depend on system parameters. As noted in Section 5.5, the single-boson

and single-fermion limit are identical, and so this limit is an important link between the

present study of Fermi gases and previous studies of BECs under the same measurement

scheme [3, 4, 77]. It is also exact and does not rely upon any state approximations or

mean-field theories, and is thus an important test case when considering the validity of

our approximations.

The single-atom limit was previously simulated by Szigeti et al. [3], but there are good

reasons to investigate it further in this thesis. As noted in Section 5.4.1, the kernel

normalisation used by Szigeti et al. meant that measurement resolution could not be varied

independently of measurement strength, and so their conclusions regarding the effect of

measurement resolution are not necessarily correct. Furthermore, they only simulated

the moment control, and so it is useful to gain an understanding of the comparative

performance of the energy-damping and moment controls when measurement effects are

accounted for.

In this section, we simulate a single fermion undergoing measurement and feedback control.

All simulations shown in this section1 were conducted with the same initial wavefunction

constructed from a random superposition of the first 30 Hermite-Gauss modes, with den-

sity profile depicted in Figure 6.1. This state has a significant energy (E0 = 8.394h̄ω)

relative to the ground state and is chosen by a random procedure. It thus lacks any

symmetries or special structure that would hide important effects in the system.

6.1.1 Efficient simulation of the stochastic Schrödinger equation

When simulating the system using the stochastic Schrödinger equation (6.1), we must aver-

age over hundreds of trajectories per simulation to accurately estimate average behaviour,

and furthermore run many simulations to understand the effects of different parameter

combinations. It is thus extremely important that we compute our evolution in the most

computationally efficient manner possible. A significant optimisation can be achieved by

1The long-term behaviour of the system is extremely robust to initial state, but we used the same initial
state between simulations for consistency.
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Figure 6.1: The probability density of the initial wavefunction used for all single-fermion
measurement simulations in this thesis. The state has energy E0 = 8.394h̄ω.

exploiting properties of convolutions.

A convolution (f ? g)(x) of functions f(x) and g(x) is an integral of the form:

(f ? g)(x) =

∫ ∞
−∞

dyf(y)g(x− y). (6.3)

Direct numerical integration of Equation 6.3 on D grid points has complexity O(D2),

since we must compute an O(D) integral at each of the D grid points. Fortunately, the

convolution theorem allows us to compute this as a product in Fourier space:

(f ? g)(x) =
√

2πF−1

{
F
{
f(x)

}
(k) · F

{
g(x)

}
(k)

}
(x). (6.4)

The most computationally expensive parts of this calculation are the Fourier transforms

F [·], which may be computed in O(D logD) using the fast Fourier transform (FFT). This

enables much faster computation of convolutions.

In the stochastic Schrödinger equation (6.1), the most computationally expensive terms

are convolutions. We may compute m(x) and ϑ(x) (Equation 6.2) in O(D logD) using

this approach:

m(x) =

√
πr

21/4Γ(5/4)

∫
dzK21/4r(x− z)|χ(z)|2

=

√
27/4π2r

Γ(5/4)
F−1

{
F
{
K21/4r(x)

}
(k) · F

{
|χ(x)|2

}
(k)

}
(x),

ϑ(x) =

∫
dyKr(y − x) ◦ dW (y, t)

=
√

2πF−1

{
F
{
Kr(x)

}
(k) · F

{
◦ dW (x, t)

}
(k)

}
(x).

(6.5)
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Consequently, each time evolution step is O(D logD), as there are no terms in the stochas-

tic Schrödinger equation (6.1) that are more costly to compute. Further simplification is

possible by reducing the number of FFTs required. The efficient computation of ϑ(x)

(6.5) requires the Fourier transform of the Wiener process dW (x, t). However, this can be

constructed directly in k-space using a real Wiener process in k-space, denoted η(k, t):

F
{
◦ dW (x, t)

}
(k) =

1

2
(i− 1) (◦η(k, t) + i ◦ η(−k, t)) , (6.6)

thus saving us one FFT. The unitary terms are also computed using spectral methods

(Section 2.3.2), and so are also O(D logD).

6.1.2 Choice of control

In Chapter 4, we found that the energy-damping control vastly outperformed the moment

control for n ≤ 2, even in the absence of measurement backaction. Although both are

experimentally feasible, a currently planned experimental implementation of the BEC

feedback control modelled in Refs. [3, 4] will use the moment control [135], and so it is

pertinent to determine whether it would be effective for Fermi gases. It is particularly

important to choose an effective control before doing extensive simulations, since the

stochastic simulations of this chapter are computationally demanding.

Recall from Chapter 4 that the moment control for n ≤ 2 removes energy by damping

oscillations in 〈x̂〉 and 〈x̂2〉, relying on nonlinearities to couple higher-order oscillations into

the controlled moments. In the case of a single atom, there are no nonlinear scattering

interactions, but the measurement process induces a slight nonlinearity [3]. As we saw in

Chapter 4, the moment control is extremely efficient in damping oscillations in 〈x̂〉 and

〈x̂2〉, so oscillations coupled into these moments will be rapidly damped. However, the

measurement will continuously create oscillations in all moments of atomic density. Thus,

successful cooling depends almost entirely on the competition between this coupling rate

and the measurement-induced heating rate.

We also saw in Chapter 4 that the energy-damping control is largely independent of

scattering properties, since it directly removes energy from all moments. In the absence

of measurement backaction, it appeared to be vastly superior. This effect is even more

pronounced when accounting for measurement effects - we see in Figure 6.2 that for the

same initial state and very weak measurement (α = 0.005), the energy-damping control

rapidly brings the atom close to its ground state, whereas the moment control rapidly

removes a small amount of energy and is then overcome by measurement-induced heating.

As discussed extensively in Refs. [2, 4], for BECs the moment control is extremely reliant on

a strong nonlinearity to provide inter-moment coupling, and had only modest performance.

As we saw in Chapter 4, the scattering properties of fermions are poor, and this is not a

useful approach for fermionic species (which should not come as a suprise, since the poor

scattering properties of fermions are the key limitation in evaporative cooling of fermions,

motivating this entire thesis). Furthermore, as discussed in Section 3.3.2, a two-component

Fermi gas will phase-separate for strong repulsive interactions. It thus seems likely that

the moment control would be even worse for many fermions, and so we will only apply

the energy-damping control for the remainder of this chapter.
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Figure 6.2: A comparison of near-optimal feedback cooling with the moment control (c1 =
2, c2 = 0.025) and the energy-damping control (kED = 4) for very weak measurement
(α = 0.005) and r = 0.1. Solid lines depict the mean of 300 trajectories, and coloured
dashed lines indicate twice the standard error in the mean (95% confidence interval).
The energy-damping control succeeds in cooling the system close to the ground state,
equilibrating at a small excitation energy. The moment control initially removes some
energy, but is overcome by the heating rate.

6.1.3 Dynamics of feedback cooling under measurement

Now that we have selected a control, we aim to better understand the dynamics of our

system under measurement and feedback control. The average behaviour is qualitatively

the same across parameter combinations: the energy E0 rapidly decreases until it reaches

an equilibrium between average cooling rate and average heating rate. The system ap-

proaches an eqiulibrium energy above the ground state, which varies depending on system

parameters. In Chapter 4, since we could always get a single spatial mode or multiple

interacting spatial modes arbitrarily close to the ground state, we used the speed of the

cooling as our metric for success. However, since the system quickly reaches an equilib-

rium when measurement is accounted for, we will now use this equilibrium energy as our

measure of success, and our goal is to achieve the lowest possible equilibrium excitation

energy per particle.

It is important to distinguish between the system’s average and conditional (single-

trajectory) behaviour. We compare the dynamics of a single trajectory to the mean of

hundreds of trajectories in Figure 6.3. The average energy displays the aforementioned

behaviour, rapidly decreasing to an equilibrium above the ground state. However, at

‘equilibrium’, the single trajectory continues to fluctuate about a well-defined mean, since

the measurement process is probabilistic. Similarly, the average density of the system

approaches a smooth Gaussian close to that of the ground state, and the density fluc-

tuations mostly average out in the long-term limit, but significant density fluctuations

continue forever for a single trajectory (which are the reason the system has nonzero

excitation energy).
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(a) The mean dynamics of 300 trajectories. (b) The dynamics of a single trajectory.

Figure 6.3: A comparison of the mean dynamics of a single particle across 300 stochastic
trajectories and the dynamics of a single trajectory. The average energy quickly decreases,
reaching an equilibrium between heating and feedback cooling rates and an equilibrium
energy above the ground state. For a single trajectory, fluctuations about this mean
continue due to random measurement noise. Similarly, the mean density profile quickly
approaches a Gaussian distribution close to the ground state, but density fluctuations
about this mean continue on average. In the long-term limit, these density fluctuations
mostly average out, but are non-negligible for a given trajectory.
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Figure 6.4: Feedback cooling with the energy-damping control across a range of values of
kED, for α = 0.2 and r = 0.1. Solid lines depict the mean of 300 trajectories, and coloured
dashed lines indicate twice the standard error in the mean (95% confidence interval). The
near-optimal value of kED = 4 produces the lowest equilibrium energy of those simulated.

6.1.4 Control optimisation

Much like the no-measurement limit (Chapter 4), the control strength kED must be chosen

judiciously to achieve the best results. Fortunately, the equilibrium behaviour is robust

to variations in initial state, and so the dependence on initial state seen in Chapter 4

only has a strong effect on transient behaviour irrelevant to the equilibrium energy. For

the reasons outlined in Section 4.5.2, it is still highly dependent on particle number. The

optimal control can be chosen by varying kED and selecting the value that results in the

lowest equilibrium energy, as depicted in Figure 6.4.

6.1.5 Effect of measurement parameters α and r

The measurement strength α and measurement resolution r have a strong effect on the

equilibrium energy, shown by Szigeti et al. for both a single atom [3] and a many-atom

BEC [4].

Recall that the measurement strength (5.29) is defined as:

α ≡ 3Γ(5/4)

16
√

2π4

(
λ

R⊥

)3/2 Γsp
ωx

Ω2

∆2
, (6.7)

where Γsp is the rate at which a single atom spontaneously emits into the environment, Ω

is the Rabi frequency and ∆ is the detuning of the laser. It depends on the laser intensity

via Ω, and so can easily be controlled; a more intense laser will lead to a higher α. A large

α gathers more information about the system state, but also results in greater heating

via measurement backaction. As demonstrated in Figure 6.5, the equilibrium excitation

energy per particle increases approximately linearly with α, and so it follows that we

should measure the system as weakly as possible for the best cooling.
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Figure 6.5: Feedback cooling with a near-optimal energy-damping control (kED = 4) and
r = 0.1 across a range of values of measurement strength α. Solid lines depict the mean of
300 trajectories, and coloured dashed lines indicate twice the standard error in the mean
(95% confidence interval). The equilibrium excitation energy increases approximately
linearly with α.

Recall that the measurement resolution r (5.28) is defined as:

r ≡
√
R⊥λ/π

2x0
, (6.8)

where R⊥ is the transverse width of the atomic wavefunction, λ is the wavelength of the

laser, and x0 is the longitudinal length scale x0 =
√

h̄
mωx

.

Szigeti et al. found that a smaller measurement resolution2 led to a larger equilibrium

energy [3, 4], but as mentioned in Section 5.3, their kernel normalisation meant that r

could not be varied without inadvertently changing the measurement strength as a result.

Consequently, their conclusions must be verified using our normalisation, which allows

independent variation of r and α.

Since r is bounded below by the diffraction limit (6.8), it is important to consider ex-

perimentally realistic values. 6Li is a fermionic species commonly used for cold atom

experiments, and its useful properties can be found in Appendix A of Ref. [136]. We will

consider the use of light detuned from the 22S1/2 ↔ 22P3/2 resonance, and thus λ ∼ 671nm.

For an effective 1D or 2D system, typical trapping frequencies are on the order of ∼20Hz

in the longitudinal direction(s), with an aspect ratio of 1:200 being experimentally feasible

[92]. Therefore, we choose a longitudinal length scale of x0 ∼ 2 microns. To estimate the

perpendicular width R⊥, we consider the width of a non-interacting Fermi gas with Nσ

particles per spin component. The contribution from the nth level in the Fermi sea is:

〈φn| x̂2 |φn〉 =
h̄

2mω⊥
〈φn| (â† + â)2 |φn〉 =

h̄

mω⊥

(
n+

1

2

)
. (6.9)

2Szigeti et al. actually parameterised measurement resolution in terms of the Lamb-Dicke parameter
η = k0x0, but a large η is equivalent to a small r.
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Figure 6.6: The diffraction-limited measurement resolution r as a function of atom number
Nσ.

and thus an estimate of the width of the Fermi gas is given by:

R⊥ u
Nσ∑
n=0

√
1

Nσ

h̄

mω⊥

(
n+

1

2

)
=

√
h̄

mω⊥

(
1 +Nσ√

2Nσ

)
. (6.10)

A plot of the diffraction-limited r with respect to Nσ is provided in Figure 6.6. Even for

an extremely large Fermi gas of Nσ = 109 we have r ∼ 0.036, which is below the limit of

what we can represent accurately in our simulation (r ∼ 0.05) anyway, since small r leads

to a very narrow kernel that requires a large number of grid points to resolve. Current

experimental technology can achieve a resolution of ∼5 microns, which corresponds to

r ∼ 0.1 in a typical trap. Thus, we will use this value in most of our simulations, and it

is realistic to vary it to the lowest representable limit.

In Figure 6.7, we vary r, showing that a smaller measurement resolution does actually

result in a higher equilibrium energy. This intuitively makes sense: a more precise mea-

surement places tighter limits on the localisation of the atom, resulting in greater wave-

function narrowing in position space and thus a greater increase in kinetic energy. In

the limit r → 0, the kernel (5.27) becomes a delta function, and so the measurement

approaches a perfect one, which we know to be impossible. The heating increases without

bound in this limit as a result. Consequently, the conclusions made about measurement

resolution by Szigeti et al. [3, 4] were indeed correct. We have confirmed that a less precise

measurement leads to the lowest heating and thus lowest equilibrium energy.

Although it is physically reasonable to expect weaker measurement to result in a colder

system, we should be cautious in extrapolating these results to extremely small α or

extremely large r. Our results suggest that we should measure as weakly and imprecisely

as possible in order to obtain the best cooling. Yet, we need information about the system’s

state in order to apply an effective control, and a very weak and/or imprecise measurement

will gather almost no information about the system. What have we missed in our model?

The answer lies in the assumptions discussed in Section 5.2.2. In keeping with previous
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Figure 6.7: Feedback cooling with a near-optimal energy-damping control (kED = 4) and
measurement strength α = 0.3 across a range of values of measurement resolution r. Solid
lines depict the mean of 300 trajectories, and coloured dashed lines indicate twice the
standard error in the mean (95% confidence interval). A smaller measurement resolution
results in a higher equilibrium energy.

works for BECs [3, 4, 77], we treated the system and filter interchangeably, and did not

include a system-filter separation nor a classical corrupting noise channel in the measure-

ment. That is, we assumed that the experimenter’s best estimate perfectly corresponds

to the underlying system state. This will not be true if the measurement is arbitrarily

weak and/or imprecise. Although eventual system-filter convergence is typically a safe

assumption [132], the convergence takes time, on a time scale determined by α and r.

Thus, gathering a small amount of information about the system will result in a longer

convergence time. If the experimenter’s best estimate of the state is inaccurate for too

long, then the control may be ineffective (and even cause heating). There may therefore

be some threshold beyond which the measurement signal is overpowered by corrupting

classical noise and poorly-applied feedback, and convergence cannot be maintained.

It is certainly true that to minimise equilibrium energy, we should choose the system pa-

rameters that result in the weakest measurement for which the system and filter converge.

However, without a system-filter separation, we cannot place lower bounds on how weakly

we can measure and preserve convergence. In Section 7.1.3, we will discuss how this can

be rectified, and propose a method by which one could cool to the limit of the corrupting

noise channel.

6.2 Feedback control of many fermions with measurement

effects

Although the single-atom limit is an excellent testbed to understand the parameter depen-

dence and qualitative behaviour of feedback-controlled quantum gases undergoing contin-

uous measurement, it does not capture the unique behaviour of fermions. In particular, we

saw in Chapter 4 that the effectiveness of feedback cooling with the energy-damping control
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(a) The spin-up initial state. (b) The spin-down initial state.

Figure 6.8: The probability densities of a selection of initial wavefunctions (solid coloured
lines) and the spin-component averages (black dashed lines) for both spin components of
the initial state.

depended on the number of particles and the presence of nonlinear scattering interactions.

Recall that multiple fermionic atoms undergoing continuous density measurements in the

Hartree-Fock approximation are described by the SFGPE (5.52):

dχn,σ(x) =

[
−iH̃(x)χn,σ(x)+2α

√
πr

21/4Γ(5/4)

(∑
a∈S

∫
dzK21/4r(x−z)χ

∗
a,σ(z)χa,σ(x)χn,σ(z)

−
∑
a,b∈S

∫
dz1

∫
dz2K21/4r(z1 − z2)χ∗a,σ(z1)χ∗b,σ(z2)χb,σ(x)χa,σ(z2)χn,σ(z1)

)]
dt

+
√
α

∫
dy

(
Kr(y − x)χn,σ(x)−

∑
a∈S

∫
dzKr(y − z)χ∗a,σ(z)χa,σ(x)χn,σ(z)

)
◦ dW (y, t).

(6.11)

In this section, we simulate the SFGPE, with the aim of determining how the effectiveness

of feedback cooling varies with N when measurement effects are accounted for, and what

effect the nonlinearity has. With regard to the initial states for simulations in this section,

we constructed two sets (corresponding to spin up and down) of 20 orthogonal wavefunc-

tions of similar energies from superpositions of the first 30 Hermite-Gauss modes. Each

initial state consisted of N single-particle wavefunctions selected from these sets. The

initial states are depicted in Figure 6.8 - however, once again the results are robust to

variations in initial state. Much like the single-particle initial state of Section 6.1, these

wavefunctions have significant initial energy and are chosen by a random procedure, avoid-

ing any symmetries that would hide important effects. Notably, the initial state is also

spin-asymmetric.

6.2.1 Efficient simulation of the SFGPE

Although stochastic simulations of a single atom are demanding due to the need to average

over hundreds of trajectories, the situation is much more dire for multiple fermions. A

time-evolution step of the SFGPE (6.11) is much more expensive to calculate than that of

its bosonic equivalent (Equation 25, Ref. [4]) or the stochastic Schrödinger equation (6.1).
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For example, the second deterministic measurement term has a double sum over particle

index and two spatial integrals, leading to a complexity3 of O(N3D3). Representing more

particles will require more grid points, since the wavefunctions χn,σ(x) must be orthogonal,

and this scaling is superlinear. Thus, for a naive approach, the scaling of each time step is

worse than O(N6) - we have no hope of ever scaling such an approach to a large number

of particles! Fortunately, we may follow the approach of Section 6.1.1 and simplify this

using convolutions. The first deterministic measurement term of the SFGPE (6.11) is a

sum over a convolution:∑
a∈S

∫
dzK21/4r(x− z)χ

∗
a,σ(z)χa,σ(x)χn,σ(z)

=
√

2π
∑
a∈S
F−1

{
F
{
K21/4r(x)

}
(k) · F

{
χ∗a,σ(z)χa,σ(x)χn,σ(x)

}
(k)

}
(x), (6.12)

and thus we have reduced this from O(N2D2) to O(N2D logD). The second deterministic

measurement term may similarly be written:

∑
a,b∈S

∫
dz1

∫
dz2K21/4r(z1 − z2)χ∗a,σ(z1)χ∗b,σ(z2)χb,σ(x)χa,σ(z2)χn,σ(z1)

=
√

2π
∑
a,b∈S

∫
dz1χ

∗
a,σ(z1)χb,σ(x)χn,σ(z1)F−1

{
F
{
K21/4r(x)

}
(k)·F

{
χ∗b,σ(z2)χa,σ(x)

}
(k)

}
(z1),

(6.13)

reducing this from O(N3D3) to O(N3D2 logD). The first noise term is a simple convolu-

tion:∫
dyKr(y − x)χn,σ(x) ◦ dW (y, t)

=
√

2πχn,σ(x)F−1

{
F
{
Kr(x)

}
(k) · F

{
◦ dW (x, t)

}
(k)

}
(x), (6.14)

where we compute F
{
◦ dW (x, t)

}
(k) directly in Fourier space using Equation 6.6. This

reduces from O(ND2) to O(ND logD). Finally, the second noise term is computed as:

∑
a∈S

∫
dy

∫
dzKr(y − z)χ∗a,σ(z)χa,σ(x)χn,σ(z) ◦ dW (y, t)

=
√

2π
∑
a∈S

χa,σ(x)

∫
dzχ∗a,σ(z)χn,σ(z)F−1

{
F
{
Kr(x)

}
(k) · F

{
◦ dW (x, t)

}
(k)

}
(z),

(6.15)

reducing the calculation from O(N2D3) to O(N2D2 logD). The unitary terms are once

again calculated using spectral methods (Section 2.3.2), which are O(ND logD). Overall,

this is still computationally cheaper than the naive method, but still scales poorly; it is

3We must compute dχn,σ(x) for every particle and every grid point, and thus we must perform ND
computations of complexity O(N2D2).
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O(N3D2 logD), and the required D for an accurate representation of N particles scales

linearly or superlinearly with N . In practice, we will fix D = 256 (which is sufficient for

40 atoms) and vary N , leading to a scaling of O(N3).

Although the computational time is O(N3D2 logD), optimisations can be made such that

the memory requirements only scale with ND logD. For example, one may construct the

integrand in Equation 6.13 sequentially for each combination of a, b and z1, adding them

to a ‘running total’ such that we need only have one object in memory rather than all

N2D terms of the sum.

6.2.2 Scaling with atom number

In Section 4.5, we found that the cooling rate in the long-term limit was slower for larger

N since multiple fermions occupy different spatial modes and thus may counter-oscillate

and ‘hide’ density fluctuations of each spatial mode from the experimenter. Nonetheless,

we were unable to draw strong conclusions about whether this effect was prohibitive, since

the model did not include the competing heating rate from measurement. Now that we

have the tools to include measurement backaction, we can resolve this.

We simulated non-interacting fermionic atoms subjected to continuous density measure-

ments and the energy-damping control, for near-optimal control (kED = 4/N) and a range

of atom numbers N (4, 8, 16, 32, 40). The results are depicted in Figure 6.9. As expected,

the equilibrium excitation energy per particle ∆E/N increases with N , since the cooling

rate is decreased and equilibrates with measurement-induced heating at a higher energy

per particle. An initial analysis suggests that the N -dependence of ∆E/N at equilbrium

is linear or slightly superlinear. If this scaling continues at higher N , then direct cooling

of fermions with the energy-damping control is unviable.

However, our data is limited, and we are unable to simulate more particles. With N = 40

we are pushing the limits of the number of orthogonal spatial modes that can be accurately

represented at D = 256. Since the numerical simulation scales as O(N2D logD), even a

modest increase to N would be costly due to dependence on N2 and the need to increase

D, and we are already pushing the limits of what we can reasonably achieve even with

supercomputer help.

There is no clear reason why this scaling should be any better at larger N - a large number

of spatial modes will still oscillate in different ways that may cancel out the total density

fluctuations. Thus, we cautiously suggest that the energy-damping control scales poorly

at large N , motivating different approaches in future.

6.2.3 Effect of interatomic scattering interactions

In Sections 4.5 and 4.6, we saw that in the absence of measurement, non-interacting two-

component Fermi gases sometimes entered a dark state of total counter-oscillation, but

nonlinear scattering interactions were able to perturb the system from such a state and

continue cooling close to the ground state. Thus, in the no-measurement limit, we were

able to achieve much better cooling of a Fermi gas for an interacting system.

One might therefore be tempted to suggest that the poor scaling with N when mea-

surement effects are included (Section 6.2.2) is a consequence of this, since all of these

simulations were non-interacting. Unfortunately, this is not the case. We fixed N = 16
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Figure 6.9: Feedback cooling with a near-optimal energy-damping control (kED = 4/N)
with measurement strength α = 0.1 and resolution r = 0.1, across a range of atom numbers
N . A larger number of atoms results in a larger equilibrium excitation energy per particle
∆E/N , and thus the feedback cooling is less successful for large N . Solid lines depict the
mean of 300 trajectories, and coloured dashed lines indicate twice the standard error in
the mean (95% confidence interval). The energy-damping control does not scale well to
large N for fermions, since ∆E/N scales superlinearly with N .

and varied Υ0 up to the point of phase separation, depicted in Figure 6.10. The cooling

does not significantly differ for an interacting Fermi gas, and the equilibrium excitation

energy per particle increases with U0.4 We hypothesise that since interatomic scattering

effects are only important at energies smaller than the equilibrium energy for moderate

α, the nonlinearity does little to change the equilibrium excitation energy, and thus has

minimal effect on the success of cooling. Consequently, this does not significantly change

the long-term behaviour, and other effects of the scattering interactions dominate. Non-

linear scattering interactions are insufficient to overcome the scaling limitations of the

energy-damping control for Fermi gases.

6.3 Conclusions from simulations with measurement back-

action

Although the simulations of Chapter 4 gave important insight into the control-specific

aspects of feedback cooling, they ignored the extremely important effect of measurement

backaction. In this chapter, we have simulated the extended models developed in Chap-

ter 5 to study feedback control under measurement. In Section 6.1, we simulated the

stochastic Schrödinger equation for a single atom, gaining a qualitative understanding of

the dynamics of continuous-measurement feedback control and the effect of system pa-

rameters. We found that measurement parameters for which less information about the

4How we interpret this result depends heavily on the energy scale and our metric for success. We have
plotted this in units of h̄ω, the natural energy scale for the harmonic oscillator, but interactions introduce
another energy scale to the system. The trend is reversed if we plot our energies relative to the ground
state energy Eg, but is still a comparatively small effect that cannot overcome the poor scaling with N .
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Figure 6.10: Feedback cooling with a near-optimal energy damping control kED = 4/N
with measurement strength α = 0.1 and resolution r = 0.1, for fixed N = 16 and a
range of values of Υ0 up to the phase-separation threshold. Solid lines depict the mean of
300 trajectories, and coloured dashed lines indicate twice the standard error in the mean
(95% confidence interval). The scattering interactions do not have a significant effect on
the equilibrium energy, and are thus insufficient to overcome the scaling limitations when
measurement is accounted for.

system is collected (large r and small α) lead to lower equilibrium excitation energies,

suggesting that one should measure an atomic gas as weakly as possible. However, we

were not able to place lower bounds on how weakly due to the lack of a system-filter

separation. In Section 6.2, we extended this to many fermions by simulating the SFGPE

(6.11). We showed that the energy-damping control scales poorly with atom number N ,

and that the effect of scattering interactions had minimal effect. Ultimately, this more

realistic model confirms our suspicions from Chapter 4; although the energy-damping con-

trol is extremely effective for bosons, it is ineffective at controlling multiple spatial modes

in the same trap (corresponding to multiple fermions). This motivates the development

of alternative strategies and/or controls, prospects which we discuss in Chapter 7.
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Chapter 7

Conclusions and outlook

In this thesis, we investigated the prospect of using continuous-measurement feedback

control to cool an atomic Fermi gas. Specifically, we developed and studied theoretical

models for driving a Fermi gas towards its ground state. Drawing on previous work in

feedback control of BECs, we developed two models for feedback control of an atomic

Fermi gas: one ignoring the effect of measurement backaction, and one including it.

In Chapter 3, we discussed mean-field theory; we reviewed the Gross-Pitaevskii equation

(3.1), which describes the dynamics of a single-mode BEC in the absence of quantum

correlations, developed the FGPE (3.33) as a multimode fermionic equivalent, and de-

scribed methods to find the ground states of both. In Chapter 4, we used this to simulate

feedback control of a Fermi gas in the absence of measurement backaction, successfully

generalising the model of Haine et al. [2] to fermions. We used this to rapidly proto-

type control schemes, and tractably understand the control-specific aspects of the model.

We compared the moment control, which damps a limited number of moments of atomic

density (typically 〈x̂〉 and 〈x̂2〉), to the energy-damping control, which damps all density

fluctuations directly. We found that the moment control was extremely ineffective - even

more so for fermions than bosons due to their poorer scattering properties. We showed

that the energy-damping control was extremely effective for a single spatial mode (such

as a BEC), but it is less effective for multiple spatial modes (such as a Fermi gas, since

the Hartree-Fock wavefunctions must be orthogonal to preserve Pauli exclusion) since in-

dividual atoms can counter-oscillate in such a way that total density fluctuations cancel

out, even when there are non-negligible oscillations in the individual atomic wavefunctions

themselves. In the non-interacting case, the Fermi gas even entered dark states due to

total counter-oscillation. We showed that scattering interactions can slowly perturb the

system from a counter-oscillating state, but this effect is very slow.

In Chapter 5 we introduced conditional quantum measurement theory. We used this

to add measurement effects to our model of feedback cooling of fermions. Beginning

with a fermionic version of the full-field stochastic master equation derived by Szigeti et

al. [3], we derived a mean-field equation of motion for fermions undergoing continuous

measurement, which we dubbed the SFGPE (5.52) - essentially a multimode fermionic

version of the mean-field model of Szigeti et al. [4]. We took the single-fermion limit

of the SFGPE, referred to as the stochastic Schrödinger equation (5.53), and showed

that it agrees with the single-boson limit of Szigeti et al.. We then performed stochastic

simulations in Chapter 6. Using the stochastic Schrödinger equation, we gained qualitative

understanding of the dynamics of a measured, feedback-controlled system, and saw that

measurement backaction prevents the control from bringing the system to the ground
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state, instead equilibrating at an excitation energy above the ground state. Once again,

the energy-damping control vastly outperformed the moment control. We investigated

ways to minimise this equlibrium energy, and found that it was lower for parameters

corresponding to weak measurement (low strength α and large resolution r). However,

due to the lack of a system-filter separation, we were unable to quantify exactly how

weakly one can measure the system before the control scheme fails. We then investigated

how the cooling scales with atom number N by simulating the SFGPE, and found that the

equilibrium energy per particle increased superlinearly with N , suggesting that although

the energy-damping control works extremely well for a single spatial mode (such as a

BEC), it is ineffective in controlling many overlapping spatial modes (such as a Fermi

gas). Nonlinear scattering interactions did little to help, having no significant effect on

the competition between feedback cooling and measurement-induced heating. Ultimately,

although we have developed and applied theoretical tools that can model a measured,

feedback-controlled atomic Fermi gas, our results suggest that methods which work well for

bosons are unlikely to be effective for fermions, motivating alternative future approaches.

7.1 Limitations and future work

It is crucial to consider the limitations of our methods. In this section, we discuss the

limitations of our approach and outline future avenues of investigation to overcome each

of these limitations.

7.1.1 Failure of the control scheme for large N

A key finding of this thesis is that the energy-damping control is significantly less effective

for multiple spatial modes, such as the orthogonal wavefunctions of a Hartree-Fock Fermi

gas. This is an obvious limitation - we have not yet demonstrated a control scheme for

Fermi gases that scales well with N . This certainly does not spell the end for feedback

control of Fermi gases, since we have only shown that the methods which are effective for

bosons are less effective for many fermions.

To overcome this limitation, we could attempt to devise a control that works more ef-

fectively for fermions. We have seen in this thesis that total density fluctuations are not

particularly useful for driving a Fermi gas towards its ground state at low energy scales,

due to counter-oscillation of the different single-particle wavefunctions. We propose that

inspiration for better controls could come from the area of optimal control theory. In

particular, in the absence of interatomic scattering, the model of Chapter 4 is a linear

coupled system. In similar systems, there provably exists a control that will bring the

system exactly to any state in a finite amount of time [137, 138], and so we believe it is

possible to devise an optimal control to drive a Fermi gas towards its ground state in this

limit. Many open questions in this area remain:

• Is the optimal control extremely sensitive to initial state?1

• Can this control be experimentally realised, or is it unrealistic?

• Is it possible to develop the optimal control into something that is robust to nonlinear

1This could be problematic in the initial stages of an experiment when the system and filter have not
converged.
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scattering interactions2 and imperfect knowledge of the system state?

If developing an effective and realistic control for direct cooling of fermions proves to be

difficult, an alternative is sympathetic feedback cooling. Presently, atomic Fermi gases are

often produced by sympathetic evaporation (e.g. Ref. [67]). As discussed in Section 1.4,

direct evaporative cooling of fermions is much harder due to their poor scattering and

thermalisation properties. Thus, it is commonplace to produce a Bose-Fermi mixture,

couple energy from the fermions to the bosons via scattering, and evaporate the bosons

to cool the system - since bosons are much easier to cool by evaporation.

This thesis shows that it is much easier to cool a BEC than a near-degenerate Fermi

gas when measuring with phase-contrast imaging and applying feedback via the energy-

damping control. Consequently, we propose a new cooling strategy: trap bosons and

fermions at the same spatial location, couple them by scattering interactions (which will

not have the limitations of fermion-fermion scattering since it is not unfavourable for them

to overlap spatially), and apply measurement and feedback cooling only to the bosons.3

Thus, we treat the bosons as a channel through which energy can be continuously pumped

out of the fermions and out of the system as a whole. This has the potential to be

much more effective than sympathetic evaporation. Bose gases experience a dramatic

reduction in heat capacity below Tc, which limits the thermal energy they can carry away

from the fermions evaporatively. In contrast, sympathetic feedback cooling allows one to

continuously cool the BEC, overcoming this barrier.

Deriving the model for this scheme is only a trivial modification to existing work. Our

Hamiltonian consists of the individual dynamics of the bosons and fermions (with masses

mB and mF , respectively), plus a quartic s-wave interspecies scattering interaction:

Ĥ = Ĥboson + Ĥfermion +
Uc
2

∑
σ

∫
dxψ̂†σ(x)φ̂†(x)φ̂(x)ψ̂σ(x)︸ ︷︷ ︸

Boson-fermion scattering

, (7.1)

where we have the usual cold boson and fermion Hamiltonians, given by:

Ĥboson =

∫
dxφ̂†(x)

(
− h̄2

2mB
∇2

x + V (x, t)

)
φ̂(x) +

UBB
2

∫
dxφ̂†(x)φ̂†(x)φ̂(x)φ̂(x),

Ĥfermion =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2mF
∇2

x + V (x)

)
ψ̂σ(x) +

UFF
2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x).

(7.2)

If we consider an effective 1D system and neglect entanglement of different atomic species,4

then deriving a stochastic master equation for the boson field is almost exactly the same as

the original derivation of Szigeti et al. [3], since the fermionic and bosonic field operators

commute. The only difference is an extra term in the unitary evolution due to the boson-

2This is important, since the optimal control only provably exists in the linear case.
3Different atomic species have different resonances, so it is certainly feasible to subject them to different

trapping potentials, and to measure only one species.
4That is, ρ̂(t) = ρ̂B(t) ⊗ ρ̂F (t), where ρ̂(t) is the state of the coupled system, ρ̂B(t) the state of the

boson field, and ρ̂F (t) the state of the fermion field.
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fermion scattering, and so the boson evolution may be written:

dρ̂B = − i
h̄

[
Ĥboson + Ĥcoupling, ρ̂B

]
dt+α

∫
dxD

[
M̂(x)

]
ρ̂Bdt+

√
α

∫
dxH

[
M̂(x)

]
ρ̂BdW (x, t)

(7.3)

where ρ̂B is the conditional state of the bosons, Ĥcoupling is the boson-fermion scattering

term of Equation 7.1, and all other terms are as defined5 in Section 5.4.1. Since the

fermions are not being measured, they evolve unitarily:

dρ̂F = − i
h̄

[
Ĥfermion + Ĥcoupling, ρ̂F

]
dt. (7.4)

We can obtain tractable equations of motion via the usual uncorrelated mean-field ap-

proximations. For the boson field, the derivation of Szigeti et al. [4] mostly carries over,

with the addition of one extra unitary term for the boson-fermion scattering. For the

fermion field, our derivation in Section 3.2 also carries over with the addition of such an

interspecies scattering term. By following the usual processes,6 we find:

dϕ(x, t) =

[
− i
h̄
H̃B(x, t)ϕ(x, t) + 2α

(
m(x, t)− m̄(t)

)
ϕ(x, t)

]
dt

+
√
α
[
ϑ(x, t)− ϑ̄(t)

]
ϕ(x, t), (7.5)

dχn,σ(x, t) = − i
h̄

(
− h̄2

2mF

∂2

∂2x
+ VF (x)

)
χn,σ(x, t)dt−

Fermion-fermion scattering︷ ︸︸ ︷
iUFF
h̄

∑
m

|χm,!σ(x, t)|2 χn,σ(x, t)dt

− iUBF
h̄
|ϕ(x, t)|2 χn,σ(x, t)dt︸ ︷︷ ︸

Boson-fermion scattering

, (7.6)

where all measurement terms are as defined7 in Equation 5.54, and the boson Hamiltonian

on L2(R) is given by:

H̃B(x, t) = − h̄2

2mB

∂2

∂x2
+ VB(x) + VC(x, t) +

Boson-boson scattering︷ ︸︸ ︷
UBB(N − 1)|ϕ(x)|2 +

Boson-fermion scattering︷ ︸︸ ︷
UBF

∑
n,σ

|χn,σ(x)|2 .

(7.7)

There is much to unpack here. Equation 7.5 is a mean-field description of a trapped

BEC undergoing measurement via phase-contrast imaging, feedback control via a time-

dependent control potential VC(x, t), scattering between its own atoms, and coupling to

a Fermi gas via boson-fermion scattering. Equation 7.6 is a mean-field description of a

trapped Fermi gas with scattering between its own atoms and coupling to the BEC, but

no measurement or feedback control. The fermions and bosons may be trapped with dif-

ferent time-independent trapping potentials VF (x) and VB(x), respectively. The fermions

interact with each other with strength UFF and the bosons with strength UBB, but there

5We would use the definition of the kernel introduced in this thesis, and assume a single-component
Bose gas.

6We use Fock state approximations on the bosons and fermions, find the equation of motion for
〈φ̂†(x1)φ̂(x2)〉 using Equation 7.3 and the equation of motion for 〈ψ̂†σ(x1)ψ̂σ(x2)〉 from Equation 7.4,
and then find equations of motion for the wavefunctions ϕ(x) and χn,σ(x) such that 〈φ̂†(x1)φ̂(x2)〉 =
ϕ∗(x1)ϕ(x2) and 〈ψ̂†σ(x1)ψ̂σ(x2) =

∑
n χ
∗
n,σ(x1)χn,σ(x2).

7Under the substitution χ(x, t)→ ϕ(x, t), due to the different notation here used to distinguish bosonic
and fermionic wavefunctions. We have used the new kernel definition in Equation 5.27.
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is also an interspecies coupling strength UBF . We have tractable equations of motion, but

many open questions remain:

• Qualitatively, how effective is sympathetic cooling?

• How do the trapping potentials VF (x) and VB(x), the interaction strengths UFF ,

UBB and UBF , and the number of atoms of each species affect the success of the

cooling?

• How can we compute ground states for the Bose-Fermi mixture? We propose that

adding imaginary-time GPE evolution to the iterative step of the Roothan algorithm

would work in principle,8 but this remains untested.

7.1.2 Neglect of quantum correlations

All models in this thesis completely ignore the effect of quantum correlations, due to the

use of Fock state approximations. We expect this to be a reasonably good approximation

for weakly repulsive interactions in the same regimes where the GPE provides an accurate

description of a BEC, and also because density-like measurements project the system

toward a state of well-defined number. However, when the interactions of a Fermi gas

are attractive, there are always non-negligible correlations, and so we were not able to

model attractive interactions. It is quite possible that cooling attractive Fermi gases is

more favourable, and we would like to investigate this. Furthermore, Hush et al. showed

that quantum fluctuations are more important for stronger measurements in the bosonic

case [77], and we expect this to also be true for fermions. An accurate model of strongly-

measured fermions will thus require the inclusion of higher-order quantum field effects.

Tools to include higher-order quantum field effects of feedback-controlled bosons already

exist. The number-phase Wigner (NPW) representation developed by Hush et al. [78,

79] allows efficient stochastic simulation of bosons including these correlation effects, and

has previously been applied to continuous-measurement feedback control of a BEC [77].

The correlation effects were non-negligible, and an additional control channel was required

for effective control. Although the sympathetic cooling model outlined in Section 7.1.1

ignores fermion-boson entanglement, we could still include correlation effects in the boson

field by using NPW instead of a mean field.

Including the quantum field effects of fermions would be a more substantial task. We

suggest generalizing the phase-space methods of Hush et al. [77–79] to fermions as one

possible avenue. There is some existing work in phase-space methods for fermions [139],

which may provide helpful inspiration. We also note that weakly attractive atomic Fermi

gases are dominated by pairing effects - in certain regimes they are described by BCS

theory [31, 115], but they pair to form bosonic ‘molecules’ which may form a BEC [140,

141] (the transition is known as the BEC-BCS crossover, and has been the subject of much

investigation [142]). There exists an extension of Hartree-Fock theory based on the BCS

framework which consists of a mean-field description plus first-order pairing correlations,

known as the Hartree-Fock-Bogoliubov method [143]. We speculate that this may provide

inspiration for new methods to include pairing correlations in our models of feedback

control of atomic Fermi gases.

8In principle, this should be convergent by the Banach fixed-point theorem [120, 121] for a sufficiently
good initial guess - the exact same argument presented for the ‘vanilla’ Roothan algorithm in Section 3.3.2.
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7.1.3 Additional experimental considerations

In Section 6.1.5, we found that weaker measurement parameters resulted in a lower equi-

librium excitation energy - low α and large r were thus deemed favourable. Taken to the

extreme, however, these results are absurd. It appeared that the system would exactly

reach its ground state in the limits α → 0 or r → ∞, but these result in no knowledge

about the state being gained, and α = 0 recovers exactly the model of Chapter 4. We

concluded that this was an anomalous result of us assuming perfect system-filter conver-

gence, and thus our approach was limited in that it could not quantify the weakest viable

measurement.

This can be overcome by individually simulating coupled equations for the system and

filter and monitoring their convergence, as was done in simpler cases by Szigeti et al. [132,

133]. To achieve this, we would write separate stochastic master equations for the system

and filter in the form of Equations 5.12 and 5.18, respectively. Following the Hartree-Fock

mean-field procedure of Section 5.4.2, we could then derive equations of motion for the

system wavefunctions χn,σ(x, t) and filter wavefunctions ϕn,σ(x, t). As the system evolves,

we update the filter ϕn,σ(x, t) with measurement innovations from the system χn,σ(x, t)

(possibly corrupted by classical noise in the measurement channel), and use the filter

ϕn,σ(x, t) to compute feedback terms applied to the system χn,σ(x, t), forming the system-

filter feedback-measurement loop depicted in Figure 5.1. This enables us to determine

the threshold at which the measurement is too weak to preserve system-filter convergence,

providing a lower bound on the necessary measurement strength.

We anticipate that a lower measurement strength α will result in slower system-filter

convergence. It seems likely that low values of α would lead to lower equilibrium energies,

but result in a system-filter convergence time that is too long to be practically achievable.

Therefore, we speculate that it may be effective to begin the control process with a large

α to converge the system and filter quickly, then adiabatically ramp down α such that

the system and filter remain converged, and the steady-state energy drops. Therefore,

one could possibly reach the optimal information-backaction tradeoff within a reasonable

amount of time. A system-filter separation is necessary to investigate this, and thus it is

an important direction to pursue for future work.

It is important to assess the validity of neglecting other experimental imperfections. We

have assumed the experimenter is able to instantaneously calculate expectation values

of the filter and apply the resulting feedback to the system. In reality, there will be a

small delay, although this is typically extremely small compared to the natural timescale

of the system t0 = ω−1
x [47]. Similarly, we assumed that the control potential could be

controlled with arbitrary precision, but it will actually have a limited resolution. However,

the resolution of configurable optical potentials based on digital-micromirror devices can

be brought to within 5% of the diffraction limit [47], and is thus actually on the order

of our simulation grid spacing. Consequently, our assumptions were quite reasonable.

Nonetheless, it could be useful to qualitatively study the effect of such imperfections by

adding a delay between calculating and applying the potential in our simulations, and

‘blurring’ the control VC(x, t) by convolving it with a point-spread function every time

step.
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7.1.4 Pure ensembles and zero temperature

All models and simulations in this thesis and much9 previous work for bosons [2–4] as-

sume pure ensembles, and thus are systems at zero temperature. Realistic systems might

be thermal states that interact weakly with their environment beyond the decoherence

induced by the measurement laser. Throughout this thesis, we equated driving the system

towards its ground state, and cooling the system. Although this is reasonable in zero-

temperature formalism, it is important to generalise our models to finite temperature.

Ultracold Bose gases at finite temperature have previously been modelled by c-field tech-

niques (see Ref. [144] for a review), and so these methods may be a useful starting point

for modelling feedback control of finite-temperature Fermi gases.

7.1.5 Intractability of large-N and multidimensional simulations

Many of the proposals in this section have involved models more complicated than those

studied in this thesis. However, the models of this thesis are already quite computationally

taxing, since fermions cannot occupy the same mode and thus any description of multiple

fermions must be multimode - the no-measurement model of Chapter 4 isO(ND2), and the

stochastic measurement model simulated in Chapter 6 is O(N3D2 logD).10 A significant

limitation of this thesis is that we were therefore only able to obtain results up to moderate

N . Due to computational limits, for the no-measurement model of Chapter 4, we were

only able to run simulations up to N = 400, and in Chapter 6 we were only able to

simulate the model including measurement up to N = 40. Recall that our mean-field

theories were derived by finding equations of motion for the two-point correlation function

mσ(x1, x2) = 〈ψ̂†σ(x1)ψ̂σ(x2)〉. Since it is computationally favourable to evolve a moderate

number of 1D PDEs over a single 2D PDE, we expanded this into the single-particle

Hartree-Fock wavefunctions:

mσ(x1, x2) =
∑
n∈S

χ∗σ(x1)χσ(x2). (7.8)

However, there is nothing stopping us from simply simulating the equation of motion

for mσ(x1, x2) (e.g. Equation 5.42). Notably, the complexity of its evolution does not

scale explicitly with N , and the increase in complexity for larger N originates purely

from the fact that we require a larger D to accurately represent more modes. In the

case of the FGPE (3.33) and SFGPE (5.52), there was a complexity increase from both.

There is thus a threshold at which it is favourable to simulate the equation of motion for

mσ(x1, x2) (5.42). In Chapter 6, we were limited to tens of particles due to this scaling -

we suggest that direct simulation of mσ(x1, x2) may bring the measurement model closer

to the several hundred particles achieved without measurement in Chapter 4. We would do

this in the Hermite-Gauss basis due to its favourable scaling properties to a large number

of Hermite-Gauss modes.

Although using the Hermite-Gauss basis is necessary to scale to hundreds of fermions,

it will be difficult to go beyond this, since exact Hermite-Gaussian quadrature (Section

2.3.3) does not converge beyond D = 371 for double-precision arithmetic. It seems likely

9A notable exception is the NPW filter derived and simulated by Hush et al. [77–79], which can be
used to evolve any density matrix and thus can describe finite-temperature states.

10Assuming use of the Hermite-Gauss basis (Section 2.3.3) for the no-measurement model, which provides
the best scaling at large N , and use of the spectral method (Section 2.3.2) for the measurement model.
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that our current approach will always be limited to a moderate number of atoms, so we

are in need of methods that can reliable extrapolate results to the very-large-N limit.

Furthermore, we investigated only effective 1D systems since they are computationally

easier to simulate. A more tractable model would be needed to extend our results to

effective 2D or 3D Fermi gases.

We propose the use of a mean-field-hydrodynamic description of fermions to achieve these

goals, using a modified version of the model of Adhikari [145–147]. We first consider

a hydrodynamic model of sympathetic feedback cooling. Much like in Chapter 4, we

consider only the control dynamics and neglect measurement backaction. Suppose we

have NF fermions of mass mF , and NB bosons of mass mB. The bosons and fermions are

trapped by time-independent trapping potentials VB(x) and VF (x), respectively, and the

bosons are feedback-controlled by a time-dependent control potential VC(x, t). We will

model the bosons by a GPE order parameter φB(x, t) and the fermions by a hydrodynamic

density nF (x, t), normalised as
∫
dx|φB(x)|2= NB and

∫
dxnF (x) = NF . The system has

Lagrangian density:

L =
ih̄

2

[
φB

∂φ∗B
∂t
− φ∗B

∂φB
∂t

]
+
ih̄

2

[
√
nF

∂
√
n∗F
∂t

−
√
n∗F

∂
√
nF
∂t

]

+

(
h̄2 |∇xφB|2

2mB
+ (VB + VC)|φB|2+

1

2
UBB|φB|4

)

+

(
h̄2
∣∣∇x
√
nF
∣∣2

6mF
+ VF |nF |+

3

5
A|nF |5/3

)
+ UBFnF |φB|2 ,

(7.9)

where UBB and UBF are the interaction strengths of boson-boson and boson-fermion

scattering respectively (fermion-fermion scattering is neglected as it has a comparatively

small effect), and A = h̄2(6π2)2/3/(2mF ). Applying the Euler-Lagrange equations to the

Lagrangian density (7.9) yields equations of motion for the bosons and fermions:[
−ih̄ ∂

∂t
− h̄2∇2

x

2mB
+ VB(x) + VC(x, t) + UBB|φB(x)|2+UBFnF

]
φB(x, t) = 0, (7.10)[

−ih̄ ∂
∂t
− h̄2∇2

x

6mF
+ VF (x) +A|nF |2/3+UBF |φB|2

]√
nF (x, t) = 0. (7.11)

This description is on the order of the complexity of a single-particle Schrödinger equation

(in fact, Equation 7.10 is just the GPE coupled to the fermion density field), with NF and

NB being mere parameters of the model and thus easily scalable to a large number. This

is also tractable in 2D and 3D, allowing us to rapidly prototype the behaviour of feedback

control in higher-dimensional systems. If one wishes to instead simulate direct cooling of

fermions, we would similarly have the equation of motion:[
−ih̄ ∂

∂t
− h̄2∇2

x

6mF
+ VF (x) + VC(x, t) +A|nF |2/3

]√
nF (x, t) = 0. (7.12)

Since this is computationally cheap, it is likely the best way to prototype new control

schemes before investing in more complicated models. However, it remains to be seen

whether it is possible to integrate quantum measurement effects into these hydrodynamic

models, so this may at best be a no-measurement model in the vein of Chapter 4 and Haine
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et al. [2]. The accuracy of the model can be benchmarked at moderate N by comparing

it with the results of Chapter 4.

7.2 Outlook

In this thesis, we have generalised existing theoretical models for feedback control of BECs

to multimode fermionic equivalents. Our simulations suggested that methods which work

well for BECs would not work well for large-N Fermi gases, necessitating alternative

future approaches. Unfortunately, we have not yet designed an effective cooling strategy

for fermions.

Nonetheless, the future of feedback-controlled atomic Fermi gases is far from bleak. We

have merely shown that two control schemes based on density fluctuations are ineffective

for Fermi gases at large N . It is likely possible to devise a better control - in the non-

interacting Hartree-Fock model without measurement backaction, an optimal control that

can bring the system exactly to its ground state in a finite amount of time most likely

exists [137, 138], and we may well be able to propose a simple feedback law based on

something other than total spatial density fluctuations. We have developed all the theory

required to test further control schemes. Additionally, the energy-damping control is

extremely effective for bosons, and we have described a method by which one would be able

to simulate sympathetic feedback cooling with measurement effects in the Hartree-Fock

approximation using similar methods to those of Chapter 6. We have discussed ways to

include the effects of quantum correlations and experimental imperfections in our system,

which can be used to provide a realistic assessment of the real-world performance once

an effective control scheme is devised. Furthermore, we have outlined a highly tractable

mean-field-hydrodynamic model by which we can rapidly prototype such control schemes

without significant computational effort.
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Additional working

A.1 The Fermi-Hubbard model in atomic Fermi gases

It was first demonstrated by Jaksch et al. [55] that low-energy bosonic atoms in an optical

lattice realise the Bose-Hubbard model. The proof is easily adapted to show that fermionic

atoms in an optical lattice realise the Fermi-Hubbard model. Consider an interacting Fermi

gas with an arbitrary number of spin components in a time-independent potential. We

take the usual Hamiltonian (2.19) and expand out the potential into two components: a

periodic lattice V0(x), and a trapping potential VT (x). This may be written as:

Ĥ =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m
∇2

x + VL(x) + VT (x)

)
ψ̂σ(x)

+
U0

2

∑
σσ′

∫
dxψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x). (A.1)

We expand the field operators into a Wannier basis (see Refs. [148, 149]) and assume that

the energy scale of the system is low compared to the first excitation energy at each lattice

site, such that we may discard all but the lowest vibrational states, and write:

ψ̂σ(x) =
∑
j

w(x− xj)b̂jσ. (A.2)

It should be noted that the Wannier functions w(x− xj) are highly localised around the

lattice site centred at xj , and thus overlaps of Wannier functions at different sites can be

neglected. Substituting Equation A.2 into Equation A.1, discarding such negligible terms,

noting that
∫
dxVL(x)|w(x− xj)|2= 0,1 and defining:

J = −
∫
dxw∗(x− xj)

(
− h̄2

2m
∇2

x + VL(x)

)
w(x− xk),

εj =

∫
dxVT (x)|w(x− xj)|2,

U =
U0

2

∫
dx|w(x− xj)|4=

U0

2

∫
dx|w(x)|4,

(A.3)

1Up to a gauge transformation (the addition of a constant), which does not change the dynamics.

I
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we obtain:

Ĥ = −J
∑
〈j,k〉σ

(
ĉ†jσ ĉkσ + ĉ†kσ ĉjσ

)
+ U

∑
j

n̂j↑n̂j↓ +
∑
jσ

εjσn̂jσ, (A.4)

which is the Fermi-Hubbard Hamiltonian (c.f. Equation 1.3).

A.2 Coherent states

In Section 3.1.1, we claimed that a coherent state of a single mode is a tensor product of

coherent states in the spatial basis, a claim which we will prove here. Consider some single-

particle basis {|φj〉}, with corresponding bosonic creation and annihilation operators ĉ†j ,

ĉj . Select a single-particle mode |φk〉. A coherent state |α〉 of that mode is an eigenstate

of the corresponding annihilation operator:

ĉk |α〉 = α |α〉 , (A.5)

where the state is characterised by the complex eigenvalue α, and the average occupancy

is given by |α|2. This property and many others are described in detail in Section 4.3 of

Gardiner and Zoller [102]: we will only describe the essentials and prove the basis change

property, which is not discussed or proven therein. All properties invoked in this section

may be found there.

Define the displacement operator for a mode with annihilation operator ĉk as:

D̂(ĉk, α) = exp
(
αĉ†k − α

∗ĉk

)
. (A.6)

A coherent state in the mode |φk〉 can be written as a displacement of the vacuum:

|α〉 = D̂(ĉk, α) |0〉 . (A.7)

Taking Equation A.7, expanding the definition of the displacement operator (A.6) and

expanding into a field operator basis (2.15), we obtain:

|α〉 = exp

(
α

∫
dxφj(x)ψ̂†(x)− α∗

∫
dxφ∗j (x)ψ̂(x)

)
|0〉 . (A.8)

Applying the Baker-Campbell-Hausdorff formula and commutation properties, this be-

comes:

|α〉 =

(∏
x

exp
(
αφj(x)ψ̂†(x)− α∗φ∗j (x)ψ̂(x)

))
|0〉 (A.9)

=
⊗
x

(
D̂(ψ̂(x), αφj(x)) |0〉

)
. (A.10)

We will define φ(x) = αφj(x), and write this as |α〉 =
⊗

x |φ(x)〉. This indicates that

a coherent state of a single mode is a tensor product of coherent states at each position.

The mean occupancy is now
∫
dx|φ(x)|2 as a result of this definition.
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A.3 Vanishing first-order correction to the interacting

Fermi gas ground state

We wish to calculate the ground state of the interacting, two-component atomic Fermi gas:

that is, the ground state of the usual cold-atom Hamiltonian (2.22) with fermionic field

operators and σ ∈ {↑, ↓}. We will follow the methods outlined in Chapter 5 of Nolting [82].

Let us denote the non-interacting ground state as |η0〉. We will use Feynman-diagrammatic

perturbation theory, such that the ground state energy may be written as E
(0)
g +E

(1)
g +. . . ,

where E
(n)
g is the n-th order correction to the ground state energy. We will show that the

first-order correction is zero. Expanding the first-order correction into Feynman diagrams,

we have:

E(1)
g = + . (A.11)

Applying the T = 0 Feynman rules to the first diagram, we have:

=

1

2

∑
αβγδ

∫
dx1

∫
dx2

∫
dx3

∫
dx4

U0

2
δ(x1 − x2) 〈η0| ψ̂†α(x1)ψ̂α(x1) |η0〉

· 〈η0| ψ̂†β(x2)ψ̂β(x2) |η0〉 δαδδβγδ(x1 − x4)δ(x2 − x3)

=
U0

4

∑
αβ

∫
dx 〈η0| ψ̂†α(x)ψ̂α(x) |η0〉 〈η0| ψ̂†β(x)ψ̂β(x) |η0〉 ,

(A.12)

and similarly for the second diagram, we find that:

=
−1

2

∑
αβγδ

∫
dx1

∫
dx2

∫
dx3

∫
dx4

U0

2
δ(x1 − x2) 〈η0| ψ̂†α(x1)ψ̂α(x1) |η0〉

· 〈η0| ψ̂†β(x2)ψ̂β(x2) |η0〉 δαβδγδδ(x1 − x3)δ(x2 − x4)

= −U0

4

∑
αβ

∫
dx 〈η0| ψ̂†α(x)ψ̂α(x) |η0〉 〈η0| ψ̂†β(x)ψ̂β(x) |η0〉 .

(A.13)



IV Additional working

Substituting Equations A.12 and A.13 into Equation A.11, we find that the first-order

Feynman diagrams cancel exactly, and thus the first-order perturbative correction to the

ground state energy is zero:

E(1)
g = 0. (A.14)

To find a nonzero perturbative correction, we would in principle need to go to second

order, which is a highly non-trivial task. Further details may be found in Refs. [29, 82].

A.4 Non-interacting ground states of the harmonic oscilla-

tor

The ground state energy of a harmonically-trapped atomic gas can be calculated ana-

lytically in the non-interacting limit. We will solve this in 1D for N atoms and ns spin

components, assuming that N is divisible by ns to avoid ground state degeneracy, per the

assumptions applied throughout this thesis. We seek the ground state of the Hamiltonian:

Ĥ =
∑
σ

∫
dxψ̂†σ(x)

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2

)
ψ̂σ(x). (A.15)

The single-particle case has a well-known analytic solution [93] with eigenenergies:

En =

(
n+

1

2

)
h̄ω. (A.16)

As noted in Section 2.1, the ground state of a system of N non-interacting identical bosons

simply consists of all N bosons occupying the single-particle ground state, which may be

written as |N, 0, 0, . . .〉 in occupation number notation in the energy eigenbasis. Thus, the

bosonic case is trivial - we have:

Eg = NE0 =
Nh̄ω

2
. (A.17)

In the fermionic case, the ground state is a ‘Fermi sea’ in which states are successively

filled up, which we may write as |1, 1, . . . , 1, 0, . . .〉. Noting that fermions with a different

internal component may have the same energy, the ground state energy in the fermionic

case is given by:

Eg = ns

N/ns−1∑
n=0

(
n+

1

2

)
h̄ω =

N2h̄ω

2ns
. (A.18)

Therefore, the ground state energy of a non-interacting Bose gas scales with N , while the

ground state energy of a non-interacting Fermi gas scales with N2.

A.5 Effectiveness of the energy-damping control for a single

spatial mode

In Section 4.2, we claimed that for a single non-interacting spatial mode (mathematically

equivalent to a single particle) in a 1D harmonic trap, the only states with no density

fluctuations are eigenstates. This proof is rather difficult with the wavefunction or Hilbert

space formalisms, but is trivial in phase-space.
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Figure A.1: Plots of the Wigner functions for (a) the eigenstate φ1(x) and (b) the super-
position (φ1(x) + iφ4(x))/

√
2. Note that the eigenstate has an axially symmetric Wigner

function, while the Wigner function of the superposition is not axially symmetric.

Recall that a quantum state may be written as a Wigner function, which for a pure state

in 1D with wavefunction ψ(x) may be written:

W (x, p) =
1

πh̄

∫
dyψ∗(x+ y)ψ(x− y)e2ipy/h̄, (A.19)

where the density may be calculated as |ψ(x)|2=
∫
dpW (x, p). It is well known that for a

pure state in the 1D harmonic oscillator, the evolution of W (x, p) is just a rigid rotation

in the x-p plane [150]. Thus, the only states which do not have any density fluctuations

are those with axial symmetry about the W -axis. However, it is also well-known that the

only pure states with this symmetry for the 1D harmonic oscillator are eigenstates of the

Hamiltonian [150] (see Figure A.1 for examples), proving the claim that only eigenstates

have no density oscillations.

A.6 Decoherence

In Section 5.1, we described a simple decoherence process governed by the observable Ô,

and claimed without proof that it projected the system onto the eigenbasis of Ô according

to the Born rule. We will now prove this claim.

Suppose that Ô has eigenbasis {|n〉}, such that Ô |On〉 = On |On〉, where we assume

a nondegenerate spectrum (On 6= Om for n 6= m). Suppose our system (described by

density matrix ρ̂) is dominated by decoherence in this observable, leading to the master

equation:
dρ̂

dt
= D

[
Ô
]
ρ̂. (A.20)

We consider the system to be initially in a pure state ρ̂ of some superposition in the

eigenbasis of Ô:

ρ̂ = |Ψ〉 〈Ψ|

|Ψ〉 =
∑
n

, cn |On〉 . (A.21)
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We may compute matrix elements in this basis as:

ρnm(t) = 〈On| ρ̂ |Om〉 . (A.22)

Computing the matrix elements of Equation A.20, we find by simple operator algebra2

that:
dρnm(t)

dt
= 〈On|

(
dρ̂

dt

)
|Om〉 =

(
nm− 1

2
n2 − 1

2
m2

)
ρnm(t). (A.23)

Equation A.23 has the simple analytic solution:

ρnm(t) = ρnm(t = 0) exp

((
nm− 1

2
n2 − 1

2
m2

)
t

)
, (A.24)

where we may easily show that ρnm(t = 0) = cnc
∗
m by computing the matrix elements of

Equation A.21. Since the spectrum is nondegenerate, taking the long-term limit t → ∞
in Equation A.24 yields:

ρnm(t→∞) =

{
|cn|2 n = m,

0 n 6= m.
(A.25)

Thus, the density matrix in the long-term limit is diagonal in the eigenbasis of Ô, with

diagonal components |cn|2: the classical probability for a state |On〉 is given by |cn|2, which

is exactly the Born rule [151]. In operator notation, we may write:

ρ̂(t→∞) =
∑
n

|cn|2|On〉 〈On| . (A.26)

We have shown that the decoherence process projects the pure state onto the eigenbasis

of Ô according to the Born rule, as required.

2We use linearity, Hermiticity of the observable Ô, and the diagonality of Ô in its own eigenbasis.
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Wick’s Theorem

B.1 Motivation

In deriving the mean-field dynamics of a fermionic system, we must be able to write the

equation of motion for our order parameter entirely in terms of the order parameter itself.

Hence, we must factorise expectation values of quartic products of field operators into

expectation values of quadratic products:〈
ĉ†j ĉ
†
k ĉlĉm

〉
=
〈
ĉ†j ĉm

〉〈
ĉ†k ĉl

〉
±
〈
ĉ†j ĉl

〉〈
ĉ†k ĉm

〉
, (B.1)

where the sign of the second term is positive for bosonic fields and negative for fermionic

fields. In doing so, we reduce the many-body interactions to single-particle-like behaviour

in a mean field. This is known as the Hartree-Fock factorisation, and is equivalent to the

conventional approach to Hartree-Fock theory [29, 152]. This approximation underpins

all of the fermionic simulations in this thesis, and thus it is crucial that we understand

its origin. When combined with the assumption of a Fock state, this factorisation can be

proven as a corollary of Wick’s Theorem, the details of which follow.

B.2 Wick’s Theorem

B.2.1 Misconceptions

Wick’s Theorem (originally proposed by Wick [153]) is often stated as a theorem for

calculating vacuum expectation values [84] or factorising higher-order Green’s functions

[29]. When introduced to the subject, it can be unclear how these are equivalent, and

furthermore, why the theorem appears in both particle physics and condensed matter

physics if it is somehow related to the vacuum state. These statements are actually

corollaries of a more general theorem: in its purest form, Wick’s Theorem provides an

exact expression for an arbitrary product of field operators. One may then derive the

special cases used in applications of quantum field theory by considering expectation values

in special states.

B.2.2 Definitions

Our definitions and theorem statement follow the treatment of Ref. [152]. We will

consider only the fermionic case - the bosonic case differs only in sign changes.

VII
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Normal ordering

Let Â, B̂, Ĉ, . . . denote some arbitrary field operators on some fermionic Fock space. Sup-

pose we have some product of field operators ÂB̂Ĉ . . . . Suppose we have any rearrange-

ment1 of the product which places all creation operators to the left of annihilation opera-

tors, which we write for notational purposes as B̂ĈD̂ . . . . We define the normal-ordering

of ÂB̂Ĉ . . . to be:

: ÂB̂Ĉ . . . : = (−1)P B̂ĈD̂ . . . , (B.2)

where P is the number of operator interchanges needed to go from the ordering ÂB̂Ĉ . . .

to B̂ĈD̂ . . . . The definition may naively seem ambiguous, since there are usually multiple

rearrangements that place all creation operators to the left of annihilation operators.

However, one may show any two normal orderings to be the same by applying fermion

anticommutation relations, since these will just result in sign changes. For example, we

have:

: â†2â3â
†
4â2â

†
1: = −â†2â

†
4â
†
1â3â2 = â†1â

†
2â
†
4â2â3, (B.3)

where the first expression can be equated to the second or third expression by Equation

B.2, and the second and third expressions can be equated by three applications of fermionic

anticommutation relations. This definition is completely unambiguous, and different nor-

mal orderings can always be shown to be equivalent using anticommutation relations.

Contractions

We will begin with a special case. In a product of field operators, the contraction of two

adjacent field operators Â and B̂ is defined as:

ÂB̂ = ÂB̂−: ÂB̂: (B.4)

Clearly, : ÂB̂: is equal to either ÂB̂ or −B̂Â, and thus the contraction itself is equal to

either ÂB̂ − ÂB̂ = 0 or ÂB̂ + B̂Â =
{
Â, B̂

}
. respectively. Since the commutator of any

two field operators is a c-number, it follows that the contraction of adjacent operators is

also a c-number. The expectation value of a c-number is just the c-number itself, so it

follows that:

ÂB̂ = 〈0| ÂB̂ |0〉 , (B.5)

where |0〉 is the vacuum state.

The generalisation to non-adjacent operators is simple: when contracting any two opera-

tors in a product, we rearrange the order of the product to make them adjacent, multiplying

by −1 for each interchange of operators. Then, we apply the usual contraction to adjacent

operators. Since exchanging pairs of fermionic operators under these rules results in no

sign change, this definition is also completely unambiguous.

B.2.3 Statement of the theorem

We are now ready to present a statement of Wick’s Theorem. The theorem states that a

product of field operators is equal to its normal ordering plus the normal orderings of all

1By this, we mean that we just change the order of the operators in the product without any consider-
ation of commutation operations.
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possible contractions. That is, we may write:

ÂB̂ĈD̂Ê · · · =: ÂB̂ĈD̂Ê . . . : +
∑

singles

: ÂB̂CDE . . . : +
∑

doubles

: ÂB̂ĈD̂E . . . : + . . . (B.6)

where the first sum is over all possible single-pair contractions, the second is over all

double-pair contractions, and so forth.

The theorem is trivial for N = 1 and N = 2, and may be proven by induction for higher

orders. A full proof is presented in Ref. [152].

B.3 Corollary: the Hartree-Fock factorisation

We will now derive a corollary: that the Hartree-Fock factorisation (3.28) holds for any

Fock state.2 We may write our state as:

|Ψ〉 =
∏
j∈S

ĉ†j |0〉 , (B.7)

where S is some set of distinct indices in the chosen basis.3 This is a vacuum-like state,

where the excitations can be thought of as ‘particles’ and ‘holes’ akin to particle-hole

excitations in a Fermi sea. For a given Fock state, we thus define a generalised annihilation

operator as a nonzero field operator which annihilates the state, and a generalised creation

operator as the adjoint of a generalised annihilation operator. In the preferred basis of

|Ψ〉, all field operators are either a generalised annihilation or creation operator: for an

index j ∈ S, ĉ†j is a generalised annihilation operator, and for j /∈ S, it is a generalised

creation operator (and vice versa for the adjoints). Hence, this is fully specified, and

we may redefine contractions and normal ordering to be with respect to generalised field

operators instead. For example, in the state |Ψ〉 = 1√
3!
ĉ†3ĉ
†
2ĉ
†
1 |0〉, since ĉ1

† and ĉ†2 would

annihilate the state, and ĉ†4 and ĉ2 are adjoints of operators that would annihilate the

state, we have:

: ĉ†2ĉ
†
4ĉ2ĉ

†
1:Ψ = ĉ†4ĉ2ĉ

†
2ĉ
†
1, (B.8)

where the subscript Ψ indicates that this normal ordering is with respect to the generalised

creation and annihilation operators of |Ψ〉. This ensures that all generalised normal-

ordered products vanish when we compute expectation values with respect to |Ψ〉:

〈Ψ| : ÂB̂ . . . :Ψ |Ψ〉 = 0. (B.9)

Thus, |Ψ〉 is a vacuum state with respect to this normal-ordering convention. All the formal

steps in the proof of Wick’s Theorem carry over to generalised field operators [152]. The

contraction of two generalised annihilation operators or two generalised field operators is

zero,4 so applying Wick’s Theorem for generalised field operators to the quartic interaction

2A fermionic Fock state can be written as a single Slater determinant - this is the way that Hartree-Fock
theory is presented in many treatments, such as that of Ref. [114].

3If these are not distinct, then trivially |Ψ〉 = 0.
4
{
ĉj , ĉ

†
k

}
= 0 unless j = k, which is never true if both these operators are generalised creation operators

or generalised annihilation operators.
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term in the preferred basis yields:

ĉ†j ĉ
†
k ĉlĉm =: ĉ†j ĉ

†
k ĉlĉm:Ψ−〈Ψ| ĉ†j ĉl |Ψ〉 : ĉ

†
k ĉm:Ψ + 〈Ψ| ĉ†j ĉm |Ψ〉 : ĉ

†
k ĉl:Ψ + 〈Ψ| ĉ†k ĉl |Ψ〉 : ĉ

†
j ĉm:Ψ

− 〈Ψ| ĉ†k ĉm |Ψ〉 : ĉ
†
j ĉl:Ψ + 〈Ψ| ĉ†j ĉm |Ψ〉 〈Ψ| ĉ

†
k ĉl |Ψ〉 − 〈Ψ| ĉ

†
j ĉl |Ψ〉 〈Ψ| ĉ

†
k ĉm |Ψ〉 , (B.10)

Since the normal orderings are with respect to the generalised creation and annihilation

operators of |Ψ〉, we have 〈Ψ| : ÂB̂ · · · :Ψ |Ψ〉 = 0 for all normally-ordered terms. Comput-

ing the expectation value of both sides with respect to |Ψ〉 therefore eliminates all terms

with a normally-ordered string of operators as a factor, yielding:

〈Ψ| ĉ†j ĉ
†
k ĉlĉm |Ψ〉 = 〈Ψ| ĉ†j ĉm |Ψ〉 〈Ψ| ĉ

†
k ĉl |Ψ〉 − 〈Ψ| ĉ

†
j ĉl |Ψ〉 〈Ψ| ĉ

†
k ĉm |Ψ〉 . (B.11)

Although this resembles the desired result, this assumes a product in the preferred basis

(the basis in which our Fock state |Ψ〉 is constructed). For a product in an arbitrary basis,

we may expand into the preferred basis:

〈Ψ| d̂†ad̂
†
bd̂cd̂d |Ψ〉 =

∑
jklm

A∗jaA
∗
kbAlcAmd 〈Ψ| ĉ

†
j ĉ
†
k ĉlĉm |Ψ〉 . (B.12)

Substituting Equation B.11 and using linearity:

〈Ψ| d̂†ad̂
†
bd̂cd̂d |Ψ〉 = 〈Ψ|

∑
j

A∗jaĉ
†
j

(∑
m

Amdĉm

)
|Ψ〉 〈Ψ|

(∑
k

A∗kbĉ
†
k

)(∑
l

Alcĉl

)
|Ψ〉

− 〈Ψ|

∑
j

A∗jaĉ
†
j

(∑
l

Alcĉl

)
|Ψ〉 〈Ψ|

(∑
k

A∗kbĉ
†
k

)(∑
m

Amdĉm

)
|Ψ〉 . (B.13)

Noting the bracketed terms are just transformations back into the original basis, we have:

〈Ψ| d̂†ad̂
†
bd̂cd̂d |Ψ〉 = 〈Ψ| d̂†ad̂d |Ψ〉 〈Ψ| d̂

†
bd̂c |Ψ〉 − 〈Ψ| d̂

†
ad̂c |Ψ〉 〈Ψ| d̂

†
bd̂d |Ψ〉 , (B.14)

which is the desired result (c.f. Equation 3.28), since the field operators are in an arbitrary

basis.

B.3.1 Time-ordered products

Wick’s Theorem can be extended to time-ordered products of field operators, and is thus

commonly used to factorise higher-order Green’s functions in quantum field theory. A

statement and proof of the time-ordered version can be found in Ref. [83].

This forms the backbone of perturbation theory in particle physics and condensed matter

physics: interacting Green’s functions can be expressed perturbatively in terms of non-

interacting Green’s functions at all orders, which may then be reduced to products of

non-interacting single-particle Green’s functions by means of Wick’s Theorem. Feynman

diagrams and their associated rules are a way of keeping track of Wick contractions.

The Feynman-diagrammatic perturbation theory discussed in Section 3.3.2 and applied in

Appendix A.3 is essentially a diagrammatic representation of the time-ordered version of

Wick’s Theorem.
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