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Abstract

Nowadays, extensive research is being done in the area of revenue management, with
applications across industries. At the heart of this area lie two fundamental problems:
(1) the assortment problem, which aims to find the subset of products a company
should offer to maximise revenue, provided customers follow a certain model of
choice, and (2) the pricing problem, which aims to determine the prices a company
should offer to best meet its objectives (profit maximisation, revenue maximisation,
market share maximisation, etc.), based on how customers might respond to different
prices and the interaction between price and intrinsic features of each product.

Most models studied satisfy the following property: when the offered set is en-
larged, the probability of selecting a specific product decreases. This property is
called regularity in the literature. However, customer behaviour often shows viola-
tions of this property, such as the decoy effect, where adding extra options some-
times leads to a positive effect for some products, whose probabilities of being se-
lected increase in relative terms compared to other products (for example, including
a medium size popcorn slightly cheaper than the large one, with the purpose of
making the latter more attractive by comparison). We study two models of customer
choice where regularity violations can be accommodated, and show that the assort-
ment optimisation problem can still be solved in polynomial time.

First we analyse the Sequential Multinomial Logit (SML) model, where prod-
ucts are partitioned into two levels to capture differences in attractiveness, brand
awareness, and/or visibility in the market. When a consumer is presented with an
assortment of products, she first considers products in the first level and, if none
of them are purchased, products in the second level are considered. This model is
a special case of the Perception-adjusted Luce model (PALM) recently proposed by
Echenique et al. [2018]. It can explain many behavioural phenomena such as attrac-
tion, compromise, similarity effects, and choice overload, which cannot be explained
by the Multinomial Logit (MNL) model or any discrete choice model based on ran-
dom utility. We show that the seminal concept of revenue-ordered assortment sets,
which contain the optimal assortment under the MNL model, can be generalised to
the SML model. More precisely, we show that all optimal assortments under the
SML are revenue-ordered by level, a natural generalisation of revenue-ordered as-
sortments that contains, at most, a quadratic number of assortments. As a corollary,
the assortment optimisation problem under the SML model is solvable in polynomial
time.

Secondly, we study the two-stage Luce model (2SLM), which is a discrete choice
model introduced by Echenique and Saito [2018], that generalises the standard MNL
model. The 2SLM does not satisfy the Independence of Irrelevant Alternatives (IIA)
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property or regularity, and to model customer behaviour, each product has an in-
trinsic utility and uses a dominance relation between products. Given a proposed
assortment S, consumers first discard all dominated products in S before using the
MNL model on the remaining products. As a result, the model can capture behavior
that cannot be replicated by any choice model that belongs to the RUM class. We
show that the assortment problem under the 2SLM is solvable in polynomial time.
Moreover, we prove that the capacitated assortment optimisation problem is NP-hard
and presents polynomial-time algorithms for the cases where (1) the dominance rela-
tion is attractiveness correlated and (2) its transitive reduction is a forest. The proofs
exploit a strong connection between assortments under the 2SLM and independent
sets in comparability graphs.

The third and final contribution is an in-depth study of the pricing problem under
the 2SLM. We first note that changes in prices should be reflected in the dominance
relation if the differences between the resulting attractiveness are large enough. This
is formalised by solving the joint assortment and pricing problem under the Thresh-
old Luce model, where one product dominates another if the ratio between their
attractiveness is greater than a fixed threshold. In this setting, we show that this
problem can be solved in polynomial time.
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Chapter 1

Introduction

1.1 Introduction

Revenue management (RM) refers to the managerial practice of modifying the avail-
ability and the prices of products to maximise revenue or profit, usually using IT-
supported means. The origin of this discipline extends back to the 1970s, following
the deregulation of the US airline market. A large volume of research has been de-
voted to this area over the last 45 years, with successful results across many industries
such as airlines, hospitality, retail, online marketplaces, etc. [McGill and van Ryzin,
1999; Kök et al., 2005; Vulcano et al., 2010; Strauss et al., 2018].

The term revenue management was originally coined in the airline industry as
low variable costs and high fixed costs led to a point where maximising revenue
was almost equivalent to maximising profit. However, this does not currently limit
the purpose of RM to the sole objective of profit maximisation. It is also used to
drive other business decisions with other potential objectives, such as market share
maximisation, customer engagement, churn minimisation, etc.

In the last decades, there has been an increase in the use of technology to inform
managerial decisions, due to an increase in competition, availability of better predic-
tion models, and more computing power. This has created an environment where
it is paramount for companies to understand customer behaviour and leverage their
understanding to maximise profit, or attract more customers through careful and
planned modification of their sales strategies. This trend will not end any time soon,
since the interaction between competition and the use of technology goes both ways:
competition forces the use of technology to find ways to maintain profitability, and
technology itself increases competition severity, by pushing practitioners to adopt
said practices to stay in the market.

It is important to note that even when a firm can perfectly model customer be-
haviour, a lot of work still needs to be done to take advantage of this knowledge,
since trying all potential alternatives of products and their prices is impractical and
computationally prohibitive. Thus, to maximise its revenue, the firm needs a strategy
on how to handle at least two key problems: product variety and product pricing.
These two problems lie at the heart of RM theory and practice, and are known as the
assortment problem and the pricing problem respectively.

The assortment problem consists of selecting the subset of products a company
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2 Introduction

should offer to maximise revenue. For example, consider a retailer with limited space
allocated to mobile phones. If more than 500 mobile phones can be acquired through
distributors (in various combinations of brands and sizes) and the mobile phone aisle
can only fit 50 phones on the shelves, the store manager has to decide the subset of
products a company should offer based on product costs and customer preferences.
The potential number of assortments grows exponentially with the number of prod-
ucts available. Therefore, developing algorithms to find optimal or near-optimal
solutions that exploit customer choice structure is an important topic of research in
RM.

The pricing problem aims to determine the prices a company should offer to best
meet its objectives (profit maximisation, revenue maximisation, market share max-
imisation, etc.), while considering how customers might respond to different prices
and the interaction between price and intrinsic features of each product. The com-
plexity of this problem will vary greatly depending on the customer choice model,
and so will the corresponding techniques needed to solve it.

When customers face multiple products, with their corresponding prices, they
choose their preference based on many factors such as product features, brand aware-
ness, prices, product placement, social influence, among others. Utility maximisation
theory poses that a customer will always select the product that give her the most
value. Since there might be some uncertainty in the valuation function of each prod-
uct, probabilistic models are better suited to explain customer choice. The customer
selects each product with some probability distribution that varies according to the
assumptions we use for the utility and random uncertainty functions. The family
of choice models that arises from this framework of utility maximisation are called
Random Utility Models (RUMs) [Block and Marschak, 1960]. This class of discrete
choice models has been extensively studied and used in several industries, and its
relevance in terms of describing customer choice and aiding better decision making
is well documented in the RM literature [Bodea and Ferguson, 2014; Chiang et al.,
2007; Strauss et al., 2018]. One of the most studied models of to this category is the
Multinomial Logit (MNL) model, which is extremely attractive to use, mainly due to
the following reasons: (1) it is easy to understand because the formula that describes
customer choice probabilities is intuitive, (2) it is easy to estimate given the concavity
of the log-likelihood function [McFadden, 1978], and (3) the associated optimisation
problems under this model of choice tend to have tractable solutions. For example,
to find the optimal assortment under the MNL model, it is enough to consider the
family of revenue-ordered assortments, which is basically setting a threshold price and
including all available products whose price is more than said threshold. Thus, is
easy to show that only a linear number potential assortments needs to be considered
to find a revenue maximising assortment [Talluri and Van Ryzin, 2004]. The specific
details of all these benefits will be discussed in the next sections within this chapter.

Despite the apparent generality of the RUM class and associated efficient estima-
tion methods, certain phenomena require considering models that do not belong to
this customer class to be able to capture them [Tversky and Kahneman, 1974; Huber
et al., 1982]. One of the reasons behind these limitations is a shared property that
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all RUMs satisfy: the regularity property. Regularity states that the probability of
choosing an alternative cannot increase if the offer set is enlarged. Although this
property seems intuitive, psychologists and marketing researchers have carried out
several controlled experiments [Simonson and Tversky, 1992; Tversky and Kahne-
man, 1974; Huber et al., 1982] where customers in certain contexts violate it. One
prominent example is the decoy effect [Herne, 1997], where the impact of adding a
similar but inferior alternative into the current assortment ends up increasing the
probability of products that are now easily seen as better in comparison to this decoy
alternative (a well-known example is the inclusion of medium-size fries with a price
tag close to the large-size alternative). It is easy to show that every RUM must satisfy
this property, and thus, in contexts where regularity does not hold, it is impossible
to fit a RUM regardless of how sophisticated the estimation procedure is.

In Section 1.2.1, we present some recent models that attempt to bridge this gap,
and go beyond random utility. Among them, we describe two variants of the MNL
model that allow regularity violations, providing more flexibility to accommodate
substitution patterns that cannot be captured by any RUM, and will be studied in de-
tail in this thesis. First, we consider the Sequential Multinomial Logit (SML) [Echenique
et al., 2018] model, where products are partitioned into two levels, to capture differ-
ences in attractiveness, brand awareness, and/or visibility in the market. When a
consumer is presented with an assortment of products, she first considers products
on the first level and, if none of them are purchased, products in the second level are
considered. In Chapter 2, we show that the assortment optimisation problem under
the SML is polynomial-time solvable, by showing that all optimal assortments under
the SML model are revenue-ordered by level, a natural generalisation of revenue-
ordered assortments, which are optimal for the MNL model.

The second variant of the MNL model considered in this thesis is the two-stage
Luce model (2SLM) [Echenique and Saito, 2018]. The 2SLM does not satisfy the Inde-
pendence of Irrelevant Alternatives (IIA) property or regularity, and to model cus-
tomer behaviour, each product has an intrinsic utility and uses a dominance relation
between products. Given a proposed assortment S, consumers first discard all dom-
inated products in S before using the MNL model on the remaining products. As
a result, the model can capture behaviour that cannot be replicated by any discrete
choice model based on random utility. In Chapter 3 we study the assortment prob-
lem under this model of customer choice, providing a polynomial time solution for
it, and proving that when the number of products is bounded, the problem becomes
NP-hard. We study particular cases for the latter where an optimal assortment can
still be found in polynomial time, exploiting the structure of the dominance graph.

Chapter 4 provides a polynomial time solution to the pricing problem for a par-
ticular case of the 2SLM, called the Threshold Luce model [Echenique and Saito, 2018]
where one product dominates another if the ratio between their attractiveness is
greater than a fixed threshold. The solution is similar to the one for the MNL model
(fixed mark-up, [Anderson et al., 1992; Hopp and Xu, 2005; Gallego and Stefanescu,
2009; Besbes and Sauré, 2016]) but with some price adjustments in both extremes of
the attractiveness spectrum, to avoid low attractiveness products being dominated
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by higher attractiveness ones.
In the reminder of this chapter, we provide a review of the literature on the main

topics that will help understanding the rest of this thesis. In Section 1.2, we provide a
review of customer choice models, with focus on the distinction of models belonging
to RUM or not. In Section 1.3), we take a look at the results of assortment optimi-
sation for many of the models discussed in Section 1.2. We finish this chapter with
a review of pricing optimisation results in Section 1.4. Across all these sections, we
focus primarily on results closely related to this thesis, and in particular, with em-
phasis over the MNL model [Luce, 1959; McFadden, 1978] and its known variants,
since the models we study share some structural similarities by the fact of being
extensions of it. The more interested reader can be referred to for several in-depth
reviews of the literature concerning RM [McGill and van Ryzin, 1999; Chiang et al.,
2007; Strauss et al., 2018], discrete choice models with their corresponding estima-
tion methods [Berbeglia et al., 2018], assortment optimisation [Kök et al., 2005], and
pricing optimisation [Bodea and Ferguson, 2014].

1.2 Customer Choice models

Discrete choice models, which have been studied for more than 50 years, are essential
to understand and make predictions about choices made by individuals in different
settings. For example, choice models are used to estimate customer purchases in
several markets, such as retail, air travel, and accommodation. These sales estimates
obtained with choice models are key components of RM, where the availability of
products as well as their prices are optimised to maximise expected profits.

The first choice model used in RM was the independent demand model. Under
this model, the probability of purchasing a product is considered to be independent
of other products on offer. This assumption holds when the products are not sub-
stitutes of each other, for example, when they participate in different markets. This
assumption clearly fails when a customer selects among competing alternatives, and
substitution patterns need to be taken into consideration. This assumption makes
the models easy to study but precludes the ability to include simple substitution
patterns, such as the fact that when a product is removed from an assortment, its de-
mand can potentially be captured by other products (spilled demand). On the other
hand, the addition of a new alternative to an assortment can cause cannibalisation
of the demand of other products in the assortment, or cause demand to flow from
pre-existing products to this new alternative.

Independent demand models were prevalent until the early 2000s, mostly in
quasi-monopolistic settings where different alternatives were fenced off, e.g. for the
airline industry, where different fare types were tied with specific restrictions (such
as cancellation policy, the requirement of early purchase, seat type, etc.). This was
designed to appeal to different customer segments. In recent years, with technolog-
ical advances that provide information in real-time through the internet and online
agencies, as well as the rise of low-cost airlines, the independent demand model is
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no longer an accurate depiction of customer choice due to higher visibility of alter-
natives and increasing competition.

Since then, the RM community has studied more sophisticated discrete choice
models that incorporate substitution behaviour. The benefits of incorporating sub-
stitution patterns have shown an improvement in demand predictions [Talluri and
Van Ryzin, 2004; Newman et al., 2014; van Ryzin and Vulcano, 2015; Ratliff et al.,
2008; Vulcano et al., 2010].

An important class of customer choice models is the RUMs, originally proposed
by Thurstone [1927], where there is a deterministic component to the utility of each
product, and a random one. Customers draw a sample of the joint distribution of
utilities and select the one with the highest utility. In Block and Marschak [1960], the
authors showed that the RUM class is equivalent to distributions over strict prefer-
ence rankings.

Arguably the most prominent model belonging to RUM is the MNL model [Luce,
1959], also known as the Luce model, which is widely used in discrete choice theory.
Since the model was introduced by Luce [1959], it was applied to a wide variety of
demand estimation problems arising in transportation [McFadden, 1978; Catalano
et al., 2008], marketing [Guadagni and Little, 1983; Gensch, 1985; Rusmevichientong
et al., 2010], and revenue management [Talluri and Van Ryzin, 2004; Rusmevichien-
tong et al., 2010]. One of the reasons for its success stems from its small number of
parameters (one for each product). This allows for simple estimation procedures that
generally avoid overfitting problems even when there is limited historical data [Mc-
Fadden, 1974]. However, as mentioned in Section 1.1, one of the flaws of the MNL is
the property known as the IIA, which states that the ratio between the probabilities
of choosing elements x and y is constant regardless of the offered subset. This prop-
erty does not hold when products cannibalise each other or are perfect substitutes
[Ben-Akiva and Lerman, 1985; Debreu, 1960; Anderson et al., 1992].

Despite the IIA property, the MNL model is widely used. Indeed, for many ap-
plications the mean utility of a product can be modelled as a linear combination of
its features. If the features capture the mean utility associated with each product,
then the error between the utilities and their means may be considered as inde-
pendent noise, and the MNL model emerges as a natural candidate for modelling
customer choice. In addition, the MNL model parameters can be estimated from
customer choice data, even if limited data is available [Ford, 1957; Negahban et al.,
2012], because the associated estimation problem has a concave log-likelihood func-
tion [McFadden, 1974] and it is possible to measure how good the fitted MNL model
approximates the data [Hausman and McFadden, 1984]. Moreover, it is possible to
improve model estimation when the IIA property is likely to be satisfied [Train, 2003].

To overcome the IIA limitation in settings where it is likely to not be satisfied,
more complex choice models have been proposed in the literature such as the Nested
Logit (NL) model [Williams, 1977]. Under the NL model, alternatives are organised
into nests, where products in the same nests are closer substitutes of each other
compared to products in different nests. Under the NL model, costumer selection
occurs in two stages. First, she selects one of the nests or decides to not make a
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purchase based on the alternatives, and if a nest was chosen, then she selects one of
the products within that nest.

It is sensible to think that the customer base might have heterogeneous prefer-
ences, and being able to model these differences will lead to a better exploitation of
this knowledge to maximise profit. Hence, a natural extension of the MNL model
is to consider multiple customer classes, each assumed to follow the MNL model.
This model is known as Finite-mixture Logit model or Latent Class model [Greene and
Hensher, 2003]. The mixed MNL (MMNL) model represents an MNL model where
utilities are drawn from a cumulative distribution, where the Finite-mixture Logit is
a special case when the distribution has finite support. Interestingly enough, under
mild regularity conditions, McFadden and Train [2000] shows that any choice model
based on random utility maximisation can be arbitrarily closely approximated by a
Mixed Multinomial Logit model.

Gallego et al. [2015] proposed the General Attraction model (GAM), where the
probabilities of choosing a product depend on all products (not only the offered
subset as in the MNL model). This involves a shadow attraction value associated
with each product that influences the choice probabilities when the product is not
offered.

To model customer behaviour in a more graphical way, [Blanchet et al., 2016] pro-
posed the Markov Chain model, where the process of selecting an alternative can be
described as a Markov chain, having one state per alternative, and one state repre-
senting the outside option. In this model, customers have an initial distribution over
alternatives and whenever faced with an assortment, they arrive according to this dis-
tribution. If the product is available, they purchase it, if not, they transition to another
alternative, with a probability that approximates the substitution rate between those
products, when the first one is not available. This process is repeated until she selects
a product from the assortment, or she falls in the outside option state, in which case
she leaves without purchasing anything from the assortment. This model is fully
characterised by the initial distribution and the transition probabilities. Moreover,
Berbeglia [2016] proves that the Markov Chain model belongs to RUMs. Recently,
Şimşek and Topaloglu [2018] proposed an Expectation-Maximization algorithm to
estimate model parameters.

The Exponomial model [Daganzo, 1979; Alptekinoğlu and Semple, 2016] incor-
porates negatively skewed distributions of customer utilities. In this model, choice
probabilities are written as a linear combination of exponential terms, thus obtain-
ing this name. This model is well suited to describe markets where customers tend
to not overpay if they are well informed about alternatives and their corresponding
prices. In Alptekinoğlu and Semple [2016], the authors show that the log-likelihood
function is concave, and the parameter estimation can be computed using maximum
likelihood estimates.

All the models previously presented share two common features. First, they
impose an a priori specific structure for choice probabilities. In the last decade,
studies have been trying to estimate a general RUM without pre-imposing any struc-
ture on the choice probabilities. In Farias et al. [2013], the authors used constraint
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sampling to find a distribution over strict preference rankings, which achieves the
purpose since distributions over strict preference rankings was shown to be equiva-
lent to RUM in Block and Marschak [1960]. Later, in van Ryzin and Vulcano [2015], a
column-generation procedure was proposed to compute the maximum likelihood es-
timates. The cost of going away from models that have a particular structure is that
model estimation gets more complicated due to increasing time complexity, over-
fitting issues due to all the flexibility, and in some cases non-identifiability (since a
particular RUM may have more than one description). However, these costs come
with an associated reward: not imposing a specific structure allows modelling more
nuanced substitution behaviour that cannot be described by parametric RUMs. To
quantify this benefit, Farias et al. [2013] tracked the sales data of 14 products (a range
of small SUVs) from a major US automaker over 16 months. The authors compared
the performance of an MNL model, a mixed MNL model, and a non-parametric
RUM by training these models and comparing their predictions against never-seen-
before data. Compared to the MNL and the mixed MNL, their non-parametric model
improved prediction accuracy by roughly 20%. Which in turn can be translated to
up to 10% increase in revenues. More recently, Farias et al. [2017] developed a non-
parametric approach to model customer choice and applied it to a large US fashion
retailer to increase purchases by customers. Their solution, that includes an assort-
ment optimisation procedure, has increased the retailer’s revenue by around 7%.

Secondly, all these models satisfy regularity, and although this notion seems nat-
ural and intuitive, it is well known that it is sometimes violated by individuals [De-
breu, 1960; Tversky, 1972a,b; Tversky and Simonson, 1993; Herne, 1997]. Recently,
there have been efforts to develop discrete choice models that go beyond random
utility and therefore can explain complex choice behaviours such as the violation of
regularity. The following section offers a review of why this is relevant and presents
the models that we will cover in this thesis.

1.2.1 Beyond Random Utility

In the last few years, there has been an increasing effort to propose and study mod-
els that go beyond random utility. The reason behind this increasing interest lies in
the flexibility to capture customer behaviour, and the ability to accommodate substi-
tution patterns and effects that cannot be explained by any model within the RUM
class.

Examples of such effects include attraction, [Doyle et al., 1999], the compromise
effect [Simonson and Tversky, 1992], the similarity effect [Debreu, 1960; Tversky,
1972b], and the paradox of choice (also known as choice overload) [Iyengar and
Lepper, 2000; Schwartz, 2004; Haynes, 2009; Chernev et al., 2015].

The attraction effect stipulates that, under certain conditions, adding a product to
an existing assortment can increase the probability of choosing a product in the orig-
inal assortment. We briefly describe two experiments of this effect. Simonson and
Tversky [1992] considered a choice among three microwaves x, y and z. Microwave
y is a Panasonic oven, perceived as a good quality product. z is a more expensive
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version of y. Product x is an Emerson microwave oven, perceived as a lower quality
product. The authors asked a set of 60 individuals (N = 60) to choose between x
and y; they also asked another set of 60 participants (N = 60) to choose among x, y
and z. They found out that the probability of choosing y increases when product z
is shown. This is a direct violation of regularity, which states that the probability of
choosing a product does not increase when the choice set is enlarged, as described
by McCausland and Marley [2013]. Another demonstration of the attraction effect
was carried by Doyle et al. [1999], who analysed the choice behaviour of two sets of
participants (N = 70 and N = 82) in a grocery store in the UK, varying the choice
set of baked beans. To the first group, they showed two types of baked beans: Heinz
baked beans and a local (and cheaper) brand called Spar. In this setting, the Spar
beans option was chosen 19% of the time. To the second group, the authors intro-
duced a third option: a more expensive version of the local brand Spar. After adding
this new option, the cheap Spar baked beans option was chosen 33% of the time. It
is worth highlighting that the choice behaviour in these two experiments cannot be
explained by an MNL model or by any choice model based on random utility. This
effect, also known as the decoy effect, was even observed in animals. In Lea and
Ryan [2015], the authors showed that female túngara frogs violate regularity in the
following sense: When selecting mating partners, selecting between two alternatives
exhibited a clear preference of one over the other. However, the addition of a third
alternative consistently reversed that preference order. Building upon this interesting
result, Natenzon [2019] proposed the Bayesian probit. This model explains context-
dependent choices as the optimal response of an agent facing imperfect information,
to the ease of option comparison. This model can accommodate both the attraction
and the compromise effect.

The compromise effect [Simonson and Tversky, 1992] captures the fact that indi-
viduals are averse to extremes, which helps products that represent a "compromise”
over more extreme options (either in price, familiarity, quality, etc.). As a result,
adding extreme options sometimes leads to a positive effect on compromise prod-
ucts, whose probabilities of being selected compared to other products increase in
relative terms. This phenomenon again violates the IIA axiom of the Luce model,
and the regularity axiom satisfied by all random utility models [Berbeglia and Joret,
2017].

The similarity effect is discussed in Tversky [1972b], elaborating on an example
presented in Debreu [1960]: Consider x and z to represent two recordings of the
same Beethoven symphony and y to be a suite by Debussy. The intuition behind the
effect is that x and z jointly compete against y, rather than being separate individual
alternatives. As a result, the ratio between the probability of choosing x and the
probability of choosing y when the customer is shown the set {x, y} is larger than
the ratio when the customer is shown the complete set {x, y, z}. Intuitively, z takes
the market share of product x, rather than the market share of product y.

Finally, choice overload effect occurs when the probability of making a purchase
decreases when the assortment of available products is enlarged. To our knowledge,
the first paper that shows the empirical existence of choice overload is Iyengar and
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Lepper [2000]. In their experimental setup, customers are offered jams from a tast-
ing booth displaying either 6 (limited selection) or 24 (extensive selection) different
flavours. All customers were given a discount coupon for making a purchase of one
of the offered jams. Surprisingly, 30% of the customers offered the limited selection
used the coupon, while only 3% of customers offered the extensive selection used the
coupon. Other studies of choice overload have been done on 401(k) plans [Sethi-
Iyengar et al., 2004], chocolates [Chernev, 2003b], consumer electronics [Chernev,
2003a], and pens [Shah and Wolford, 2007]. For a more in depth discussion of this
effect, the reader is referred to Schwartz [2004]. Readers are also referred to Chernev
et al. [2015] for a review and meta-analysis of this topic.

Recently, Echenique et al. [2018] proposed the Perception-Adjusted Luce Model
(PALM), which aims specifically to accommodate the effects just described. In Chap-
ter 2, we study the Sequential Multinomial Logit (SML), which is a special case of the
PALM. In the SML model, products are partitioned a priori into two sets, which we
call levels. This product segmentation into two levels can capture different degrees of
attractiveness. For example, it can model customers who check promotions/special
offers first before considering the purchase of regular-priced products. It can also
model consumer brand awareness, where customers first check products of specifics
brands before considering the rest. Finally, the SML model can model product vis-
ibilities in a market, where products are placed in specific positions (aisles, shelves,
web-pages, etc.) that induce a sequential analysis, even when all products are in
sight.

While the PALM and the NL model can both be conceived as sequential choice
processes, they have important differences. Probably the most important difference
is that the NL model belongs to the family of RUMs1, and therefore cannot accom-
modate regularity violations. On the other hand, the PALM does not belong to the
RUM class and allows regularity violations as well as choice overload. In terms of
the choice process, in the NL model customers first select a nest, and then a product
within the nest. In the PALM, products are separated by preference levels, so when a
customer is offered a set of products, she first chooses from the offered products be-
longing to the lowest available level, and if none of them are chosen then she selects
from the next available level, and keeps repeating this process until no more levels
are available or until a purchase is made.

Another phenomena that makes customer behaviour difficult to model is that
customers tend to use rules to simplify decisions that are not always easy to infer.
Before making a purchase decision, they often narrow down the set of alternatives
to choose from, using different heuristics to make the decision process simpler. Sev-
eral consider-then-choose models have been proposed in the literature, related with
attention filters, search costs, feature filters, among others. Another reasonable way
to discard alternatives, is when the difference between attractiveness is so evident,
that the less attractive alternative, even when it is offered, is never picked (as in the
Threshold Luce model, Echenique and Saito [2018]). Any of the heuristics mentioned

1This is unless nest specific parameters are greater than one, a case rarely studied in the literature.



10 Introduction

earlier allow the consumer to restrict her attention to a smaller set usually referred
in the literature as consideration set. This effect also proposes that an offered product
might result in zero-probability choice, since it is not being considered.

Several extensions to the MNL model have been introduced to overcome the IIA
property and some of its other weaknesses. They include the nested MNL model and
the latent class MNL model. These models however do not handle zero-probability
choices well. Consider two products a and b: The MNL model states that the proba-
bility of selecting a over b depends on the relative attractiveness of a compared to the
attractiveness of b. Consider the case in which b is never selected when a is offered.
Under the MNL model, this means that b must have zero attractiveness. But this
would prevent b from being selected even when a is not offered in an assortment.

To overcome zero-probability choices, Masatlioglu et al. [2012] proposed a the-
oretical foundation for maximising a single preference under limited attention, i.e.,
when customers select among the alternatives that they pay attention to. To incorpo-
rate the role of attention into stochastic choice, Manzini and Mariotti [2014] proposed
a model in which customers consider each offered alternative with a probability and
choose the alternative maximising a preference relation within the considered al-
ternatives. This was axiomatised and generalised in Brady and Rehbeck [2016], by
introducing the concept of random conditional choice set rule (RCCSR), which captures
correlations in the availability of alternatives. This concept also provides a natu-
ral way to model substitutability and complementarity. The paper also states that
RCCSR is not a RUM.

Payne [1976] showed that a considerable portion of the subjects in his experimen-
tal setting use a decision process involving a consideration set. Numerous studies
in marketing also validated a consider-then-choose decision process. In his seminal
work, Hauser [1978] observed that most of the heterogeneity in consumer choice can
be explained by consideration sets. He shows that nearly 80% of the heterogeneity in
choice is captured by a richer model based in the combination of consideration sets
and logit-based rankings. The rationale behind this observation is that first stage fil-
ters eliminate a large fraction of alternatives, thus the resulting consideration sets are
composed of a few products in most of the studied categories [Belonax Jr and Mit-
telstaedt, 1978; Hauser and Wernerfelt, 1990]. Pras and Summers [1975] and Gilbride
and Allenby [2004] empirically showed that consumers form their consideration sets
by a conjunction of elimination rules. Furthermore, there are empirical results show-
ing that a two-stage model including consideration sets better fits consumer search
patterns than sequential models [De los Santos et al., 2012].

From a customer standpoint, the use of consider-then-choose models alleviates
the cognitive burden of deciding when facing too many alternatives Tversky [1972a,b];
Tversky and Kahneman [1974]; Payne et al. [1996]. When dealing with a decision un-
der limited time and knowledge, customers often return to screening heuristics as
shown in Gigerenzer and Goldstein [1996]. Psychologically speaking, customers as
decision makers need to carefully balance search efforts and opportunity costs with
potential gains, and consideration sets help to achieve that goal [Roberts and Lat-
tin, 1991; Hauser and Wernerfelt, 1990; Payne et al., 1996]. Recently Jagabathula
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and Rusmevichientong [2017] proposed a two-stage model where customers con-
sider only the products that are contained within a certain range of their willingness
to pay. Aouad et al. [2015] explored consider-then-choose models where each cos-
tumer has a consideration set, and a ranking of the products within it. The customer
then selects the higher ranked product offered. Dai et al. [2014] considered a rev-
enue management model where an upcoming customer might discard one offered
itinerary alternative due to individual restrictions, such as time of departure. Wang
and Sahin [2018] studied a choice model that incorporates product search costs, so
the set that a customer considers might differ from what is being offered, depending
on how expensive is to acquire extra information on products.

Another recently proposed extension to the MNL model is the General Luce Model
(GLM), independently developed by Echenique and Saito [2018] and Ahumada and
Ülkü [2018]. The GLM generalises the MNL model and falls outside the RUM class.
In the GLM, each product has an intrinsic utility and the choice probability depends
upon a dominance relationship between the products. Given an assortment S, con-
sumers first discard all dominated products in S and then select a product from the
remaining ones using the standard MNL model. Chapters 3 and 4 study this model,
and provide solutions to the assortment and pricing problems.

It is worth to point out that after we posted all our results from Chapter 3 and
Chapter 4 on ArXiv and submitted them for publication (first version: June 2017,
second version: April 2019), the following paper was released: Consumer Choice with
Consideration Set: Threshold Luce model, by Ruxian Wang, posted on June 1st 2019.
This paper studies a particular case of the General Luce model, called the Threshold
Luce model, which we also studied in detail. He focused solely on the Threshold
Luce model, and was able to obtain interesting results. Wang arrived to the same
pricing results. He also studied price competition and show that depending on the
value of the threshold, the market can have a varying number of Nash equilibria.
He also showed that the assortment optimisation problem under the Threshold Luce
model with heterogeneous customers is NP-hard, which we originally have as an
open question, and provided estimation methods to calibrate the threshold Luce
model. He showed that this model can improve the goodness of fit and prediction
accuracy significantly in comparison with the MNL, which suggests the threshold
effect should be taken into consideration when studying customer choice.

Recently, Berbeglia [2018] proposed the Generalised Stochastic Preference (GSP) model,
which is a non-parametric model capable to explain easily (and exactly) well known
examples that fall outside RUM. The model also has a nice intuitive interpretation:
it is based on the representation of RUMs as stochastic preference, but allows some
consumer types to be non-rational.

In Cattaneo et al. [2017], the authors introduce the Random Attention Model (RAM),
which consists of a ranking of the available alternatives, and a probability function
that is a distribution over consideration sets that are subsets of the offered set. Given
its non-parametric nature, the RAM model, is very general: allows regularity viola-
tions, contains the RUM class and Random Conditional Choice Set Rule (RCCSR) [Brady
and Rehbeck, 2016].
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In an effort to understand the connection between some of the existing classes of
choice models, Feng et al. [2017] studied the relation between RUMs, the represen-
tative agent model and the semi-parametric choice model (SCM) [Natarajan et al., 2009].
In the representative agent model, a representative agent makes a choice among al-
ternatives on behalf of the entire population. The agent may choose any fractional
amount of the alternatives, and to make his choice, she maximises the expected util-
ity while rewarding diversification to some extent. On the other hand, unlike RUM
where a distribution of the random utility is specified, the SCM considers a set of
distributions for it. Thus, RUM can be viewed as a particular case of SCM (where
the distributions set is a singleton). Despite the fact that these two models are based
on different approaches, the authors made a key observation about their underly-
ing structure: they are essentially functions from the vector of utilities, to a vector of
choice probabilities, mediated by a welfare function that captures the expected utility
that a customer can obtain from the choice model. Furthermore, the choice proba-
bility can be understood as the gradient of this welfare function with respect to the
utilities. Building on this observation, they proposed the Welfare-Based Choice model.
The authors showed that this model is equivalent to the representative agent model
and the semi-parametric model, showing the equivalence between the two. Addi-
tionally, they showed that the welfare-based model strictly subsumes RUM when
there are three or more alternatives, while they are equivalent when there are only
two.

Another recently proposed model that can accommodate attraction, compromise
and similarity effects (and hence, violate regularity) is the Gradual Pairwise Compar-
ison Rule (GPCR) [Dutta, 2018]. This model is built on the premise that the choice
procedure is primarily made through a sequence pairwise comparisons, as the ev-
idence of eye-tracking studies of choice suggests [Russo and Rosen, 1975]. Dutta
proposed that the customer performs a series of pairwise comparisons against her
underlying strict rational preference, in a menu-independent manner to remove in-
ferior alternatives from an offered set. While she can make all possible comparisons
with positive probability, it is not certain. Once the sequential pairwise compar-
isons stops (which occurs with a possibly menu-dependent probability distribution),
she selects among the non-removed alternatives with equal probability. The author
showed (by construction) that this model can rationalise any Luce rule. In terms of
the data that this model can rationalise, this model neither contains nor is contained
by any of the models proposed in Manzini and Mariotti [2014]; Brady and Rehbeck
[2016]; Cattaneo et al. [2017].

Chen and Mišić [2019], proposed a non-parametric model where each customer
type is associated with a binary decision tree, representing the decision process of
making a purchase based on checking the existence of specific products from the
assortment. Together with a probability distribution over customer types, the authors
show that this model is able to represent any customer choice model with arbitrary
precision, including models that are inconsistent regularity. A recent paper [Chen
et al., 2019] proposed a similar tree-based discrete choice model, and although the
results are similar, in the latter case the estimation step is based on random forest,
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whereas in Chen and Mišić [2019] the estimation procedure is carried over by an
optimisation approach based on column generation. Additionally, Chen et al. [2019]
shows that the estimation procedure allows the inclusion of pricing information, and
even aggregate choice data.

It is natural to wonder how much is lost in prediction accuracy by assuming
that consumers follow a RUM when attempting to model choice behaviour. In Jaga-
bathula and Rusmevichientong [2018], the authors created an efficient procedure to
quantify the loss of rationality (LoR), which is defined as the cost of approximating
the observed choice fractions from data, with those from the best-fitting probabil-
ity distribution over rankings (which coincides with RUM). Using this methodology,
they analysed real transactions of consumer packaged goods, and show that for some
specific categories of products, the LoR is high. This fact showed that irrespective of
the RUM that we select to approximate choice behaviour in this context, we will not
be able to provide a good approximation.

Alternatively, there are other factors that can drive customers to violate regularity,
and exhibit choice patterns that apparently are non-rational given only product fea-
tures and customer valuation of them. Among the common explanations proposed
in the literature, two of them are pervasive in online markets, and slowly making
progress in retail settings: social influence and position bias. The next section will
briefly explain how these two effects modify customer behaviour, and some of the
attempts at characterise their impact.

1.2.2 Social Markets, Social Influence and Position Bias

To inform purchase decisions, customers often rely in what other previous customers
have done before. This is especially relevant when there is no prior information about
the alternatives. Websites take advantage of this fact and provide information on past
consumption of their offered alternatives, or they stablish rating systems. The effect
that this information has over customer behaviour is known as wisdom of the crowd
Lorenz et al. [2011], where the opinion of the majority impacts the decision carried
by individuals. This effect can cause that new users entering the market, inform their
decision based on the behaviour of old users, assuming they had a strong reason or
they are better informed to choose among alternatives and thus decide to copy their
behaviour.

Understanding how exactly this works, and being able to predict the extent of this
effect, has proven to be extremely difficult: experts constantly fail trying to predict
the success of books, songs and movies Hirsch [1972]; De Vany and Walls [1999];
Caves [2000]. In De Vany and Walls [1999], the authors showed that in the movie
industry, there are only a few rare and unpredictable movies that concentrate most
of the ticketing revenue. This trend is practically the norm in online markets, where
web pages [Broder et al., 2000], books [Newman, 2005], youtube videos [Cha et al.,
2007] receive most of the attention while the majority of the available alternatives are
barely noticed.

Customers are also influenced by how alternatives are presented to them. Exper-
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imental analysis using eye-tracking inspired the so-called Cascade Models, introduced
first by Craswell et al. [2008]; Kempe and Mahdian [2008a], and showed fit experi-
mental data better than separable models in presence of position bias. The intuition
behind this model, is that users consider products in a top-to-bottom fashion, as they
were presented in an ordered list, and they only look to the next product if the cur-
rent one was not selected. This phenomena has been observed in online stores such
as Amazon, Itunes, flight search engines, and retail stores [Lim et al., 2004].

Examples of these two phenomena can be observed in trial-offer markets, where
customers can sample a product before deciding whether to buy it or not, and might
be influenced by social signals, or alternative placement. The MusicLab experiment
Salganik and Watts [2008] showed that social influence steer the markets towards un-
predictability and inequality, where few products dominate the market, and predict-
ing which ones is extremely complex. However, one characteristic of the MusicLab

experiment, was that the songs were displayed in decreasing order of popularity.
This intensifies the social signal with the addition of position bias Payne [1951], since
customers tend to pay more attention to the items at the top, amplifying the rich get
richer effect that is already in place given they are already ranked by popularity. Is
then the interaction of these two factors that can lead to more predictable outcomes.

Following this line of thought, Watts [2011] suggested that when social influence
affects the market, popularity prediction is nearly impossible to achieve. However,
not all is lost: we can attempt an approach that he calls measure and react, where
instead of focusing on predicting how users will behave or create rules to induce
specific customer behaviour, we should observe directly the market response and
react accordingly.

As a result of Watt’s advice, researchers focused on designing appropriate rank-
ing systems that can control how information is being transferred to users, and with
that, control the negative effects created by social influence, showing that the unpre-
dictability is not an inherent property of markets where customers are influenced by
what other customers are doing, but rather a consequence of market design.

These results have been obtained using extensions of the MNL model [Krumme
et al., 2012; Lerman and Hogg, 2014; Abeliuk et al., 2015; Van Hentenryck et al., 2016;
Abeliuk et al., 2017; Maldonado et al., 2018]. One alternative is to use a myopic
approach and find a ranking (the performance ranking) that maximises the expected
downloads at each time step, given the current state of the market. Abeliuk et al.
[2016] show that there is a polynomial time solution for this problem, with position
bias and social influence. The authors also show that by using this approach, the
result always profits from both position bias and social influence, as compared with
a market without these effects.

Abeliuk et al. [2017] shows that using the quality ranking (which instead of rank-
ing products by popularity, ranks them by decreasing order of quality) reduces sig-
nificantly the unpredictability attributed to social influence. They reproduced the
results in an experimental study, where participants participate in a market where in
each interaction they view a list of ten science related stories, ordered in one column
and were asked to pick one, and decide to recommend it if they deemed worthy
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of it. Participants were randomly assigned into one of four different experimental
settings, that differ in the way stories are ordered, and whether social signals were
displayed in the screen or not. In the setting where no social signal was available for
participants, they only saw the titles and abstracts. On the other hand, when social
signals were enabled, each participant had the additional information of how many
recommendations each story received so far.

Trial-offer markets occupy a special place in my candidature, since they intro-
duced me to the RM literature. One question related with this market that was often
asked is: what if customers can try more than one product before making a purchase deci-
sion?. Following this line of inquiry, we extended some results on predictability and
efficiency in Abeliuk et al. [2016, 2017] to a setting where consumers can try more
than one alternative before making a purchase decision, while being influenced by
social signal and position bias. In Appendix A we show that a MNL model with
continuation can be reduced to a standard trial-offer market under the MNL model
with different appeal and product qualities. We examine the consequences of this
reduction on the performance and predictability of the market, the role of social
influence, and the ranking policies (popularity ranking, performance ranking and
quality ranking). For a more in depth review of trial-offer markets, the reader is
referred to [Abeliuk et al., 2017; Maldonado et al., 2018].

1.3 The Assortment Problem

The assortment optimisation problem is a central problem in revenue management,
where a firm wishes to offer a set of products with the goal of maximising the ex-
pected revenue. This problem has many relevant applications in brick-and-mortar
retail, fashion industry, online markets, and RM in general [Kök et al., 2005]. For ex-
ample, a publisher must decide which set of advertisements to show, an airline must
decide which fare classes to offer on each flight, and a retailer must decide which
products to show in a limited shelf space.

One of the first positive results of the assortment problem under the MNL model
was obtained by Talluri and Van Ryzin [2004], where the authors showed that the op-
timal assortment can be found by greedily adding products to the offered assortment
in the order of decreasing revenues, thus evaluating at most a linear number of sub-
sets. Rusmevichientong et al. [2010] studied the assortment problem under the MNL
but with a capacity constraint limiting the products that can be offered. Under these
conditions, the optimal solution is not necessarily a revenue-ordered assortment but
it can still be found in polynomial time.

Davis et al. [2013] showed that solutions to the assortment problem when the
choice probabilities follow the GAM (which extends the MNL) can be found in poly-
nomial time when the assortments are constrained by a set of totally unimodular
constraints. Some examples of such constraints are: capacity constraints (limiting
the number of products), assortment problems where display allocations must be
chosen, pricing with finite menu, quality consistent pricing (where prices must fol-
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low the same order as product qualities). The author showed that all those problems
can be solved as linear programs, and constraints can be combined as long as to-
tal unimodularity is preserved. Abeliuk et al. [2016] also proposed polynomial time
algorithms to solve the assortment problem under the MNL model with capacity
constraint and position bias, where position bias means that customer choices are
affected by the positioning of the products from the assortment. The approach is
different from Davis et al. [2013], since rather than solve a linear program, it shows
that the number of potential assortments that needs to be considered as candidates is
at most quadratic in the number of products, and offer a procedure to obtain them.

Under the Mixed Multinomial Logit model, the problem becomes NP-hard [Bront
et al., 2009] and it remains NP-hard even for two customer types [Rusmevichientong
et al., 2014]. A branch-and-cut algorithm was proposed by Méndez-Díaz et al. [2014].
Feldman and Topaloglu [2015] proposed methods to obtain good upper bounds on
the optimal revenue. Rusmevichientong and Topaloglu [2012] considered a model
where customers follow a MNL model and the parameters belong to a compact
uncertainty set. The firm wants to hedge against the worst-case scenario and the
problem amounts to finding the optimal assortment under these uncertainty condi-
tions. Surprisingly, despite the uncertainty, when there is no capacity constraint the
revenue-ordered strategy is still optimal in this setting.

There are also studies on how to solve the assortment problem when customers
follow a Mixed Multinomial Logit model. Bront et al. [2009] showed that this prob-
lem is NP-hard in the strong sense using a reduction from the minimum vertex cover
problem [Garey and Johnson, 1979]. Méndez-Díaz et al. [2014] proposed a branch-
and-cut algorithm to solve the optimal assortment under the Mixed Logit model.
An algorithm to obtain an upper bound of the revenue of the optimal assortment
solution under this choice model was proposed by Feldman and Topaloglu [2015].
Rusmevichientong et al. [2014] showed that the problem remains NP-hard even when
there are only two customers classes.

Another model that attracted researchers’ attention is the NL model [Williams,
1977]. Under the NL model, products are partitioned into nests, and the selection
process for a customer goes by first selecting a nest, and then a product within the
selected nest. It also has a dissimilarity parameter associated with each nest that
serves the purpose of magnifying or dampening the total preference weight of the
nest. For the two-level NL model, Davis et al. [2014] studied the assortment problem
and showed that when the dissimilarity parameters are bounded by 1 and the no-
purchase option is contained in a nest of its own, the optimal assortment can be
found in polynomial time. If either of these two conditions is relaxed, the resulting
problem becomes NP-hard, using a reduction from the partition problem [Garey and
Johnson, 1979]. The polynomial-time solution was further extended by Gallego and
Topaloglu [2014], who showed that even if there is a capacity constraint per nest, the
problem remains solvable in polynomial time. Li et al. [2015] extended this result to
a d-level NL model (both results under the same assumptions over the dissimilarity
parameters and the no-purchase option).

Jagabathula [2014] proposed a local-search heuristic for the assortment problem
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under an arbitrary discrete choice model. This heuristic is optimal in the case of the
MNL model, even with a capacity constraint. Aouad et al. [2015] studied the assort-
ment problem under several consideration sets and ranking structures, and provide
a dynamic programming approach capable of returning the optimal assortment in
polynomial time for families of consideration set functions originated by screening
rules Hauser et al. [2009]. Wang and Sahin [2018] has studied the assortment optimi-
sation in a context in which consumer search costs are non-negligible. The authors
showed that the strategy of revenue-ordered assortments is not optimal. Another
interesting model sharing similar choice probabilities to those of the PALM, is the
one proposed in Manzini and Mariotti [2014] which is based on consider first and
choose second process. Echenique et al. [2018] showed that the PALM and the model
by Manzini and Mariotti are in fact disjoint. The assortment optimisation problem
under the Manzini and Mariotti model was recently studied by Gallego and Li [2017],
where they show that revenue-ordered assortments strategy is optimal.

The assortment problem was also studied under the negative exponential distri-
bution (NED) model [Daganzo, 1979], also known as the exponomial model [Alptekinoğlu
and Semple, 2016] in which customer utilities follow negatively skewed distribution.
Alptekinoğlu and Semple [2016] proved that when prices are exogenous, the opti-
mal assortment might not be revenue-ordered assortment, because a product can be
skipped in favour of a lower-priced one depending on the utilities. This last result
differs from what happens under the MNL and the NL model (within each nest).

Recently, Berbeglia and Joret [2017] studied how well revenue-ordered assort-
ments approximate the optimal revenue for a large class of choice models, namely
all choice models that satisfy regularity. They provide three types of revenue guar-
antees that are exactly tight for the RUM family. In the last few years, there has been
also progress in studying the assortment problem in choice models that incorporate
visibility or position biases. In these models, the likelihood of selecting an alterna-
tive depends not only on the offer set but also on the specific positions in which each
product is displayed [Abeliuk et al., 2016; Aouad and Segev, 2015; Davis et al., 2013;
Gallego et al., 2016].

1.4 The Pricing Problem

Multi-product price optimisation under the MNL model and the NL model has been
studied since the models were introduced in the literature. One of the first results on
the structure of the problem is due to Hanson and Martin [1996], where they show
that the profit function for a company selling substitutable products when customers
follow the MNL model is not jointly concave in price. To overcome this issue, in Song
and Xue [2007] and later in Dong et al. [2009], the authors show that even when the
profit function is not concave in prices, it is concave in the market share and there is a
one-to-one correspondence between price and market share. Multiple studies shown
that under the MNL where all products share the same price sensitivity parameter,
the mark-up which is simply the difference between price and cost, remains constant
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for all products at optimality [Anderson et al., 1992; Hopp and Xu, 2005; Gallego and
Stefanescu, 2009; Besbes and Sauré, 2016]. Furthermore, the profit function is also
uni-modal on this constant quantity and it has a unique optimal solution, which can
be determined by studying the first order conditions.

Li and Huh [2011] showed the same result for the NL model. Up to that point,
all previous results assumed an identical price sensitivity parameter for all products.
Under the MNL, there is empirical evidence that shows the importance of allowing
different price sensitivity parameters for each product [Berry et al., 1995; Erdem
et al., 2002]. There is also evidence in Börsch-Supan [1990] that restricting the nest
specific parameters to the unit interval results in rejection of the NL model when
fitting the data, thus recommending relaxing this assumption. The problem when
relaxing this condition, is that the profit function is no longer concave on the market
share, which complicates the optimisation task. In Gallego and Wang [2014], the
authors considered a NL model with differentiated price sensitivities, and found
that the adjusted mark-up, defined as price minus cost minus the reciprocal of the price
sensitivity is constant for all products within a nest at optimality. Furthermore, each
nest also has an adjusted next-level mark-up which is also invariant across nests, which
reduces the original problem to a one variable optimisation problem. Additional
theoretical development can be found in Rayfield et al. [2015]; Kouvelis et al. [2015]
but these are restricted to the two-stage NL model. In Huh and Li [2015] some of
the results were extended to a multi-stage NL model for specific settings, but also
show that the equal mark-up property fails to hold in general for products that do
not share the same immediate parent node in the nested choice structure, even when
considering identical price sensitivity parameters. Li and Huh [2011] and Gallego
and Wang [2014] extend to the multi-stage NL model and show that the optimal
pricing solution can still be found by means of maximising a scalar function.

There are some interesting results for other models that share similarities with the
MNL model, and therefore are closely related with the model that we are studying.
In Wang and Sahin [2018], the authors incorporate search cost into consumer choice
model. The joint assortment and pricing results are similar to the ones that we
study in Section 4.1, in that many structural results that holds at optimality for their
model, are also satisfied in our studied case. They show that the quasi-same price
policy (that charges the same price for all products but one, the least attractive one)
was optimal for this model. Interestingly, the joint assortment and pricing results
under the Threshold Luce model has a slightly different result: The optimal pricing
is a fixed price for all products, except for the most attractive and least attractive
ones. This led to a situation where there are many possible prices, not just two. We
note that this result was also recently and independently obtained by Wang [2019].

For the exponomial model, Alptekinoğlu and Semple [2016] shows that the opti-
mal pricing policy allows for variable mark-ups in optimal prices that increase with
expected utilities. This is apparently a consequence of the skewed distribution of
consumer utilities.
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1.5 Thesis Outline

The rest of this thesis is organised as follows. Chapter 2, studies the assortment op-
timisation problem under the SML model, where products are partitioned into two
levels, to capture differences in attractiveness, brand awareness, and/or visibility in
the market. When a consumer is presented with an assortment of products, she first
considers products on the first level and, if none of them are purchased, products in
the second level are considered. We show that the concept of revenue-ordered as-
sortment sets, which contain the optimal assortment under the MNL model, can be
generalised to the SML model. More precisely, we show that all optimal assortments
under the SML are revenue-ordered by level, a natural generalisation of revenue-
ordered assortments that contains, at most, a quadratic number of assortments. As a
corollary, the assortment optimisation problem under the SML is solvable in polyno-
mial time.

In Chapter 3 we study the assortment problem under the two-stage Luce model.
We show that the assortment problem under the 2SLM is solvable in polynomial time.
Moreover, we prove that the capacitated assortment optimisation problem is NP-
hard and presents polynomial-time algorithms for the cases where (1) the dominance
relation is attractiveness correlated and (2) its transitive reduction is a forest.

Chapter 4 studies the pricing problem under the two-stage Luce model. We first
note that changes in prices should be reflected in the dominance relation if the dif-
ferences between the resulting attractiveness are large enough. This is formalised by
solving the joint assortment and pricing problems under the Threshold Luce model,
where one product dominates another if the ratio between their attractiveness is
greater than a fixed threshold. In this setting, we show that this problem can be
solved in polynomial time.

Finally, Chapter 5 summarises the main contributions of this thesis, and explores
potential avenues for future work.
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Chapter 2

Sequential Multinomial Logit

This chapter is reproduced with minor changes from:
Flores, A.; Berbeglia, G; Van Hentenryck, P. 2019. Assortment optimisation under

the Sequential Multinomial Logit Model. European Journal of Operational Research,
Volume 273, Issue 3, 16 March 2019, Pages 1052-1064

In this chapter, we study the assortment optimisation problem under the Sequen-
tial Multinomial Logit (SML), a discrete choice model that generalizes the multinomial
logit (MNL). Under the SML model, products are partitioned into two levels to cap-
ture differences in attractiveness, brand awareness and/or visibility of the products
in the market. When a consumer is presented with an assortment of products, she
first considers products in the first level and, if none of them is purchased, products
in the second level are considered. This model is a special case of the Perception-
Adjusted Luce Model (PALM) recently proposed by Echenique et al. [2018]. It can
explain many behavioral phenomena such as the attraction, compromise, similarity
effects and choice overload which cannot be explained by the MNL model or any
discrete choice model based on random utility. In particular, the SML model allows
violations to regularity which states that the probability of choosing a product cannot
increase if the offer set is enlarged.

The chapter shows that the seminal concept of revenue-ordered assortment sets,
which contain an optimal assortment under the MNL model, can be generalized
to the SML model. More precisely, we prove that all optimal assortments under
the SML are revenue-ordered by level, a natural generalization of revenue-ordered
assortments that contains, at most, a quadratic number of assortments. As a corollary,
assortment optimisation under the SML is polynomial-time solvable. This result is
particularly interesting given that the SML model does not satisfy the regularity
condition and, therefore, it can explain choice behaviours that cannot be explained
by any choice model based on random utility.

21
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2.1 Motivation

The Sequential Multinomial Logit (SML) for brevity, is a special case of the recently
proposed model known as the perception-adjusted Luce model (PALM) [Echenique
et al., 2018]. In the SML model, products are partitioned a priori into two sets, which
we call levels. This product segmentation into two levels can capture different de-
grees of attractiveness. For example, it can model customers who check promotion-
s/special offers first before considering the purchase of regular-priced products. It
can also model consumer brand awareness, where customers first check products of
specifics brands before considering the rest. Finally, the SML can model product vis-
ibilities in a market, where products are placed in specific positions (aisles, shelves,
web-pages, etc.) that induce a sequential analysis, even when all the products are
at sight. Our main contribution is to provide a polynomial-time algorithm for the
assortment problem under the SML and to give a complete characterization of the
resulting optimal assortments.

A key feature of the PALM and the SML, is their ability to capture several effects
that cannot be explained by any choice model based in random utility (such as for
example the MNL, the mixed MNL, the markov chain model, and the stochastic
preference models). Examples of such effects include attraction [Doyle et al., 1999],
the compromise effect [Simonson and Tversky, 1992], the similarity effect [Debreu,
1960; Tversky, 1972b], and the paradox of choice (also known as choice overload)
[Iyengar and Lepper, 2000; Schwartz, 2004; Haynes, 2009; Chernev et al., 2015]. These
effects are discussed in the next section. In particular, the SML allows for violations
of regularity. There are very few analyses of assortment problems under a choice
model outside the RUM class.

The decision on the first level is just as a conventional MNL, and when nothing
is selected on this level, the selection process in the second level is again an MNL
model that inflate the outside alternative with the attractiveness of the products al-
ready rejected on the first level. We might argue that this can be attributed to the
consumer being either overwhelmed by the selection process so far, or that she/he is
still comparing with products on the first level, and this burden carries to the second
level, decreasing the overall purchasing probability. Another way to understand the
reasoning behind the functional form of this model, is in settings where all products
are visible but the customer still decides sequentially among a partition of the prod-
ucts, and the cognitive efforts of making this partition provokes the exacerbation of
the outside option. One might argue that the extent of this effect should be weighted,
but this variation is not explored in this Chapter. A similar model is currently being
studied in Liu et al. [2018]. Here, the functional form is slightly different than the
PALM, but it is also characterised by iterative applications of the MNL.

Our algorithm is based on an in-depth analysis of the structure of the SML. It
exploits the concept of revenue-ordered assortments that underlies the optimal algo-
rithm for the assortment problem under the MNL. The key idea in our algorithm is
to consider an assortment built from the union of two sets of products: a revenue-
ordered assortment from the first level and another revenue-ordered assortment from
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the second level. Several structural properties of optimal assortments under the SML
are also presented.

On Section 2.3, we establish bounds on the following: any the product offered on
any optimal solution, and also for an assortment considered on an optimal solution
on each level. Then, we hypothesize that any optimal solution must by revenue
ordered assortment by level. To demonstrate this result, in Section 2.4 we use the
structural insights developed on Section 2.3, and show by contradiction that if an
optimal solution is not revenue ordered assortment by level, then we can slightly
modify that assortment to find another one yielding more revenue, contradicting
optimality.

2.2 Problem Formulation

This section presents the sequential multinomial logit model considered in this chap-
ter and its associated assortment optimisation problem. For the purpose of com-
pleteness, we describe the perception-adjusted Luce model (PALM) proposed by in
Echenique et al. [2018]. The authors recover the role of perception among alternatives
using a weak order %. The idea is that if x � y then x tends to be perceived before y,
and whenever x ∼ y then x and y are perceived at the same time.

A Perception-Adjusted Luce Model (PALM) is described by two parameters: a weak
order %, and a utility function u. She perceives elements of an offered set S ⊆ X
sequentially according to the equivalence classes induced by % (in our representation,
we called them levels). Each alternative is selected with probability defined by µ, a
function depending on u and closely related to Luce’s formula.

Definition 1. A Perception-Adjusted Luce Model (PALM) is a pair (%, u), where the
probability of choosing a product x when offering the set S is:

ρ(x, S) = µ(x, S) · ∏
α∈S/%:α>x

(1− µ(α, S)), (2.1)

where:

µ(x, S) =
u(x)

∑y∈S u(y) + u0
. (2.2)

S/ % corresponds to the set of equivalence classes in which % partitions S.
Thus, the probability of choosing a product is the probability of not choosing any

products belonging to the previous levels and then selecting the product according a
Luce’s Model considering all the offered products. We can also write the probability
of not choosing any product of the assortment:

ρ(x0, S) = 1− ∑
y∈S

ρ(y, S), (2.3)

or equivalently, as the probability of not choosing on each one of the equivalence
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classes.

ρ(x0, S) = ∏
α∈S/%

(1− µ(α, S)) (2.4)

In the Perception-Adjusted Luce Model, the customer makes her selection follow-
ing a sequential procedure. She considers the alternatives in sequence, following a
predefined perception priority order. Choosing an alternative is conditioned to not
choosing any other alternative perceived before. If none of the offered alternatives is
selected, then the outside option is chosen.

Is interesting to note that setting the outside option utility to zero does not result
in zero choice probability for the outside option. As explained in Echenique et al.
[2018], there are two sources behind choosing the outside option in the PALM. One is
the utility of the outside option, which is to the same extent as in Luce’s model with
an outside option. The second, and to our appreciation the one that differentiate this
model from other models of choice, is due the sequential nature of choice. When a
customer chooses sequentially following a perception priority order, it can happen
that she checks all products in the offered set without making a choice. When this
occurs, this seems to increase or bias the value of the outside option probability.

Another consequence of the functional form of the outside option probability
(Equation (2.4)), is the ability to model choice overload. In addition, this model
allows violations to regularity and violations to stochastic transitivity. The interested
reader is referred to Echenique et al. [2018] for more details.

The Sequential Multinomial Logit Model (SML which is a special sub-case of the
Perception-Adjusted Luce Model) is a discrete choice model where the probability
ρ(x, S) of choosing a product x in an assortment S is given by:

ρ(x, S) =


u(x)

∑y∈S u(y)+u0
if x ∈ S1,[

1− ∑z∈S1
u(z)

∑y∈S u(y)+u0

]
· u(x)

∑y∈S u(y)+u0
if x ∈ S2.

where u0 denotes the intrinsic utility of the no-choice option, which has a probability

ρ(x0, S) = 1−∑
i∈S

ρ(i, S)

of being chosen.
Observe that the probability of choosing a product x ∈ S1 (which implies that

l(x) = 1 and x ∈ S) is given by the standard MNL formula, whereas the probability
of choosing a product y that belongs to the second level is given by the probability
of not choosing any product belonging to the level 1 multiplied by the probability of
selecting product y according the MNL again. Note that, if all the offered products
belong to the same level, this model is equivalent to the classical MNL model. The
SML corresponds to PALM restricted to two levels.

Let r : X ∪ {x0} → R+ be the revenue function which assigns a per-unit revenue
to each product and let r(x0) = 0. We use R(S) to denote the expected revenue of an
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assortment S, i.e.,

R(S) = ∑
x∈S

ρ(x, S) · r(x). (2.5)

The assortment optimisation problem under the SML consists in finding an assort-
ment S∗ that maximises R, i.e.,

S∗ = argmax
S⊆X

R(S). (2.6)

We use R∗ to denote the maximum expected revenue, i.e.,

R∗ = max
S⊆X

R(S). (2.7)

Without loss of generality, we assume that u(i) > 0 in the rest of this chapter. We use
xij to denote the jth product of the ith level (i = 1, 2), and mi to denote the number of
products in level i. Also, we assume that the products in each level are indexed in a
decreasing order by revenue (breaking ties arbitrarily), i.e.,

∀i ∈ {1, 2} , r(xi1) ≥ r(xi2) ≥ . . . ≥ r(ximi).

It is useful to illustrate how the SML allows for violations of the regularity condition,
a property first observed by Echenique et al. [2018]. Our first example captures the
attraction effect presented earlier.

Example 1 (Attraction Effect in the SML). Consider a retail store that offers different
brands of chocolate. Suppose that there is a well-known brand A and the brand B
owned by the retail store. There is one chocolate bar a1 from brand A and there are
two chocolate bars b1 and b2 from Brand B, with b2 being a more expensive version
of b1. When shown the assortment {a1, b1}, 71% of the clients purchase a1 and 8.2%
buy b1. When shown the assortment {a1, b1, b2}, customers select a1 49.8% of the
time and, surprisingly, bar b1 increases its market share to about 10%, while bar b2

accounts for 15% of the market. The introduction of b2 to the assortment increases
the purchasing probability of b1, violating regularity. The numerical example can be
explained with the SML as follows: Consider A = {a1}, B = {b1, b2} and X = A ] B.
With u(a1) = 100, u(b1) = 40, u(b2) = 60, and u0 = 1 as the utility of the outside
option, we have:

ρ(b1, {a1, b1}) =
40

141
·
[

1− 100
141

]
≈ 8.2%.

and

ρ(b1, {a1, b1, b2}) =
40

201
·
[

1− 100
201

]
≈ 10%.

Hence ρ(b1, {a1, b1}) < ρ(b1, {a1, b1, b2}) which contradicts regularity.

Our second example shows that the SML can capture the so-called paradox of
choice or choice overload effect (e.g., Schwartz [2004]; Chernev et al. [2015]): The overall
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purchasing probability may decrease when the assortment is enlarged. Once again,
this effect cannot be explained by any random utility model and it is sometimes
called the effect of “too much choice”.

Example 2 (Paradox of Choice in the SML). Let X1 = {x11}, X2 = {x21, x22}, X =
X1 ] X2, u(x11) = 10 ,u(x21) = 1 ,u(x22) = 10, and u0 = 1. We have

ρ(x0, {x11, x21}) = 1− ρ(x11, {x11, x21})− ρ(x21, {x11, x21})

= 1− 10
12
−
(

1− 10
12

)
· 1

12
= 0.1527,

and

ρ(x0, {x11, x21, x22}) = 1− ρ(x11, {x11, x21, x22})− ρ(x21, {x11, x21, x22})− ρ(x22, {x11, x21, x22})

= 1− 10
22
−
(

1− 10
22

)
· 1

22
−
(

1− 10
22

)
· 10

22
= 0.27.

Hence ρ(x0, {x11, x21}) < ρ(x0, {x11, x21, x22}).

2.3 Properties of Optimal Assortments

In this section we derive properties of the optimal solutions to the assortment prob-
lem under the SML. These properties are extensively used in the proof of our main
result (Theorem 1) in Section 2.4. We establish bounds on the following: any product
offered on any optimal solution, and also the assortments considered on an opti-
mal solution on each level. We assume a set of products X = X1 ] X2 and use the
following notations

U(S) = ∑
x∈S

u(x), α(S) = ∑x∈S u(x)r(x)
∑x∈S u(x)

=
∑x∈S u(x)r(x)

U(S)
and λ(Z, S) =

U(Z)
U(S) + u0

(2.8)
where Z ⊆ S and Z, S ⊆ X. Note that α(S) is the usual MNL formula for the revenue
and, when S = {x} for some x ∈ X, α(S) = r(x). With these notations, the revenue
of an assortment S = S1 ] S2 is

R(S) =
α(S1)U(S1)

U(S1) + U(S2) + u0
+

α(S2)U(S2)

U(S1) + U(S2) + u0
·
(

1− U(S1)

U(S1) + U(S2) + u0

)
=

α(S1)U(S1)

U(S) + u0
+

α(S2)U(S2)

U(S) + u0
·
(

1− U(S1)

U(S) + u0

)
. (2.9)

The following proposition is useful to divide a set into disjoint sets, which can then
be analyzed separately.
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Proposition 1. Let S ⊆ X and S = H ∪ T with H ∩ T = ∅. We have

α(S) =
α(H)U(H) + α(T)U(T)

U(S)
. (2.10)

Proof.

α(H)U(H) + α(T)U(T)
U(S)

=

∑x∈H r(x)u(x)
U(H)

·U(H) + ∑x∈T r(x)u(x)
U(T) ·U(T)

U(S)
/using definition of α(·)

=
∑x∈H r(x)u(x) + ∑x∈T r(x)u(x)

U(S)
/cancelling U(H) and U(T)

=
∑x∈S r(x)u(x)

U(S)
/using that H ∪ T = S

= α(S). /definition of α(S)

The next proposition is useful to bound expected revenues.

Proposition 2. Let S1, S2 ⊆ X. If ∀x ∈ S1, ∀y ∈ S2, r(x) ≥ r(y), then α(S1) ≥ α(S2).

Proof. If ∀x ∈ S1, ∀y ∈ S2 : r(x) ≥ r(y), then minx∈S1 r(x) ≥ maxy∈S2 r(y). We have

α(S1) =
∑x∈S1

u(x)r(x)
∑x∈S1

u(x)
≥ min

x∈S1
r(x) · ∑x∈S1

u(x)
∑x∈S1

u(x)︸ ︷︷ ︸
1

≥ max
y∈S2

r(y)
∑y∈S2

u(y)

∑y∈S2
u(y)︸ ︷︷ ︸

1

≥ α(S2).

The following proposition bounds the MNL revenue of the products in the first level.
We use S∗i = S∗ ∩ Xi to denote the products in level i in the optimal assortment, i.e.,
S∗ = S∗1 ] S∗2 .

Proposition 3 (Bounding Level 1). α(S∗1) ≥ R∗.

Proof. The proof shows that the optimal revenue is a convex combination of α(S∗1)
and another term by using Equation (2.9) and multiplying/dividing the revenue
associated with the second level by U(S∗2)+u0

U(S∗2)+u0
. We have

R∗ =
α(S∗1)U(S∗1)
U(S∗) + u0

+
α(S∗2)U(S∗2)
U(S∗) + u0

·
(

1− U(S∗1)
U(S∗) + u0

)
=

α(S∗1)U(S∗1)
U(S∗) + u0

+
α(S∗2)U(S∗2)
U(S∗2) + u0

· U(S∗2) + u0

U(S∗) + u0︸ ︷︷ ︸
(1−λ(S∗1 ,S∗))∈(0,1)

·
(

1− U(S∗1)
U(S∗) + u0

)

=α(S∗1)λ(S
∗
1 , S∗) + R(S∗2) (1− λ(S∗1 , S∗))2 .

R∗ is a convex combination of α(S∗1) and R(S∗2)(1− λ(S∗1 , S∗)). By optimality of R∗,
R(S∗2) ≤ R∗ and hence α(S∗1) ≥ R∗.



28 Sequential Multinomial Logit

We now prove a stronger lower bound for the value α(S∗2) of the second level.

Proposition 4. (Bounding Level 2) α(S∗2) ≥ R∗
1−λ(S∗1 ,S∗) .

Proof. The proof is similar to the one in Proposition 3.

R∗ =
α(S∗1)U(S∗1)
U(S∗) + u0

+
α(S∗2)U(S∗2)
U(S∗) + u0

·
(

1− U(S∗1)
U(S∗) + u0

)
=

α(S∗1)U(S∗1)
U(S∗1) + u0

· U(S∗1) + u0

U(S∗) + u0︸ ︷︷ ︸
1−λ(S∗2 ,S∗)

+α(S∗2) ·
U(S∗2)

U(S∗) + u0︸ ︷︷ ︸
λ(S∗2 ,S∗)

·
(

1− U(S∗1)
U(S∗) + u0

)
︸ ︷︷ ︸

1−λ(S∗1 ,S∗)

=R(S∗1) · (1− λ(S∗2 , S∗)) + (α(S∗2)(1− λ(S∗1 , S∗))) · λ(S∗2 , S∗).

R∗ is a convex combination of and R(S∗1) and α(S∗2)(1− λ(S∗1 , S∗)). By optimality of
R∗, R(S∗1) ≤ R∗ and α(S∗2) ≥ R∗

(1−λ(S∗1 ,S∗)) .

The following example shows that it not always the case that the inequality
proved above holds if one considers the products in S∗2 separately. That is, the in-
equality r(x) ≥ R∗

1−λ(S∗1 ,S∗) for all x ∈ S∗2 is not always true.

Example 3. Let X1 = {x11}, X2 = {x21, x22}, and X = X1 ] X2. Let the revenues
be r(x11) = 10, r(x21) = 9, and r(x22) = 6 and the utilities be u(x11) = u(x21) =
1, u(x22) = 3, and u0 = 1. The expected revenue for all possible subsets are given by

S R(S)

{x11} 5
{x21} 4.5
{x22} 4.5
{x11, x21} 5.3
{x11, x22} 4.88
{x21, x22} 5.4
{x11, x21, x22} 5.416

Table 2.1: Revenue for all potential assortments in X.

The optimal assortment is S∗ = {x11, x21, x22} with an expected revenue of R∗ =
5.416. By definition of λ(·), we have

λ(S∗1 , S∗) =
U(S∗1)

U(S∗) + u0
=

1
6
= 0.16.

It follows that r(x22) = 6 < R∗
1−λ(S∗1 ,S∗) =

5.416
1−0.16

= 6.488, showing that the bound does
not hold for product x22.

However, the weaker bound holds for every product, and more generally, we have
the following proposition.
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Proposition 5. In every optimal assortment S∗, if Z ⊆ S∗i (i = 1, 2), then α(Z) ≥ R∗.

Proof. The proof of this proposition relies on the following technical lemma.

Lemma 1. Consider an assortment S = S1 ] S2 and Z ⊆ Si for some i = 1, 2. R(S) can be
expressed in terms of the following convex combinations:

• If Z ⊆ S1,

R(S) =R(S \ Z) · (1− λ(Z, S))

+

[
α(Z)− α(S2)U(S2)(U(S2) + u0)(1− λ(Z, S)

(U(S)−U(Z) + u0)2

]
· λ(Z, S). (2.11)

• if Z ⊆ S2,

R(S) =R(S \ Z) · (1− λ(Z, S))

+

[
α(Z)(U(S2) + u0)

U(S) + u0
+

α(S2 \ Z)(U(S2)−U(Z))
U(S)−U(Z) + u0

· U(S1)

U(S) + u0

]
· λ(Z, S).

(2.12)

Proof. For Z ⊆ X and Z0 ⊆ Z, we have:

α(Z \ Z0) =
∑x∈Z\Z0

r(x)u(x)
U(Z \ Z0)

=
∑x∈Z r(x)u(x)

U(Z \ Z0)
− α(Z0)U(Z0)

U(Z \ Z0)

=
∑x∈Z r(x)u(x)

U(Z \ Z0)
· U(Z)

U(Z)
− α(Z0)U(Z0)

U(Z \ Z0)

=
∑x∈Z r(x)u(x)

U(Z)︸ ︷︷ ︸
α(Z)

· U(Z)
U(Z)−U(Z0)

− α(Z0)U(Z0)

U(Z)−U(Z0)

=
α(Z)U(Z)− α(Z0)U(Z0)

U(Z)−U(Z0)

=
α(Z)U(Z)− α(Z0)U(Z0)

U(Z)−U(Z0)
, (2.13)

which can be rewritten as

α(Z \ Z0)(U(Z)−U(Z0)) = α(Z)U(Z)− α(Z0)U(Z0). (2.14)

Note also that, when Z0 = Z, α(Z \ Z0) = α(∅) = 0.
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The rest of the proof is by case analysis on the level. If Z ⊆ S1, λ(Z, S) = U(Z)
U(S)+u0

.
We have:

R(S) =
α(S1)U(S1)

U(S) + u0
+

α(S2)U(S2)

U(S) + u0
·
(

1− U(S1)

U(S) + u0

)
=

α(S1)U(S1)− α(Z)U(Z)
U(S) + u0

+
α(Z)U(Z)
U(S) + u0

+
α(S2)U(S2)

U(S) + u0
·
(

1− U(S1)

U(S) + u0

)
=

α(S1)U(S1)− α(Z)U(Z)
U(S) + u0

· U(S)−U(Z) + u0

U(S)−U(Z) + u0
+

α(Z)U(Z)
U(S) + u0

+
α(S2)U(S2)

U(S) + u0
·
(

1− U(S1)

U(S) + u0

)
=

α(S1)U(S1)− α(Z)U(Z)
U(S)−U(Z) + u0

· (1− λ(Z, S)) + α(Z)λ(Z, S)

+
α(S2)U(S2)(U(S2) + u0)

(U(S)−U(Z) + u0)2 ·
(

U(S)−U(Z) + u0

U(S) + u0

)2

,

where we first add and subtract α(Z)U(Z)
U(S)+u0

, and multiply and divide the first term by
(U(S)−U(Z) + u0). The last step uses the definition of λ(Z, S) and multiplies and
divides the last term by (U(S)−U(Z) + u0)2. Now applying Equation (2.14) to S1

and Z in the last equation, we obtain

R(S) =
α(S1 \ Z)(U(S1)−U(Z))

U(S)−U(Z) + u0
· (1− λ(Z, S)) + α(Z)λ(Z, S)

+
α(S2)U(S2)(U(S2) + u0)

(U(S)−U(Z) + u0)2 · (1− λ(Z, S))2

=

[
α(S1 \ Z)(U(S1)−U(Z))

U(S)−U(Z) + u0
+

α(S2)U(S2)(U(S2) + u0)

(U(S)−U(Z) + u0)2

]
︸ ︷︷ ︸

R(S1\Z∪S2)

· (1− λ(Z, S))

+

[
α(Z)− α(S2)U(S2)(U(S2) + u0) (1− λ(Z, S))

(U(S)−U(Z) + u0)2

]
· λ(Z, S)

=R(S1 \ Z ∪ S2) (1− λ(Z, S)) +
[

α(Z)− α(S2)U(S2)(U(S2) + u0) (1− λ(Z, S))
(U(S)−U(Z) + u0)2

]
· λ(Z, S)

=R(S \ Z) (1− λ(Z, S)) +
[

α(Z)− α(S2)U(S2)(U(S2) + u0) (1− λ(Z, S))
(U(S)−U(Z) + u0)2

]
· λ(Z, S).

If Z ⊆ S2, the proof is essentially similar. It also uses λ(Z, S) = U(Z)
U(S)+u0

and apply
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Equation (2.14) to S2 and Z to obtain

R(S) =
α(S1)U(S1)

U(S) + u0
+

α(S2)U(S2)

U(S) + u0
·
(

1− U(S1)

U(S) + u0

)
=

α(S1)U(S1)

U(S)−U(Z) + u0
· (1− λ(Z, S)) +

α(Z)U(Z)(U(S2) + u0)

(U(S) + u0)2

+
(α(S2)U(S2)− α(Z)U(Z))(U(S2) + u0)

(U(S) + u0)2

=
α(S1)U(S1)

U(S)−U(Z) + u0
· (1− λ(Z, S)) +

α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S) + u0)2

+
α(S2 \ Z)(U(S2)−U(Z))U(Z)

(U(S) + u0)2 +
α(Z)U(Z)(U(S2) + u0)

(U(S) + u0)2 ,

where we multiply and divide the first term by (U(S) − U(Z) + u0) and use the
definition of λ(Z, S) and then add and subtract α(Z)U(Z)(U(S2)+u0)

(U(S)+u0)2 . The last step uses

Equation (2.14) and adds and subtracts α(S2\Z)(U(S2)−U(Z))U(Z)
(U(S)+u0)2 . The goal of this ma-

nipulation is to form R(S \ Z) (1− λ(Z, S)). We then obtain

=
α(S1)U(S1)

U(S)−U(Z) + u0
· (1− λ(Z, S)) +

α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S) + u0)2

+
α(S2 \ Z)(U(S2)−U(Z))U(Z)

(U(S) + u0)2 +
α(Z)U(Z)(U(S2) + u0)

(U(S) + u0)2

=
α(S1)U(S1)

U(S)−U(Z) + u0
· (1− λ(Z, S))

+
α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S)−U(Z) + u0)2 (1− λ(Z, S))2

+
α(S2 \ Z)(U(S2)−U(Z))U(Z)

(U(S) + u0)2 +
α(Z)U(Z)(U(S2) + u0)

(U(S) + u0)2

=

[
α(S1)U(S1)

U(S)−U(Z) + u0
+

α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S)−U(Z) + u0)2

]
︸ ︷︷ ︸

R(S1∪S2\Z)

· (1− λ(Z, S))

+
α(Z)U(Z)(U(S2) + u0)

(U(S) + u0)2 +
α(S2 \ Z)(U(S2)−U(Z))U(Z)

(U(S) + u0)2

− λ(Z, S) (1− λ(Z, S)) α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S)−U(Z) + u0)2 ,

where the second step multiplies and divides the second term by (U(S)−U(Z)+ u0)
and uses the definition of λ(Z, S). The third step splits the second term by expressing
(1− λ(Z, S))2 as (1− λ(Z, S)) − λ(Z, S)(1− λ(Z, S)) in order to identify the term
R(S1 ∪ S2 \ Z). Now, putting together the remaining terms, we obtain:
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R(S) =R(S1 ∪ S2 \ Z) (1− λ(Z, S))

+λ(Z, S)

[
α(Z)(U(S2) + u0)

U(S) + u0
+

α(S2 \ Z)(U(S2)−U(Z))
U(S) + u0

− (1− λ(Z, S)) α(S2 \ Z)(U(S2)−U(Z))(U(S2)−U(Z) + u0)

(U(S)−U(Z) + u0)2

]
=R(S1 ∪ S2 \ Z) (1− λ(Z, S))

+ λ(Z, S)
[

α(Z)(U(S2) + u0)

U(S) + u0
+

α(S2 \ Z)(U(S2)−U(Z))
U(S) + u0

[
1−

(
1− U(S1)

U(S)−U(Z) + u0

)]]
=R(S \ Z) (1− λ(Z, S)) +

[
α(Z)(U(S2) + u0)

U(S) + u0
+

α(S2 \ Z)(U(S2)−U(Z))
U(S)−U(Z) + u0

· U(S1)

U(S) + u0

]
· λ(Z, S).

where the second line uses the definition of λ(Z, S) to factorize the expression and
the last step just simplifies the resulting expressions.

Now we can continue with the proof of Proposition 5. Let Z ⊆ S∗i for some
i = 1, 2. Consider first the case in which the optimal solution S∗ contains only
products from level i (i ∈ {1, 2}). Then,

R∗ =
∑y∈S∗ r(y)u(y)

∑y∈S∗ u(y) + u0

=
∑y∈S∗\Z r(y)u(y)

∑y∈S∗\Z u(y) + u0
·

∑y∈S∗ u(y)−U(Z) + u0

∑y∈S∗ u(y) + u0
+

α(Z)U(Z)
∑y∈S∗ u(y) + u0

=
∑y∈S∗\Z r(y)u(y)

∑y∈S∗\Z u(y) + u0︸ ︷︷ ︸
R(S∗\Z)

· (1− λ(Z, S∗)) + α(Z)λ(Z, S∗)

= R(S∗ \ Z) · (1− λ(Z, S∗)) + α(Z)λ(Z, S∗).

The optimal solution is a convex combination of R(S∗ \ Z) and α(Z). By optimality
of R∗, R(S∗ \ Z) ≤ R∗ and hence α(Z) ≥ R∗.

Consider the case in which the solution is non-empty in both levels, and suppose
that α(Z) < R∗. We now show that this is not possible. The proof considers two
independent cases, depending on the level that contains Z.

If Z ⊆ S∗1 , by Lemma 1, the revenue of S∗ can be expressed as

R(S∗) = R(S∗ \Z) · (1−λ(Z, S∗))+
[

α(Z)− α(S∗2)U(S2)(U(S∗2) + u0)(1− λ(Z, S∗)
(U(S∗)−U(Z) + u0)2

]
︸ ︷︷ ︸

ΓZ

·λ(Z, S∗).

(2.15)
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R∗ is a convex combination of R(S∗ \ Z) and ΓZ. We show that ΓZ < R∗.

ΓZ = α(Z)− α(S∗2)U(S∗2)(U(S∗2) + u0) (1− λ(Z, S∗))
(U(S∗)−U(Z) + u0)2

= α(Z)− α(S∗2)U(S∗2)(U(S∗2) + u0)

(U(S∗)−U(Z) + u0)(U(S∗) + u0)
/using definition of λ(Z, S∗)

= α(Z)−
α(S∗2)U(S∗2)(1− λ(S∗1 , S∗))

(U(S∗)−U(Z) + u0)
/by definition of λ(S∗1 , S∗)

≤ α(Z)− R∗U(S∗2)
U(S∗)−U(Z) + u0

/Using proposition 4

< R∗
(

1− U(S∗2)
U(S∗)−U(Z) + u0

)
/using the assumption α(Z) < R∗

< R∗.

Since R(S∗/Z) ≤ R∗, we have that R∗ < R∗ and hence it must be the case that
α(Z) ≥ R∗.
Now, if Z ⊆ S∗2 , by Lemma 1, the revenue of S∗ can be expressed as

R(S∗) = R(S∗ \ Z) (1− λ(Z, S∗))

+

[
α(Z)(U(S∗2) + u0)

U(S∗) + u0
+

α(S∗2 \ Z)(U(S∗2)−U(Z))
U(S∗)−U(Z) + u0

·
U(S∗1)

U(S∗) + u0

]
︸ ︷︷ ︸

ΓZ

·λ(Z, S∗). (2.16)

R∗ is thus a convex combination of R(S∗ \ Z) and ΓZ. Again, we show that ΓZ < R∗:

ΓZ =
α(Z)(U(S∗2) + u0)

U(S∗) + u0
+

α(S∗2 \ Z)(U(S∗2)−U(Z))
U(S∗)−U(Z) + u0

·
U(S∗1)

U(S∗) + u0

= α(Z)(1− λ(S∗1 , S∗)) +
α(S∗2 \ Z)(U(S∗2)−U(Z))

U(S∗)−U(Z) + u0
· λ(S∗1 , S∗) /by definition of λ(S∗1 , S∗)

< α(Z)(1− λ(S∗1 , S∗)) +
α(S∗2 \ Z)(U(S∗2)−U(Z))

U(S∗2)−U(Z) + u0︸ ︷︷ ︸
R(S∗2\Z)

·λ(S∗1 , S∗) /replacing U(S∗) by U(S∗2)

< R∗(1− λ(S∗1 , S∗)) + R(S∗2 \ Z) · λ(S∗1 , S∗) /using that α(Z) < R∗

< R∗(1− λ(S∗1 , S∗)) + R(S∗2 \ Z)λ(S∗1 , S∗) /Using the optimality of R∗

< R∗.

Hence, it must be the case that α(Z) ≥ R∗, completing the proof.

The converse of Proposition 5 does not hold: Example 4 presents an instance where
the optimal solution does not contain all the products with a revenue higher than R∗.

Example 4. We show that some products with revenue greater or equal than R∗

may not be included in an optimal assortment. Let X1 = {x11}, X2 = {x21},
and X = X1 ] X2. Let the revenues be r(x11) = r(x21) = 1 and the utilities be
u(x11) = 10, u(x21) = 1, and u0 = 1. Consider the possible assortments and their
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expected revenues:

R({x11}) = u(x11)r(x11)
u(x11)+u0

= 10·1
10+1 = 0.909

R({x21}) = u(x21)r(x21)
u(x21)+u0

= 1·1
1+1 = 0.5

R({x11, x21}) = u(x11)r(x11)
u(x11)+u(x21)+u0

+
(

1− u(x11)
u(x11)+u(x21)+u0

)
· u(x21)r(x21)

u(x11)+u(x21)+u0

= 10·1
10+1+1 +

(
1− 10

10+1+1

)
· 1·1

10+1+1
= 10

12 +
(
1− 10

12

)
· 1

10+1
= 0.8472

The optimal assortment is S∗ = {x11}. However, we have that r(x21) = 1 > R∗, but
x21 is not part of the optimal assortment.

The following corollary is a direct consequence of Proposition 5.

Corollary 1. For any non-empty subset S0 ⊆ S∗, where S∗ is an optimal solution, we have
α(S0) ≥ R∗.

Proof. By Proposition 5, we have α({x}) = r(x) ≥ R∗ for all x ∈ S∗. For each set
S0 ⊆ S∗, we have:

α(S0) =
∑x∈S0

u(x)r(x)
∑x∈S0

u(x)

≥R∗
∑x∈S0

u(x)
∑x∈S0

u(x)
/ by Proposition 5

=R∗.

The corollary above implies that α({x}) = r(x) ≥ R∗ for all x ∈ S∗. Thus, every
product in an optimal assortment has a revenue greater than or equal to R∗.

In the following example we show that the well known revenue-ordered assort-
ment strategy for the assortment problem does not always lead to optimality.

Example 5 (Revenue-Ordered assortments are not optimal). Let X1 = {x11}, X2 =

{x21}, and X = X1 ] X2. Let r(x11) = 10 and r(x21) = 12. Let the utilities be
u(x11) = 10, u(x21) = 2, and u0 = 1. A direct calculation shows that the revenues for
all possible assortments under this setting are:

S R(S)

{x11} 9.09
{x21} 8
{x11, x21} 8.12

Table 2.2: Revenue for all potential assortments in X.
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The optimal assortment is S∗ = {x11}, yielding a revenue of R∗ = 9.09. However, the
best revenue ordered assortment is S′ = {x11, x21}, obtaining a revenue of R′ = 8.12,
this means that the revenue-ordered assortment strategy provides an approximation
ratio of R′

R∗ ≈ 89.3% for this particular instance.

2.4 Optimality of Revenue-Ordered Assortments by level

This section proves that optimal assortments under the SML are revenue-ordered by
level, generalizing the traditional results for the MNL [Talluri and Van Ryzin, 2004].
As a corollary, the optimal assortment problem under the SML is polynomial-time
solvable.

Definition 2 (Revenue-Ordered Assortment by Level). Denote by Nij the set of all
products in level i with a revenue of at least rij (1 ≤ j ≤ mi) and fix Ni0 = ∅ by
convention. A revenue-ordered assortment by level is a set S = N1j1 ] N2j2 ⊆ X for
some 0 ≤ j1 ≤ m1 and 0 ≤ j2 ≤ m2. We use A to denote the set of revenue-ordered
assortments by level.

When an assortment S = S1 ] S2 is not revenue-ordered by level, it follows that

∃k ∈ {1, 2}, z ∈ Xk \ Sk, y ∈ Sk : r(z) ≥ r(y).

We say that S has a gap, the gap is at level k, and z belongs to the gap. We now
define the concept of first gap, which is heavily used in the proof.

Definition 3 (First Gap of an Assortment). Let S = S1 ] S2 be an assortment with
a gap and let k be the smallest level with a gap. Let r̂ = maxy∈Xk\Sk

r(y) be the
maximum revenue of a product in level k not contained in Sk. The first gap of S is a
set of products G ⊆ Xk \ S defined as follows:

• If maxx∈Sk r(x) < r̂, then the gap G consists of all products with higher revenues
than the products in assortment S, i.e.,

G = {y ∈ Xk \ Sk | r(y) ≥ max
x∈Sk

r(x)}.

• Otherwise, when maxx∈Sk r(x) ≥ r̂, define the following quantities:

rM = min
x∈Sk

r(x)≥r̂

r(x) and rm = max
x∈Sk

r(x)≤r̂

r(x). (2.17)

The set G contains products with revenues in [rm, rM], i.e.,

G = {y ∈ Xk \ Sk | rm ≤ r(y) ≤ rM}.

We are now in a position to state the main theorem of this chapter.
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Theorem 1. Under the SML, any optimal assortment is revenue-ordered by level.

Proof. The intuition behind the proof is the following: Assume that S is an optimal
solution with at least one gap as in Definition 3. Let G be the first gap of S, and that
G occurs at level k. Define Sk = H ∪ T with H, T ⊆ Xk and

H = {x ∈ Sk | r(x) ≥ max
g∈G

r(g)}

and
T = {x ∈ Sk | r(x) ≤ min

g∈G
r(g)}.

We call the set H as the head and the set T is called the tail. Figure 2.1 illustrates these
concepts visually.

+ −

H

H ∪ G ∪ T

H ∪ T

Revenue

Graphical representation of a gap on a fixed level

All products on the assortment No products selected Possibly some products missing

Candidate 2, T is removed

Candidate 1, G is added

Original assortment

Revenue

H G T

Figure 2.1: Representation of a level containing a gap G at the top, and the two
proposed candidates fixing the gap by either adding G, or removing T.

We will prove that is always possible to select an assortment that is revenue-
ordered by level and has revenue greater than R(S) (contradicting optimality). The
proof shows that such an assortment can be obtained either by including the gap G
in S or by eliminating T from S. For the purpose of contradiction, assume that S is
an optimal solution with at least one gap, G is the first gap of S, and G occurs at level
k. Define Sk = H ∪ T with H, T ⊆ Xk and

H = {x ∈ Sk | r(x) ≥ max
g∈G

r(g)}

and
T = {x ∈ Sk | r(x) ≤ min

g∈G
r(g)}.

In the following, the set H is called the head and the set T is called the tail. We prove
that is always possible to select an assortment that is revenue-ordered by level and
has revenue greater than R(S). The proof shows that such an assortment can be
obtained either by including the gap G in S or by eliminating T from S. Figure 2.1
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illustrates these concepts visually. The proof is by case analysis on the level of G.

Consider first the case where G is in the first level. We can define S = S1 ] S2,
with S1 = H ∪ T as defined above and S2 ⊆ X2. The revenue for S is

R(S1 ∪ S2) =
α(S1)U(S1)

U(S) + u0
+

(
1− U(S1)

(U(S) + u0)

)
· α(S2)U(S2)

U(S) + u0

=
α(H)U(H)

U(S) + u0
+

α(T)U(T)
U(S) + u0

+
U(S2) + u0

(U(S) + u0)2 · α(S2)U(S2)

where we used Proposition 1 on S1 for deriving the second equality. We show that
assortment H ∪ S2 or assortment H ∪ G ∪ T ∪ S2 provides a revenue greater than
R(S = H ∪ T ∪ S2), contradicting our optimality assumption for S. The proof charac-
terizes the differences between the revenues of S and the two considered assortments,
adds those two differences, and shows that this value is strictly less than zero, im-
plying that at least one of the differences is strictly negative and hence that one of
these assortments has a revenue larger than R(S). R(H ∪ S2) can be expressed as

α(H)U(H)

U(H) + U(S2) + u0
+

U(S2) + u0

(U(H) + U(S2) + u0)2 · α(S2)U(S2). (2.18)

Let θ = U(H) + U(T) + U(S2) + u0 (or, equivalently, θ = U(S) + u0). The difference
R(H ∪ T ∪ S2)− R(H ∪ S2) is

U(T)
θ(θ −U(T))

[
−α(H)U(H) + α(T)(θ −U(T))− α(S2)U(S2)(U(S2) + u0)(2(θ −U(T)) + U(T))

θ(θ −U(T))

]
.

(2.19)

R(H ∪ G ∪ T ∪ S2) can be expressed as

1
U(S) + U(G) + u0

· [α(H)U(H) + α(G)U(G) + α(T)U(T)] +
U(S2) + u0

(U(S) + U(G) + u0)2 · α(S2)U(S2).

The difference R(H ∪ T ∪ S2)− R(H ∪ G ∪ T ∪ S2) is given by

U(G)

θ(θ + U(G))
·
[

α(H)U(H) + α(T)U(T)− α(G)θ +
α(S2)U(S2)(U(S2) + u0)(2θ + U(G))

θ(θ + U(G))

]
.

(2.20)

By optimality of S, these two differences must be positive. However, their sum, drop-
ping the positive multiplying term on each difference, which must also be positive,
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is given by

(2.19) + (2.20) = α(T)θ − α(G)θ +
α(S2)U(S2)(U(S2) + u0)

θ
·
[

2θ + U(G)

θ + U(G)
− 2(θ −U(T)) + U(T)

(θ −U(T))

]
= (α(T)− α(G))θ +

α(S2)U(S2)(U(S2) + u0)

θ
·
[

1 +
θ

θ + U(G)
− 2− U(T)

(θ −U(T))

]

= (α(T)− α(G))θ︸ ︷︷ ︸
≤0, by Proposition 2 and θ≥0

+
α(S2)U(S2)(U(S2) + u0)

θ
·


(

θ

θ + U(G)
− 1
)

︸ ︷︷ ︸
<0

− U(T)
(θ −U(T))︸ ︷︷ ︸

<0


︸ ︷︷ ︸

<0

which contradicts the optimality of S.

Consider now the case where the gap is in the second level. Using the definition
of the head and the tail discussed above, S can be written as S = S1 ] H ∪ T. The
revenue R(S) is given by

R(S1∪H∪T) =
α(S1)U(S1)

θ
+

α(H)U(H)

θ
+

α(T)U(T)
θ

− U(S1)α(H)U(H)

θ2 − U(S1)α(T)U(T)
θ2

(2.21)

and the proof follows the same strategy as for the case of the first level. The revenue
R(S1 ∪ H) is given by

R(S1 ∪ H) =
α(S1)U(S1)

θ −U(T)
+

α(H)U(H)

θ −U(T)
− U(S1)α(H)U(H)

(θ −U(T))2 (2.22)

and the difference R(S1 ∪ H ∪ T)− R(S1 ∪ H) by

U(T)
θ(θ −U(T))

·
[
−α(S1)U(S1)− α(H)U(H) + α(T)(θ −U(T))

+
α(H)U(H)U(S1)(2θ −U(T))

θ(θ −U(T))
− U(S1)α(T)(θ −U(T))

θ

]
(2.23)

The revenue R(S1 ∪ H ∪ G ∪ T) is given by

α(S1)U(S1)

θ + U(G)
+

α(H)U(H)

θ + U(G)
+

α(G)U(G)

θ + U(G)
+

α(T)U(T)
θ + U(G)

− U(S1)

(θ + U(G))2 · [α(H)U(H) + α(G)U(G) + α(T)U(T)] (2.24)
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and the difference R(S1 ∪ H ∪ T)− R(S1 ∪ H ∪ G ∪ T) by

U(G)

θ(θ + U(G))
·
[

α(S1)U(S1) + α(H)U(H)− α(G)θ + α(T)U(T)

− α(H)U(H)U(S1)(2θ + U(G))

θ(θ + U(G))
− α(T)U(T)U(S1)(2θ + U(G))

θ(θ + U(G))
+

U(S1)α(G)θ

θ + U(G)

]
(2.25)

Adding (2.23) and (2.25) and dropping the positive multiplying terms on each differ-
ence gives

θ (α(T)− α(G)) + U(S1) (α(G)− α(T)) + U(S1)

[
α(T)U(T)

θ
− α(G)U(G)

θ + U(G)

]
+

U(S1)

θ

[
α(H)U(H)

(
1 +

θ

θ −U(T)

)
− α(H)U(H)

(
1 +

θ

θ + U(G)

)
− α(T)U(T)

(
1 +

θ

θ + U(G)

)]
= (θ −U(S1)) (α(T)− α(G)) +

U(S1)α(H)U(H)

θ −U(T)
− U(S1)

θ + U(G)
· [α(H)U(H) + α(G)U(G) + α(T)U(T)]

= (θ −U(S1)) (α(T)− α(G))︸ ︷︷ ︸
≤0, by Proposition 2 and θ≥U(S1)

+
U(S1)α(H)U(H)(U(G) + U(T))

(θ −U(T))(θ + U(G))
− U(S1)

θ + U(G)
· [α(G)U(G) + α(T)U(T)]︸ ︷︷ ︸

Γ
(2.26)

Γ cannot be greater or equal than zero, since otherwise

U(S1)α(H)U(H)(U(G) + U(T))
(θ −U(T))(θ + U(G))

− U(S1)

θ + U(G)
· [α(G)U(G) + α(T)U(T)] ≥ 0

U(S1)

(θ + U(G))
·
[

α(H)U(H)(U(G) + U(T))
(θ −U(T))

− (α(G)U(G) + α(T)U(T))
]
≥ 0. (2.27)

The factor on the left is always positive, so Inequality (2.27) implies that the term
between brackets is greater than zero. We now show that this contradicts the opti-
mality of S. We do this by manipulating Inequality (2.27) and showing that, if this
inequality holds, then R(H) > R(S).
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α(H)U(H)(U(G) + U(T))
(θ −U(T))

− (α(G)U(G) + α(T)U(T)) ≥ 0

α(H)U(H)

(θ −U(T))
≥ α(G)U(G) + α(T)U(T)

(U(G) + U(T))
α(H)U(H)

(U(S1) + U(H) + u0)
≥ α(G)U(G) + α(T)U(T)

(U(G) + U(T))
α(H)U(H)

(U(H) + u0)︸ ︷︷ ︸
R(H)

·
[

1− U(S1)

U(S1) + U(H) + u0

]
≥ α(G)U(G) + α(T)U(T)

(U(G) + U(T))

R(H) ≥ R(H) · U(S1)

U(S1) + U(H) + u0︸ ︷︷ ︸
>0

+
α(G)U(G) + α(T)U(T)

(U(G) + U(T))
> R(S) · U(G) + U(T)

U(G) + U(T)
> R(S).

(2.28)

Inequality (2.28) follows from Proposition 5 applied to T ⊂ S2, which implies α(T) ≥
R(S), and from Proposition 2, which implies α(G) ≥ α(T) and hence α(G) ≥ R(S).

The following corollary follows directly from the fact that there are at most O(|X|2)
revenue-ordered assortments by level and the fact that the revenue obtained from a
given assortment can be computed in polynomial time.

Corollary 2. The assortment problem under the sequential multinomial logit is polynomial-
time solvable.

2.5 Numerical Experiments

In this section, we analyse numerically the performance of revenue-ordered assort-
ments (RO) against our proposed strategy (ROL) by varying the number of products,
and the utility of the outside option. In our experiments with up to 100 products, we
found that the optimality gap can be as large as 26.319%.

Each family or class of instances we tested is defined by three numbers: the
number of products in the first and second level (n1, n2), and the utility of the outside
option u0. In total, we tested 20 classes or family of instances, each containing 100
instances. In each specific instance, revenues and product utilities are drawn from
an uniform distribution between 0 and 10. We ran both strategies (RO and ROL) and
we report the average and the worst optimality gap for the RO strategy, and the time
taken for both strategies. These numerical experiments were conducted in Python
3.6, at a computer with 4 processors (each with 3.6 GHz CPU) and 16 GB of RAM.
The computing time is reported in seconds is the average among the 100 instances in
each class (or family).

Based on the results on Table 2.3 we can observe the following:
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(n1, n2) u0
RO ROL

Avg. Gap (%) Worst Gap (%) Avg. Time RO (s) Avg. Time ROL (s)

(5,5) 0 0 0 0 0
(5,5) 1 1.811 18.098 0 0.001
(5,5) 2.5 3.43 17.416 0 0
(5,5) 5 3.413 13.183 0 0
(5,5) 10 1.923 12.406 0 0.001

(10,10) 0 0 0 0 0.004
(10,10) 1 3.23 20.669 0.001 0.004
(10,10) 2.5 5.613 20.359 0.001 0.004
(10,10) 5 5.975 15.521 0.001 0.004
(10,10) 10 5.347 15.694 0.001 0.004
(20,20) 0 0 0 0.003 0.04
(20,20) 1 4.331 19.427 0.003 0.04
(20,20) 2.5 8.523 21.873 0.003 0.039
(20,20) 5 9.776 19.719 0.003 0.038
(20,20) 10 9.682 18.771 0.003 0.039
(50,50) 0 0 0 0.016 0.564
(50,50) 1 6.315 26.319 0.016 0.549
(50,50) 2.5 11.662 24.117 0.016 0.55
(50,50) 5 14.94 24.445 0.016 0.551
(50,50) 10 15.543 22.232 0.016 0.547

Table 2.3: Numerical experiments comparing the revenue ordered assortment strat-
egy (RO) and the revenue-ordered assortments by level (ROL, which is optimal). For
each class of instances, we display the average optimality gap and the worst-case
gap, as well as the computing time.
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1. As expected, although ROL takes more time than RO, it takes a small amount
of time to solve the instances.

2. When the utility of the outside option is u0 = 0, the average and worst gap are
identically zero. This is because in those cases, the optimal solution is simply
selecting the highest revenue product and therefore both strategies coincide.

3. The average gap is generally increasing as the outside option utility increases.
With a high outside option, we typically expect to select more products to
counterbalance the effect of the no choice alternative. This can amplify the
difference between ROL and RO as the likelihood that the optimal solution of
the revenue-ordered by level is indeed a revenue ordered assortment decreases.



Chapter 3

Assortment Optimisation under the
Two-Stage Luce Model

This chapter is reproduced with minor changes from:

1. Flores, A.; Berbeglia, G; Van Hentenryck, P. 2019. Assortment and Pricing
optimisation Under the Two-Stage Luce model. Submitted to Operations Research
(13th of April of 2019). Under Review.

2. Flores, A.; Berbeglia, G; Van Hentenryck, P. 2019. Assortment and Pricing
optimisation Under the Two-Stage Luce model. Presented at the Informs Revenue
Management & Pricing Conference, Stanford (Informs RM&P), 7th of June 2019.

This chapter studies the assortment problem under the Two-Stage Luce model
(2SLM), a discrete choice model introduced by Echenique and Saito [2018] that gen-
eralizes the multinomial logit model (MNL). The model employs an utility function
as in the MNL, and a dominance relation between products. When consumers are of-
fered an assortment S, they first discard all dominated products in S and then select
one of the remaining products using the standard MNL. This model may violate the
regularity condition, which states that the probability of choosing a product cannot
increase if the offer set is enlarged. Therefore, the 2SLM falls outside the large family
of discrete choice models based on random utility which contains almost all choice
models studied in revenue management.

The first key contribution is to show that the assortment problem can be solved
in polynomial time under the 2SLM. The proof is built upon two unrelated results
in optimisation: the polynomial-time solvability of the maximum-independent set
in a comparability graph [Möhring, 1985] and a seminal result by Megiddo [1979]
that provides an algorithm to solve a class of combinatorial optimisation problems
with rational objective functions in polynomial time. This is particularly appealing
since the 2SLM is one of the very few choice models that goes beyond the random
utility model and it allows violations the property known as regularity: the proba-
bility of choosing an alternative cannot increase if the offer set is enlarged. Since
many decades ago, there are well-documented lab experiments where the regularity
property is violated [Huber et al., 1982; Tversky and Simonson, 1993; Herne, 1997].

43
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The second key contribution is to show that the capacitated assortment prob-
lem under the 2SLM is NP-hard, which contrasts with results on the MNL. We then
propose polynomial algorithms for two interesting subcases of the capacitated as-
sortment problem: (1) When the dominance relation is attractiveness-correlated and
(2) when the transitive reduction of the dominance relation can be represented as a
forest. The proofs use a strong connection between assortments under the 2SLM and
independent sets.

3.1 The Two-Stage Luce model

The 2SLM [Echenique and Saito, 2018] overcomes a key limitation of the MNL: The
fact that a product must have zero attractiveness if it has zero probability to be cho-
sen in a particular assortment. This limitation means that the product cannot be
chosen with positive probability in any other assortment. The 2SLM eliminates this
pathological situation through the concept of consideration function which, given a set
of products S, returns a subset of S where each product has a positive probability
of being selected. Let X denotes the set of all products and let a(x) > 0 be the at-
tractiveness of product x ∈ X. For notational convenience, we use ax to denote the
attractiveness of product x, i.e., ax = a(x). We extend the attractiveness function
to consider the outside option, with index 0 and a0 = a(0) ≥ 0, to model the fact
that customers may not select any product. As a result, the attractiveness function
has signature a : X ∪ {0} → R+. Given an assortment A ⊆ X, a stochastic choice
function ρ returns a probability distribution over A, i.e., ρ(x, A) is the probability of
picking x in the assortment A. The 2SLM is a sub-case of the general Luce model
presented in Echenique and Saito [2018], and independently discovered in Ahumada
and Ülkü [2018], which is defined below.

Definition 4 (General Luce Function1, Echenique and Saito [2018]). A stochastic
choice function ρ is called a general Luce function if there exists an attractiveness
function a ∪ {0} : X → R+ and a function c : 2X \∅ → 2X \∅ with c(A) ⊆ A for all
A ⊆ X such that

ρ(x, A) =

{
ax

∑y∈c(A) ay+a0
if x ∈ c(A),

0 if x /∈ A.
(3.1)

for all A ⊆ X. We call the pair (a, c) a general Luce model.

The function c (which is arbitrary) provides a way to capture the support of the
stochastic choice function ρ. As observed in Echenique and Saito [2018], there are
two interesting cases worthy of being mentioned:

1. If c(S) is a singleton for all S ⊆ X, then ρ(x, S) is a deterministic choice.

2. If c(S) = S for all S ⊆ X, then the 2SLM coincides with the MNL.

1The definition is slightly different: It makes the outside option effect a0 explicit in the denominator.
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Two special cases of this model were provided in Echenique and Saito [2018]. The
first is the two-stage Luce model. This model restricts c, such that the c(A) represents
the set of all undominated alternatives in A.

Definition 5 (two-Stage Luce model (2SLM), Echenique and Saito [2018]). A general
Luce model (a, c) is called a 2SLM if there exists a strict partial order (i.e. transitive,
antisymmetric and irreflexive binary relation) � such that:

c(A) = {x ∈ A | 6 ∃y ∈ A : y � x} . (3.2)

We call � dominance relation.

As a result, any 2SLM can be described by an irreflexive, transitive, and antisym-
metric relation � that fully captures the relation between products. This observation
allow us to describe the Two-Stage Luce Model as a Directed Acyclic Graph (DAG).
The construction of this graph can be made using the following steps: Take as input
� which allow us to explicitly know whether two products s, t ∈ X are related, i.e
s � t, t � s or they are not related at all. To construct the graph, we simply create
one node for each product, and create a directed edge between s and t if s � t. An
example of the graph representation is given below:

Example 6. Let X = {1, 2, 3, 4, 5, 6, 7} and let the dominance relation � consists of
the following pairs �= {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (5, 6)}. The resulting graph
can be seen below:

1

2

3 4

5

6

7

Figure 3.1: DAG representation of � over X

Is interesting to note that the directed acyclic graph can have more than one
connected component, as shown in Figure 3.1, which mean that it can be that clusters
of products can be unrelated in terms of dominance. The intuition and practical use
behind a graph generated in this way (as a graphical representation of a 2SLM),
is that selecting a particular product to be into an assortment, implies that all his
children or descendants are dominated and have probability zero to be chosen. In
the graph, sets where c(S) = S are called anti-chains, which means that no distinct
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products are connected by an edge. These particular sets are going to play a crucial
role later on.

An important application of the 2SLM can be found in assortment problems
where there exists a direct way to compare the products over a set of features. For
illustration, consider a telecommunication company offering phone plans to con-
sumers. A plan is characterized by a set of features such as price per month, free
minutes in peak hours, free minutes in weekends, free data, price for additional
data, and price per minute to foreign countries. Given two plans x and y, we say that
plan x dominates plan y, if the price per month of x is less than that of y, and x is at
least as good as y in every single feature. In the past, the company offered consumers
a certain set of plans St each month t such that no plan in St is dominated by another
plan (in St). The offered plans however were different each month. Using historical
data and assuming that consumers preferences can be approximated using a multi-
nomial logit, it is possible to perform a robust estimation procedure to obtain the
parameters of such MNL model. Once the parameters are obtained, the assortment
problem consists in finding the best assortment of phones plans S∗ to maximise the
expected revenue. A natural constraint in this problem consisting in enforcing that
every phone plan offered in S∗ cannot be dominated by any other. Section 3.1 shows
that the problem discussed here can be modelled using the 2SLM and thus solving
this problem is reduced to solving an assortment problem under the 2SLM.

The second model presented in Echenique and Saito [2018], which is a particular
case of the 2SLM, is the Threshold Luce Model (TLM), where they explain dominance
in terms of how big the attractiveness are when compared with each other, so c is
strongly tied to a. More specifically, for a given threshold t > 0, the consideration set
c(S) for a set S ⊆ X is defined as:

c(S) = {y ∈ S | 6 ∃x ∈ S : ax > (1 + t)ay}. (3.3)

In other words, x � y if and only if ax
ay

> (1 + t). Intuitively, an attractiveness ratio of
more than (1+ t) means that the less-preferred alternative is dominated by the more-
preferred alternative. Observe that the relation � is clearly irreflexive, transitive, and
antisymmetric.

The dominance relation � can thus be represented as a Directed Acyclic Graph
(DAG), where nodes represent the products and there is a directed edge (x, y) if and
only if x � y. Sets satisfying c(S) = S are anti-chains in the DAG, meaning that
there are no arcs connecting them. For instance, consider the Threshold Luce model
defined over X = {1, 2, 3, 4, 5} with attractiveness values a1 = 12, a2 = 8, a3 = 6, a4 =
3 and a5 = 2, and threshold t = 0.4. We have that i � j iff ai > 1.4 aj.

The DAG representing this dominance relation is depicted in Figure 3.2.
In the following example, we show that the 2SLM admits regularity violations,

meaning that it is possible that the probability of choosing a product can increase
when we enlarge the offered set. Since regularity is satisfied by any choice model
based on random utility (RUM), this shows that the 2SLM is not contained in the
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1

a1 = 12

2

a2 = 8

3

a3 = 6

4

a4 = 3

5

a5 = 2

Figure 3.2: Example of a DAG for the Threshold Luce model

RUM class 2.

Example 7. Consider the following instance of the Threshold Luce model (which is a
special case of the 2SLM). Let X = {1, 2, 3, 4}with attractiveness a1 = 5, a2 = 4, a3 = 3
and a4 = 3. Consider t = 0.4 and the attractiveness of the outside option a0 = 1. For
the offer set {2, 3, 4}, the probability of selecting product 2 is 4/11 since no product
dominates each other. However, if we add product 1 to the offer set, i.e. if we offer all
four products, then the probability of selecting product 2 increases to 4/10, because
products 3 and 4 are now dominated by product 1.

The Two-Stage Luce Model allows to accommodate different decision heuristics
and market scenarios by specifying the dominance relation responding to a specific
set of rules. Two examples where this can be observed are provided below.

Example 8. Feature Difference Threhsold: Assume that each product has a set of
features F = {1, . . . , m}. A product x can then be represented by a m-dimensional
vector x ∈ Rm. Assume that the perceived relevance of each feature k is measured
by a weight νk, so that the utility perceived by the customers can be expressed as a
weighted combination of their features u(x) = ∑m

k=1 νk · xk. The dominance relation
can be defined as x � y ⇐⇒ u(x) − u(y) = ∑m

k=1 νk(xk − yk) ≥ T, where T >
0 is a tolerance parameter that represents how much difference a customer allows
before considering that an alternative dominates another. The dominance relation
is irreflexive, transitive, and antisymmetric and hence it can be used to define an
instance of the 2SLM. One can easily show that this model is a special case of the
TLM.

Example 9. Price Levels Suppose we have N products, each product i has ki price
levels. Let xil be product i with price pil attached and it corresponding attractiveness
ail , we assume that for each product i prices pik satisfy pi1 < pi2 < . . . , piki . Naturally,
xi1 � xi2 � . . . � xiki , because for the same product the customer is going to select
the one with the lowest price available. Each price level for each product can still
dominate or be dominated by other products as well, as long as the dominance
relation is irreflexive, transitive and antisymmetric. This setting can be modelled by
the Two-Stage Luce model in a natural way.

2Observe that this implies that the 2SLM is not contained by the Markov chain model proposed by
[Blanchet et al., 2016] since this last one belongs to the RUM class [Berbeglia, 2016].
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3.2 Assortment Problems Under the Two-Stage Luce model

This section studies the assortment problem for the 2SLM using the definitions and
notations presented earlier. Let r : X ∪ {0} → R+ be a revenue function associated
with each product and satisfying r(0) = 0. The expected revenue of a set S ⊆ X is
given by

R(S) = ∑
i∈c(S)

ρ(i, S)r(i). (3.4)

The assortment problem amounts to finding a set

S∗ ∈ argmax
S⊆X

R(S)

yielding an optimal revenue of

R∗ = max
S⊆X

R(S).

Observe that every subset S ⊆ X can be uniquely represented by a binary vector
x ∈ {0, 1}n such that i ∈ S if and only if xi = 1. Using this bijection, the search space
for S∗ can be restricted to

D = {x ∈ {0, 1}n | ∀s � t : xs + xt ≤ 1}

where D represents all the subsets satisfying S = c(S), which means that no product
on S dominates another product in S. There is always an optimal solution S∗ that
belongs to D because R(S) = R(c(S)) and c(S) ∈ D for all sets S in X. As a result,
the Assortment Problem under the 2SLM (AP-2SLM) can be formulated as

maximise
x

∑n
i=1 riaixi

∑n
i=1 aixi + a0

subject to x ∈ D
(AP-2SLM)

where ri and ai represent r(i) and a(i) for simplicity.

An effective strategy for solving many assortment problems consists in consider-
ing revenue-ordered assortments, which are obtained by choosing a threshold ρ and
selecting all the products with revenue at least ρ. This strategy leads to an optimal
algorithm for the assortment problem under the MNL. Unfortunately, it fails under
the 2SLM because adding a highly attractive product may remove many dominated
products whose revenues and utilities would lead to a higher revenue.

Example 10 (Sub-Optimality of Revenue-Ordered Assortments). Consider a Thresh-
old Luce model with X = {1, 2, 3}, revenues r1 = 88, r2 = 47, r3 = 46, attractiveness
a0 = 55, a1 = 13, a2 = 26, a3 = 15 and t = 0.6. Then x � y iff ax > 1.6 ay which gives
2 � 1 and 2 � 3. Consider the sets S ⊆ X satisfying S = c(S):
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S R(S)

{1} 16.824
{2} 15.086
{3} 9.857
{1, 3} 22.096

Table 3.1: List of subsets S and their associated revenues R(S)

The optimal revenue is given by assortment {1, 3}, while the best revenue-ordered
assortment under the 2SLM is S = {1}, yielding almost 24% less revenue.

Our next example indicates that the 2SLM may also violate the regularity condi-
tion.

Example 11. [Violation of the Regularity Condition] Consider X = {1, 2, 3}, the util-
ities are a(1) = 1, a(2) = 1, a(3) = 2, the attractiveness of the outside option is
a(0) = 1 and the only dominance relation is 2 � 3. Whenever product 2 is offered,
product 3 is never selected. Consider the following assortments S = {1, 3} and
S′ = {1, 2, 3}. According the 2SLM, the probability of selecting product 1 on each of
these assortments is:

ρ(1, S) =
a(1)

a(1) + a(3) + a(0)
=

1
4
= 0.25

ρ(1, S′) =
a(1)

a(1) + a(2) + a(0)
=

1
3
= 0.3

We have that S ⊂ S′ but ρ(1, S) < ρ(1, S′), which violates regularity..

To solve problem AP-2SLM, consider first the MaxAtt problem defined over the
same set of constraints. Given weights ci ∈ R (1 ≤ i ≤ n), the MaxAtt problem is
defined as follows:

maximise
x

n

∑
i=1

cixi

subject to x ∈ D
(MaxAtt)

We now show that (MaxAtt) can be reduced to the maximum weighted independent
set problem in a directed acyclic graph with positive vertex weights. An independent
set is a set of vertices I such that there is no edge connecting any two vertices in I.
The maximum weighted independent set problem (MWIS) can be stated as follows:

Definition 6. Maximum Weighted Independent Set Problem: Given a graph G = (V, E)
with a weight function w : V → R, find an independent set I∗ ∈ argmaxI∈I ∑i∈I w(i),
where I is the set of all independent sets.
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Recall that the dominance relation can be represented as a DAG G which includes
an arc (u, v) whenever u � v. As a result, the condition x ∈ D implies that any
feasible solution to (MaxAtt) represents an independent set in G and maximising
∑n

i=1 cixi amounts to finding the independent set maximising the sum of the weights.
Since the dominance relation is a partial order, the DAG representing the dominance
relation is a comparability graph. The following result is particularly useful.

Theorem 2 (Möhring [1985]). The maximum weighted independent set is polynomially-
solvable for comparability graphs with positive weights.

To give intuition about how this works, the reduction proposed in Möhring [1985]
is as follows: starting with the Directed Acyclic Graph G, the vertex set V, R as the
edge set, and w : V → R+ a positive weight function over the vertex set, we construct
a network NG through the following steps: first, add two new vertices s, t. Add edges
(s, a) and (b, t) for each minimal vertex a and maximal vertex b in G, where a vertex is
minimal (resp. maximal) if v does not have any ingoing (resp. outgoing) edges. These
edges and all the edges (u, v) ∈ R have lower capacities 0 and upper capacities +∞.
Then, each vertex v in V is split into two vertices vi, vo

i (in and out vertices), and
all incoming edges of v now point at vi and all the outgoing edges of v have vo as
starting point. Also the vertices vi, vo are joined by a new edge (vi, vo) with lower
capacity w(v) (the weight of v) and upper capacity +∞. An example of the reduction
from G to NG can be seen in the following figure:

Example 12. [[Möhring, 1985, p.66]] Let X = {1, 2, 3, 4, 5} and let � defined by
R = {(1, 2), (2, 3), (1, 3), (1, 5), (4, 3), (4, 5)}. Then G and the network NG are given
by:

1 w1 = 2

2w2 = 3

3 w3 = 1

4 w4 = 2

5 w5 = 1

The original graph G

s

1i

4i

1o

4o

2i 2o 3i 3o

5i 5o

t

0

0

2 3 1

2 1

0 0

00

0

0

0

The Network NG

By the Min-Flow Max-Cut Theorem (see Ford and Fulkerson [2010]), the minimal
value of a feasible s,t-flow in NG is the same as the maximum capacity of an s,t-cut
in NG, this is:

v = max
S,T

 ∑
(uv)∈E′
u∈S,v∈T

l((u, v))− ∑
(uv)∈E′
u∈T,v∈S

c((u, v))

 , (3.5)
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where S,T is an s,t-cut of NG = (V ′, E′), i.e. s ∈ S, t ∈ T, S ∪ T = V ′ and
S ∩ T = ∅. Also, l((u, v)) and c((u, v)) denotes the lower and upper capacity of an
edge (u, v) ∈ E′.

Möhring [1985] showed that the set M = {v ∈ V, (vi, u) ∈ E′, vi ∈ S, u ∈ T}
induced by an optimal cut, is the maximum weighted anti-chain in G (Theorem
1.25). In the previous example, the optimal cut is S = {s, 1i, 1o, 2i, 4o}, T = V ′ \ S and
M = {2, 4}, with a total weight of 5. We can solve this problem using any min-flow
algorithm [Even, 1979; Ford and Fulkerson, 2010].

Is also worth to notice that another method to solve the maximum weighted inde-
pendent set problem MaxAtt, is provided in Grötschel et al. [1981], since the ellipsoid
method can be used to solve this problem over perfect graphs, and comparability
graphs are perfect by Mirki’s Theorem [Mirsky, 1971]. We are now in position to
present our first result.

Lemma 2. (MaxAtt) is polynomial-time solvable.

Proof. We first show that we can ignore those products with a negative weight. Let
X̂ = {i ∈ X | ci > 0} and D̂ = {x ∈ {0, 1}n | ∀s, t ∈ X̂, s � t : xs + xt ≤ 1}. Solving
(MaxAtt) is equivalent to solving:

maximise
x ∑

i∈X̂

cixi

subject to x ∈ D̂
(Reduced MaxAtt)

Indeed, consider an optimal solution x∗ to Problem MaxAtt and assume that there
exists i ∈ X such that ci < 0 and x∗i = 1. Define x̂ like x∗ but with x̂i = 0. x̂ has
a strictly greater value for the objective function in Reduced MaxAtt than x∗ has,
and is feasible since setting a component to zero cannot violate any constraint (i.e.,
x̂ ∈ D). This contradicts the optimality of x∗. Now Problem Reduced MaxAtt can be
reduced to solving an instance of Problem MWIS in a DAG with positive weights that
corresponds to the dominance relation. This DAG is a comparability graph and the
result follows from Theorem 2.

The next step in solving the assortment problem under the 2SLM relies on a result
by Megiddo Megiddo [1979]. Let D be a domain defined by some set of constraints
and consider Problem A

maximise
x

n

∑
i=1

cixi

subject to x ∈ D
(A)

and its associated Problem B:

maximise
x

a0 + ∑n
i=1 aixi

b0 + ∑n
i=1 bixi

subject to x ∈ D.
(B)

Using this notation, Megiddo’s theorem can be stated as follows.
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Theorem 3 (Megiddo [1979]). If Problem A is solvable within O(p(n)) comparisons and
O(q(n)) additions, then Problem B is solvable in O(p(n)(q(n) + p(n))) time.

We are now in position to state our main theorem of this section.

Theorem 4. The assortment problem under the Two-Stage Luce model is polynomial-time
solvable.

Proof. Recall that the assortment problem under the 2SLM (AP-2SLM) can be formu-
lated as

maximise
x

∑n
i=1 riaixi

∑n
i=1 aixi + a0

subject to x ∈ D
(3.6)

where D = {x ∈ {0, 1}n | ∀s � t : xs + xt ≤ 1}.
The problem of maximising the numerator in (3.6) is exactly the MaxAtt problem.

By Lemma 2, this is polynomial-time solvable. Now observe that (3.6) (i.e., problem
AP-2SLM) can be seen as a Problem B. Therefore, by Theorem 3, the assortment
problem under the 2SLM is solvable in polynomial time.

In addition to solving the assortment problem under the 2SLM, Theorem 4 is in-
teresting in that it solves the assortment problem under a Multinomial Logit with a
specific class of constraints. It can be contrasted with the results by Davis et al. [2013],
where feasible assortments satisfy a set of totally unimodular constraints. They show
that the resulting problem can be solved as a linear program. However, the 2SLM
introduces constraints that are not necessarily totally unimodular as we now show.

Example 13. Consider X = {1, 2, 3, 4} and 1 � 3, 1 � 4, 2 � 3, 2 � 4, and 3 � 4. The
constraint matrix that defines the feasible space (D) for this instance is:

M =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1


where each row represents a constraint xu + xv ≤ 1. meaning that just one end of the
edge can be selected at the time. Camion [1965] proved that M is totally unimodular
if and only if, for every (square) Eulerian submatrix A of M, ∑i,j aij ≡ 0 (mod 4).
Consider the sub-matrix corresponding to the first, second, and fifth rows and the
first, third, and fourth columns

N =

1 1 0
1 0 1
0 1 1


Matrix N is eulerian (The sums of every element on each row or on each column is
a multiple of 2). But the sum of all elements of N is 6 6≡ 0 (mod 4) and hence M is
not totally unimodular.
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We close this section by explaining how our results can be extended to a more
general setting. Gallego et al. [2015] proposed the general attraction model (GAM)
to describe customer behaviour, that alleviates some deficiencies of the MNL. More
specifically, the intuition behind this choice model is that whenever a product is not
offered, then its absence can potentially increase the probability of the no-purchase
alternative, as consumers can potentially look for the product elsewhere, or at a later
time. To achieve this effect, for each product j the model considers two different
weights: vj and wj, usually with 0 ≤ wj ≤ vj. If product j is offered, then its
preference weight is vj. But if j is not offered, then the preference weight of the
outside option is increased by wj. For all j ∈ X, let ṽj = vj − wj and ṽ0 = v0 +

∑k∈X wk. Using this notation, the probabilities associated with the GAM model can
be recovered by means of the following equation:

ρ(j, S) =

{ vj

∑i∈S ṽj+ṽ0
if j ∈ S,

0 if j /∈ S.
(3.7)

Observe that the resulting assortment problem will has the same functional form
than problem AP-2SLM, with a slight modification on the coefficients in the denom-
inator. Thus, we can apply the same solution technique described in Theorem 4 to
find the optimal assortment for the GAM.

3.3 The Capacitated Assortment Problem

In many applications, the number of products in an assortment is limited, giving rise
to capacitated assortment problems. Let C (1 ≤ C ≤ n) be the maximum number of
products allowed in an assortment. The Capacitated Assortment Problem under the
Two-Stage Luce Model (C2SLMAP) is given by

maximise
x

∑n
i=1 riaixi

∑n
i=1 aixi + a0

subject to x ∈ DC

(C2SLMAP)

where DC = {x ∈ {0, 1}n | ∀(s, t) ∈ R xs + xt ≤ 1 ∧ ∑n
i=1 xi ≤ C}. As before, it is

useful to define its capacitated maximum-attractiveness counterpart (C-MaxAtt), i.e.,

maximise
x

n

∑
i=1

cixi

subject to x ∈ DC

(C-MaxAtt)

This section first proves that the capacitated assortment problem under the 2SLM
is NP-hard. The reduction uses the Maximum Weighted Budgeted Independent Set
(MWBIS) problem proposed by Bandyapadhyay [2014] which amounts to finding a
maximum weighted independent set of size not greater than C. Kalra et al. [2017]
showed that Problem (MWBIS) is NP-hard for bipartite graphs.
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Theorem 5. Problem (C2SLMAP) is NP-hard (under Turing reductions).

Proof. The proof considers four problems:

1. Problem (MWBISBP): Maximum weighted independent set of size at most C for
bipartite graphs.

2. Problem (MWEBISBP): Maximum weighted independent set of size equal to C
for bipartite graphs.

3. Problem (EC2SLMAP): Optimal assortment under the General Luce model of size
C.

4. Problem (C2SLMAP): Optimal capacitated assortment under the Two-Stage Luce
model of size at most C.

The proof shows that Problems (MWEBISBP), (EC2SLMAP), and (C2SLMAP) are NP-hard,
using the NP-hardness of Problem (MWBISBP) [Kalra et al., 2017] as a starting point.

First observe that Problem (MWEBISBP) is NP-hard under Turing reductions. In-
deed, Problem (MWBISBP) can be reduced to solving C instances of Problem (MWEBISBP)
with budget c (1 ≤ c ≤ C).

We now show that Problem (EC2SLMAP) is NP-hard. Consider Problem (MWEBISBP)
over a bipartite graph G = (V = V1 ∪ V2, E), where V1 ∩ V2 = ∅, every edge
(v1, v2) ∈ E satisfies v1 ∈ V1 and v2 ∈ V2, wv is the weight of vertex v, and C is
the budget. We show that Problem (MWEBISBP) over this bipartite graph can be poly-
nomially reduced to Problem (EC2SLMAP). The reduction assigns each vertex v to a
product with a(v) = 1 and rv = wv, sets a0 = 0, and has a capacity C. Moreover, the
reduction uses the following dominance relation: v1 � v2 iff (v1, v2) ∈ E. This domi-
nance relation is irreflexive, anti-symmetric, and transitive, since the graph is bipar-
tite. A solution to Problem (MWEBISBP) is a feasible solution to Problem (EC2SLMAP),
since the independent set cannot contain two vertices v1, v2 with v1 � v2 by con-
struction. Similarly, a feasible assortment is an independent set, since the assortment
cannot select two vertices v1 ∈ V1 and v2 ∈ V2 with (v1, v2) ∈ E, since v1 � v2. The
objective function of Problem (EC2SLMAP) reduces to maximising

1
C ∑

v∈V
rvxv

which is equivalent to maximising ∑v∈V rvxv since exactly C products will be selected
by every feasible assortment. The result follows by the NP-hardness of Problem
(MWEBISBP).

Finally, Problem (C2SLMAP) is NP-hard under Turing reductions. Indeed, Problem
(C2SLMAP) can be reduced to solving C instances of Problem (EC2SLMAP) with capacity
c (1 ≤ c ≤ C).

It is interesting to mention that Problem (C-MaxAtt) is equivalent to finding an anti-
chain of maximum weight among those of cardinality at most C. This problem (MWLA)
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was proposed by Shum and Trotter [1996] and its complexity was left open, but the
above results show that it is also NP-hard. Bandyapadhyay [2014] studied Problem
(MWBIS) for various types of graphs (e.g., trees and forests), but the dominance rela-
tion of the 2SLM can never be a tree since it is transitive (unless we consider a graph
with a single vertex).

In light of this NP-hardness result, the rest of this section presents polynomial-
time algorithms for two special cases of the dominance relation.

3.3.1 The Two-Stage Luce model over Tree-Induced Dominance Relations

Let R� be the transitive reduction of the irreflexive, antisymmetric, and transitive
relation �. This section considers the capacitated assortment problem when the
relation R� can be represented as a tree. Without loss of generality, we can assume
that the tree contains all products. Otherwise, we can add another product with zero
weight that dominates all original products. This new product will be the root of
the tree and the products not in the original tree will be the children of the root.
Similarly, the same transformation applies to the case when R� is a forest. Here all
the trees in the forest will be children of the new product.

We show how to solve Problem (C-MaxAtt). The result follows again by applying
Megiddo’s theorem. The first step of the algorithm simply removes all products with
negative weight: Their children can be added to the parent of the deleted vertex.
The main step then solves (C-MaxAtt) bottom-up using dynamic programming from
the leaves. For simplicity, we present the recurrence relations to compute the weight
of the optimal assortment. It is easy to recover the optimal assortment itself. The
recurrence relations compute two functions:

1. A(k, c) which returns the weight of an optimal assortment using product k and
its descendants in the tree representation of R� for a capacity c;

2. A+(S, c) which, given a set S of vertices that are children of a vertex k, re-
turns the weight of an optimal assortment using the products in S and their
descendants for a capacity c.

The key intuition behind the recurrence is as follows. If v is a vertex and v1 and v2

are two of its children, v1 does not dominate v2 or any of its descendants. Hence, it
suffices to compute the best assortments producing A(v1, 0), . . . ,A(v1, C) and
A(v2, 0), . . . ,A(v2, C) and to combine them optimally. The recurrence relations are
defined as follows (v ∈ X and 1 ≤ c ≤ C):

A(v, 0) = 0;

A(v, c) = max(cv,A+(children(v), c));
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and

A+(∅, 0) = 0;

A+(S, c) = max
n1,n2≥0

n1+n2=c

A+(S \ {e}, n1) +A(e, n2) where e = argmax
i∈S

ci.

where children(p) denotes the children of product p in the tree. Note that A+(S, c) is
computed recursively to obtain the best assortment from the products in S and their
descendants. Using these recurrence relation, the following Theorem follows:

Theorem 6. Let � a dominance relation whose relationR� is a tree containing all products.
The capacitated assortment problem under the 2SLM and � is polynomial-time solvable.

Proof. By Theorem 3, it suffices to show that Problem (C-MaxAtt) is solved by the
recurrences in polynomial time. The correctness of recurrence A(v, c) comes from
the fact that vertex v dominates all its descendants and cannot be present in any
assortment featuring any of them. The correctness of recurrence A+(S, c) follows
from the fact that e is not dominated by, and does not dominate, any element in S,
since they are all children of the same node. This also holds for the descendants
of e and the descendants of the elements in S. Hence, the optimal assortment is
obtained by splitting the capacity c into n1 and n2 and merging the best assortment
for A+(S, n1) and A(e, n2) for some n1, n2 ≥ 0 summing to c. The recurrences can
be solved in polynomial time since the computation for each vertex v and capacity c
takes O(n C) time, giving an overall time complexity of O(n2 C2).

3.3.2 The Attractiveness-Correlated Two-Stage Luce model

The second special case considers a dominance relation that is correlated with attrac-
tiveness.

Definition 7 (Attractiveness-Correlated Two-Stage Luce model). A Two-Stage Luce
model is attractiveness-correlated if the dominance relation satisfies the following
two conditions:

1. If x � y, then ax > ay.

2. If x � y and az > ax, then z � y.

The first condition simply expresses that product x can only dominate product y if
the attractiveness of x is greater than the attractiveness of y. The second condition
ensures that, if x dominates y, then any product whose attractiveness is greater than
x also dominates y. The induced dominance relation is irreflexive, anti-symmetric,
and transitive. A particular case of this model, is the Threshold Luce model.

When customers follow the Threshold Luce model, they form their considera-
tion sets based on the attractiveness of products. Without loss of generality, we can
assume a1 ≥ a2 ≥ . . . ≥ an, unless stated otherwise. For a set S, the associated
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consideration set c(S) may be a proper subset of S, but for the purpose of assort-
ment optimisation, we don’t have incentives to offer sets including products that are
not even consider by customers, so we can restrict our search for optimal solutions
to sets where c(S) = S. A necessary and sufficient condition for this to happen is
maxi∈S ai
mini∈S ai

≤ 1 + t. Meaning that largest ratio between attractiveness is not greater than
1 + t, so no dominance relation appears.

The firm now needs to carefully balance the inclusion of high-attractiveness prod-
ucts and their prices to maximise the revenue. In the following example we show
that revenue ordered assortments are not optimal under the Threshold Luce Model. In
fact, this strategy can be arbitrarily bad.

Example 14 (Revenue ordered assortments are not optimal). Consider the following
product configuration. Let N + 1 products, with prices p1 for the first product, and
αp1 for the rest of them, with α < 1. The attractiveness for all products is a1 for the
first product and γa1 for all the rest, such as in the presence of product 1, all the rest
of the products are ignored. To complete the set up, let a0 the attractiveness of the
outside option. The best revenue ordered assortment is to consider product 1, given
a revenue of:

R′ = R({1}) = p1a1

a1 + a0

But, if N is big enough (at least bigger than 1
αγ ), is more profitable to show

SN = X \ {1}, resulting in a revenue of:

R∗ = R(SN) =
N · αp1γa1

N · αγa1 + a0

Now, if we calculate the ratio if this two values, R′ and R∗ and let N tend to
infinity we have:

R′

R∗
= lim

N→∞

p1a1
a1+a0

N·αp1γa1
N·αγa1+a0

R′

R∗
= lim

N→∞

p1a1

a1 + a0
· N · αγa1 + a0

N · αp1γa1

R′

R∗
=

a1

a1 + a0
(3.8)

Observe that this last expression is the market share of offering just product 1,
which can be arbitrarily bad by either making a1 as small as desired, or making the
outside option more attractive.

The capacitated assortment optimisation can be solved in polynomial time under
the Attractiveness-Correlated Two-Stage Luce model. Consider an assortment whose
product with the largest attractiveness is k. This assortment cannot contain any prod-
uct dominated by k. Moreover, if k1 and k2 are two other products in this assortment,
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then k1 cannot dominate k2 since k would also dominate k2. As a result, consider the
set

Xk = {i ∈ X | ai ≤ ak & k 6� i}.

No product in Xk dominates any other product in Xk and hence the C2SLMAP reduces
to a traditional assortment problem under the MNL. This idea is formalized in Al-
gorithm 1, where CMLMAP is a traditional algorithm for the MNL. The algorithm con-
siders each product in turn and the products that it does not dominate and applies a
traditional capacitated assortment optimisation under the MNL. The best such assort-
ment is the solution to the capacitated assortment under the attractiveness-correlated
2SLM.

Algorithm 1: Capacitated Assortment optimisation under the
Attractiveness-Correlated 2SLM.

Data: X,�, r, a
Result: Optimal Assortment S∗

R(S∗) = 0 for k = 1, . . . , n do
Xk = {i ∈ X | ai ≤ ak & k 6� i}
Sk = CMLMAP(Xk, r, a)
if R(Sk) > R(S∗) then

S∗ = Sk
end

end
return S∗

Theorem 7. C2SLMAP can be solved in polynomial time for Attractiveness-Correlated in-
stances.

Proof. To show correctness, it suffices to show that the optimal assortment must be a
subset of one of the Xk (1 ≤ k ≤ n). Let A be the optimal assortment and assume
that k is its product with the largest attractiveness (break ties randomly). A must
be included in Xk since otherwise it would contain a product x such that k � x
(contradicting feasibility) or such that a(x) > a(k) (contradicting our hypothesis).
The correctness then follows since there is no dominance relationship between any
two elements in each of Xk. The claim of polynomial-time solvability follows from
the availability of polynomial-time algorithms for the assortment problem under the
MNL and the fact that are exactly n calls to such an algorithm.

3.4 Assortment Optimisation - Numerical Results

This section presents some numerical results on the performance of revenue-ordered
assortments (RO) against our proposed strategy detailed in Section 3.2, which we call
2SLM-OPT. In order to do this, we variate the number of products n, the attractiveness
of the outside option a0 and the density d of the graph, which we use as the proba-
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bility that a dominance relation is active for each pair of products3. Theoretically, as
shown in Example 14, the optimality gap can be as large desired. But in practice, we
were able to found gaps as large as 95.40%.

Each tested family or class of instances is defined by essentially three numbers:
the number of products n, the attractiveness of the outside option a0, and the den-
sity d, that controls the probability that a dominance edge exists, and then we also
compute the transitive closure over the resulting graph. It is worth noticing that
we did not consider the case a0 = 0 because in those cases, the optimal solution is
simply selecting the highest revenue product and therefore both strategies coincide.
In total, we experimented with 48 classes or families of instances, each containing
250 instances. In each specific instance, revenues and utilities are drawn from an
uniform distribution between 0 and 10. We ran both strategies (RO and 2SLM-OPT)
and report the average and worst optimality gap for the RO strategy. We are not
providing running times, because as expected, 2SLM-OPT takes more time than RO,
but all instances can be solved very fast in practice (less than half a second). Table
3.2 presents the results which can be summarized as follows:

1. The average gap tends to increase with the number of products, reaching about
14% for 30 products. The worst gap is more instance-dependent (as it strongly
depends on the dominance structure, and how revenues are matched with at-
tractiveness) so it can be large both in smaller and larger instances. However,
it tends to increase with the density of the dominance graph, as it is more
likely for RO to choose a product that dominates potential contributors whose
inclusion can be more profitable than keeping the higher attractiveness one.

2. The average gap generally widens as the outside option attractiveness increases.
With a high outside option, we typically expect to select more products to coun-
terbalance the effect of the no-choice alternative. This can amplify the difference
between 2SLM-OPT and RO as the likelihood that the optimal solution turns out
to be revenue-ordered decreases, given the randomness of the dominance rela-
tion.

3. With higher densities, is more likely to make a mistake using revenue ordered
assortments and include a product that dominates many potential contributors
that considered together, might be more profitable. Thus, both the average and
worst gap widens as the density increases in general. The exception occurs at
the higher end of densities where not many products can be included without
provoking dominances. Here the solutions of both strategies tends to be sim-
ilar and select a few higher revenue products. This is also interesting from a
managerial standpoint: when customers have more clarity on what products
are clearly superior in comparison, this might drift the offered assortment to
be smaller, compared against when customers does not have a clear hierarchy
among products.

3used as the probability that an edge in the dominance graph occurs
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(n, a0, d)
RO Assortments 2SLM-OPT

Avg. Gap (%) Worst Gap (%) Avg. Cardinality Avg. Cardinality

(5,1,0.2) 0.476 48.899 1.484 1.496
(5,1,0.4) 1.532 80.404 1.384 1.376
(5,1,0.8) 2.812 71.888 1.08 1.084
(5,2,0.2) 1.173 73.387 1.82 1.816
(5,2,0.4) 1.827 69.8 1.504 1.536
(5,2,0.8) 4.529 94.759 1.116 1.14
(5,4,0.2) 1.835 69.574 2.108 2.104
(5,4,0.4) 3.133 61.627 1.784 1.82
(5,4,0.8) 5.378 69.555 1.2 1.228
(5,8,0.2) 1.789 64.546 2.284 2.34
(5,8,0.4) 5.927 70.854 1.884 1.988
(5,8,0.8) 6.933 91.335 1.168 1.244

Avg. n = 5 3.112 72.219 1.568 1.597667

(10,1,0.2) 0.68 51.339 1.872 1.896
(10,1,0.4) 2.388 63.414 1.5 1.524
(10,1,0.8) 3.997 95.49 1.092 1.076
(10,2,0.2) 1.385 49.292 2.272 2.296
(10,2,0.4) 3.275 90.659 1.604 1.664
(10,2,0.8) 6.495 73.787 1.132 1.148
(10,4,0.2) 1.984 61.872 2.612 2.764
(10,4,0.4) 5.734 90.983 1.92 2.112
(10,4,0.8) 7.107 86.55 1.156 1.224
(10,8,0.2) 3.509 41.995 3.08 3.2
(10,8,0.4) 6.592 82.358 2.028 2.304
(10,8,0.8) 8.916 92.576 1.172 1.304

Avg. n = 10 4.3385 73.35958333 1.786666667 1.876

(20,1,0.2) 1.067 36.45 2.18 2.216
(20,1,0.4) 2.664 82.68 1.448 1.556
(20,1,0.8) 2.884 74.534 1.1 1.092
(20,2,0.2) 2.349 40.095 2.46 2.652
(20,2,0.4) 3.452 41.717 1.696 1.856
(20,2,0.8) 5.112 83.79 1.132 1.192
(20,4,0.2) 3.786 34.659 2.84 3.184
(20,4,0.4) 8.575 73.075 1.848 2.14
(20,4,0.8) 7.749 86.321 1.152 1.284
(20,8,0.2) 5.938 68.465 3.352 3.856
(20,8,0.4) 8.88 52.627 2.088 2.616
(20,8,0.8) 10.204 94.021 1.152 1.392

Avg. n = 20 5.221666667 64.03616667 1.870666667 2.086333

(30,1,0.2) 1.762 20.877 2.068 2.228
(30,1,0.4) 3.34 83.702 1.44 1.616
(30,1,0.8) 3.773 62.764 1.056 1.108
(30,2,0.2) 3.084 43.736 2.544 2.864
(30,2,0.4) 5.554 79.378 1.64 1.968
(30,2,0.8) 5.499 86.544 1.072 1.148
(30,4,0.2) 4.721 53.873 2.984 3.464
(30,4,0.4) 8.046 74.267 1.876 2.3
(30,4,0.8) 9.045 92.51 1.14 1.304
(30,8,0.2) 7.623 46.498 3.368 4.188
(30,8,0.4) 14.266 91.851 1.916 2.684
(30,8,0.8) 11.422 75.239 1.132 1.412

Avg. n = 30 6.51125 67.60325 1.853 2.190333

Table 3.2: Numerical experiments comparing the revenue ordered assortment strat-
egy (RO) and our proposed strategy 2SLM-OPT. For each class of instances, we display
the average optimality gap and the worst-case gap, as well as the computing time and
the cardinality of the offered set.
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3.5 Threshold Luce model: assortment optimisation problem
extensions

3.5.1 Market Share Maximisation with heterogeneous customers

Being able to offer a set that maximises the likelihood of a purchase is a problem
often studied in the litertaure. This problem is known in the literature as market share
maximisation. Using the same notation than for the TLM in Section 3.2, the market
share obtained by showing a set S ⊆ X under the TLM can be written as:

MS(S) = ∑
i∈c(S)

ρ(i, S). (3.9)

We can extend this definition to the following setting. Suppose that the customer
base is heterogeneous on the Threshold value, meaning that they are more or less
tolerant when faced relative differences between products perceived attractiveness.
Let M > 1 be the number of customer classes. For each one of the classes j, let tj > 0
and αj ≥ 0 be the threshold and the proportion of the population associated to class
j, where ∑j∈[M] αj = 1, capturing the fact that the fractions of the population add up
to 1. We need to slightly redefine the consideration set as follows:

Definition 8. Given a threshold t, a set S , we say that i �t j with i, j ∈ S if and only
if:

ai

aj
> (1 + t)

And the consideration set associated with this threshold t is:

c(S, t) = {j ∈ S | 6 ∃i ∈ S : i �t j}, (3.10)

Given these two definitions, we can calculate the expected market share for the het-
erogeneous case as follows:

MS(S, p) = ∑
j∈[M]

αj ·
∑i∈c(S,tj) ai

∑i∈c(S,tj) ai + a0
(3.11)

Without loss of generality, we label the customer classes such that t1 ≤ t2 ≤ . . . ≤
tm. This indexing implies that customers are progressively more tolerant to more
dissimilar attractiveness. This indexing allow us to state the following proposition.

Proposition 6 (Nested consideration sets). Let S ⊆ X. Then c(S, t1) ⊆ c(S, t2) ⊆ . . . ⊆
c(S, tm).

Proof. Let i < j. Is enough to show that if k ∈ c(S, ti) =⇒ k ∈ c(S, tj). Indeed, if
k ∈ c(S, ti) implies:
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ak

ak′
≤(1 + ti) ∀k′ ∈ S

ak

ak′
≤(1 + ti) ≤ (1 + tj) ∀k′ ∈ S because ti ≤ tj

so we have ak
ak′
≤ (1 + tj), which means that product k belong to c(S, tj), conclud-

ing the proof.

In many customer choice models, like the Multinomial Logit, and all Random
Utility Models (RUM), offering more products always yields to a greater market share.
However, this is not the case for the Threshold Luce model as we can see in the
following example 4.

Example 15 (Market Share Maximisation - Showing more can decrease the market
share). Let us revisit example 7. Consider four products with attractiveness a1 =
5, a2 = 4, a3 = 3 and a4 = 3, the threshold t = 0.4 and the attractiveness of the
outside option a0 = 1. For the offer set {2, 3, 4}, the total market share is 10/11, since
no product dominates each other. However, if we add product 1 to the offer set,
i.e. if we offer all four products, then the total market share drops to 9/11, because
products 3 and 4 are now dominated by product 1, and this effect outweighs the
benefit of adding alternative 1.

In fact, if we stretch this example a little bit further, we can show that the showing
all products is arbitrarily bad when compared to the optimal solution. A detailed
example is provided below.

Example 16 (Market Share Maximisation - Show all strategy can be arbitrarily bad).
Suppose we have a product (let us call it product 1) with attractiveness a and N prod-
ucts with attractiveness a− εt. Where t is the threshold value and εt > 0 serves the
purpose that in presence of the first product, all the rest of the N products are simply
ignored by any upcoming customer. The Market Share of the Show-all strategy is:

MS(X) =
a

a + a0

Let SN be the set of the N products having lower attractiveness. If we show just
the SN products instead, we achieve a market share of:

MS(SN) =
N(a− εt)

N(a− εt) + a0

So, if we calculate the ratio between MS(X) and MS(SN) and let N tend to infinity
we have:

4Since the Markov chain model proposed by [Blanchet et al., 2016] belongs to the RUM class
[Berbeglia, 2016], neither the Threshold Luce or the two-stage Luce models are not contained on it.
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lim
N→∞

MS(X)

MS(SN)
= lim

N→∞

a
a+a0

N(a−εt)
N(a−εt)+a0

lim
N→∞

MS(X)

MS(SN)
= lim

N→∞

a
a + a0

· N(a− εt) + a0

N(a− εt)

lim
N→∞

MS(X)

MS(SN)
= lim

N→∞

a [N(a− εt) + a0]

(a + a0) · [N(a− εt)]

lim
N→∞

MS(X)

MS(SN)
=

a
a + a0

(3.12)

We can make a as small as desired, and the ratio would be arbitrarily bad.

The intuition that justifies more is not always better, relies on the fact that when
high attractiveness products are shown, then the consideration set might not include
many low-attractiveness products, reducing the overall market share. Thus, it might
be convenient for the firm to not offer high-attractiveness products that can dominate
many low attractiveness alternatives. Motivated by this intuition, we characterize the
optimal solution for the Market Share Optimsation problem under the Threshold
Luce model. We first need to present the following definition:

Definition 9 (Attractive Windowed Assortments). Subsets S = {k1, . . . , k2} are called
attractive windowed assortments, if k1 ≤ k2 and ∀k such as k1 ≤ k ≤ k2, we have
k ∈ S as well.

Theorem 8 (Optimality of attractiveness windowed assortments). For the market share
maximisation problem in equation (3.9), any optimal solution is of the form S = [k1, . . . , k2]
(i.e. considering all the elements indexed between k1 and k2) with 1 ≤ k1 ≤ k2 ≤ n. This
result also holds for the market share maximisation problem with heterogeneous customers.

Proof. Let S be an optimal solution to the market share optimisation problem, and
suppose that there exist a product k such that k /∈ S and there exist k1, k2 ∈ S such
that k1 < k < k2. We now show that the addition of product k is always beneficial
for the market share. For each customer class, the addition of product k does not in-
duce any dominance, because k1 is in the assortment and has a higher attractiveness.
Therefore, for each customer class, we are just simply increasing the total attractive-
ness, or in the worst case, keeping it the same. Thus, the total market share also
increases, or at least remains the same. To show this, let x ≥ 0 represents a value for
the total attractiveness, if we consider the function:

m(x) =
x

x + a0
= 1− a0

x + a0
(3.13)

is clearly strictly increasing in x, so the proof follows.

This result was also independently shown in Wang [2019]. The author also
showed that the assortment optimisation problem with heterogeneous customers
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is NP-hard, using the partition problem [Garey and Johnson, 1979], a known NP-
complete problem, and provide a fully polynomial time approximation scheme (FP-
TAS).

3.5.2 Assortment Optimisation with Position Bias

Another well studied extension of the Assortment Optimisation Problem, is to con-
sider position bias. In this extension, product placement of the products influence
how consumers choose among them. Several models had been proposed in the lit-
erature to capture this effect [Kempe and Mahdian, 2008a; Hummel and McAfee,
2014; Abeliuk et al., 2016; Davis et al., 2013] among others. We use the same way
of describing this effect as in Abeliuk et al. [2016], using a weight associated with
each position that can increase or decrease the probability of selecting a product,
depending on how attractive the position is.

Let θj > 0, with 0 ≤ j ≤ n be the weight associated with position j. Without loss
of generality, we can assume θ1 ≥ θ2 ≥ . . . ≥ θn > 0. A position assignment is an
injective function σ : S → [n] that maps each product in S to a position. If product i
is shown in position j, means that the position bias produces a shift on the intrinsic
utility of product i of a factor ln θj. So if we let ai the attractiveness of product i, the
new attractiveness of this product when is shown in position j is θjai. We need to
slightly change the concept of dominance under the Threshold Luce model to reflect
this change in relative attractiveness caused by positions. We do that in the following
way:

Definition 10. Given a threshold t, a set S and an assignment σ, we say that i �σ j
with i, j ∈ S if:

θσi ai

θσj aj
> (1 + t),

thus, the consideration set is defined as:

c(S, σ) = {j ∈ S | 6 ∃i ∈ S : i �σ j}, (3.14)

And consequently, the revenue given an assortment S and assignment σ and
considering product revenues r ∈ Rn

+ is:

R(S, p) =
∑i∈c(S,σ) θσi airi

∑i∈c(S,σ) θσi ai + a0
(3.15)

We are now interested in solving the assortment optimisation problem: finding
the optimal assortment and position for each product in order to maximise revenue
(Equation (3.15)).

Abeliuk et al. [2016] proposed a solution to the assortment problem under the
usual Multinomial Logit Model with position bias, which is based on the rearrange-
ment inequality and it can be performed in polynomial time. Let us call this algo-
rithm the Multinomial Logit Model Assortment Problem with Position Bias Algorithm and
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call it as MLMAPPBA(X, r, a, a0, θ), which returns (S∗, σ∗, R∗), the optimal subset to offer,
the optimal position assignment, and the optimal expected revenue respectively. We
now propose a polynomial time algorithm to solve the assortment optimisation prob-
lem with position bias under the Threshold Luce model, based on using MLMAPPBA a
polynomial number of times.

Theorem 9. The Assortment optimisation Problem under the Threshold Luce model with
Position Bias can be solved in polynomial time.

Proof. Let (X, r, a, a0, θ, t) be an instance of the Threshold Luce model with Position
Bias. Let A be the matrix generated using a and θ, where aij = aiθj and products and
are indexed in decreasing order of attractiveness. Suppose that we include product
i1 in position j1. This inclusion means that any other product i2, allocated in position
j2 gets dominated by product i1 in position j1 if:

ai1 j1

ai2 j2
> (1 + t), (3.16)

Consider for each pair (i1, j1), the corresponding pair (î1, ĵ1) satisfying the follow-
ing conditions:

•
ai1 j1
a ˆi1 ĵ1
≤ (1 + t), meaning that product î1 in position ĵ1 is not dominated by

product i1 in position j1.

•
ai1 j1

a ˆi1+1 ĵ1
> (1 + t), which means that if we allocate product î1 + 1 instead in posi-

tion ĵ1 it gets dominated by product i1 in position j1.

•
ai1 j1

a ˆi1 ĵ1+1
> (1 + t), which means that if we allocate product î1 in position ĵ1 + 1

instead, it gets dominated by product i1 in position j1.

Now, restricted to products Xi1 j1 = {i1, . . . , î1} and positions Pi1 j1 = {j1, . . . , ĵ1},
no dominance relation appears for any assignment of products to positions. So re-
stricted to these products and positions, we can solve the Assortment Problem to
optimality by using MLMAPPBA. Noting that we need to perform this process at most a
quadratic number of times (one for each element in matrix A) and simply keep track
of the maximum revenue, the proof follows.
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Chapter 4

Joint Assortment and Pricing under
the Threshold Luce model

This chapter is reproduced with minor changes from:

1. Flores, A.; Berbeglia, G; Van Hentenryck, P. 2019. Assortment and Pricing
optimisation Under the Two-Stage Luce model. Submitted to Operations Research
(13th of April of 2019). Under Review.

2. Flores, A.; Berbeglia, G; Van Hentenryck, P. 2019. Assortment and Pricing
optimisation Under the Two-Stage Luce model. Presented at the Informs Revenue
Management & Pricing Conference, Stanford (Informs RM&P), 7th of June 2019.

Chapter 3 provides solutions to the Assortment optimisation problem under the
Two-Stage Luce model. But, what about the pricing optimisation problem? how
can we attach prices to products in order to maximise the expected revenue? Re-
call Example 9 in the previous chapter, where each product has different price levels
that can be attached to it (with their corresponding attractiveness, reflecting the price
point). This setting appears naturally for several reasons: rounded-to-dollar prices,
market regulations, or discrete demand information that does not allow to recover
a clear relation between price and attractiveness. In this case there is no explicit
known functional relationship between attractiveness and prices, and therefore it al-
lows any price-attractiveness combination. Theorem 4 shows that this problem is
actually polynomial time solvable, because essentially amounts to solve an assort-
ment problem with extra dominances within each product and their corresponding
price levels, preserving the 2SLM structure. However, this only solves a discrete
version of the pricing problem for the 2SLM.

If we want to solve the pricing problem for the 2SLM having the freedom to
choose any price for any product, we need a way of update the dominance relation
if a price assignment changes the perceived attractiveness of the products too much.
To overcome this issue, in this chapter, we study the Joint Assortment and Pricing
Problem under the Threshold Luce model making the attractiveness of each product
dependent upon the price attached to it.

67
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4.1 Threshold Luce Model: Joint Assortment and Pricing Prob-
lem

In this section, we study the Joint Assortment and Pricing Problem under the Thresh-
old Luce model, by making the attractiveness of each product dependent upon its
price. Let p = (p1, . . . , pn) be the price vector, where such that pi ∈ R+ ∪ {∞} repre-
sents the price of product i. Since the price will affect the attractiveness ai of product
i, the presentation makes this dependency explicit by writing ai(pi) whose form in
this chapter is specified by

ai(pi) = exp(ui − pi) (4.1)

where ui is the intrinsic utility of product i and the value vi = ui − pi is called the net
utility of product i. Assigning an infinite price to a product is equivalent to not offer-
ing the product, as the attractiveness, and therefore the probability of selecting the
product, becomes 0. Without loss of generality, products are indexed in a decreasing
order by intrinsic utility.

The following definition is an extension of the definition of a consideration set
given an assortment S when each product i has a price pi.

Definition 11. Given an assortment S, a price vector p = (p1, p2, . . . , pn) and a thresh-
old t, the consideration set c(S, p) for the Threshold Luce model is defined as:

c(S, p) = {j ∈ S | 6 ∃i ∈ S : ai(pi) > (1 + t)aj(pj)}. (4.2)

The influence of the price vector over the dominance relations is given by the
following example:

Example 17 (Price effect on the dominance relation). Consider the Threshold Luce
model defined over X = {1, 2, 3, 4} with utilities u1 = ln(10), u2 = ln(8), u3 = ln(6)
and u4 = ln(3), and consider first a scenario where all products have the same price
pi = ln(3) ∀i = 1, . . . , 4. Consider also a second scenario with prices equal to
p′1 = ln(4), p′2 = ln(4), p′3 = ln(3) and p′4 = ln(2). For a threshold t = 0.5, we
have that i � j iff ai(pi) > 1.5 aj(pj). A table summarizing the utilities, prices, and
attractiveness for both scenarios is given in Table 4.1 and the DAGs depicting the
dominance relations for the two scenarios are given in Figures 4.1 and 4.2.

i ui pi ai(pi) p′i ai(p′i)

1 ln(10) ln(3) 3.3 ln(4) 2.5
2 ln(8) ln(3) 2.6 ln(4) 2
3 ln(6) ln(3) 2 ln(3) 2
4 ln(3) ln(3) 1 ln(2) 1.5

Table 4.1: Summary of utilities, prices and attractiveness for the two proposed sce-
narios.
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1

a1(p1) = 3.3

2

a2(p2) = 2.6

3

a3(p3) = 2

4

a4(p4) = 1

Figure 4.1: The DAG for the first scenario where all prices are fixed to ln(3) and the
threshold is t = 0.5. Product 1 dominates products 3 and 4, and product 2 dominates
product 4.

1

a1(p′1) = 2.5

2

a2(p′2) = 2

3

a3(p′3) = 2

4

a4(p′4) = 1.5

Figure 4.2: The DAG for the second scenario where all prices are fixed to
(ln(4), ln(4),ln(3), ln(2)) and the threshold is t = 0.5. Only product 1 dominates
product 4.

It is also necessary to update the definition of ρ in Definition 4, since it now
depends on the price of all products in the assortment. The definition of ρ : X ∪
{0} × 2X × (R+ ∪∞)n → [0, 1] becomes:

ρ(i, S, p) =


ai(pi)

∑j∈c(S,p) aj(pj)+a0
, if i ∈ c(S, p),

0 if i /∈ c(S, p).
(4.3)

where a0 is the attractiveness of the outside option.
The expected revenue (ER) of an assortment S ⊆ X and a price vector p ∈ Rn

+ is
given by

R(S, p) = ∑
i∈c(S,p)

ρ(i, S, p)pi. (ER)

A pair (S, p) with S ⊆ X and p ∈ (R+ ∪∞)n is valid if S = {i : pi < ∞} and
c(S, p) = S. Let V be the set of all valid pairs (S, p). Observe that one can always
restrict the search for optimal solutions to V . Indeed, all dominated products can be
given an infinite price and removing them from the original assortment yields the
exact same revenue.

The Joint Assortment and Pricing problem aims at finding a set S∗ and a price
vector p∗ satisfying

(S∗, p∗) ∈ argmax
(S,p)∈V

R(S, p)
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and yielding an optimal revenue of

R∗ = R(S∗, p∗).

First observe that the strategy used to solve this problem under the multinomial
logit does not carry over to the Threshold Luce Model. Under the multinomial logit,
the optimal solution for the joint assortment and pricing problem is a fixed adjusted
margin policy [Wang, 2012] which, for equal price sensitivities and normalised costs,
translates to a fixed price policy. As shown in Li and Huh [2011], the optimal solution
for the pricing problem under the multinomial logit can be expressed in closed form
using the Lambert function W(x) : [0, ∞) → [0, ∞) which is defined as the unique
function satisfying:

x = W(x)eW(x) ∀x ∈ [0, ∞). (4.4)

Using this function, the optimal revenue can be expressed as:

R∗ = W
(

∑i∈X exp(ui − 1)
a0

)
(4.5)

The prices are all equal and satisfy: pi = 1 + R∗ ∀i ∈ X. The following example
shows that fixed-price policy is not optimal under the Threshold Luce Model.

Example 18 (Fixed-Price policy is not optimal). Consider 11 products with product
1 having utility u = 2 and all remaining 10 products having utility u′ = 1. Consider
a0 = 1 and t = 1. Observe that, for any fixed price, product 1 always dominates the
other 10 products having lower utility, as exp(u− u′) = exp(1) = e > (1 + t) = 2.
Therefore, the optimal revenue for a a fixed price strategy is:

R f ixed = W
(

exp(u− 1)
a0

)
= W(e) = 1.

As a result, the 10 lower utility products are completely ignored and only product 1
contributes to the revenue.

Consider the following price scheme now: let the price for product 1 be p = 1.8
and let the price be p′ = 1.4 for the remaining products. Product 1 does not dominate
any other product now. Indeed, for any 1 < k ≤ 11,

a1

ak
= exp((u− p)− (u′ − p′)) = exp((2− 1.8)− (1− 1.4)) ≈ 1.822 < 1 + t = 2,

which yields a revenue of:

R′ =
p · exp(u− p) + 10 · p′ exp(u′ − p′)
exp(u− p) + 10 · exp(u′ − p′) + a0

=
1.8 · exp(2− 1.8) + 10 · 1.4 exp(1− 1.4)

exp(2− 1.8) + 10 · exp(1− 1.4) + 1
≈ 1.298,

This pricing scheme improves upon the fixed-price policy, yielding a revenue almost
%30 higher.

The intuition behind this example is as follows: For a fixed price strategy, the
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only factor affecting dominance is the intrinsic utilities because the prices vanish
when calculating the ratio between two attractiveness. This means that the solution
can potentially miss the benefits of low attractiveness products which are dominated
by the most attractive product.

It is thus important to understand the structure of an optimal solution for the
Joint Assortment and Pricing problem under the Threshold Luce model. The first
result states that, for any optimal solution (S∗, p∗), all product prices are greater or
equal than R∗, where R∗ denotes the revenue achieved at optimality.

Proposition 7. In any optimal solution (S∗, p∗), for all i ∈ S∗, p∗i ≥ R∗.

Proof. The proof is by contradiction: Removing products with a price lower than R∗

yields a greater revenue. Indeed, suppose p∗i < R∗ for some i ∈ S, then Ŝ = S∗ \ {i}
has better revenue than the optimal solution if we keep the same prices and p∗i < R∗.
Indeed, let us calculate R(Ŝ):

R(Ŝ) =
∑j∈Ŝ euj−p∗j · p∗j
∑j∈Ŝ euj−p∗j + a0

R(Ŝ) =
∑j∈S∗ euj−p∗j · p∗j − eui−p∗i · p∗i

∑j∈S∗ euj−p∗j − eui−p∗i + a0

R(Ŝ) =
∑j∈S∗ euj−p∗j · p∗j
∑j∈S∗ euj−p∗j + a0

·
∑j∈S∗ euj−p∗j + a0

∑j∈S∗ euj−p∗j − eui−p∗i + a0
−

eui−p∗i · p∗i
∑j∈S∗ euj−p∗j − eui−p∗i + a0

R(Ŝ) =
∑j∈S∗ euj−p∗j · p∗j
∑j∈S∗ euj−p∗j + a0

·
[

1 +
eui−p∗i

∑j∈S∗ euj−p∗j − eui−p∗i + a0

]
−

eui−p∗i · p∗i
∑j∈S∗ euj−p∗j − eui−p∗i + a0

R(Ŝ) =R∗ ·
[

1 +
eui−p∗i

∑j∈S∗ euj−p∗j − eui−p∗i + a0

]
−

eui−p∗i · p∗i
∑j∈S∗ euj−p∗j − eui−p∗i + a0

R(Ŝ) =R∗ +
eui−p∗i

∑j∈S∗ euj−p∗j − eui−p∗i + a0
· [R∗ − p∗i ]︸ ︷︷ ︸

Γ

Now Γ is positive because p∗i < R∗, but this implies R(Ŝ) > R∗, contradicting the
optimality of R∗.

The next proposition characterises the optimal assortment of products of any op-
timal solution to the Joint Assortment and Pricing problem. Recall that the products
are indexed by decreasing utility ui. Thus, the set of products [k] := {1, . . . , k}, (with
0 < k ≤ n) is said to be an intrinsic utility ordered set. The following proposition holds:

Proposition 8. Let (S∗, p∗) denote an optimal solution. Then S∗ = [k] for some k ≤ n.

Proof. Let (S∗, p∗) be an optimal solution. We can assume that (S∗, p∗) ∈ V . We
proceed by contradiction. Suppose that there is a product i not included in the
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optimal solution and another product j with smaller intrinsic utility included in S∗.
We show that we can include product i, and remove j and get a greater revenue. Let
Ŝ = (S∗ \ {j})∪ {i}, be the set where we removed product j, and included product i.
Let p̂i = ui− uj + p∗j , this means that the total attractiveness remains unchanged, and
no new domination relations appear, given that product j already had the same level
attractiveness that product i now has. Observe that given that ui ≥ uj, we have that
p̂i ≥ p∗j . Let us calculate R(Ŝ, p̂), where p̂ is the same as p∗, but with the proposed
changes in price:

R(Ŝ, p̂) =
∑k∈Ŝ euk− p̂k · p̂k

∑k∈Ŝ euk− p̂k + a0

R(Ŝ, p̂) =
∑k∈S∗ euk−p∗k · p∗k − euj−p∗j · p∗j + eui− p̂i · p̂i

∑k∈Ŝ euk− p̂k + a0

R(Ŝ, p̂) =
∑k∈S∗ euk−p∗k · p∗k
∑k∈S∗ euk− p̂k + a0︸ ︷︷ ︸

R∗

+
eui− p̂i · p̂i − euj−p∗j · p∗j

∑k∈Ŝ euk− p̂k + a0

R(Ŝ, p̂) = R∗ +
euj−p∗j

∑k∈Ŝ euk− p̂k + a0︸ ︷︷ ︸
≥0

·
[

p̂i − p∗j
]

︸ ︷︷ ︸
>0

R(Ŝ, p̂) > R∗

Where we first rewrite R(Ŝ, p̂) using (S∗, p∗) because we just swapped product
i for product j, and the total attractiveness remain the same, so the denominator
does not change. Then we identify R(S, p), and we use ui − p̂i = uj − pj to being
able to factorize the remaining terms. So we found a pair (Ŝ, p̂), yielding strictly
more revenue than (S, p), but adding product i, which contradicts the optimality of
(S∗, p∗).

The following Lemma due to Wang and Sahin [2018] is useful to prove some of
the upcoming propositions.

Lemma 3 (Lemma 1, Wang and Sahin [2018]). Let H(pi, pj) := pi · exp(ui − pi) + pj ·
exp(uj− pj), where exp(ui− pi) + exp(uj− pj) = T. Then, H(pi, pj) is strictly unimodal
with respect to pi or pj, and it achieves the maximum at the following point:

p∗i = p∗j = ln
(
(exp(ui) + exp(uj))/T

)
(4.6)

Proof. The proof (due to Wang and Sahin [2018]) is useful because it provides intu-
ition on how the optimal price variates when constrained to a fixed additive market
share among any two products. By the equality constraint, we have pj = uj − ln(T−
exp(ui − pi)), so H(pi, pj) can be rewritten purely as a function of pi as:

H(pi) = pi · exp(ui − pi) + (uj − ln(T − exp(ui − pi))) · (T − exp(ui − pi)). (4.7)
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Now, let us calculate the first derivative of H(pi) w.r.t. pi:

∂H(pi)

∂pi
=
(
−pi + (uj − ln(T − exp(ui − pi)))

)
· exp(ui − pi) (4.8)

Clearly the left-hand side term on the multiplication is monotonically decreasing
from positive to negative values as pi increases from 0 to ∞. Therefore H(pi) is
strictly unimodal and reaches its maximum value at:

p∗i = p∗j = ln
(
(exp(ui) + exp(uj))/T

)
.

Observe that setting the price of a product to ∞ is equivalent to not showing
it to consumers. By Proposition 8, one can always find an optimal solution that
is intrinsic utility ordered. Given a price vector p ∈ Rn, let γ(p) : Rn → [n] be
defined as γ(p) .

=
{

maxi∈[n] i s.t pi < ∞
}

. Intuitively, this is the last non-infinite
price. Proposition 9 shows that, at optimality, the finite prices are non-increasing in
i, meaning that lower prices are assigned to lower utility products.

Proposition 9. The prices at an optimal solution (S∗, p∗) satisfy p∗i ≥ p∗i+1 ∀i ∈ [γ(p)− 1].
Moreover, if i, j ∈ S∗ satisfy ui = uj, then p∗i = p∗j .

Proof. We prove this result by contradiction. Let i be the first index where this condi-
tion does not hold, this means that p∗i < p∗i+1. Using Lemma 3, we found p̂ satisfying
p∗i < p̂ < p∗i+1. Does this new price alter the consideration set? We show that this is
not the case. Indeed, the effect is two-fold: the price for product i increases, and the
price for product i + 1 decreases. We analyse the effect of these two consequences:

• Increase on price for product i: This means a(i, p) decreases. Note that ui− p̂ ≥
ui+1 − p∗i+1, so neither i � i + 1 or i + 1 � i, because their attractiveness are
now even closer than before. Can i be dominated now by another product? No,
because given that ui ≥ ui+1 we have ui− p̂ ≥ ui+1− p̂ ≥ ui+1− p∗i+1. Therefore
the new attractiveness of i is still larger than the new attractiveness of i + 1, and
the last inequality implies that the new attractiveness of i is larger than the old
attractiveness of i + 1, and i + 1 was not previously dominated either by any
other product.

• Decrease on price for product i + 1: Previously i + 1 was not dominated by any
product. Can i + 1 be dominated now? No, because if i + 1 was not dominated
before, now with a smaller price p̂ its attractiveness is larger and therefore can’t
be dominated now either (the only other product that changed attractiveness
was i, and it now has smaller attractiveness). Can i + 1 dominate another prod-
uct now with its new higher attractiveness? No, because given that ui ≥ ui+1

we have ui − p∗i ≥ ui+1 − p∗i ≥ ui+1 − p̂, so the old attractiveness of product i
is larger than the new attractiveness of product i + 1, and given that i did not
dominate another product before, the new price does not make i + 1 dominate
another product either.
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So, letting p f ix exactly the same as p∗, but replacing both p∗i and p∗i+1 with p̂,
means that the pair (S∗, p f ix) yields strictly more revenue than (S∗, p∗) (by Lemma 3),
contradicting the optimality assumption. The fact that equal intrinsic utility implies
equal price at optimality, can be easily demonstrated by the following: if two equal
intrinsic utility products have different prices, then using Lemma 3 we obtain strictly
better revenue by assigning them the same price, and no new domination occurs,
because the new price is confined between the previous prices.

Recall that the net utility of product i was defined as: vi = ui − pi. The following
proposition shows that at optimality, net utility follows the same order as intrinsic
utility.

Proposition 10. Let p∗ be the price of an optimal solution of the Joint Assortment and
Pricing Problem. The following condition holds: ui − p∗i ≥ ui+1 − p∗i+1 ∀i ∈ [γ(p)− 1].

Proof. We prove this by contradiction. Let p∗ be the optimal solution and i be the first
index where this condition does not hold. This means that ui − p∗i < ui+1 − p∗i+1. We
can extrapolate this inequality further and say:

ui+1 − p∗i < ui − p∗i < ui+1 − p∗i+1 < ui − p∗i+1, (4.9)

because ui ≥ ui+1 and pi ≥ pi+1 by Propositions 8 and 9 respectively. We now do
the following: Define p′i and p′i+1 such as exp(ui − p′i) + exp(ui+1− p′i+1) = exp(ui −
p∗i ) + exp(ui+1 − p∗i+1) and exp(ui − p′i) = exp(ui+1 − p′i+1). This means that:

p′i = ui − ln
(

exp(ui − p∗i ) + exp(ui+1 − p∗i+1)

2

)
p′i+1 = ui+1 − ln

(
exp(ui − p∗i ) + exp(ui+1 − p∗i+1)

2

)

Consider H(pi, pi+1) = pi · exp(ui − pi) + pj · exp(ui+1 − pi+1), where exp(ui −
pi) + exp(ui − pi) = exp(ui − p∗i ) + exp(ui+1 − p∗i+1). By Lemma 3, H(pi, pi+1) is
strictly increasing in pi for pi ≤ p̂ and strictly decreasing for pi ≥ p̂, with p̂ =

ln
(

exp(ui)+exp(ui+1)
exp(ui−p∗i )+exp(ui+1−p∗i+1)

)
the solution of the corresponding maximization problem

of Lemma 3. We can verify that p̂ < p′i < p∗i . The first inequality is straightforward.
Indeed:
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p′i =ui − ln
(

exp(ui − pi) + exp(ui+1 − pi+1)

2

)
p′i = ln

[
2 exp(ui)

exp(ui − p∗i ) + exp(ui+1 − p∗i+1)

]

p′i > ln

[
exp(ui) + exp(ui+1)

exp(ui − p∗i ) + exp(ui+1 − p∗i+1)

]
︸ ︷︷ ︸

p̂

p′i > p̂

proving the desired inequality. Now, for the second one:

p′i = ui − ln
(

exp(ui − pi) + exp(ui+1 − pi+1)

2

)
p′i = ln

[
2 exp(ui)

exp(ui − p∗i ) + exp(ui+1 − p∗i+1)

]

p′i ≤ ln

[
2 exp(ui)

exp(ui − p∗i ) + exp(ui − p∗i+1)

]

p′i = ln

[
2 exp(ui)

exp(ui)(exp(−p∗i ) + exp(−p∗i+1))

]

p′i < ln
[

2
2 exp(−p∗i )

]
p′i < p∗i ,

thus we have:

p′i · exp(ui − p′i) + p′i+1 · exp(ui+1− p′i+1) > p∗i · exp(ui − p∗i ) + p∗i+1 · exp(ui+1− p∗i+1).

Meaning that we have the same assortment, but with prices p′i and p′i+1 generating
strictly more revenue than the optimal prices, which is a contradiction. The only
thing that we have left to show that with these new prices we are still on the same
consideration set. It would be enough to show that the new net utilities are bounded
by previous values of net utilities. Indeed, we can verify that p∗i+1 ≤ p′i+1 ≤ p′i ≤
p∗i , by simply using the definitions. We also know, by hypothesis that ui − p′i =
ui+1 − p′i+1, then ui − p′i = ui+1 − p′i+1 ≤ ui+1 − p∗i+1. So even when the price of
product i decreased, the new attractiveness is bounded above by a previously existing
attractiveness, thus not changing the consideration set. By the same reasoning, ui+1−
p′i+1 = ui − p′i ≥ ui − p∗i , meaning that the new attractiveness is bounded below by
a pre-existing one, so i + 1 is not dominated with this new prices either. So the
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consideration set stays the same, concluding the proof.

The above propositions make it possible to filter out non-efficient assortments
and prices by restricting the search space to intrinsic utility ordered assortments and
providing insights on how the optimal solution behaves regarding prices and their
relation with utilities. Based on these propositions, the joint assortment and pricing
optimisation problem for the TLM can be written in a more succinct way. From
Proposition 8, the solution is an intrinsic utility ordered set Sk = [k] for some k ≤ n.
Suppose there exists an optimal solution in the form (Sk, p) for a fixed value k. In
that case, recall that it is sufficient to restrict to valid pairs (Sk, p), meaning that
c(Sk, p) = Sk. Consider a fixed k ≤ n. By Proposition 10, at optimality, ui − pi ≥
uj − pj ∀1 ≤ i < j ≤ k. Therefore, the condition that c(Sk, p) = Sk can be written as

gij(p) := exp(ui − pi)− (1 + t) · exp(uj − pj) ≤ 0, ∀1 ≤ i < j ≤ k (4.10)

As a result, the joint k-assortment and pricing optimisation problem for the TLM
(JAPTLM-k), which aims at finding an optimal assortment Sk of size k with k ≤ n, can
be written as:

maximise
p

R(k)(p) :=
∑i∈Sk

pi · exp(ui − pi)

∑i∈Sk
exp(ui − pi) + a0

subject to gij(p) ≤ 0, ∀1 ≤ i < j ≤ k
(JAPTLM-k)

Note that, if exp(u1 − uk) ≤ (1 + t), then the solution is the same as the uncon-
strained case, because any fixed price can be assigned without creating dominances.
Hence, the optimal revenue R(k) can be calculated using equation (4.5), and all prices
are equal to 1 + R(k). On the other hand, if exp(u1 − uk) > 1 + t, as in Example 18,
the prices need to be adjusted in order to avoid dominances.

The next theorem is the main result of this section.

Theorem 10. Problem JAPTLM-k can be solved in polynomial time.

Proof. The intuition behind the proof is based on Proposition 10 and the study of
the Lagrangean relaxation of problem (JAPTLM-k). Observe that, since ui − pi ≥
uj− pj (i ≤ j) at optimality, then the largest ratio between attractiveness is obtained
for products 1 and k. This ratio can also occur for more products but only if they
have the same net utility as products 1 or k. Thus, it must be the case that there are
non-negative integers k1 and k2 with k1 + k2 ≤ k, such that letting I1 = [k1] and I2 =
{k− k2 + 1, k− k2 + 2, . . . , k}, the set of constraints C(k1, k2) = {gij(p) | i ∈ I1, j ∈ I2}
are satisfied at equality for the optimal solution. Since it is only necessary to study a
polynomial number of combinations of constraints satisfied at equality and, for each
one of those combinations a closed form solution is provided, the result follows.

Indeed, we first write problem (JAPTLM-k) in minimization form to directly ap-
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ply the Karush-Khun-Tucker conditions (KKT)[Karush, 1939].

minimize
p

− R(k)(p)

subject to gij(p) ≤ 0, ∀1 ≤ i < j ≤ k
(4.11)

The associated Lagrangean function is:

Lk(p, µ) = −R(k)(p) + ∑
1≤i<j≤k

µij · gij(p), (4.12)

where µij ≥ 0 are the associated Lagrange multipliers. Recall that if exp(u1 − uk) ≤
(1 + t), the optimal revenue R(k) can be calculated using equation (4.5), and the
solution corresponds to a fixed price policy as for the regular multinomial logit.

On the other hand, if exp(u1 − uk) > (1 + t), any fixed price causes product k to
be dominated by product 1. Thus, to include product k in the assortment we need
to adjust the prices. Let p = (p1, . . . , pk) be the optimal price vector for problem
(4.11). Observe that it can’t happen that a1(p1)

ak(pk)
< 1 + t, since by Proposition 10, it will

also means that a1(p1)
a2(p2)

< 1 + t and using Lemma 3 we can find p̂ such that assigning
p̂ to products 1 and 2 yields a larger revenue (and no dominance relation appears,
since the attractiveness of product 1 was reduced, and the attractiveness of product
2 increased, but is still less than the one of product 1), which contradicts optimality.
Therefore, g1k must be satisfied with equality, meaning a1(p1)

ak(pk)
= 1 + t.

Furthermore, at optimality it holds ui − pi ≥ uj − pj ∀i ≤ j (by Proposition 10),
and thus the biggest ratio between attractiveness is observed for products 1 and k,
and is exactly equal to 1 + t. This ratio can be replicated for other pairs of products,
but only if they share the same net utility (and thus attractiveness) to the one of
products 1 or k. Therefore, it must be the case that there are integers k1 and k2 with
k1 + k2 ≤ k, such that all products in I1 = [k1] share the same attractiveness (a1(p1))
and all products in I2 = {k− k2 + 1, k− k2 + 2, . . . , k} share the same attractiveness as
well (ak(pk)). This means that the set of constraints C(k1, k2) = {gij(p) | i ∈ I1, j ∈ I2}
are all satisfied with equality at optimality.

We now study the derivative of equation (4.12) with respect to each price pi to
obtain the KKT conditions. We here assume that the first k1 values share the same net
utility value, meaning us = u1 − p1 = ui − pi ∀i ∈ I1, and for the last k2 products,
we also have the same value of net utility, that we call u f , this is: u f = uk − pk =
ui − pi ∀i ∈ I2. Where these two quantities satisfy:

us − u f = ln(1 + t),

Let us write the derivatives of the Lagrangean depending on where the index i
belongs. If i ∈ I1, then:

dLk

dpi
=

exp(ui − pi)

∑j∈Sk
exp(uj − pj) + a0

·
[

pi − 1− R(k)(p)
]
− exp(ui − pi) · ∑

j∈I2

µij, (4.13)
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if i ∈ I2, we have:

dLk

dpi
=

exp(ui − pi)

∑j∈Sk
exp(uj − pj) + a0

·
[

pi − 1− R(k)(p)
]
+ (1 + t) exp(ui − pi) · ∑

j∈I1

µji,

(4.14)
And finally, if i ∈ Īk = [k] \ (i1 ∪ I2), the derivative takes the following form:

dLk

dpi
=

exp(ui − pi)

∑j∈Sk
exp(uj − pj) + a0

·
[

pi − 1− R(k)(p)
]

(4.15)

Observe that ∀i ∈ Īk, dLk
dpi

= 0 =⇒ pi = 1+ R(k)(p), and the right hand side is not
dependent on i, so all products in Īk share the same price, which we denote p̄. We
can rewrite all prices and the revenue depending on us and p̄, using the following
relations:

1. ∀i ∈ I1 u1 − p1 = ui − pi =⇒ pi = ui − us

2. ∀i ∈ I2 u1 − p1 = ui − pi + ln(1 + t) =⇒ pi = ui − us + ln(1 + t)

Note now that at optimality, for a fixed k, prices are determined by k1 and k2.
Thus, the optimal revenue can be written explicitly depending on k, k1 and k2, taking
the following form:

R(k)(k1, k2) =

∑i∈I1
(ui − us) exp(us) + p̄ exp(− p̄)∑i∈ Īk

exp(ui) + ∑i∈I2
(ui − us + ln(1 + t)) exp(us − ln(1 + t))

∑i∈I1
exp(us) + exp(− p̄)∑i∈ Īk

exp(ui) + ∑i∈I2
exp(us + ln(1 + t)) + a0

(4.16)

Note that p̄ = 1 + R(k)(k1, k2) (Equation (4.15)) and let E(k1, k2) = ∑i∈ Īk
exp(ui).

Using these two relations, we can rewrite the optimal revenue as:

R(k)(k1, k2) =

eus ∑
i∈I1

(ui − us) +
eus
1+t · ∑

i∈I2

(ui − us + ln(1 + t)) + E(k1, k2)(1 + R(k)(k1, k2))e−(1+R(k)(k1,k2))

eus

[
k1 +

k2
1+t

]
+ E(k1, k2)e−(1+R(k)(k1,k2)) + a0

(4.17)
Up to this point, we have an equation relating the optimal revenue R(k)(k1, k2)

and us. From equation (4.13), after reordering terms we have:

pi − 1− R(k)(k1, k2)

eus (k1 + k2(1 + t)) + E(k1, k2)e−(1+R(k)(k1,k2)) + a0
= ∑

j∈I2

µij, ∀i ∈ I1

ui − us − 1− R(k)(k1, k2)

eus (k1 + k2(1 + t)) + E(k1, k2)e−(1+R(k)(k1,k2)) + a0
= ∑

j∈I2

µij, ∀i ∈ I1 (4.18)

Analogously, from equation (4.14), after reordering terms we have ∀i ∈ I2:
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pi − 1− R(k)(k1, k2)

eus (k1 + k2(1 + t)) + E(k1, k2)e−(1+R(k)(k1,k2)) + a0
= −(1 + t) ∑

j∈I1

µji, ∀i ∈ I2

1
1 + t

· ui − us + ln(1 + t)− 1− R(k)(k1, k2)

eus (k1 + k2(1 + t)) + E(k1, k2)e−(1+R(k)(k1,k2)) + a0
= − ∑

j∈I1

µji, ∀i ∈ I2

(4.19)

Now, if we add equations (4.18) ∀i ∈ I1 then take equations (4.19) and also add
them ∀i ∈ I2, and add those two results we can derive the value R(k)(k1, k2) as follows.

∑
i∈I1
j∈I2

µij − ∑
i∈I1
j∈I2

µij

︸ ︷︷ ︸
0

=
∑i∈I1

(ui − us − 1− R(k)(k1, k2)) +
∑i∈I2

(ui−us+ln(1+t)−1−R(k)(k1,k2))

1+t

eus (k1 + k2(1 + t)) + E(k1, k2)e−(1+R(k)(k1,k2)) + a0

R(k)(k1, k2)

(
k1 +

k2

1 + t

)
= ∑

i∈I1

ui +
1

1 + t
· ∑

i∈I2

ui − (1 + us) ·
(

k1 +
k2

1 + t

)
+

k2 ln(1 + t)
1 + t

R(k)(k1, k2) =
(1 + t)∑i∈I1

ui + ∑i∈I2
ui + k2 ln(1 + t)

k1(1 + t) + k2
− 1− us (4.20)

We now have two equations relating R(k)(k1, k2) and us in (4.17) and (4.20). Using
these equations we can find the values of the optimal revenues and all the pricing
structure while varying k1 and k2. If we define the following constant:

C1(k1, k2) =
(1 + t)∑i∈I1

ui + ∑i∈I2
ui + k2 ln(1 + t)

k1(1 + t) + k2
− 1, (4.21)

Equation (4.20) becomes:

R(k)(k1, k2) = C1(k1, k2)− us, (4.22)

and from Equation (4.22), we can deduce the following relations:

1 + R(k)(k1, k2) = C1(k1, k2)− us + 1, and e−(1+R(k)(k1,k2)) = eus−C1(k1,k2)−1.
(4.23)

We will use these relations on Equation (4.17). Let us first multiply both sides by
the denominator on the right side:

R(k)(k1, k2) ·
(

eus

[
k1 +

k2

1 + t

]
+ E(k1, k2)e−(1+R(k)(k1,k2)) + a0

)
= eus ∑

i∈I1

(ui − us) +
eus

1 + t
· ∑

i∈I2

(ui − us + ln(1 + t)) + E(k1, k2)(1 + R(k)(k1, k2))e−(1+R(k)(k1,k2))
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using equations (4.23) to replace the value of R(k)(k1, k2) and write everything
depending on us we have:

(C1(k1, k2)− us)

(
eus

[
k1 +

k2

1 + t

]
+ E(k1, k2)eus−C1(k1,k2)−1 + a0

)
= eus ∑

i∈I1

(ui − us)

+
eus

1 + t
· ∑

i∈I2

(ui − us + ln(1 + t)) + E(k1, k2) · (C1(k1, k2)− us − 1) eus−C1(k1,k2)−1

(4.24)

We focus first on the left hand side (LHS) of Equation (4.24):

LHS = (C1(k1, k2)− us)

(
eus

[(
k1 +

k2

1 + t

)
+ E(k1, k2)e−C1(k1,k2)−1

]
+ a0

)

For ease of notation, define C2(k1, k2) as:

C2(k1, k2) =

(
k1 +

k2

1 + t

)
+ E(k1, k2)e−C1(k1,k2)−1 (4.25)

Rewriting the LHS using the value for C2(k1, k2):

LHS = (C1(k1, k2)− us) [eus · C2(k1, k2) + a0)] (4.26)

We now focus on the right side (RHS) of equation (4.24):

RHS =eus ∑
i∈I1

(ui − us) +
eus

1 + t
· ∑

i∈I2

(ui − us + ln(1 + t))

+ E(k1, k2) · (C1(k1, k2)− us − 1) eus−C1(k1,k2)−1

RHS =eus

[
∑
i∈I1

ui +
1

1 + t
· ∑

i∈I2

ui +
k2 ln(1 + t)

1 + t
− us

(
k1 +

k2

1 + t

)]
+ eus e−C1(k1,k2)−1E(k1, k2) · (C1(k1, k2)− us + 1)

RHS =eus ·
(

k1 +
k2

1 + t

)
[C1(k1, k2)− us + 1] + eus e−C1(k1,k2)−1E(k1, k2) · (C1(k1, k2)− us + 1)

RHS =eus · (C1(k1, k2)− us + 1) ·
[(

k1 +
k2

1 + t

)
+ E(k1, k2) · e−C1(k1,k2)−1

]
︸ ︷︷ ︸

C2(k1,k2)

RHS =eus · (C1(k1, k2)− us + 1) · C2(k1, k2) (4.27)
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Putting together equations (4.26) and (4.27), we have:

LHS =RHS

(C1(k1, k2)− us) [eus · C2(k1, k2) + a0)] =eus · (C1(k1, k2)− us + 1) · C2(k1, k2)

(C1(k1, k2)− us) eus · C2(k1, k2) + (C1(k1, k2)− us) · a0 = (C1(k1, k2)− us) eus · C2(k1, k2) + eus · C2(k1, k2)

(C1(k1, k2)− us) · a0 =eus · C2(k1, k2)

eus =− a0

C2(k1, k2)
· (us − C1(k1, k2))

(4.28)

Equation (4.28) has a known explicit closed form solution, and can be found using
the following Lemma:

Lemma 4. Let a, b 6= 0 and c be real numbers and W(·) be the Lambert function [Corless
et al., 1996]. The solution to the transcendental algebraic equation for x:

e−ax = b (x− c) , (4.29)

is:

x = c +
1
a
·W

(
ae−ac

b

)
. (4.30)

Proof of Lemma 4. Let us start with equation (4.29) and find an explicit solution to it.

e−ax = b (x− c)

e−ax+ac−ac = b (x− c) /multiplying both sides by
a
b
· ea(x−c)q

a · e−ac

b
= a · (x− c) · ea(x−c) /using definition of W(·) as in Eq. (4.4)

W
(

ae−ac

b

)
= a · (x− c) /reorganising and isolating x

x = c +
1
a
·W

(
ae−ac

b

)
,

completing the proof.

Identifying terms on equation (4.28), the solution for us is:

us = C1(k1, k2)−W
(

C2(k1, k2)

a0
· eC1(k1,k2)

)
(4.31)

Let us call this value us(k, k1, k2), meaning that is a function of the integers k, k1

and k2. To get the revenue for this specific combination of parameters, we can simply
use equation (4.22), giving us:

R(k)(k1, k2) = C1(k1, k2)− us(k, k1, k2) (4.32)
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Thus, the optimal revenue R(k) given a specific integer k can be obtained by:

R(k) = max
k1,k2≥1

k1+k2≤k

R(k)(k1, k2) (4.33)

Noting that there are O(k2) pairs (k1, k2) to evaluate, the proof follows.

For the non-trivial case with exp(u1 − uk) > 1 + t, where a fixed price fails to be
optimal, the prices need to be adjusted in order to avoid the dominances. Let R(k)

and p(k) be the optimal revenue and price vector. The following Lemma characterizes
the structure of the optimal solution for problem JAPTLM-k.

Lemma 5. The optimal solution to problem (JAPTLM-k) is either the same as the uncon-
strained case (i.e. fixed price, in the case that exp(u1− uk) ≤ (1 + t)) or the following holds
at optimality:

a1(p1)

ak(pk)
= 1 + t. (4.34)

Moreover, there are non-negative integers k∗1, k∗2, with k∗1 + k∗2 ≤ k such that:

R(k) = W


(

k∗1 +
k∗2

1+t

)
· exp

(
(1+t)∑i∈I1

ui+∑i∈I2
ui+k∗2 ln(1+t)

k∗1(1+t)+k∗2
− 1
)
+ ∑i∈ Īk

exp(ui − 1)

a0

 ,

where I1 = [k∗1], I2 = {k− k∗2 + 1, k− k∗2 + 2, . . . , k} and Īk = [k] \ (I1 ∪ I2). The optimal
prices can be obtained as follows:

p(k)
i =


1 + R(k) + ui −

(1+t)∑i∈I1
ui+∑i∈I2

ui+k∗2 ln(1+t)
k∗1(1+t)+k∗2

if i ∈ I1,

1 + R(k) + ui −
(1+t)∑i∈I1

ui+∑i∈I2
ui+k∗2 ln(1+t)

k∗1(1+t)+k∗2
+ ln(1 + t) if i ∈ I2,

1 + R(k) if i ∈ Īk.

(4.35)

Proof. The optimal revenue is already calculated in Equation (4.33). The proof follows
by first obtaining u∗s (k) from Equation (4.20). Then, for products in I1, the price can
be obtained directly since their net utility is the same as u∗s (k). For products in I2,
since g1k is satisfied with equality, all products share the same net utility and equal
to u∗s (k) − ln(1 + t). Finally, for products in Īk, we can use the relation provided
in equation (4.15) to obtain the prices. More explicitly, let (k∗1, k∗2) be the integers
satisfying R(k) = R(k)(k∗1, k∗2). To obtain the optimal prices, let u∗s (k) = us(k, k∗1, k∗2).
By Equation (4.32) u∗s (k) can be written as:

u∗s (k) =
(1 + t)∑i∈I1

ui + ∑i∈I2
ui + k∗2 ln(1 + t)

k∗1(1 + t) + k∗2
− 1− R(k) (4.36)
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Therefore, the optimal prices are given by:

p(k)
i (k) =


ui − u∗s (k) if i ∈ I1,

ui − u∗s (k) + ln(1 + t) if i ∈ I2,

1 + R(k) if i ∈ Īk

(4.37)

Let TLM-Opt(X, u, a0, k) be the procedure to obtain the optimal solution for prob-
lem (JAPTLM-k). Using TLM-Opt(X, u, a0, k) at most n times (once for each k ≤ n) to
obtain the assortment and prices yielding the highest R(k), one can find the optimal
assortment and price vector for any given instance. A description of the full algo-
rithm to solve the Joint Pricing and Assortment Optimization under the Threshold
Luce Model is provided below.

Algorithm 2: Joint Pricing and Assortment Optimization under the Thresh-
old Luce Model

Data: X, u, a0

Result: A set of products S and their prices p maximizing the expected
revenue R(S, p)

Initialization:
S∗ = ∅
R∗ = 0
p∗ = 0
Recall that products are indexed by decreasing utility.
for k = 1, . . . , |X| do

(R(k), p(k))) =TLM-Opt(u, X, a0, k)
if R(k) > R∗ then

R∗ ← R(k)

p∗ ← p(k)

S∗ ← [k]
end
return S∗, R∗, p∗

The intuition behind TLM-Opt(X, u, a0, k) is to mimic the optimal strategy for the
regular MNL (Fixed-Price Policy) as much as possible. However, given that it needs
to accommodate prices in order to avoid dominances, the algorithm adjusts prices
for the higher intrinsic utility products (making prices larger, hence less attractive)
and reduces the price of lower intrinsic utility ones, making them more attractive
for customers and preventing them from being dominated. This allows the optimal
strategy to have an edge over strategies ignoring the Threshold induced dominances,
such as Fixed-Price Policy and, to a lesser extent, the Quasi-Same Price [Wang and
Sahin, 2018]. The Quasi-Same Price policy policy only adjusts the price of the low-
est attractiveness product, instead of adjusting both extremes of the attractiveness
spectrum and potentially multiple products.
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4.2 Numerical Experiments

This section presents some numerical results related to solve the Joint Assortment
and Pricing Problem discussed in Section 4.1. We analyse the performance of al-
gorithm TLM-Opt, compared against Fixed-Price strategy, which is optimal for the
MNL and Quasi-Same Price strategy [Wang and Sahin, 2018], which is optimal for
the MNL variant considered in their paper that takes into consideration search cost,
and it basically a fixed price for all products but one, which share some similarities
with our proposed pricing policy, as it is fixed price in general but the higher and
lower ends of the utility spectrum.

Each tested family or class of instances is characterized by three numbers: the
number of products n; the threshold t, that controls how tolerant are customers with
respect to differences in attractiveness and the attractiveness of the outside option a0,
which controls how likely is that customers review all products without purchasing.
In total, we experimented with 48 classes or families of instances, each containing
250 instances. In each specific instance, revenues and utilities are drawn from an
uniform distribution between 0 and 10. We ran the three strategies: Fixed Price,
Quasi-Same Price and TLM-Opt, and report the average and worst optimality gap for
Fixed Price and Quasi-Same Price strategies, as well as cardinality of the offered set
for both strategies. These numerical experiments were conducted in Python 3.6 on a
computer with 8 processors (each with 3.6 GHz CPU) and 16 GB of RAM. Table 4.2
presents the results which can be summarized as follows:

1. As expected TLM-Opt outperformed the other two algorithms in terms of rev-
enue, and being quite fast to execute (less than half of a second for all the
instances simulated).

2. Fixed-Price policy performs the worst across the board, which is expected given
that it has the lowest degrees of freedom, as shown in example 18. Although
the average gap is quite low, it can be as high as 43.027%. In fact, fixed-price
policy can be arbitrarily bad. A proof of this fact is provided in Appendix B,
Lemma 6.

3. Quasi-Same price policy also performs well on average, and the worst gap
obtained was 29.964%, which is significantly better than the worst gap for Fixed
Price policy.

4. The cardinality of the optimal solution is always at least the same or greater
than Fixed-Price policy. This can be observed empirically, or deduced analyt-
ically. The intuition behind it is that given the functional form of the revenue
for Fixed-Price and the fact that the Lambert function is strictly increasing the
strategy always try to show as much as possible. This, and the fact that under
same price,the dominance relation only depends upon intrinsic utilities, imply
that there is a limit on the number of products that the fixed price policy can
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offer 1 without causing any domination for low intrinsic utility products. On
the other hand, under TLM-Opt (or Quasi Same price) we can go further and
add products in such a way that the dominance relations are not triggered, and
therefore we can include more products.

5. The main difference stems from the fact that our strategy leverage both ends of
the utility spectrum, and reveals the following interesting insight. Sometimes
in order to avoid low attractiveness products to be dominated, we want to:
increase the price of the higher utility products (to make them less attractive)
and at the same time, reduce the price for lower utility products, in order to
make them more attractive, and making them visible for the consumer.

1the last product ‘k’ where a1(p1)
ak(pk)

= exp(u1˘uk) ≤ (1 + t)
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(n, t, a0)
Fixed Price Quasi Same Price TLM-Opt

Avg. Gap (%) Worst Gap (%) Avg. Cardinality Avg. Gap (%) Worst Gap (%) Avg. Cardinality Avg. Cardinality

(5,0.5,1) 2.164728 17.514 1.212 0.442364 8.609 2.212 1.92
(5,0.5,10) 2.925244 27.779 1.26 0.54798 11.074 2.248 1.888
(5,0.5,100) 4.136064 43.027 1.24 1.16004 29.964 2.108 1.856
(5,1,1) 1.575348 13.446 1.384 0.253996 4.638 2.38 2.028
(5,1,10) 2.074672 24.984 1.472 0.362416 11.116 2.448 2.04
(5,1,100) 2.726188 33.938 1.416 0.52712 14.404 2.308 1.952
(5,2,1) 0.9865 8.881 1.58 0.723548 8.881 1.812 2.132
(5,2,10) 1.4685 10.592 1.536 1.040004 10.592 1.84 2.116
(5,2,100) 2.343244 32.77 1.624 1.520068 22.581 1.924 2.196
(5,5,1) 0.415064 5.103 2.012 0.153776 3.748 2.64 2.468
(5,5,10) 0.918528 17.044 1.844 0.460556 17.044 2.424 2.384
(5,5,100) 1.092544 11.539 1.972 0.466548 7.574 2.552 2.468

Avg. n = 5 1.902219 20.55142 1.546 0.638201 12.51875 2.241333 2.120667

(10,0.5,1) 3.63332 14.951 1.408 1.079656 6.774 2.408 2.896
(10,0.5,10) 4.710012 30.328 1.512 1.499744 15.575 2.512 3.132
(10,0.5,100) 6.7165 24.489 1.42 2.465028 23.517 2.364 2.912
(10,1,1) 2.69928 12.027 1.748 0.835872 7.352 2.748 3.264
(10,1,10) 3.563196 15.769 1.672 1.264116 10.296 2.672 3.18
(10,1,100) 4.822544 26.928 1.756 1.704816 15.125 2.74 3.264
(10,2,1) 1.38662 8.541 2.076 0.803492 8.541 2.576 3.236
(10,2,10) 2.37252 15.852 2.016 1.284344 15.852 2.544 3.38
(10,2,100) 3.115392 18.694 2.076 1.53734 18.694 2.612 3.34
(10,5,1) 0.611308 4.19 2.888 0.322156 2.961 3.492 3.908
(10,5,10) 0.931108 5.537 2.804 0.523108 4.975 3.432 3.84
(10,5,100) 1.323312 12.683 2.828 0.705452 12.683 3.44 3.936

Avg. n = 10 2.990426 15.83242 2.017 1.16876 11.86208 2.795 3.357333

(20,0.5,1) 5.227892 16.189 1.964 2.406408 10.383 2.964 5.412
(20,0.5,10) 6.505472 18.556 1.844 2.926688 11.734 2.844 4.868
(20,0.5,100) 9.65628 30.904 1.844 4.633812 20.602 2.84 5.104
(20,1,1) 3.917928 11.225 2.332 1.87528 7.241 3.332 5.476
(20,1,10) 4.640684 20.635 2.32 2.227456 14.112 3.32 5.384
(20,1,100) 6.765772 26.431 2.368 3.075284 17.929 3.368 5.48
(20,2,1) 2.197276 9.372 3.324 1.210484 9.372 4.112 6.164
(20,2,10) 2.669532 10.396 3.316 1.449576 9.11 4.168 6.252
(20,2,100) 3.708316 15.228 3.28 2.055808 14.009 4.092 5.924
(20,5,1) 0.878752 4.584 4.636 0.577612 4.584 5.236 6.976
(20,5,10) 1.244528 5.209 4.632 0.805216 5.209 5.26 7.1
(20,5,100) 1.718416 11.142 4.664 1.138056 7.856 5.312 7.192

Avg. n = 20 4.094237 14.98925 3.043667 2.031807 11.01175 3.904 5.944333

(30,0.5,1) 6.343964 16.145 2.24 3.642808 10.606 3.24 7.344
(30,0.5,10) 8.202948 22.238 2.224 4.572832 15.339 3.224 7.32
(30,0.5,100) 10.6693 26.659 2.228 6.018692 18.973 3.224 7.2
(30,1,1) 4.0957 14.803 3.044 2.266944 10.581 4.044 7.464
(30,1,10) 5.039272 19.686 3.24 2.906664 13.583 4.24 7.892
(30,1,100) 7.451636 23.606 3.084 4.349844 14.428 4.084 7.884
(30,2,1) 2.193896 12.267 4.344 1.32162 9.526 5.252 8.588
(30,2,10) 3.110752 13.315 4.252 1.911924 9.177 5.148 8.64
(30,2,100) 4.005252 19.963 4.476 2.473688 19.963 5.4 8.684
(30,5,1) 1.023416 4.25 6.26 0.74478 4.25 6.88 10.132
(30,5,10) 1.328936 5.534 6.328 0.93428 4.053 7.012 10.232
(30,5,100) 1.730272 6.284 6.436 1.189296 6.164 7.136 10.104

Avg. n = 30 4.599612 15.39583 4.013 2.694448 11.38692 4.907 8.457

Table 4.2: Numerical experiments comparing Fixed-Price and Quasi-Same price
against TLM-Opt. For each class of instances, for non-optimal strategies we display
the average optimality gap, worst-case gap and the cardinality of the offered set. We
also provide the average of those metrics for each value of n considered.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we studied models for consumer choice that fall outside RUM. Going
outside of this well studied class allows practitioners to model effects that were not
conventionally picked up using models belonging to RUM [Simonson and Tversky,
1992; Tversky and Simonson, 1993], where there are clear drawbacks of not being able
to accommodate them [Jagabathula and Rusmevichientong, 2018]. Our efforts were
mainly devoted to provide optimisation techniques to solve optimisation problems
of recently proposed models that overcome some of the shortcomings of RUMs.

Chapter 2 studied the assortment optimisation problem under the Sequential Multi-
nomial Logit (SML) Model, a discrete choice model that generalises the MNL Model.
Under the SML Model, products are partitioned into two levels. When a consumer
is presented with such an assortment, she first considers products in the first level
and, if none of them are appropriate, products in the second level are considered.
The SML is a special case of the PALM recently proposed by Echenique et al. [2018].
It can explain many behavioural phenomena such as the attraction, compromise,
and similarity effects which cannot be explained by the MNL Model or any discrete
choice model based on random utility.

Through a structural analysis of the optimal solutions, we showed that the sem-
inal concept of revenue-ordered assortments can be generalised to the SML Model.
We proved that all optimal assortments under the SML Model are revenue-ordered
by level, a natural generalisation of revenue-ordered assortments. As a corollary, the
assortment optimisation problem under the SML Model is solvable in polynomial
time.

Chapter 3 studied the assortment optimisation problem under the 2SLM, a dis-
crete choice model introduced by Echenique and Saito [2018] that generalises the
standard MNL Model with a dominance relation and may violate regularity. We
proved that the assortment problem under the 2SLM can be solved in polynomial
time. We considered the capacitated assortment optimisation problem under the
2SLM and proved that the problem becomes NP-hard in this setting. We also pro-
vide polynomial-time algorithms for cases of the capacitated assortment optimisation
problem where (1) the dominance relation is attractiveness correlated and when (2)
its transitive reduction is a forest. We provide a set of numerical experiments to

87



88 Conclusion and Future Work

highlight the performance of the proposed algorithm against the classical revenue-
ordered assortment strategy. Theoretically, as we show in Example 14, the gap can
be arbitrarily bad. In our experimental setting, we found cases where the gap was as
large as 95% (see Table 3.2 for the detailed information).

Chapter 4 is an in-depth study of the pricing problem under the 2SLM. We first
note that changes in prices should be reflected in the dominance relation, if the dif-
ferences between the resulting attractiveness are large enough. This is formalised
by solving the joint assortment and pricing problems under the Threshold Luce
Model, where one product dominates another if the ratio between their attractive-
ness is greater than a fixed threshold. In this setting, we show that this problem can
be solved in polynomial time. The main difference between our proposed pricing
scheme, and fixed-price policy as a solution for the classical MNL, stems from the
fact that our strategy leverages both ends of the utility spectrum, and reveals the
following interesting insight: sometimes to avoid low attractiveness products to be
dominated, we want to: increase the price of the higher utility products (to make
them less attractive) and at the same time, reduce the price for lower utility products,
to make them more attractive, and making them visible to the consumer. We also
provide numerical experiments to show the benefits of considering the algorithm de-
veloped in this chapter, against two strategies: fixed-price policy, and the quasi-same
price policy [Wang and Sahin, 2018], given the similarity of having a cut-off point
in the form of a consideration set induced by prices. We found that although the
average gap was relatively low (compared to both alternative strategies), the worst
gap observed for the fixed-price policy was as high as 43%, and for the quasi-same
price policy was as high as 30%, showing that the impact of leveraging pricing on
both sides of the spectrum of utility can provide substantial benefits if customer
behaviour follows this model of customer choice.

It is important to note that the TLM offers better prediction power than the usual
MNL model. Recently, [Wang, 2019] showed that compared to the MNL model, the
TLM improved prediction accuracy as much as 11% on synthetic data, and improve
market share and revenue prediction by roughly 15%. This makes the results from
Chapters 3 and 4 relevant for practitioners.

5.2 Future Work

There are many interesting avenues for future research. The main open issue in
Chapter 2, is to extend the results to the PALM, which has an arbitrary number of
levels. Note that one can easily extend the algorithm of revenue-ordered by level to
the PALM and it would take at most O(|X|k+1) time, where k is the number of levels.
1

We tried to generalise the results to three levels, but the same strategy applied
for the two-level SML model in this thesis failed for three levels. When building
the foundations for the two-level SML model, we based our proofs in expressing the

1Note that O(|X|k) is the number assortments that are revenue-ordered by level.
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optimal solution as convex combinations of non-optimal subsets and Kindly check
format. using this we obtain the desired bounds. Attempting this strategy for the
third level on the three level SML model led to a point where there is no guarantee
that the coefficients add up to less than one. So we cannot apply the same strategy
developed for the two level SML model, given that this result is used to prove the
main theorem (Theorem 1) of Chapter 2.

We also executed our algorithm over a series of PALM instances by varying the
number of levels and the revenue-ordered assortment algorithm always returned the
optimal solution. Our conjecture is that the optimality result of revenue ordered
assortments by level holds for the general PALM, but the problem remains open.
A second interesting research avenue is to consider a new discrete choice model
that allows decision makers to change the order in which the levels are presented
to consumers. In the SML, the level ordering is intrinsic to products, but one may
consider settings in which decision makers can choose, not only what to show, but
also the priority associated with each of the displayed products. A similar model is
currently being studied in Liu et al. [2018]. The functional form is slightly different
than the PALM, but it is also characterised by iterative applications of the MNL. The
authors showed that the assortment optimisation problem, including the location of
the items in the corresponding levels is NP-hard, and provide a fully polynomial-
time approximation scheme. Another research direction is to study the assortment
optimisation problem under the SML with cardinality or space constraints. Finally,
it is important to develop efficient procedures to estimate the parameters of the SML
model based on historical data (e.g., van Ryzin and Vulcano [2017]).

Based on Chapter 3 and Chapter 4, there are many interesting avenues for fu-
ture research. First, one may wish to study how to further generalise the 2SLM,
while keeping the assortment problem solvable in polynomial time. For example,
one can try to check whether there exists a model that unifies the 2SLM and the
elegant work in Davis et al. [2013], where the assortment problem is still solvable in
polynomial time. Second, given that the capacitated version of the 2SLM is NP-hard
under Turing reductions (theorem 5), it is interesting to see whether there exist good
approximation algorithms for this problem. Third, one can explore different forms
of dominance. For example, one may consider dominance specified by a discrete
relation or a continuous functional form between products. Fourth, one can try to
generalise our results for the joint assortment and pricing problems under the TLM
to a more general setting, where price sensitivity is dependent on each product. Fi-
nally, one can try to mix attention models with dominance relations, meaning that a
customer first perceives a subset of products, dictated by an attention filter, and then
filters the products even more using dominance relations.

Another alternative for future research, given that the TLM produces a better fit
than the MNL model Wang [2019], is to check if the results of trial-offer markets can
be replicated using the TLM instead, where dominance relation can be induced by
imbalances in position bias, social influence, or any combination of the two. An open
general question that arises as a consequence of this research is to find what is the
inherent condition (or set of conditions) that allows a model outside RUM to still
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produce polynomial-time exact solutions for the assortment problem, and if there is
any way to characterise those conditions.

Finally, it would be interesting to analyse both the assortment and pricing prob-
lems, with the addition of planning in a finite time horizon. In this setting, the firm
has to plan in advance considering customer strategic behaviour, potentially taking
into account scarcity in the products to be offered and considering that customers
follow the 2SLM and dominance relations are present among products.



Appendix A

On the robustness of the MusicLab
model: continuation and further
analysis

This appendix is reproduced with minor changes from:
Van Hentenryck, P.; Flores, A.; Berbeglia, G., 2017. Trial-Offer Markets with Con-

tinuation. Presented in the 21st International Federation of Operational Research Societies
Conference, Quebec (IFORS 2017)

Trial-offer markets, where customers can sample a product before deciding whether
to buy it, are ubiquitous in the online experience. Their static and dynamic properties
are often studied by assuming that consumers follow a multinomial logit model and
try exactly one product. This chapter, is an attempt at generalizing Multinomial Logit
Models to account for a richer class of customer behavior. It endows the Multinomial
Logit Model with a notion of continuation, which enables participants to sample
multiple products before making a purchase. We studied how this generalization
affects market efficiency and the role of social influence. The main contributions can
be summarized as follows:

1. We show that a trial-offer market with continuation can be reduced to a tra-
ditional trial-offer market by adjusting the quality and appeal of the products
and we quantify how the continuation model affects market efficiency;

2. We show that, under a natural continuation model, the quality-ranking policy,
where the products are ranked by quality, is preserved by the reduction, but
not the performance ranking, which optimises the market performance at each
step. We also show that social influence remains beneficial in this setting under
the quality ranking;

3. Finally, we show experimental results that indicate that the popularity rank-
ing, which ranks the product by popularity, benefits more from the general-
ization than the quality and performance ranking, unless the continuation is
strongly dependent of the product just sampled. This improvement however is
not enough to bridge the gap with the performance and quality rankings.
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A.1 Trial-Offer Markets

We consider trial-offer markets in which participants can try a product before de-
ciding whether to buy it. Such settings are common in online cultural markets (e.g.,
books, songs, and videos). In this chapter, the trial-offer market is composed of n
products and each product i ∈ {1, . . . , n} is characterized by two values:

1. Its appeal Ai representing the inherent preference of trying product i;

2. Its quality qi representing the probability of purchasing product i given that it
was tried.

Each participant, when entering the market, is presented with a product list π: She
then tries a product s in π and decides whether to purchase s with a certain proba-
bility. The product list is a permutation of {1, . . . , n} and each position p in the list
is characterized by its visibility vp > 0 which is the inherent probability of trying a
product in position p. Since the list π is a bijection from positions to products, its
inverse is well-defined and is called a ranking. We denote rankings by σ in the fol-
lowing, πi denotes the product in position i of the list π, and σi denotes the position
of product i in the ranking σ. Therefore vσi denotes the visibility of the position of
product i.

The probability of trying product i given a list σ is

pi(σ) =
vσi Ai

∑n
j=1 vσj Aj

.

Given a ranking σ, the expected number of purchases is

λ(σ) =
n

∑
i=1

pi(σ) qi. (A.1)

The traditional static market optimisation problem consists of finding a ranking σ∗

maximising λ(σ), i.e.,

σ∗ = argmax
σ∈Sn

n

∑
i=1

pi(σ) qi (A.2)

where Sn represents the symmetry group over {1, . . . , n}. Observe that consumer
choice preferences for trying the products are essentially modeled as a discrete choice
model based on a multinomial logit Luce [1959] in which product utilities are affected
by their position.

Social Influence Following Krumme et al. [2012], we considers a dynamic market
where the appeal of each product changes over time according to a social influence
signal. Given a social signal d = (d1, . . . , dn), where di denotes the number of pur-
chases of product i, the appeal of i becomes Ai + di and hence the probability of
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trying i given a list σ becomes

pi(σ, d) =
vσi(Ai + di)

∑n
j=1 vσj(Aj + dj)

.

Note that the probability of trying a product depends on its position in the list, its
appeal, and its number of purchases (di,t) at time t. As the market evolves over time,
the number of purchases could dominate the appeal, and the sampling probability
of a product becomes its market share. Without social influence, a dynamic market
reduces to solving the static optimisation problem repeatedly. This set-up is the
independent condition.

In the following, without loss of generality, we assume that the qualities and
visibilities are non-increasing, i.e., q1 ≥ q2 ≥ · · · ≥ qn and v1 ≥ v2 ≥ · · · ≥ vn. We
also assume that the qualities and visibilities are known. In practical situations, the
product qualities are obviously not known. But, as shown by Abeliuk et al. [2015],
they can be recovered accurately and quickly, either before or during the market
execution. For simplicity, we use ai,t = Ai + di,t to denote the appeal of product i at
step t. When the step t is not relevant, we omit it and use ai instead.

Ranking policies Following Abeliuk et al. [2015], we explore several ranking poli-
cies. The performance ranking maximises the expected number of purchases at each
iteration, exploiting all the available information globally, i.e., the appeal, the visibil-
ity, the purchases, and the quality of the products. More precisely, the performance
ranking at step k produces a ranking σ∗k defined as

σ∗k = argmax
σ∈Sn

n

∑
i=1

pi(σ, dk) · qi

where dk = (d1,k, . . . , dn,k) is the social influence signal at step k. The performance
ranking uses the probability pi(σ, dk) of trying products i at iteration k given ranking
σ, as well as the quality qi of product i. The performance ranking can be computed in
strongly polynomial time and the resulting policy is scalable to large markets Abeliuk
et al. [2015]. The quality ranking simply orders the products by quality, assigning the
product of highest quality to the most visible position and so on. With the above
assumptions, a quality ranking σ satisfies σi = i (1 ≤ i ≤ n). The popularity
ranking was used by Salganik et al. [2006] to show the unpredictability caused by
social influence in cultural markets. At iteration k, the popularity ranking orders
the products by the number of purchases di,k, but these purchases do not necessarily
reflect the inherent quality of the products, since they depend on how many times the
products were tried. We also follow Abeliuk et al. [2015] and use Q-rank, D-rank,
and P-rank to denote the policies using the quality, popularity, and performance
rankings respectively. We also use R-rank to denote the policy that simply presents
a random order at each period.
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A.2 Trial-Offer Markets With Continuation

The main goal of this chapter is to study trial-offer markets with continuation, i.e., a
setting where market participants can continue shopping even when they decline to
purchase the product just sampled. We model such a trial-offer market by adding a
continuation probability

ci = f (·)(1− qi) (A.3)

to continue shopping after a participant has declined to purchase product i. In the
above probability, the (1− qi) term represents the fact that the participant has de-
clined to purchase product i and the f (·) term represents a function that might de-
pend on the product quality, the current position, or even on another overall measure
(or a combination of all these factors). Figure A.1 shows a graphic representation of
a trial-offer market with continuation. It uses ci = 1− ci to denote the probability
that a participant leaves the market place after sampling product i.

Figure A.1: Trial-Offer market with continuation.

The expected number of purchases in the static version of the trial-offer market
with continuation for a ranking σ is denoted by λ(σ) and defined by

λ(σ) =
n

∑
i=1

pi(σ)(qi + ciλ(σ)) (A.4)

Our primary objective is to maximise market efficiency, i.e., the expected pur-
chases:

σ∗ = argmax
σ∈Sn

λ(σ). (A.5)

Note that the higher this objective is, the lower the probability that consumers try
a product but then decide not to purchase it. Hence, if we interpret this last ac-
tion as an inefficiency, maximising the expected efficiency of the market minimizes
unproductive trials.
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We prove a number of results when the continuation ci depends polynomially on
qi, i.e.,

ci = ρqr
i (1− qi) (A.6)

where ρ ≤ 1 controls the overall tendency to continuation and r ≥ 0 represents the
influence of q. This choice is justified intuitively by the fact that a market participant
is more likely to continue sampling if the product she tried is of high quality, because
it reflects on how good the other products potentially are. Figure A.2 depicts various
choices of ρ and r.

Figure A.2: Examples of the continuation probabilities for different values of ρ and
r; the r parameter defines where the peak is (the maximum is always attained at
q = r

r+1 ), and ρ modulates how strong the continuation is.

A.3 Reduction to the Trial-Offer Model

This section shows that the trial-offer market with continuation can be reduced to a
trial-offer market. Indeed, rearranging the terms in Equation (A.4) leads to

λ(σ) =
n

∑
i=1

pi(σ)(qi + ciλ(σ))

λ(σ) =
∑n

i=1 pi(σ)qi

1−∑n
i=1 pi(σ)ci

Defining

pi(σ) =
pi(σ)

1−∑n
i=1 pi(σ)ci

(A.7)
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we obtain

λ(σ) =
n

∑
i=1

pi(σ) qi

By definition of pi(σ), we have

pi(σ) =
vσi ai

∑n
i=1 vσi ai

· 1

1−∑n
i=1(ci ·

vσi ai

∑n
i=1 vσi ai

)

pi(σ) =
vσi ai

∑n
i=1(1− ci)vσi ai

Now, by defining ai = ai(1− ci) and qi =
qi

(1−ci)
, we obtain

λ(σ) =
n

∑
i=1

vσi ai qi

∑n
i=1 vσi ai

To understand this reduction intuitively, we can rewrite Equation A.7 as:

pi(σ) = pi(σ) ·
∞

∑
j=1

(
n

∑
i=1

pi(σ)ci)
j

The value pi(σ) can thus be interpreted as the probability of sampling product i in
any number of steps. The rewriting uses the fact that ∑n

i=1 pi(σ)ci < 1 to obtain an
infinite sum and the term (∑n

i=1 pi(σ)ci)
j captures all the possible ways to sampling i

in j steps.

We have proven the following theorem:

Theorem 11. A trial-offer market with continuation can be reduced to a trial-offer market by
using the product qualities qi and appeals ai defined as follows:

qi =
qi

1− ci

ai = ai(1− ci).

In the following, qi and ai are called the continuation qualities and continuation
appeals, and Figure A.3 depicts the continuation quality for different values of ρ and
r. Observe how the continuation model typically boosts the quality of the products,
sometimes substantially.



§A.4 Properties of the Market 97

Figure A.3: Continuation qualities for different values of the ρ and r parameters; the
larger ρ is, the more concave the continuation quality becomes.

A.4 Properties of the Market

Market Efficiency The first result links the expected number of purchases of the
market with and without continuation under the performance ranking.

Theorem 12. Let π∗c and π∗ be optimal permutations for the trial-offer markets with and
without continuation. Then,

λ(π∗) ≤ λ(π∗c ) ≤
λ(π∗)

1−max
i

ci
.

Proof. The lower bound can be derived as follows:

λ(π∗) =
∑n

i=1 viaπ∗i
qπ∗i

∑n
i=1 viaπ∗i

λ(π∗) =
∑n

i=1 viaπ∗i
qπ∗i

∑n
i=1 viaπ∗i

·
1−∑n

i=1 pi(π
∗)cπ∗i

1−∑n
i=1 pi(π∗)cπ∗i

λ(π∗) =
∑n

i=1 pi(π
∗)qπ∗i

1−∑n
i=1 pi(π∗)cπ∗i︸ ︷︷ ︸

λ(π∗)

(1−
n

∑
i=1

pi(π
∗)cπ∗i

)︸ ︷︷ ︸
≤1

λ(π∗) ≤ λ(π∗) ≤ λ(π∗c )

where the last inequality holds because of optimality of π∗c for λ(·). The upper bound
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follows from

λ(π∗c ) ≤ λ(π∗c ) ·
1

1−∑n
i=1 picπ∗i

≤ λ(π∗) · 1
1−max

i
ci

.

The following corollary considers the case where continuations depend polyno-
mially on qualities

Corollary 3. Assume that ci = ρqr
i (1− qi). It follows that

λ(π∗) ≤ λ(π∗c ) ≤ λ(π∗)
1

1− ρrr

(r+1)r+1

(A.8)

Proof. The proof follows from examining the maximum value for the ci.

max
i

ci = max
i

ρqr
i (1− qi) ≤ ρ max

x∈[0,1]
xr(1− x) =

ρrr

(r + 1)r+1

where the last equality holds because the maximum value of xr(1− x) is reached
when x = r

r+1 .

When ρ = 1 and r = 1, λ(π∗c ) ≤ 4
3 · λ(π∗) indicating a market that is at most 33%

more efficient.
Prior work on trial-offer markets with the social influence signal considered here

has shown that the quality ranking is asymptotically optimal Van Hentenryck et al.
[2016]: The market converges towards a monopoly for the product of highest quality.
We now show that, when the continuations are polynomial in product qualities, the
quality ranking is preserved by the reduction and hence the two markets, with and
without continuation, converge to the same equilibrium in market shares.

Proposition 11. Let ci = ρqr
i (1− qi) with ρ ∈ (0, 1) and r ≥ 0. Then qi ≤ qj ⇔ qi ≤ qj.

Proof. It is sufficient to show that qi, when viewed as a function of qi, is increasing in
(0, 1). Consider such function

h(x) =
x

1− ρxr(1− x)

and its derivative
dh(x)

dx
=

ρxr [(r− 1)− rx] + 1
((1− ρxr(1− x))2 .

The denominator is greater than zero, so it remains to show that the numerator also
is. The term ρxr is increasing in x and the term [(r− 1)− rx] is a line decreasing in x.
The product is minimized when x = 1, in which case the product has a value of −ρ.
Since ρ ∈ (0, 1), the minimum value of the numerator is 1− ρ ≥ 0, which concludes
the proof.
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More importantly, it is also possible to show that, under the quality ranking, the
probability that the next purchase is product i is the same in the markets with and
without continuation. Hence, from a product standpoint, the markets behave very
similarly.

Proposition 12. The probability pi that the next purchase (after any number of steps) is
product i is

pi =
viaiqi

n
∑

j=1
vjajqj

.

Proof. The probability that product i is purchased in the first step is

p1st
i =

viai
n
∑

j=1
vjaj

qi,

More generally, the probability that product i is purchased in step m while no product
was purchased in earlier steps is:

pmth
i =


n
∑

j=1
vjaj(1− qj)

n
∑

j=1
vjaj


m−1

viai
n
∑

j=1
vjaj

qi.

Defining β = (
n
∑

j=1
vjajqj)/(

n
∑

j=1
vjaj), Equation A.4 becomes

pmth
i =

(
1− β

)m−1 viai
n
∑

j=1
vjaj

qi.

Hence the probability that the next purchased product is product i is given by

pi =
∞

∑
m=0

(
1− β

)m viai
n
∑

j=1
vjaj

qi.

Given the fact that β < 1 we have:

∞

∑
m=0

(
1− β

)m

=
1
β

,
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the probability that the next purchase is product i is given by

pi =

n
∑

j=1
vjaj

n
∑

j=1
vjajqj

· viai
n
∑

j=1
vjaj

qi.

pi =
viaiqi

n
∑

j=1
vjajqj

In contrast, the same results do not hold for the performance ranking, which may
change when a continuation is used, as shown by the following example.

Example 19. Consider the following instance with 3 songs:

• Visibilities: v1 = 0.8, v2 = 0.5 and v3 = 0.1

• Qualities: q1 = 0.9, q2 = 0.2 and q3 = 0.6

• Appeals: a1 = 0.9, a2 = 0.1 and a3 = 0.3

• Continuation parameters: ρ = 0.8 and r = 0.7

In this case, the performance ranking for the market without continuation is σ∗ =
[1, 2, 3]; It is σ∗c = [1, 3, 2] for the continuation model.

Position Bias This result generalizes the result shown in Van Hentenryck et al.
[2016], to the continuation setting, and it means that we can always benefit from
position bias. The formalization of this claim can be seen below

Theorem 13. Position bias increases the expected number of purchases under the quality-
ranking policy, i.e., for all visibilities vi, appeals ai, qualities qi (1 ≤ i ≤ n) and continuation
probabilities ci.This is, after we make the reduction to the Associated Multinomial Logit, we
have:

∑i viai qi

∑j vjaj
≥ ∑i ai qi

∑j aj
.

Proof. Let λ = ∑i viaiqi
∑j vjaj

be the expected number of purchases for the quality ranking.
We have

∑
i

viai
(
qi − λ

)
= 0.

Consider the index k such that
(
qk − λ

)
≥ 0 and (qk+1 − λ) < 0. Since v1 ≥ . . . ≥ vn,

we have
k

∑
i=1

vkai
(
qi − λ

)
+

n

∑
i=k+1

vkai
(
qi − λ

)
≤∑

i
viai

(
qi − λ

)
= 0
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and, given the fact that vk ≥ 0,

n

∑
i=1

ai
(
qi − λ

)
≤ 0.

We had the desired result: λ ≥ ∑n
i=1 aiqi

∑n
i=1 ai

.

Social Influence The last result in this section shows that the social influence signals
always benefit trial-offer markets with continuation. The result is independent of the
structure of the continuation probabilities. The proof is a generalization of the result
in Van Hentenryck et al. [2016].

Theorem 14. The expected marginal rate of purchases is non-decreasing over time for the
quality ranking under social influence in trial-offer markets with continuation.

Proof. Let

E[Dt] =
∑i viaiqi

∑i viai
= λ (A.9)

be the expected number of purchases at time t. The expected number of purchases
at time t + 1 conditional to time t is

E[Dt+1] = ∑
j

[
vjajqj

∑ viai
·

∑i 6=j viaiqi + vj(aj + 1− cj)qj

∑i 6=j viai + vj(aj + 1− cj)

]
+

[
1− ∑i viaiqi

∑i viai

]
· ∑i viaiqi

∑i viai

= ∑
j

[
vjajqj

∑ viai
· ∑i viaiqi + vj(1− cj)qj

∑i viai + vj(1− cj)

]

+

[
1−

∑j vjajqj

∑i viai

]
· λ

We need to prove that
E[Dt+1] ≥ E[Dt], (A.10)

which is equivalent to show, using Equation A.9, that

∑
j

[
vjajqj

∑ viai
· ∑i viaiqi + vj(1− cj)qj

∑i viai + vj(1− cj)

]
+ [1− λ] · λ ≥ λ

Rearranging the terms, the proof obligation becomes

1
∑i viai

∑
j

[
v2

j ajqj(1− cj)

∑i viai + vj(1− cj)

(
qj − λ

)]
≥ 0
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or, equivalently,

∑
j

[
v2

j ajqj(1− cj)

∑i viai + vj(1− cj)

(
qj − λ

)]
≥ 0. (A.11)

Let k = max{i ∈ N|(qi − λ) ≥ 0}, i.e., the largest k ∈ N such that qk ≥ λ. By
separating the sum into positive and negative terms, we obtain

∑
j

[
v2

j ajqj(1− cj)
(
qj − λ

)
∑i viai + vj(1− cj)

]
= S+ + S− where

S+ =
k

∑
j=1

[
vjqj(1− cj)

∑i viai + vj(1− cj)
ajvj(qj − λ)

]
,

S− =
n

∑
j=k+1

[
vjqj(1− cj)

∑i viai + vj(1− cj)
ajvj(qj − λ)

]

By definition of k, all the terms in S+ are positive and the terms in S− are negative.
Now, by definition of k and qi =

qi
(1−ci)

, we have

∀i ≤ k : (1− ci) ≤
qi

λ
,

∀i > k : (1− ci) ≥
qi

λ
. (A.12)

We now compute a lower bound for S+ and S−. For S+, using Equation A.12 for
j ≤ k, we have

vjqj(1− cj)

∑i viai + vj(1− cj)
≤

vjqj

∑i viai + vj
qj

λ

≤ λ ·
vjqj

λ ∑i viai + vjqj
≤ λ · vkqk

λ ∑i viai + vkqk
(A.13)

The last inequality follows by vi ≥ vk and qi ≥ qk (using Theorem 11) and the
following property: For all c > 0 and x ≥ y ≥ 0,

x
c + x

≥ y
c + y

⇔ (c + y)x ≥ (c + x)y⇔ cx ≥ cy⇔ x ≥ y.

For S−, consider the following expression for j > k:

λ(∑
i

viai) [vjqj − vkqk]︸ ︷︷ ︸
≥0

+vkqk [vjqj − λvj(1− cj)]︸ ︷︷ ︸
≥0

Here the first term is greater or equal than zero because vj ≥ vk and qj ≥ qk using
Theorem 11 again. The second term is also greater than zero because it can be lower-
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bounded (using Equation A.12) by:

vjqj − λ
vjqj

λ
= 0.

Hence,

λ(∑
i

viai)[vjqj − vkqk] + vkqk[vjqj − λvj(1− cj)] ≥ 0

vjqj[λ(∑
i

viai) + vkqk] ≥ λvkqk[∑
i

viai + vj(1− cj)]

⇔
vjqj

∑i viai + vj(1− cj)
≥ λvkqk

λ ∑i viai + vkqk
(A.14)

Putting together Equations A.13 and A.14 gives us a lower bound to S+ + S−:

S+ + S− =
λvkqk

λ ∑i viai + vkqk
·

n

∑
i=1

viai(qi − λ) (A.15)

Now, by definition of λ,

λ =
∑n

i=1 viaiqi

∑n
i=1 viai

⇔
n

∑
i=1

viai(qi − λ) = 0.

which implies that
λvkqk

λ ∑i viai + vkqk
·

n

∑
i=1

viai(qi − λ) = 0

concluding the proof.

Relationship with the Cascade Model: Observe that the quality ranking over the
continuation quality orders the products in decreasing order of qi

1−ci
value, which is

exactly the adjusted ecpm from Aggarwal et al. [2008]; Kempe and Mahdian [2008b]
with all the revenues set to 1. Obviously, the quality ranking (when the continuation
probabilities preserve the quality rank in the continuation model), and hence the
adjusted ecpm ranking, are not the best rankings to show to an incoming participant
(the performance ranking is), but our results show that they have nice asymptotic
properties.

A.5 Experimental Results

This section report computational results to highlight the theoretical analysis. The
computational results use settings that model the MusicLab experiments discussed
in Salganik et al. [2006]; Krumme et al. [2012]; Abeliuk et al. [2015]. As mentioned in
the introduction, MusicLab is a trial-offer market where participants can try a song
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and then decide to download it. The experiments use an agent-based simulation to
emulate MusicLab. Each simulation consists of N steps and, at each iteration t,

1. we simulate selecting a song i according to the probabilities pi(σ, d), where
σ is the ranking proposed by the policy under evaluation and d is the social
influence signal.

2. with probability qi, the sampled song is downloaded, in which case the simu-
lator increases the social influence signal for song i, i.e., di,t+1 = di,t + 1. Oth-
erwise, di,t+1 = di,t, and if the continuation model is used, the simulation goes
back to Step 1 with probability ci and advances to the next step otherwise.

Every T iterations, a new list σ is computed using one of the ranking policies.
The experimental setting, which aims at being close to the MusicLab experiments,
considers 50 songs and simulations with 20,000 steps. The songs are displayed in a
single column. The analysis in Krumme et al. [2012] indicated that participants are
more likely to try songs higher in the list. More precisely, the visibility decreases
with the list position, except for a slight increase at the bottom positions. We use the
first setting for qualities, appeals and visibilities from Abeliuk et al. [2015], where the
quality and the appeal are chosen independently according to a Gaussian distribution
normalized to fit between 0 and 1. In addition, the experiments consider 12 different
continuation probabilities, varying ρ and the power r as shown in Figure A.3. The
results were obtained by averaging W = 100 simulations.

Parameters P-rank Q-rank D-rank R-rank

ρ = 0.1, r = 0 5.3% 4.9% 5.8% 7.5%
ρ = 0.1, r = 0.25 4.1% 4.3% 4.9% 5.2%
ρ = 0.1, r = 1 2.2% 2.4% 2.6% 2.5%
ρ = 0.1, r = 2 1.4% 1.4% 0.2% 1%
ρ = 0.5, r = 0 30.6% 31% 38.3% 51.8%
ρ = 0.5, r = 0.25 24.2% 24.6% 28.4% 33.6%
ρ = 0.5, r = 1 13.4% 13.2% 14.8% 12.2%
ρ = 0.5, r = 2 7.2% 7.3% 6.2% 4.6%
ρ = 0.9, r = 0 67.3% 67.7% 93.9% 143.3%
ρ = 0.9, r = 0.25 51.6% 52.1% 65.2% 79.9%
ρ = 0.9, r = 1 26.6% 26.8% 28.5% 24.2%
ρ = 0.9, r = 2 13.6% 13.7% 12.2% 8.3%

Table A.1: Improvement in market efficiency (in percentage) for the continuation
model
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Parameters P-rank Q-rank D-rank R-rank

ρ = 0.5, r = 0.25 13776.1 13804.1 12000.1 9393.8
ρ = 0.5, r = 1 12579.0 12565.5 10643.7 7885.0
ρ = 0.9, r = 0.25 16784.7 16840.9 15435.7 12680.8
ρ = 0.9, r = 1 14041.4 14059.1 11926.5 8741.7

Table A.2: Market Efficiency in the continuation model.

Table A.1 presents results on market efficiency (i.e., the number of downloads)
for the trial and offer market with continuation. The most interesting message from
these results, is the observation that the popularity and random rankings improve
more than the performance and quality rankings, unless the quality has less impact
(r = 2, because the continuation is decreasing in r) in the continuation. This can be
explained by the fact that the continuation provides a way to correct a potentially
weak ranking. However, as indicated in Table A.2, this correction is not enough to
bridge the gap with the performance and quality rankings.

Figure A.4: The Distribution of Downloads Versus Song Qualities for ρ = 0.9, r = 1.
The songs on the x-axis are ranked by increasing quality from left to right. Each dot
is the number of download of a product in one of the 100 experiments.

Figure A.4 depicts experimental results on the predictability of the market under
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the continuation model under various ranking policies. The figure plots the number
of downloads of each song for 100 experiments. In the plots, the songs are ranked
by increasing quality from left to right on the x-axis. Each dot in the plot shows the
number of downloads of a song in one of the 100 experiments. The results are essen-
tially unchanged when moving from the traditional to a continuation multinomial
logit model. The popularity ranking still exhibits significantly more unpredictabil-
ity than the performance and quality rankings and the continuations are not able to
compensate for the inherent unpredictability.

A.6 Conclusion and Final Remarks

Motivated by applications in online markets, this chapter generalises the ubiquitous
multinomial logit model to a setting that allows market participants to sample multi-
ple products before deciding whether to purchase or not. We showed that trial-offer
markets with continuation can be reduced to the original trial-offer model, transfer-
ring many fundamental properties of ranking policies to a more general setting. In
particular, the quality ranking still benefits from position bias and social influence.
Moreover, under a general class of continuation functions, the quality ranking is also
preserved and the market reaches the same asymptotic equilibrium. Experimental
results shows that the continuation model compensates for some of the weaknesses
of the popularity ranking by boosting its market performance more than the quality
and performance ranking, unless the continuation probability depends too strongly
on quality. A potential line of future research, is to generalise these results further to
hierarchical trial-offer markets, or analyse the effect of other continuation functional
forms.



Appendix B

Missing Proofs

This Appendix contains the missing proofs from the main text.

Lemma 6. Fixed-Price policy can be arbitrarily bad for the Joint Assortment and Pricing
problem under the Threshold Luce model.

Proof. Consider N + 1 products, with product one having u > 0 utility and a0 = 1.
For all the remaining N products let their utility to be: αu, with α < 1 such that in
presence of product one, all the rest of the products are ignored for threshold t. The
optimal revenue if we consider a fixed price strategy is [Li and Huh, 2011; Wang,
2012]:

R′ = W(exp(u− 1))

Because no matter what fixed price we select, the N lower utility products are com-
pletely ignored and the first product is the only one contributing to the revenue, and
this is the best revenue that we can achieve given that. Now, let us consider the
optimal revenue obtained with the strategy described in Theorem (10)

R∗ = W
([

(1 + t) + N
1 + t

]
· exp

(
(1 + t)(u− 1) + N(αu− 1) + N ln(1 + t)

(1 + t) + N

))
, (B.1)

let us find an explicit relation between R′ and R∗. Starting from equation (B.1):

R∗ =W
([

(1 + t) + N
1 + t

]
· exp

(
(1 + t)(u− 1) + N(αu− 1) + N ln(1 + t)

(1 + t) + N

))
R∗ =W

([
(1 + t) + N

1 + t

]
· exp

(
(u− 1) · (1 + t) + Nα

(1 + t) + N
+

N ln(1 + t)
(1 + t) + N

))

R∗ =W

[ (1 + t) + N
1 + t

]
· exp

(u− 1) +
N

(1 + t) + N
· (ln(1 + t)− (u− 1) · (1− α))︸ ︷︷ ︸

Γ



We know that the Lambert function is concave, increasing and unbounded [Cor-
less et al., 1996; Li and Huh, 2011]. With this in mind, let u be such that Γ is greater
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or equal than zero (for example, setting u = 1.9, α = 0.5 and t = 0.5, makes Γ > 0
and product 1 dominates the rest of the products), this is:

ln(1 + t)
1− α

+ 1 ≥ u. (B.2)

Using this, we have:

R∗ ≥W
([

(1 + t) + N
1 + t

]
· exp (u− 1)

)
(B.3)

Where the argument of the Lambert function is exactly the same as R∗, but mul-
tiplied by a constant factor larger than one and depending on N. Putting everything
together, we have:

R∗ ≥W
([

(1 + t) + N
1 + t

]
· exp (u− 1)

)
≥ R′ (B.4)

The expression in the middle can be arbitrarily larger than R′ by letting N tend
to infinity, and so is R∗. Thus, the fixed price policy can be arbitrarily bad under the
TLM.

Conditions where same price policy is optimal: Is a known result that the same
price policy is optimal when consumers follows the Multinomial Logit with equal
price sensitivities. For the case of differentiated price sensitivities, the adjusted mark-
up pi − ci − 1

βi
is constant across products, where pi, ci and βi are the price, cost and

price sensitivity of product i respectively. As we showed in Section4, in some cases,
the same price policy is optimal. Can we characterize when this happens? The
answer is yes, and we formalize it in the following proposition.

Proposition 13. Same price policy is optimal, for the Threshold Luce Model with equal price
sensitivities if and only if:

max
i∈X

ui −min
i∈X

ui ≤ ln(1 + t) ⇐⇒ max
i,j∈X

(
ui − uj

)
≤ ln(1 + t) (B.5)

The proof relies on the fact that the ratio between attractiveness for equal price
sensitivities, only depends on the intrinsic utilities.

Proof. For equal price sensitivities, if we have same price p for all products, then the
Threshold ratio for any two products can be written as:

ai(p)
aj(p)

≤ 1 + t

exp(ui − p)
exp(uj − p)

≤ 1 + t

exp(ui − p− (uj − pj)) ≤ 1 + t

ui − uj ≤ ln(1 + t)
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This last equation holds for all i, j ∈ X if and only if we have maxi,j∈X
(
ui − uj

)
≤

ln(1 + t), which is the condition expressed on the proposition.
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Alptekinoğlu, A. and Semple, J. H., 2016. The exponomial choice model: A new
alternative for assortment and price optimization. Operations Research, 64, 1 (2016),
79–93. (cited on pages 6, 17, and 18)

Anderson, S. P.; Depalma, A.; and Thisse, J.-F., 1992. Discrete Choice Theory of Product
Differentiation. The MIT Press. ISBN 026201128X. (cited on pages 3, 5, and 18)

Aouad, A.; Farias, V. F.; and Levi, R., 2015. Assortment optimization under
consider-then-choose choice models. Available at SSRN 2618823, (2015). (cited
on pages 11 and 17)

Aouad, A. and Segev, D., 2015. Display optimization for vertically differentiated
locations under multinomial logit choice preferences. Available at SSRN 2709652,
(2015). (cited on page 17)

Bandyapadhyay, S., 2014. A variant of the maximum weight independent set prob-
lem. CoRR, abs/1409.0173 (2014). (cited on pages 53 and 55)

Belonax Jr, J. A. and Mittelstaedt, R. A., 1978. Evoked set size as a function of
number of choice criteria and information variability. Advances in consumer research,
5, 1 (1978). (cited on page 10)

111



112 BIBLIOGRAPHY

Ben-Akiva, M. and Lerman, S., 1985. Discrete Choice Analysis: Theory and Application
to Travel Demand. MIT Press series in transportation studies. MIT Press. ISBN
9780262022170. (cited on page 5)

Berbeglia, G., 2016. Discrete choice models based on random walks. Operations
Research Letters, 44, 2 (2016), 234–237. (cited on pages 6, 47, and 62)

Berbeglia, G., 2018. The generalized stochastic preference choice model. arXiv
preprint arXiv:1803.04244, (2018). (cited on page 11)

Berbeglia, G.; Garassino, A.; and Vulcano, G., 2018. A comparative empirical
study of discrete choice models in retail operations. Available at SSRN 3136816,
(2018). (cited on page 4)

Berbeglia, G. and Joret, G., 2017. Assortment optimisation under a general discrete
choice model: A tight analysis of revenue-ordered assortments. In Proceedings of
the 2017 ACM Conference on Economics and Computation, EC ’17 (Cambridge, Mas-
sachusetts, USA, 2017), 345–346. ACM, New York, NY, USA. (cited on pages 8
and 17)

Berry, S.; Levinsohn, J.; and Pakes, A., 1995. Automobile prices in market equi-
librium. Econometrica: Journal of the Econometric Society, (1995), 841–890. (cited on
page 18)

Besbes, O. and Sauré, D., 2016. Product assortment and price competition under
multinomial logit demand. Production and Operations Management, 25, 1 (2016),
114–127. (cited on pages 3 and 18)

Blanchet, J.; Gallego, G.; and Goyal, V., 2016. A markov chain approximation to
choice modeling. Operations Research, 64, 4 (2016), 886–905. (cited on pages 6, 47,
and 62)

Block, H. D. and Marschak, J., 1960. Random orderings and stochastic theories
of responses. Contributions to probability and statistics, 2 (1960), 97–132. (cited on
pages 2, 5, and 7)

Bodea, T. and Ferguson, M., 2014. Segmentation, revenue management and pricing
analytics. Routledge. (cited on pages 2 and 4)

Börsch-Supan, A., 1990. On the compatibility of nested logit models with utility
maximization. Journal of Econometrics, 43, 3 (1990), 373–388. (cited on page 18)

Brady, R. L. and Rehbeck, J., 2016. Menu-dependent stochastic feasibility. Economet-
rica, 84, 3 (2016), 1203–1223. (cited on pages 10, 11, and 12)

Broder, A.; Kumar, R.; Maghoul, F.; Raghavan, P.; Rajagopalan, S.; Stata, R.;
Tomkins, A.; and Wiener, J., 2000. Graph structure in the web. Comput. Netw., 33,
1-6 (Jun. 2000), 309–320. (cited on page 13)



BIBLIOGRAPHY 113

Bront, J. J. M.; Méndez-Díaz, I.; and Vulcano, G., 2009. A column generation
algorithm for choice-based network revenue management. Operations Research, 57,
3 (2009), 769–784. (cited on page 16)

Camion, P., 1965. Characterization of totally unimodular matrices. Proceedings of the
American Mathematical Society, 16, 5 (1965), 1068–1073. (cited on page 52)

Catalano, M.; Lo Casto, B.; and Migliore, M., 2008. Car sharing demand estima-
tion and urban transport demand modelling using stated preference techniques.
(2008). (cited on page 5)

Cattaneo, M. D.; Ma, X.; Masatlioglu, Y.; and Suleymanov, E., 2017. A random
attention model. arXiv preprint arXiv:1712.03448, (2017). (cited on pages 11 and 12)

Caves, R. E., 2000. Creative industries: Contracts between art and commerce. 20. Harvard
University Press. (cited on page 13)

Cha, M.; Kwak, H.; Rodriguez, P.; Ahn, Y.-Y.; and Moon, S., 2007. I tube, you
tube, everybody tubes: analyzing the world’s largest user generated content video
system. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
1–14. ACM. (cited on page 13)

Chen, N.; Gallego, G.; and Tang, Z., 2019. The use of binary choice forests to
model and estimate discrete choice models. ArXiv, abs/1908.01109 (2019). (cited
on pages 12 and 13)
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