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Abstract

Studies in our laboratory have established that the route of vaccination, viral
vector and the cytokine milieu, specifically IL-13 can critically impact the vaccine-
specific adaptive immune outcomes. Recent efforts in understanding which cells
at the vaccination site produced IL-13 revealed that innate lymphoid cells (ILC)2
were the major source of this cytokine at the vaccination site 24h post delivery.
Knowing that manipulating IL-13 levels at the vaccination site also significantly
altered resident lung dendritic cell (DC) recruitment, this study focused on
dissecting the underlying mechanisms by which ILCs and DCs regulated vaccine-

specific immunity at the lung mucosae following intranasal vaccination.

Poxviral and non-poxviral vaccine vectors induced uniquely different ILC-derived
cytokine and DC profiles at the lung mucosae, 24 h post vaccination. For
example, rFPV priming known to induce high avidity T cells, exhibited low ILC2-
derived IL-13, high ILC1/ILC3-derived IFN-y and enhanced recruitment of
CD11b* CD103" conventional DCs (cDC). Whereas, rMVA, rVV and Influenza A
vector priming, linked to low avidity T cells, induced opposing ILC-derived
cytokine profiles, together with enhanced CD11b- CD103* cross-presenting DCs
and reduced cDCs. Interestingly, Rhinovirus (RV) and Adenovius type 5 (Ad5)
vectors, also showed different ILC-derived cytokine profiles and predominant
recruitment of CD11b- B220* plasmacytoid DCs (pDC). Knowing that cDCs are
associated with high avidity CD8 T cell priming and pDCs are involved in antibody
differentiation, these findings showed that vaccine derived early ILC/DC profiles

directly impact the downstream adaptive immune outcomes.



When trying to unravel how IL-13 signalling modulated these vaccine-specific
adaptive immune outcomes, unlike IL-13Ra1, IL-13Ra2 was found to be the
major sensor and regulator of early IL-13 mediated DC activity. For the first time
a dual role of IL-13Ra2 was unraveled on lung cDC, where low IL-13 was
associated with IL-13Ra.2 signalling via STAT3 activating TGF-p1, whilst, high IL-
13 triggered sequestration by the same receptor. Interestingly, in this study
differential 1L-13 receptor mediated STAT3/STAT6 paradigms were observed,
regulated collaboratively or independently by TGF-$1 and IFN-y. Low IL-13 driven
early IL-13Ra2/STAT3 responses were regulated primarily by TGF-1, whereas,
high IL-13 driven IL-13Ra1/STAT6 responses were associated with IFN-yR
expression bias. Moreover, inherent properties of viral vaccine vectors (host
tropism, replication status and presence or absence of immunomodulatory
genes), were also found to significantly alter the IL-4/IL-13 receptor regulation on
lung DCs, in a time dependent manner. Specifically, the generation of a balanced
adaptive immune outcome was associated with early regulation of IL-13Ra2,
succeeded by IL-13Ra1/ IL-4Ra. on lung DCs, as observed with rFPV vaccination

unlike the other poxviral vectors tested.

Collectively, findings of this thesis for the first time demonstrated the importance
of understanding the mechanisms of IL-13 mediated DC regulation, at the
vaccination site. Therefore, knowing these innate mechanisms associated with
ILC/DC regulation may help design more efficacious vaccines and therapeutics

against IL-13 related disease conditions.
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Chapter 1

General Introduction






1.1 The immune system

The immune system is mainly comprised of two compartments, the innate and
the adaptive systems. The innate immune system contains physical, chemical
barriers, and immune cells which serve as the first line of defence against
invading pathogens. Skin and mucous membranes are strategically placed
externally on the body to prevent entry of pathogens or toxins ', whereas mucus,
digestive enzymes, antimicrobial peptides and complement proteins have the
ability to prevent microbes from establishing infection 2. Whilst innate immune
system initiates non-pathogen-specific defence, the adaptive immune system
(comprising of specialized cells such as lymphocytes), initiates pathogen-specific

or antigen-specific memory T and B cell immunity.

1.2 Innate immune cells

Cells of the innate immune system can be of both haematopoietic as well as non-
haematopoietic origin. Haematopoietic cells include mast cells, macrophages,
neutrophils, eosinophils, natural killer (NK) cells, NKT cells, innate lymphoid cells
(ILCs) and dendritic cells (DCs). Non-haematopoietic immune cells comprise of
epithelial cells on various tissues like the skin and the gastrointestinal tract 3.
Innate immune cells use germline-encoded broadly specific pattern recognition
receptors (PRRs) such as Toll-like receptors (TLRs) and NOD-Like receptors
(NLRs) to recognize conserved and invariant surface molecules called pathogen
associated molecular patterns (PAMPs) on pathogens 4%, and activation of these
cells can induce various inflammatory immune responses. Cells such as
macrophages, neutrophils and DCs can employ phagocytosis by which
pathogen-derived particles are engulfed by phagocytes to cause degradation and

antigen processing and subsequent presentation to T and B lymphocytes 7. Other

3



cells such as NK cells can also employ cytotoxic lytic granules to kill recognized
pathogens or infected target cells 8. Most PRR activated innate immune cells also
lead to secretion of pro-inflammatory cytokines/ chemokines and antimicrobial
proteins to orchestrate the local and systemic inflammatory responses such as
recruitment of macrophages to secrete antimicrobial proteins and peptides or
activate complement factors for opsonization of the pathogen °. These innate
immune responses perform as the first line of defence and also subsequent

activation of the adaptive immune system.

1.3 Mucosal immune system

The mucosal immune system is comprised of sensory organs (eyes, nose, mouth
and throat), lungs, gastrointestinal tract, genito-rectal tract (Figure 1.1) and is the
first line of defence against pathogens. The mucosal immune system can employ
both physical barriers and specialized immune responses to combat infection.
Mucous produced by mucosal epithelial cells forms a protective layer, whilst
epithelial cilia use beating movement to prevent pathogen infection ®'°. Chemical
agents such as defensins and antimicrobial peptides are also secreted by the
mucosal epithelium to degrade pathogenic particles 21712, Interestingly,
according to the site of pathogen encounter the immunity generated at the local
and distal mucosal compartments can be vastly different (eg. nasal vs oral or

rectal) '3.
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The mucosal immune system is perceived as a holistic global organ called the
common mucosal immune system containing a complex network of epithelial
cells, innate and adaptive immune cells including an extensive microbiota. The
mucosa-associated lymphoid tissue (MALT) is mainly comprised of the nasal-
associated lymphoid tissue (NALT), bronchus-associated lymphoid tissue
(BALT), gut-associated lymphoid tissue (GALT), and the uro-genital-associated
lymphoid tissue ®'4. Functionally, MALT is divided into inductive sites, comprising
of naive lymphocytes and antigen presenting cells and effector sites, which
consists of activated T and B cells. Principally the inductive sites, such as Peyer’s
patches in the gut, are fortified by specialised epithelial cells called microfold (M)
cells, unique to mucosal surfaces. M cells have a unique ability to uptake and
transport pathogen-derived antigens from the apical surface to the basolateral
surface of the epithelium causing antigen uptake by antigen presenting cells
(APCs), specifically DCs (Figure 1.2), which then present antigen to naive
lymphocytes at the inductive sites. Activated DCs can also migrate to draining
lymph nodes, initiate activation and migration of lymphocytes to effector sites
(such as lamina propria in the gut) via lymph vessels to initiate pathogen

clearance (Figure 1.2) 517,

In the context of lungs, antigenic exposure triggers tertiary lymphoid tissue
organized into inducible bronchus-associated lymohid tissue (iBALT) (Figure
1.3). iIBALT is commonly formed in the lower airway lung parenchyma, specifically
areas underlying the bronchial epithelium '81°. Similar to conventional secondary
lymphoid structures, iBALT is also compartmentalized into distinct B and T cell
follicles where lymphocyte differentiation and maturation occur ?°. However,

interestingly, unlike in rats, iBALT areas in
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humans and mice rarely exhibit presence of M cells 2'?2. In these areas,
lymphocyte trafficking majorly occurs via the lymphatics. Specifically, antigen
uptake and transport of naive lymphocytes into iBALT from the blood
compartment is carried out by the afferent lymphatics, especially the high
endothelial venules (HEVs) 2324, Transport of antigen expressing DCs as well as

primed T and B cells into the circulation is performed by the efferent lymphatics

25,26

1.4. Dendritic cells

Dendritic cells are professional APCs, which play a central role in linking the
innate and adaptive arms of the immune system by activating pathogen-specific
adaptive immune responses. Immature or semi-mature DCs are strategically
located at the first line of defence (skin, lungs, gut, genito-rectal tract and all
mucous membranes) as well as the circulatory system 27. Pathogen encounter
activates immature DCs to take-up/process antigens and migrate to the
respective lymphoid tissues (e.g. Gut-associated DC to mesenteric lymph nodes,
lung-associated DCs to mediastinal lymph nodes). Mature DCs then present
processed antigens to CD8" or CD4" T cells via the Major Histocompatibility
Complex MHC-I or MHC-II respectively 2830, The cytokines and chemokines
expressed by the different DCs, macrophages and other innate immune cells
govern T cell polarization and differentiation. For example, in general IL-12 and
IFN-y have been established to polarize the type | (Th1) phenotype; IL-4 and IL-
13 are associated with type Il (Th2) responses 3'** and IL-6 and TGF-B1 are
known to induce Th17 cell differentiation 3°. Interestingly, DCs can have both
myeloid or lymphoid origins, which lead to two principle populations of DCs,

classical or conventional DCs (cDCs) and plasmacytoid DCs (pDCs) (Figure 1.4)
9



3_cDCs are further classified into migratory DCs such as Langerhans cells,
dermal DCs and resident DCs which perform antigen uptake either from the
periphery or the lymph nodes and present antigens in the draining lymph nodes
37 Whilst, pDCs retain an immature phenotype at steady-state which upon

activation can induce inflammatory factors including type 1 interferons (IFN) 3839,

1.4.1 Mucosal dendritic cells

Mucosal DCs are found either in MALTSs or in the mucosal surfaces 4°4%, These
DCs also have the unique ability to directly sample antigens by extending
dendrites through the epithelium 46 or indirectly via M cells, goblet cells or in some
cases via neonatal Fc receptors 474, DCs in the mucosae are mainly classified
into two groups non-migratory DCs which are tissue resident, or migratory DCs
which sample antigens and migrate to the draining lymph nodes 5%%'. For
example, in one of the most studied mucosal organs, the small intestine, tissue
resident DCs co-expressing CX3CR1 and CD11b sample local circulatory or
luminal antigens to activate intraepithelial lymphocytes. Whilst migratory
CD11b'°" CD103* CD8* or CD11b* CD103* DCs are responsible for generation
of other T cell responses like differentiation of Th1 immunity and activation of
regulatory T cells respectively. Other major DC subsets found in the small
intestine include TLR5* DCs which activate Th1 and Th17 cells, and
plasmacytoid DCs (pDCs) both of which generate IgA responses %2. Mucosal DCs
have the unique ability to imprint T cells with tissue-specific homing markers.
Specifically, during T cell priming, mucosal dendritic cells induce tissue-specific

‘homing markers’ (for example a4p7 and CCR9 for gut homing %3 and CCR5,

CXCR3, a4p1 and CCR4 for lung homing 54%) on T cells 245758,

10



These T cell homing markers (integrins and chemokines) have the unique ability
to bind to their tissue-specific ligands/adhesion molecules expressed on mucosal
sites to initiate tissue-specific homing of effector and memory T cells. For
example, a4B7 can bind to mucosal addressin cell adhesion molecule-1
(MAdCAM-1) present in gut, whereas, o431, can bind to VCAM-1 in lung or BALT
55,59 More and more studies are showing that when designing vaccines against
chronic mucosal pathogens such as HIV, TB or chlamydia, it is imperative to
induce effective mucosal T cell homing to the site of first pathogen encounter °-
66, Hence, different routes of mucosal delivery are now being considered, when

designing vaccines against these pathogens.

1.4.2 Lung-specific dendritic cells: role in infection and immunity

Four major DC subsets are found in the murine lung namely, CD11b- CD103*
cross-presenting DCs, CD11b* CD103" conventional DCs (cDCs), (both of which
constitute phagocytic classical DCs), plasmacytoid DCs (pDCs) and inflammatory
monocyte-derived DCs (moDCs) (Figure 1.5) 6%, For many years, immune
activation and virus-specific DC activity have been studied using many viruses,
such as Influenza, Herpes Simplex virus 1, Respiratory Syncytial Virus (RSV) and
poxviruses "72 Interestingly, the precise roles of different DC subsets following

different viral infections still remain controversial.

1.4.2.1 Cross-presenting DCs

Two major cross-presenting DCs, namely CD11b- CD103* and CD11b- CD8a",
are found in mouse lung, which share common developmental origins as well as
functions. Both these DCs require Batf3 (Basic Leucine Zipper ATF-Like
Transcription Factor 3), ID2 (Inhibitor of DNA Binding 2), IRF8 (Interferon

11
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Regulatory Factor 8) for activation 73, and functionally, have the unique ability to
present exogenous antigens (normally presented via MHC-II molecules) to CD8*
T cells via MHC-I molecules 7. Specifically, in the context of acute viral infections
such as Influenza and vaccinia virus infections, cross-presenting DCs have
shown to efficiently activate cytotoxic CD8" T cells, essential for viral clearance
69.75-77 However, these two cross-presenting DCs, have unique structural and
functional features. Specifically, CD11b- CD103* cross-presenting DCs, more
predominant in the lung, reside at the lung interface and sample exogenous
antigens 8, as well as have the ability to process large quantities of apoptotic
cells 7989 In contrast, CD11b- CD8a* cross-presenting DCs, which are lymph
node resident 73, have the ability to extend dendrites to sample antigens from
lymphatics or the blood compartment and also acquire transferred antigens from
CD11b- CD103* DCs at the draining lymph nodes using a process known as

cross-dressing 81-83,

1.4.2.2 Conventional DCs

CD11b* CD103  cDCs are normally located in the lung parenchyma, below the
basement membrane. At steady state, compared to cross-presenting DCs, fewer
cDCs are found in the lung tissue. Developmentally, CD11b* CD103 cDCs are a
heterogenous population, activated by major transcription factors IRF2 and IRF4
74 In addition to enhanced expression of MHC-II, CD11c and CD11b, cDCs have
also been shown to express CD24 and CD86 in mice 8485, Despite having some
overlapping functions with other classical DCs, some functions are unique to lung
cDCs. Specifically, after resolution of respiratory viral infections, cDCs perform
maintenance of iBALT function 8. Furthermore, cDCs are more adept at

processing and presenting soluble antigens compared to other classical DCs &’.

15



Upon antigen uptake, cDCs majorly express antigens via MHC-Il to CD4* T cells
88 although in some cases such as severe Influenza infection, CD11b* cDCs

have also been shown to potentiate CD8* T cells 8° .

1.4.2.3 Plasmacytoid DCs

pDCs, upon activation, infiltrate into the lung tissues and are distributed in the
lung airways. In contrast to classical DCs, pDCs are pre-DCs and do not exhibit
the classical ‘DC form’. pDCs specifically express TLR7 and TLR9 molecules,
responding to a defined repertoire of PAMP signals. In addition to expressing low
or no CD11b, pDCs also express surface markers B220, Ly6c, siglec-H along
with low MHC-II in mice. pDCs are activated by transcription factors E2-2
(belonging to the E protein family) and IRF8 799193, Unique pDC properties
include secretion of type | Interferons, specifically IFN-o in the context of
Influenza and RSV infection %% Type | IFN production by pDCs have also
shown to activate virus mediated B cell differentiation and hence development of
antibody responses . Studies using systemic Herpes Symplex Virus (HSV)
infection have shown that in addition to being interferon producers, pDCs are

important activators of NK cells and CD8* T cells %.

Unlike in acute viral infection, in the context of recombinant viral vector-based
vaccination, CD11b- CD103" cross-presenting DCs have been associated with
induction of low avidity vaccine-specific CD8" T cells whereas CD11b* CD103"
cDCs have been associated with high avidity T cell immunity ®. Knowing that
pDCs are associated with effective antibody responses ¢, understanding the
regulation of these three lung DC subsets at the lung mucosae (vaccination site)

immediately post intranasal vaccination forms the basis of this thesis.
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1.5 Importance of Mucosal vaccination

It is now well established that the route of vaccination can significantly influence
the resulting local and distal immune responses. Both systemic and mucosal
vaccination have been historically used against mucosal pathogens '%.
Interestingly, although systemic vaccination can induce effective immunity at the
blood compartment, it has shown to be ineffective at inducing long lasting
mucosal immunity '°'. For example, intramuscular vaccination has shown to
promote mucosal immunity against certain mucosal pathogens such as Bovine
respiratory syncytial virus, bovine rotavirus and H5N1 192105 but have elicited
poor immune outcomes against chronic mucosal pathogens such as HIV-1,
tuberculosis and chlamydia '°2. This has been mainly associated with poor T cell
homing to the mucosae post systemic delivery, where the pathogen is first
encountered 5319 _Thus, vaccine strategies that can induce immunity at the local
and distal mucosae are important for control of these infections, specifically
strategies that can induce effective long lasting mucosal T cell immunity as well
as IgA responses 97" Different mucosal routes of vaccination for example
intranasal, oral, intrarectal, intravaginal and intraocular have shown to induce
immunity at different local and distal mucosae. Specifically, intranasal (i.n.)
vaccination has been more successful at generating immunity in the upper
respiratory tract, gut, as well as the genito-rectal mucosae ''?''* (Figure 1.6a).
Whereas, oral vaccination has shown to induce immunity in the salivary glands,
mammary glands, gut mucosae and in some instances at the rectal tract 3.
Vaginal vaccination has shown to induce immunity in the local mucosae,
whereas, rectal vaccination has shown to induce immunity at the local rectal as

well and the gastro-intestinal mucosae '"5-17. It is
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now well established that these differential immune responses are mainly
governed by the activation of unique tissue-specific mucosal DCs promoting

tissue-specific T cell and B cell homing 245758,

1.5.1 HIV vaccines and mucosal immunity

In the context of HIV, despite being a disease of the mucosae, no mucosal HIV
vaccine strategy has yet been tested in humans. All the systemic vaccination
approaches tested in human clinical trials have yielded poor outcomes 18121
except the RV144 trial showing marginal efficacy with 31.2 % protection '?'. Over
two decades of work in animal models (both in mice and macaques) have shown
that HIV mucosal vaccination strategies can induce promising long lasting
protective immunity 122124, Studies by Belyakov et al. and studies in our laboratory
have shown that intrarectal vaccination approaches can induce effective HIV-
specific cytotoxic CD8* T cells at the mucosae both in mice and non-human
primates, and established the importance of mucosal cytotoxic CD8" T cells in
prevention of viral dissemination and protection against HIV 102.107.125-129 ' Seyeral
decades of work, trying to understand why systemic vaccines were failing in
clinical trials, Ranasinghe et al. were the first to show that, compared to a purely
systemic approach, a purely mucosal or mucosal/systemic prime-boost
vaccination regimen (i.n./i.m. prime poxviral vector-based HIV vaccine approach)
can induce high avidity HIV-specific T cell immunity '3°. They showed that these
responses were mainly associated with the expression of IL-4/IL-13 by cytotoxic
CD8* T cells, where systemic vaccination was shown to induce elevated IL-4/ IL-
13 production compared to mucosal delivery '3%-132 (Figure 1.6b). Recent studies
in the laboratory have shown that, HIV vaccines that transiently block IL-4/IL-13

activity at the vaccination site can lead to high avidity/poly-functional cytotoxic T
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cells in murine and macaque models 22124 (Li et al. in preparation). Moreover, in
addition to the route of delivery and cytokine cell milieu in a prime-boost vaccine
modality, the choice of vaccine vector, specifically the priming vector was also
shown to significantly impact avidity/poly-functionality of T cells '3'.133_ Thus,
understanding how these factors (specifically, IL-3 levels and viral vectors)
influence adaptive immune outcomes at the innate immune level forms the basis

of this thesis.

1.6 Viral vectors: poxviral vector-based vaccines

For many decades, viral vectors such as poxviruses have been promising
vaccine delivery vehicles 34140 Their unique ability to contain large amounts of
foreign genetic material without loss of viral function or host cell infectivity, and
the ability to express these genes/antigens at high concentrations, enabling the
induction of robust pathogen-specific cellular and humoral responses, have made
these vectors popular vaccine candidates, specifically in prime-boost vaccine

modalities 99,121,130,141-145_

1.6.1 Recombinant vaccinia virus-vectored vaccines

Vaccinia virus (VACV) has been the most studied poxvirus in the context of
vaccine design. Historically, several VACV strains have been used as smallpox
vaccines, which ultimately lead to smallpox eradication 46-148 149-151 " Different
VACV strains with improved safety, reduced pathogenicity and high
immunogenicity have been used as recombinant vaccines for pathogens, for
which effective vaccine strategies are not yet available, for example HIV-1,
hepatitis, tuberculosis and malaria '%>'%7_ In the context of HIV-1, recombinant

Tiantan Vaccinia virus (rTV), Copenhagen derived New York Vaccinia Virus
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(NYVAC) 158162 and recombinant Modified Vaccinia Ankara (rMVA) have been
tested in different prime-boost vaccine modalities (rDNA/viral; protein/viral;
viral/protein). 148163166 Mucosal delivery of rTV, NYVAC and rMVA have also
been tested and have shown some promising mucosal HIV-specific T cell

1.6.2 Recombinant MVA-based vaccines

MVA was first derived from the Chorioallantoic Vaccinia Ankara (CVA) strain after
extensive serial passaging of the virus in cell culture 19415 The resultant MVA
was known to be replication deficient and non-pathogenic in most mammalian
cells rendering the virus extremely safe in humans as a vaccine vector 169170,
Additionally, due to its intrinsic adjuvant abilities and capacity to induce robust
cellular and humoral immune responses, recombinant MVA (rMVA) vector-based
vaccines were extensively studied against many pathogens such as HIV-1,
Mycobacterium tuberculosis, Malaria and Hepatitis B 48154171172 |nterestingly,
i.m. rDNA prime/i.m. rMVA booster vaccination strategies were one of the first to
be tested against HIV. Although these vaccines were found to be effective in
animals models 73176 due to the poor uptake of rDNA, as well as inability to
induce long lasting mucosal immunity 77178 rDNA vaccine strategies resulted in
poor immune outcomes in Phase | clinical trials, similar to other systemic rDNA-
based vaccine strategies in the early 2000s 29:144.163,179-181 '|n |ater studies, even
though mucosal delivery of rMVA-based HIV vaccines has yielded some
promising outcomes in mice and macaques '67'8 rMVA mucosal vaccine
strategy has not yet been trialed in humans. Additionally, Esteban et al. were the
first to design a range of rMVA deletions mutants, rendering the vaccine more

effective and safe by removing vector-specific immune evasive genes '3, such
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as IL-1pB receptor, IL-18 binding protein, C6L (genes associated with type | IFN
signaling), or F1L, (involved in apoptosis). Interestingly, these mutants were
shown to induce HIV-specific immune outcomes in animal models compared to

parental rMVA 183-186

1.6.3 Recombinant avipoxvirus vector-based vaccines

Avipoxvirus vectors, such as canarypox and fowlpox, which cannot replicate in
mammalian hosts, rendering them extremely safe in humans, have also been
studied as recombinant vaccine vectors '87-189 |n the context of HIV vaccine
design, recombinant canarypoxvirus (known as ALVAC,) and the close relative
recombinant fowlpox virus (rFPV) vaccine strategies have been well studied "%
196 Interestingly, the only HIV vaccine trial that have been partially successful in
humans, the RV144 trial (31.2% reduction in HIV-1 infections in vaccine
recipients), used an ALVAC prime followed by HIV gp120 protein booster strategy
121 This partial protection was correlated with antibody dependent cell mediated
cytotoxicity (ADCC) and HIV envelope-specific non-neutralizing antibody
responses elicited by this vaccination approach 97201, This partial success
renewed the interest in recombinant poxviral vector-based approaches as

potential HIV vaccine candidates.

FPV was first used as a vaccine against fowlpox in chickens and was later used
as a vehicle to deliver antigens against other poultry diseases such as avian
influenza, Newcastle disease and infectious bronchitis 2°2. Boyle et al. were the
first to use rFPV vectors as a vaccine strategy against HIV 135193203 The initial
prime-boost vaccination strategy, using pure intramuscular (i.m.) rDNA prime/

rFPV booster, although showed promising immune outcomes in mice and
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macaques '29191.193.204.205 - ynfortunately failed in Phase | clinical trials 44
However, these trials clearly established that rFPV was extremely safe in humans
144,204 | ater rDNA prime followed by rFPV co-expressing HIV antigens together
with co-stimulatory molecules or cytokines including IFN-y, IL-12, 4-1BBL),
although were found to enhance immunogenicity/vaccine efficacy in murine and
macaque models 31206-213 co-expression of IFN-y and IL-12 were later found to
be ineffective in humans 294214 Interestingly, despite disappointing outcomes
with i.m. rDNA/i.m. rFPV systemic vaccination strategy in human clinical trials 144,
i.m. rDNA/i.n. or rectal rFPV strategies were found to induce better protective
efficacy in non-human primates compared to pure systemic delivery '>°. These,
together with later studies revealed that rFPV was an excellent mucosal delivery
vector 131295 These studies also demonstrated that compared to rDNA/viral
vector-based vaccine strategies viral/viral prime-boost modalities could induce
better poly-functional long lasting T cell immunity 21528 Specifically, i.n. rFPV
prime followed by i.m. rVV or rMVA booster strategies were shown to generate
sustained mucosal and systemic HIV-specific high avidity/poly-functional CD8" T
cells both in mice and macaques 23139131 unlike the inverse strategies 31133
(Ranasinghe, personal communication) (Figure 1.7) eliciting, not only the route
of delivery 130131205 1yt also the order in which these viral vectors are delivered
in a prime-boost modality, played an important role in modulating the final

vaccine-specific adaptive immune outcomes 133,
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1.7 Non-poxviral vector-based vaccines

Apart from poxviruses, many other viruses have also been used as vectors to
deliver vaccine antigens. Among the non-poxvirus recombinant vector-based
vaccines, Cytomegalovirus, Sendai virus, Lentiviruses, Polio-virus, different
retroviruses, adenoviruses, Influenza virus, Human Rhinoviruses have been used

in many major pre-clinical and clinical vaccine trials 136.138.219-222,

1.7.1 Recombinant Adenovirus vector-based vaccines

In the context of HIV vaccine design, several recombinant Adenovirus (Ad)
vectors have also been found to induce high immunogenicity in animal models
140,219,222.223  Recombinant Adenovirus serotype 5 (rAd5) was used in the STEP/
Phambili HIV clinical trials with great anticipation of success in 2008 ''811°_ Even
though the vaccine strategy induced robust HIV-specific cellular and neutralizing
antibody responses in mice and non-human primate models 2?4?27, Phase |
STEP/Phambili trials had to be unexpectedly hauled due to vector-specific
immunity in humans leading to increased HIV acquisition 18228  Since then,
several other non-human related and modified rAd vectors, for example Ad26,
Ad35 and Chimpanzee Ad vectors, have been tested 223229230 |n clinical trials,
these modified rAd vectors have shown better safety profiles (reduced liver
toxicity and anti-vector immunity) with promising cross-clade antibody responses
231 Recent clinical trials by Barouch and colleagues using rAd26 HIV vaccination
strategy in human clinical trials, although have shown ADCC and broad epitope-
specific Env antibody responses, have shown limited breadth of HIV-specific T
cell immunity 232233, Interestingly, using these rAd vectors, efforts are now being

made to induce unique innate immune cell profiles to improve breadth and cross-
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reactivity of T cell response as well as Env-specific neutralizing antibody

responses 225.234-238

1.7.2 Recombinant Influenza vector-based vaccines

Influenza A has a broad host range inducing immune responses in many different
animals and known to induce both Th1 and Th2 immunity, essentially eliciting
both cellular and humoral immunity 22°. Due to these properties, various live and
inactivated recombinant Influenza A-based vaccine strategies have been tested
against several pathogens, including HIV-1 138239242 Recombinant Influenza A
expressing HIV Nef antigens used in an i.n. HIN1 prime/ i.n. H3N2 booster
vaccination strategy in mice have shown to induce elevated Nef-specific systemic
as well as mucosal CD8* T cells (in the genito-rectal nodes) 242. Similarly,
recombinant Influenza expressing HIV Env or Gag in a heterologous Influenza
prime/ rVV booster modality have also shown enhanced antigen-specific CD8*T
cells both in mice and macaques 138243244 Gherardi et al. have also shown that
i.n. Influenzal/i.n. or intraperitoneal (i.p.) rMVA or rVV booster strategy, can not
only induce env-specific CD8" T cells expressing IFN-y, but also env-specific
IgG2a responses in mice 3. Moreover, Tan et al. have shown that compared to
i.n. rFPV/ i.n. Influenza HIV prime-boost vaccine strategy, the inverse strategy
can induce low avidity mucosal and systemic HIV-specific CD8* T cells (Tan,
Derose et al. personal communication), once again eliciting the importance of the

choice of priming vector in prime-boost modalities.

1.7.3 Recombinant rhinovirus vector-based vaccines
Recently, recombinant human rhinovirus (rHRV)-based HIV prime-boost vaccine

strategy was also tested in mice, specifically with the intention of inducing
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effective immunity at the first line of defence at the genito-rectal and gut mucosae.
220 i.n.rHRV/ i.m. rDNA booster vaccination strategy expressing HIV Gag and Tat
antigens was shown to induce enhanced poly-functional Gag- and Tat-specific
systemic and mucosal (mesenteric lymph nodes) CD8* T cell responses and also

Tat-specific mucosal IgA and serum IgG antibodies in vaginal lavage and blood

220,245

While the appetite to design new vaccine strategies using different recombinant
viral vector-based vaccines are growing, how different recombinant viral vectors,
expressing similar pathogen-specific genes/antigens induce vastly different
adaptive immune outcomes still remains unanswered. Surprisingly, the
mechanisms underpinning how these different vectors induce different vaccine-
specific immune outcomes, especially at the innate immune level, still remains

poorly characterised, which this forms the main basis of this thesis.

1.8. Role of cytokines in viral infection and immunity

Activation of TLRs following an infection commonly signal in Myd88 dependent
or independent pathways to activate downstream elements such as the
Interleukin-1 receptor associated kinase (IRAK), Tumor necrosis factor receptor
associated factor 6 (TRAF®6), Interferon regulatory factor (IRF) and/or nuclear
factor kappa-light-chain-enhancer of activated B cells (NFkB), which in turn
induce production of a plethora of pro-inflammatory cytokines such as type | IFN,
Tumor necrosis factor (TNF)-a, Interleukin (IL)-1, IL-6, IL-8, depending on the
pathogen encountered 246, Whilst the IFNs employ direct antiviral activities such
as inhibiting replication of the virus, enhancing lysis of infected cells or activation

of other pro-inflammatory cells such as macrophages 24748, TNFs can enhance
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vascular adhesion of inflammatory cells to promote antiviral responses 24°.
Furthermore, interleukins can promote both pro- and anti-inflammatory properties
following binding specific receptors 2°°. Traditionally, whilst Th1 immune
responses have been responsible for defence against intracellular pathogens
such as viruses and bacteria, Th2 responses have known to be associated with
extracellular infections, such as, helminths and also parasitic infections. In
addition to Th1 and Th2 immunity, Th17 cells are also known to secrete IL-17
and IL-22 in response to extracellular bacterial and fungal infections 2°*. Individual
roles as well as inter-regulation between Th1 and Th2 immunity has been well-
documented in allergy/asthma, helminth infections as well as viral infections 25
263_|In the context of poxviral vector-based vaccination, IL-4 and IL-13 expression
by antigen-specific CD8" T cells have been directly linked to T cell avidity and

protective efficacy 122-124.130-132 (| j et al. in preparation).

1.8.1 IL-4 and IL-13 in disease and viral vector-based vaccine efficacy

Th2 cytokines IL-4 and IL-13 have been extensively studied in disorders involving
Th2 immunity including inflammatory conditions such as allergy and asthma,
fibrosis, atopic dermatitis, tumor progression as well as parasitic infections
255,257,264-269 |n the context of allergic asthma, although IL-4 and IL-13 have shown
overlapping functions such as IgE associated pathogenesis and eosinophil
recruitment to the lung parenchyma, the two cytokines have also been associated
with unique functions. Over-expression of IL-4 associated humoral immunity has
been linked to Th2 inflammation 2%6270, whilst IL-13 mediated activation of
fibroblasts, goblet cell differentiation, smooth muscle contraction, mucous
production and bronchial hyperresponsiveness has been associated with airway

hyperreactivity and pathogenesis in allergic asthma 2%4. In the context of different
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infections, IL-4 and IL-13 have also shown opposing as well as unique functions.
For example, following N. brasiliensis infection, whilst IL-4 has been involved in
promoting disease progression, IL-13 is essential for parasite clearance 25271272,
During, Streptococcus infection in mice, IL-4 has shown to exacerbate the
bacterial infection 273. Interestingly, during Klebsiella pneumonia infection, 1L-13
has shown to promote host protection, whilst, in the context of Chlamydia
trachomatis infection, IL-13 has been associated with susceptibility to infection
252,274-216 - Additionally, in acute and primary viral infections (Ectromelia virus and
respiratory syncytial virus) IL-13 has been associated with improved antiviral
immunity 263277 whilst in the context of viral vector-based vaccination, presence
of IL-4 and IL-13 have shown to dampen effective T cell immunity 3%.132,
Interestingly, Ranasinghe et al. have shown that novel poxviral vector-based
vaccines, that transiently inhibit IL-14 and/or IL-13 at the vaccination site can

differentially regulate HIV-specific T and B cell immunity 122124,

1.8.2 IL-4/IL-13 signalling

IL-4/ IL-13 functions via a common receptor system comprising of Type | (IL-
4Ra/yc) and Type Il (IL-4Ro/IL-13Ra1) receptor complexes (Figure 1.8) 278, IL-4
binds IL-4Ra with high affinity, which heterodimerises with yc subunit and forms
the Type | IL-4R complex. Membrane bound IL-13Ra1 is the low affinity receptor
for IL-13 (Kd ~30 nM) which heterodimerises with IL-4Ra to form the high affinity
functional Type Il IL-4R complex 27°. Once activated, both IL-4R Type | and Type
Il complexes activate the JAK/STAT6 signalling pathway 28°. In allergic asthma,

IL-4 type | and type Il receptor complexes play a central role in
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promoting inflammation. Whilst IL-4Ra signalling activates Th2 responses via
alternatively activated macrophages 28", IL-13Ra1 signalling mediates lung
pathology by promoting Ilung fibrosis, mucous production and airway
hypersensitivity 262282 |n the context of eosinophilic esophagitis and cardiac
homeostasis, the association of IL-13Ra1/IL-4Ra with STAT3 signalling has also

been proposed 08283,

IL-13Ra2 is the high affinity receptor for IL-13 (Kd ~440 pM), which exists as a
membrane bound, as well as a soluble form (Figure 1.8). Interestingly, IL-13Ra2
first discovered in mouse urine 284, was long thought to be a decoy receptor in
mice, functioning to only sequester IL-13 from the milieu 285287 However, IL-
13Ra2 is now known to be a functional receptor in humans and has been
associated with certain cancers (of the brain, breasts, ovaries, liver) and disease
conditions 288292, Hence, in the recent years IL-13Ra2 has been targeted as an
anti-cancer treatment 2%3. In the context of chronic inflammatory diseases such
as inflammatory bowel disease (IBD), expression of IL-13Ra2 has been
associated with disease promotion/progression 2%, and up-regulation of IL-
13Ra2 in the airway inflammation has also shown to negatively regulate IL-13
mediated pathogenicity in mice and humans 29%2%_ Furthermore, in helminth
infection (schistosomiasis), IL-13Ra2 expression has been linked to down-
regulation of inflammation causing disease protection 2°7. Although the exact
mechanism is not well understood, studies have reported that IL-13Ra2 can
signal via STAT3 2929 |nterestingly, other studies have also shown the
association of IL-13Ra2 to downstream activation of transforming growth factor

beta 1 (TGF-B1) 300301 Recent studies in our laboratory using poxviral vector-
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based vaccination that transiently inhibited STAT6 and IL-13 activity at the
vaccination site %2124 have shown the involvement of an STAT6 independent
pathway, (likely linked to IL-13Ro2 pathway), associated with antibody

differentiation 122:302,

1.9 Impact of IL-13 levels on lung resident ILCs and DCs at the

vaccination site

Over a decade of work in our laboratory using poxviral vector-based mucosal and
systemic vaccine strategies, it was established that more than IL-4, IL-13 was
detrimental for the induction of high avidity/poorly poly-functional HIV-specific T
cells 130132 Subsequently, vaccines that co-expressed HIV antigens together with
IL-4/IL-13 inhibitors were developed in the laboratory as described before, that
transiently inhibited IL-4 and IL-13 activity at the vaccination site; namely, IL-4R
antagonist and IL-13Ra2 adjuvanted vaccines. Specifically, IL-4R antagonist
adjuvanted vaccine transiently inhibited IL-4/IL-13 signalling via STAT6 by
binding IL-4Ra %2723, whereas IL-13Ra2 adjuvanted vaccine transiently
sequestered IL-13 at the vaccination site, reducing IL-13 activity '?* (Figure 1.9).
In an HIV i.n. rFPV/i.m. rMVA prime-boost modality both these vaccines were
shown to induce high avidity poly-functional (ability to express IFN-y, TNF-a and
IL-2 and cytotoxic markers) mucosal and systemic T cells with better protective
efficacy in both mice and macaques 12224, In addition to effective T cell immunity,
unlike the IL-13Ra2 adjuvanted vaccine strategy, IL-4R antagonist adjuvanted
HIV vaccine strategy was also shown to induce IgG1 and IgG2a antibodies in
mice, showing that IL-13 was necessary for effective antibody differentiation
122302 Interestingly, presence of high avidity poly-functional T cells and effective

antibody differentiation have been hallmarks of
33
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protective immunity observed in a rare cohort of people who naturally control HIV

infection, known as elite controllers 303-305,

Hence, when trying to unravel how these novel IL-4/IL-13 inhibitor viral vector-
based vaccines modulated vaccine-specific immunity at the innate and adaptive
compartments, recent studies for the first time demonstrated that, innate
lymphoid cell type 2 (ILC2), were the major source of IL-13 at the vaccination site,
post 24 h delivery 3% and ILC2-derived IL-13 also modulated the ILC1/ILC3-
derived IFN-y and IL-17 production at the vaccination site 3%6. Using i.n. delivery
of these novel vaccines it was also established that IL-13 levels at the lung
mucosae could significantly alter the lung DC recruitment, 24 h post delivery
(during the peak antigen expression) %9307, Specifically, transient inhibition of IL-
13 enhanced recruitment of CD11b* ¢cDCs to the lung mucosae, which was
associated with high avidity T cell induction %124, Moreover, adoptive transfer
studies revealed that lung CD103* cross-presenting DCs were responsible for
induction of low avidity CD8 T cells %. These studies clearly established that the
level of IL-13 at the vaccination site as well as different DC subsets induce
uniquely different downstream HIV-specific adaptive immune outcomes
(specifically, IL-13 was detrimental for induction of high avidity poly-functional T
cells, whereas IL-13 was necessary for effective antibody differentiation) (Figure
1.10). However, whether different viral vectors induced different ILC2-derived IL-
13 at the vaccination site that impacted the recruitment of different DC subsets

were not established, which forms the basis of this study.
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1.10 Scope of the thesis

1.10.1 Hypotheses

1. Different viral vector-based vaccines induce uniquely different adaptive
immune outcomes by differential DC recruitment, mainly associated with ILC2-
derived IL-13 levels at the vaccination site.

2. Level of IL-13 at the vaccination site differentially regulates IL-13Ra2 and IL-
13Ra1 on lung cDCs, which is co-regulated by transcription factors STAT3
and STAT6.

3. Differential regulation of IL-4/IL-13 receptors on lung DCs 24-72 h post
delivery, governs the unique vaccine-specific adaptive immune outcomes
induced by different recombinant poxviral vector-based vaccines (expressing

the same vaccine antigen).

1.10.2 Aims

1. Study the influence of lung ILC2-derived IL-13 levels on lung DC
recruitment, 24 h post intranasal poxviral and non-poxviral vector-based
vaccination.

2. Assess how IL-4/IL-13 receptors and related downstream molecules are
regulated on lung cDCs 24 h post recombinant viral vector-based
vaccination.

3. Using four different poxviral vector-based vaccines, assess how IL-4/IL-13
receptors are regulated on different lung DC subsets, 24 - 72 h post

vaccination.

In this thesis, the results section is divided into three chapters:
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Chapter 3: Recent studies by Li et al, using transient inhibition of IL-13 and
STATG6 signalling at the vaccination site have shown that ILC2 were the major
source of IL-13 at the vaccination site, 24 h post rFPV vaccination 3%, responsible
for modulating downstream adaptive immune outcomes both in mice and
macaques (specifically modulating T cell avidity and B cell immunity) 122124,
Trivedi et al. also showed that manipulating IL-13 levels at the vaccination site
significantly altered resident lung cDC recruitment and downstream T cell
outcomes 3%, Knowing that route of delivery and different viral vector-based
vaccines can induce vastly different antigen-specific immune outcomes
130,131,133,308  this study attempted to dissect the underlying mechanisms by which
innate immune cells, notably ILC and DC regulated vaccine-specific immune
outcomes. Specifically, assess whether there was any association between the
level of ILC2-derived IL-13 and the DCs recruited to the vaccination site, 24 h
post delivery, using 7 different viral vector-based vaccines (4 poxviral and 3 non-

poxviral).

Chapter 4: Knowing that IL-13 can promote chronic inflammatory conditions as
well as certain infections 259271272 and studies in our laboratory have shown that
IL-13 levels at the vaccination site can differentially regulate/recruit lung cDCs to
the lung mucosae 24 h post vaccination %, this study evaluated the mechanisms
by which viral vector-induced ILC2-derived IL-13 levels regulate the lung cDC
response following intranasal vaccination. Specifically, 24 h post intranasal
poxviral vector-based vaccination, this study evaluated the expression of IL-4/IL-
13 receptor and associated immunomodulatory molecules (STAT3, STAT6, TGF-

B1 and IFN-yR) on lung cDCs.
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Chapter 5: Dysregulation of IL-13 receptors have shown to promote several
disease conditions associated with different IL-13 conditions. Whilst IL-13Ra1 is
the low affinity receptor, IL-13Ra2 is the high affinity receptor for IL-13.
Interestingly, under high IL-13 conditions, IL-13Ra1 has been central in mediating
allergic asthma and chronic inflammation 262282 and the lesser understood IL-
13Ra2 has been deemed instrumental in promoting certain diseases conditions,
309311 '|n contrast, under low IL-13 conditions, IL-13Ra1 has also been shown to
promote homeostasis and induce tissue repair 319312, Hence, these studies
clearly demonstrate that IL-13 receptors can be differentially regulated under
different IL-13 conditions. Therefore, given that post viral vector vaccination, level
of IL-13 at the vaccination site were found to differentially regulate DC responses
(chapters 3 & 4), in this chapter, regulatory patterns of IL-13Ra1 and IL-13Ra.2
were evaluated on lung DCs, 24 to 72h post four different recombinant HIV
poxviral vector-based vaccines (which were found to induce different ILC2-

derived IL-13 levels at the vaccination site).
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Chapter 2

General Materials1

' All methods used in the thesis have been mentioned in specific chapters which have
been also compiled as journal articles.
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Table 2.1 Medium

Name Component Company Catalogue
no.

Complete RPMI | RPMI 1640 (500ml) Sigma R8758

medium HI-FCS (35ml) GIBCO 10099-133
1M HEPES (10ml) GIBCO 15630-080
Penicillin-Streptomycin | JCSMR N/A
(0.5ml)
100mM sodium | GIBCO 11360070
pyruvate GIBCO M-6250
B-mercaptoethanol

Complete Essential | MEM GIBCO/Sigma | M-4655

Medium (MEM) 5% (v/iv) FCS Invitrogen 10437028
1mM HEPES Invitrogen 15630-080
30ug/ml penicillin-G Sigma 021156065
50ug/ml streptomycin | Sigma S6501
50ug/ml neomycin Sigma N-6386

RPMI medium (wash | RPMI 1640 (500ml) Sigma R8758

medium) 10 mM HEPES Invitrogen 15630-080

Table 2.2 Buffers and solutions
Name Component Company Catalogue
no.

Lung Digestion Buffer | 1 ml Complete RPMI Sigma R8758

1 mg/ml Collagenase | Sigma C2139
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1.2 mg/ml Dispase GIBCO 17105-041
5 Units/ml DNase Calbiochem 26095
Red Blood Cell Lysis | 0.16 mM NH4CI Sigma A0171
Buffer (RBC-LB) 0.17M Tris HCL (pH
7.6)
FACS buffer PBS Sigma D8537-
500ML
2% FCS GIBCO 10099-133
Intracellular Fixation | IC-Fix Biolegend 420801
Buffer (IC-Fix)
Intracellular 10% 10X IC-PERM eBioscience 00-8333-56
Permeabilisation 90% dH20 JCSMR N/A
buffer (IC-Perm)
Paraformaldehyde 0.5% (w/v) PFA in PBS | Sigma P-6148
(PFA)
Brefeldin A (BFA) 1:1000 working dilution | eBioScience 00-4506-51
in complete RPMI
medium
Phosphate Buffer | 1X PBS Sigma D8537
Saline (PBS)
Poly-L-Lysine 0.1% (w/v) in H20 Sigma P1274
solution
Antifade Vectashield | 10ul per slide Vector H-1200
mounting medium for Laboratories,
fluorescence with USA
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4' 6-diamidino-2-

phenylindole (DAPI)

Antifade Vectashield | 10pl per slide Vector H-1000

mounting medium for Laboratories,

fluorescence USA

Table 2.3 Anti-mouse antibodies used for flow cytometry
Antibody Fluorochrome | Working Company Clone
dilution

CD3 FITC 1:200 BioLegend 17A2

CD19 FITC 1:100 BioLegend 6D5

CD11b FITC 1:200 BioLegend M1/70

CD11c FITC 1:100 BioLegend N418

CD49b FITC 1:200 BioLegend HMa2

FceRI FITC 1:100 BioLegend MAR-1

CD45 APC/Cy7 1:200 BioLegend 30-F11

ST2 PE 1:100 BioLegend DIH9

IL-25R APC 1:100 BioLegend 9B10

NKp46 Brilliant Violet | 1:100 BioLegend 29A1.4
421

IFN-y Brillian  Violet | 1:100 BioLegend XMG1.2
510

IL-17A Alexa Fluor | 1:100 BioLegend TC11-
700 18H10.1

IL-13 PE-eFLuor610 | 1:100 eBioscience eBio13A
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TSLPR APC 1:100 R&D FAB5461A
MHC-II I-A¢ | APC 1:1600 eBioscience M5/114.15.2
CD11c Biotin 1:200 BioLegend N418
Streptavidin | Brilliant Violet | 1:400 BioLegend N/A
421
CD8 APC- 1:300 eBiosceince 53-6.7
eFluor780
B220 PerCPCy5.5 1:300 eBioscience RA3-6B2
CD11b Alexa Fluor | 1:300 BioLegend M1170
700
CD103 FITC 1:200 eBioscience 2E7
7-amino- N/A 1:100 BioLegend N/A
actinomycin
D viability
staining
solution
(TAAD)
IL-4Ra PE 1:100 BioLegend I015F8
IL-13Ra1 PE 1:100 eBioscience 13MOKA
IL-13Ra2 Biotin 1:100 R&D 110815
Streptavidin | PE 1:100 BioLegend N/A
IFN-yRa Biotin 1:400 BioLegend 2E2
Streptavidin | APC 1:100 BioLegend N/A
¥C PE 1:100 BioLegend TUGmM2
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p-Stat3 Biotin 1:100 Santa Cruz | Tyr 705
Biotechnology

p-Stat6 Biotin 1:100 Santa Cruz | Tyr 641
Biotechnology

TGF-p1 PE 1:100 BioLegend Tw7-16B4

Fc block N/A 1:200 BD 2.4G2
Biosciences

Table 2.4 Viral vector based vaccines and doses used to immunize mice

Virus Dose (pfu/mouse) Family
Recombinant  fowlpox | 2 x 107 Poxviridae
virus expressing HIV-1

(rFPV)

Recombinant Vaccinia | 2 x 107 Poxviridae
Virus expressing HIV-1

(rvV)

Recombinant Modified | 2 x 107 Poxviridae
Vaccinia Ankara

expressing HIV-1

(rMVA)

IL-1BR deletion variant | 2 x 107 Poxviridae
of rIMVA expressing HIV-

1 (rMVA-AIL-1BR)

Influenza A vector 500 Orthomyxoviridae
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Recombinant

(RV)

human

Rhinovirus serotype 1A

5x10° TCIDsp

Picornaviridae

Adenovirus 5 (Ad5)

2x 107

Adenoviridae

Table 2.5 Reagents for Fluidigm 48.48 Biomark Assay

Preamplification  mix

(single cell) per

reaction (5ul)

Cells Direct 2x

reaction buffer

2.5 uL

Invitrogen

SuperScript® Il
RT/Platinum®

Taq Mix*

0.1 uL

Invitrogen

0.2x pooled

assays

1.25 pL

Invitrogen

SUPERase*
In™ RNase

Inhibitor

0.05 uL

Invitrogen

DEPC treated

water

1.1 4L

Ambion

Preamplification  mix
(100 cell) per reaction

(20 ul)

Cells Direct 2x

reaction buffer

10 pL

Invitrogen

SuperScript® Il
RT/Platinum®

Taq Mix*

0.4 uL

Invitrogen
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0.2x pooled | 0.5 pyL per assay | Invitrogen
assays diluted in DEPC
treated water in a
total volume of 5 uL
SUPERase- 0.2 uL Invitrogen
In™ RNase
Inhibitor
DEPC treated | 4.4 pL Ambion
water
Preamplification mix | Cells Direct 2x | 12.5 L Invitrogen
(100 cell) per reaction | reaction buffer
(25 ul) SuperScript® Il | 0.5 yL Invitrogen
RT/Platinum®
Taq Mix*
0.2x pooled | 0.5 pyL per assay | Invitrogen
assays diluted in DEPC
treated water in a
total volume of 6.25
ML
SUPERase- 0.25 yL Invitrogen
In™ RNase
Inhibitor
DEPC treated | 5.5 pL Ambion
water
Tagman gPCR mix 20X Tagman 0.5puL Thermofisher
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per reaction (10 uL) gene expression
assay
2X Tagman 5uL Applied
PCR universal Biosystems
mastermix
Diluted cDNA 1L See section
template 235
DEPC treated 3.5 L Ambion
water
Fluidigm sample 2X Tagman 25uL Applied
premix per inlet (5 uL) | PCR universal Biosystems
mastermix
20X GE sample | 0.25 yL Millennium
loading reagent Biosciences
cDNA 2.25 L
Fluidigm assay 20X Tagman 25uL Thermofisher
premix per inlet (5 uL) | gene expression
assay
Assay loading 2.5 uL Millennium
reagent Biosciences

Table 2.6. Primer probe sets used for Fluidigm Biomark 48.48 gene

expression assay

Gene symbol

Encoded protein

Assay ID

Reference

sequence
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Ifngr1 [FN-y receptor | Mm00599890_m1 NM_010511.2
subunit 1

Icos Inducible  T-cell | Mm00497600_m1 | NM_017480.2
costimulatory
(ICOS)

Tgfb1 Transforming MmO01178820_m1 NM_011577.2
growth factor beta
1

Stat6 Signal transducer | Mm01160477_m1 NM_009284.2
and activator
(STAT) 6

Stat3 STAT3 MmO01219775_m1 | NM_213660.3

NM_011486.5
NM_213659.3

Cd86 T-lymphocyte MmO00444543 m1 | NM_019388.3
activation antigen

Siglech Sialic acid binding | Mm00618627_m1 NM_178706.5
Ig-like lectin H NM_001310738.1
(SiglecH) NM_001310740.1

Rpl32 Ribosomal Mm02528467_g1 NM_172086.2
protein L32

Ywhas Stratifin Mm02524691_s1 NM_018754.2

Eef2 Eukaryote MmO01171435_gH | NM_007907.2

elongation factor

2
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Chapter 3

Viral vector and route of administration determine the
ILC and DC profiles responsible for downstream

vaccine-specific immune outcomes2

This chapter is published as: Roy, S., Jaeson, M.I., Li, Z., Mahboob, S., Jackson,
R.J., Grubor-Bauk, B., Wijesundara, D.K., Gowans E.J., and Ranasinghe, C. Viral
vector and route of administration determine the ILC and DC profiles responsible

for downstream vaccine-specific immune outcomes. Vaccine 2019.

2 The chapter related ILC experiments were performed by Ms. Shaaerah Mahboob, Mr.

Irwan Jaeson and Dr. Zheyi Li.
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3.1 Abstract

This study demonstrates that route and viral vector can significantly influence the
innate lymphoid cells (ILC) and dendritic cells (DC) recruited to the vaccination
site, 24 hours post delivery. Intranasal (i.n.) vaccination induced ST2/IL-33R*
ILC2, whilst intramuscular (i.m.) induced IL-25R* and TSLPR* (Thymic stromal
lymphopoietin protein receptor) ILC2 subsets. However, in muscle a novel ILC
subset devoid of the known ILC2 markers (IL-25R" IL-33R" TSLPR") were found
to express IL-13, unlike in lung. Different viral vectors also influenced the ILC-
derived cytokines and the DC profiles at the respective vaccination sites. Both
i.n. and i.m. recombinant fowlpox virus (rFPV) priming, which has been
associated with induction of high avidity T cells and effective antibody
differentiation exhibited low ILC2-derived IL-13, high NKp46* ILC1/ILC3 derived
IFN-y and low IL-17A, together with enhanced CD11b* CD103" conventional DCs
(cDC). In contrast, recombinant Modified Vaccinia Ankara (rMVA) and Influenza
A vector priming, which has been linked to low avidity T cells, induced opposing
ILC derived-cytokine profiles and enhanced cross-presenting DCs. These
observations suggested that the former ILC/DC profiles could be a predictor of a
balanced cellular and humoral immune outcome. In addition, following i.n.
delivery Rhinovirus (RV) and Adenovius type 5 (Ad5) vectors that induced
elevated ILC2-derived IL-13, NKp46* ILC1/ILC3-derived-IFN-y and no IL-17A,
predominantly recruited CD11b- B220* plasmacytoid DCs (pDC). Knowing that
pDC are involved in antibody differentiation, we postulate that i.n. priming with
these vectors may favour induction of effective humoral immunity. Our data also
revealed that vector-specific replication status and/or presence or absence of

immune evasive genes can significantly alter the ILC and DC activity.
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Collectively, our findings suggest that understanding the route- and vector-
specific ILC and DC profiles at the vaccination site may help tailor/design more

efficacious viral vector-based vaccines, according to the pathogen of interest.
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3.2 Introduction

In the last two decades, inactivated, live attenuated, replication-competent or -
defective viruses have been extensively tested as viral vector-based vaccines.
Interestingly, poxviruses such as Modified Vaccinia Ankara (MVA), New York
strain of vaccinia virus (NYVAC), which are attenuated versions of vaccinia virus
(VV), and Avipoxvirus; canarypox and fowlpox (FPV) viruses, used in prime-boost
modalities have yielded uniquely different immune outcomes, dependent upon
the route of delivery and/or the vaccine vector combination 121.131.159.313 " For
example, heterologous rFPV/rVV compared to rVV/rFPV vaccination has shown
to induce highly poly-functional/ high avidity T cells 131.133:205314 ‘moreover, rMVA
used as a booster, as opposed to a prime has shown to induce more effective T
cell immunity 138143315 Similarly, both replication-competent and -defective
recombinant Adenovirus-based vaccines have also shown to induce T cell
responses associated with immune protection in animal models 18140316,
Moreover, viruses such as, Influenza A, Human RV, Cytomegalovirus, and
Vesicular stomatitis virus, have also been assessed as promising vaccine
delivery vehicles 220:315.317.318 |n g recent prime-boost vaccination study, mucosal
RV prime vaccination was shown to induce HIV-specific T cell responses
associated with protection in mice 24°. To improve vaccine-specific immunity,
variants of viral vectors, such as IL-1BR and/or IL18 binding protein (IL-18bp)
deletion mutants of MVA and Adenoviral vectors have also been recently tested
229,319,320 Despite the knowledge of different viral vector-based vaccines
conferring different adaptive immune outcomes, the underlying innate immune

mechanisms governing these processes at the vaccination site still remains
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elusive, specifically the role of innate lymphoid cells (ILCs) and dendritic cells

(DCs).

ILCs, although derived from a common progenitor are lineage negative in nature
and according to the transcription factors, receptors and cytokines they express,
are broadly classified into three main categories (ILC1, ILC2 and ILC3) 32", ILC2,
due to their ability to express IL-13, have been heavily studied under chronic
inflammation, allergic asthma and helminth infections 322, During intracellular
pathogen infection, ILC1 have shown to express IFN-y and tumour necrosis factor
(TNF)-a 323, whilst during extracellular bacterial and fungal infections, ILC3 have
been associated with interleukin (IL)-17A and IL-22 expression 324325 Although
ILCs have three distinct phenotypes, studies have shown that they have the
ability to interconvert between the phenotypes, according to the external stimuli,
and thus thought to be highly plastic 326327 It is postulated that ILCs can polarize
the immune response, according to the immune cell milieu or pathogen
encountered, towards Th1, Th2 or Th17 immunity. However, the role of ILCs in

viral vector-based vaccination is not well characterised.

DCs sample antigens at various body surfaces; skin, gastrointestinal tract and
lungs, and are among the first line of defence against many pathogens. Based
on the anatomical location and the invading pathogen, distinct DC subsets carry
out differential functions 328. For example; lung DCs have been extensively
studied under respiratory infections. Lung conventional CD11b* CD103- DCs
(cDCs) and cross-presenting CD11b- CD103" DCs have been associated with

CD8 T cell priming 329339, Although conflicting evidence suggest that cDCs are
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functionally more important in mounting an effective antiviral response %331,
there is growing evidence to support the notion that the activity of a particular DC
subset is determined by the specific infection. For example: control of acute
influenza virus infection is associated with CD11b- CD103" DCs cross
presentation to CD8 T cells 332, whilst, CD11b- CD8* DCs, which share a common
developmental origin with CD11b- CD103* DCs, have been associated with
activation of cytotoxic CD8 T cells against non-respiratory pathogens such as
West Nile Virus 333, In the context of respiratory syncytial virus (RSV) infection,
CD11b* and CD103" DC subsets have been involved in antigen presentation to
both CD4 and CD8 T cells 7. In addition, during Influenza A infection, CD11b*
DCs have also been associated with humoral immunity 8. Furthermore,
plasmacytoid DCs (pDCs) also have been associated with distinct functions

during viral infections 334335,

It is now well established that the route of delivery, cytokine milieu, viral vectors
and the order in which they are administered can yield vastly different adaptive
immune outcomes 128.131.133.205336  \We have previously shown that i) IL-13,
although detrimental for high avidity/poly-functional CD8 T cell immunity, was
necessary for effective antibody differentiation 122124337 i) Using rFPV
adjuvanted vaccines that transiently inhibited IL-13 activity at the vaccination site,
we have recently established that ILC2 (not other lineage* cells) were the major
source of IL-13 at the vaccination site 24 h post vaccination 338, iii) Furthermore,
using the same vaccines we have also shown that elevated IL-13 in the milieu
recruited CD11b- CD103* cross-presenting DCs, associated with low avidity CD8

T cells 29124 Therefore, in this study to further understand which specific innate
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immune cell subsets play a predominant role in shaping the downstream adaptive
immune outcomes, replicating and non-replicating viral vectors were delivered
intranasally and intramuscularly and subsequent ILC-derived cytokine profiles

and DCs subsets were assessed 24 h post vaccination.

3.3 Materials and Methods

3.3.1 Mice.

Pathogen-free 6—-8 weeks old female BALB/c mice were purchased from the
Australian Phenomics Facility, The Australian National University. All animals
were maintained, monitored daily and cervically dislocated at the endpoint
according to the Australian NHMRC guidelines within the Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes and in
accordance with guidelines approved by the ANU Animal Experimentation and

Ethics Committee (AEEC), protocol number A2014/14 and A2017/15.

3.3.2 Viral vector-based Vaccines.

Recombinant FPV, VV and MVA expressing HIV antigens described previously
were used in this study 9033 The rMVAAIL-1BR was constructed and kindly
provided by Dr. Jackson. Influenza A and Adenovirus 5 (Ad5) vectors were kindly
provided by Prof. Arno Mullbacher, JCSMR, ANU. Recombinant Human
Rhinovirus serotype 1A (RV) was kindly provided by Prof. Gowans and Dr.

Wijesundara, Basil Hetzel Institute, University of Adelaide 22°.

3.3.3 Immunisation.
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BALB/c mice were intranasally or intramuscularly immunised with 1x107 plaque
forming units (pfu) of each of the poxviruses rFPV, rVV, rMVA, rMVA-AIL-1BR;
2x107 pfu (i.n.) or 2.5x107 pfu (i.m.) of Ad5, 5x10% TCIDso of RV or 500 pfu of
Influenza A. Note that, doses used were comparable to those used in previous
studies, optimal to induce adaptive immune outcomes. Mice were vaccinated with
10 pl per nostril (i.n.) or 50 yL per leg (i.m.) under mild isofluorane anaesthetic.
rFPV, rVV, rMVA, rMVA-AIL-1BR were sonicated three times for 15 seconds on

ice at 50% capacity using Branson Sonifier 450 immediately prior to vaccination.

3.3.4 Preparation of lung lymphocytes.

Lung tissues were collected 24 h post vaccination in complete RPMI for ILC
studies as described previously 3%. For DC studies, lungs were harvested at 12,
24 and 48 hours post vaccination. Lung tissues were prepared as described
previously 238, Briefly, tissues were cut into small pieces, and enzymatically
digested for 45 min at 37°C in digestion buffer containing 1 mg/ml collagenase
(Sigma-Aldrich, St Louis, MO), 1.2 mg/ml Dispase (Gibco, Auckland, NZ), 5
Units/ml DNase (Calbiochem, La Jolla, CA) in complete RPMI. Samples were
crushed and passed through a 100um falcon cell strainer and resulting lung cell
suspensions were then treated with red cell lysis buffer followed by extensive
washing to remove the lysis buffer. Samples were then passed through gauze to
remove debris, cells were re-suspended in complete RPMI, rested overnight at

37°C under 5% CO3 as per our previous studies prior to staining 2420,

3.3.5 Preparation of muscle lymphocytes.
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Muscle tissues were harvested 24 h post vaccination in complete RPMI and
prepared as previously indicated 3. Briefly, tissues were, homogenised and
enzymatically digested for 45 min at 37°C in a digestion buffer containing 2
mg/mL collagenase, 2.4 mg/mL dispase and 5 Units/mL of DNAse in complete
RPMI. Subsequently, samples were very gently pushed through a 70 uM Falcon
cell strainer, to avoid debris. Resulting cell suspension was then washed,

resuspended in complete RPMI and rested overnight as per lung prior to staining

124,205

3.3.6 Evaluation of lung and muscle ILCs using flow cytometry.

Monoclonal antibodies FITC-conjugated anti-mouse CD3 (T cells) clone 17A2,
CD19 (B cells) clone 6D5, CD11b (macrophages and dendritic cells) clone
M1/70, CD11c (dendritic cells) clone N418, CD49b (NK, NKT, T cells) clone
HMa2, FceRla (Mast cells and Basophils) clone MAR-1 (all linage positive
markers were selected as FITC), PE-conjugated anti-mouse ST2/IL-33R (clone
DIH9), APC-conjugated IL-25R (clone 9B10), APC/Cy7-conjugated anti-mouse
CD45 (clone 30-F11), Brilliant Violet 421-conjugated anti-mouse CD335 (NKp46)
(clone 29A1.4), Brilliant Violet 510-conjugated anti-mouse IFN-y (clone XMG1.2),
Alexa Fluor 700-conjugated IL-17A (clone TC11-18H10.1) were obtained from
BioLegend. PE-eFluor 610-conjugated anti-mouse IL-13 (clone eBio13A) was
purchased from eBioscience and APC- conjugated anti-mouse TSLPR R&D
systems. ILC2 and ILC1/3s were stained separately to avoid fluorochrome
overlap. Specifically, FITC-conjugated lineage cocktail antibodies and APC/Cy7-
conjugated anti-mouse CD45 were used in both ILC2 and ILC1/ILC3 staining. For

lung and muscle ILC2 staining, PE-conjugated anti-mouse ST2/IL-33R, and PE-
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eFluor 610-conjugated anti-mouse IL-13 were used and for muscle ILC2 staining,
additionally APC-conjugated IL-25R and APC-conjugated anti-mouse TSLPR
were used. Brilliant Violet 421-conjugated anti-mouse NKp46, Brilliant Violet 510-
conjugated anti-mouse IFN-y, Alexa Fluor 700-conjugated IL-17A were only used
in ILC1/3s staining. Briefly, for intracellular staining, samples were treated with
Brefeldin A for 5 hours, washed, cell surface staining was performed followed by
and intracellular staining after fixing and permeabilising the cells as per our
previous protocols'4. Once the staining was completed all samples were fixed
with 0.5% paraformaldehyde, 1.4 x 108 events from each lung sample were
acquired and 3.0 x 10° events were acquired for muscle on a BD LSR Fortessa.
Data were analysed using Tree Star FlowJo software (version 10.0.7) using

gating strategies indicated in Chapter 3 Appendix Figures 1 and 2.

3.3.7 Evaluation of lung DCs using Flow cytometry.

2x10° cells were blocked with anti-mouse CD16/CD32 Fc Block antibody (BD
Biosciences, USA) for 20 min at 4°C and cells were surface stained with APC
conjugated MHCII I-Ad (e-Biosciences, USA), biotin conjugated CD11c (N418
clone, Biolegend, USA), followed by streptavidin Brilliant violet 421 (Biolegend,
USA) and other DC markers CD8 APC-eFluor780 (53—6.7 clone, ebiosciences,
USA), B220 PercpCy5.5 (RA3-6B2 clone, e-Biosciences, USA), CD11b
AlexaFluor 700 (M1170 clone, Biolegend, USA) and CD103 FITC (2E7 clone, e-
Biosciences, USA) for 30 min on ice. Cells were resuspended in PBS and
analysed using BD LSRII flow cytometer Becton Dickinson, San Diego, CA).
5x10° events per sample were collected and results were analyzed using FlowJo

software version 10.0.7, as described in Figures 3.1 — 3.3. Note that, live/dead
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staining was also performed using viability dye 7-amino-actinomycin D (7-AAD

Biolegend, USA) (Figures 3.1).

3.3.8 Statistical analysis.

Cytokine expression by ILCs was calculated as a percentage of the parent ILC
subset. To depict the differences in IL-13 expression, following i.n. vs i.m.
vaccinations, number of ILC2 expressing IL-13 were also back calculated to
CD45* population and normalized to 1x10°. The muscle ILC2 subset percentages
were calculated as (subset of interest/Lin- population x 100%). The DC subsets
were represented as a percentage of total MHC-1I* CD11c* DCs. The p-values
were calculated using two-tailed paired parametric student’s t-test, unpaired
parametric student’s t-test or Ordinary One-way ANOVA with Tukey’s multiple

comparison post-test. All experiments were repeated minimum 2-3 times.

3.4 Results

3.4.1 Different viral vector-based vaccines can induce uniquely different
ILC2-derived 13 profiles following intranasal and intramuscular
vaccination.

BALB/c mice were vaccinated intranasally or intramuscularly with four different
poxviral vectors rFPV, rMVA, rVV and rMVAAIL-1BR and three non-poxviral
vectors Influenza A, Human rhinovirus (RV) and Adenovirus type 5 (Ad5).
Percentage of lung and muscle ILC2 and their corresponding IL-13 expression
were assessed 24 h post vaccination. ILC2 were gated as CD45* FSC'°¥, SSC'ov,
lineage™ ST2/IL-33R"* cells for lung (Chapter 3 Appendix Figure 1) or lineage

IL-25R*, TSLPR* and ST2/IL-33R* for

63



ON4€01ad

q11do
OW49LLad
q1Ldo

V-0s4 V-084

W0ST  NOOZ  w0ST oot %05 ] A0ST A00Z  NOST W00 405 o
L L 1 L L L L 1 I 1

OW4211dd
211dd
qLLdo
OW44911dO
q11do

' (a)
V-0S4 I V-0S4 v-0S4 Vv-0S4 V-0S4
]

52 w002 w0t 001 05 L} 05T
L f 1 L i L

1002 wst A00T A0% L] HOSZ EILH w01 ot 0% a A05T 2002 Wost AT A0S L] sz nooz
. 3 mo_u P nu_u
P, = o5
I e ¢d
E ot @] E ot W Fus ()
= T w
m ¢ Lt €
Lo = Lo = >
O =007
Lo Lo ed o : . - b (e)




19y Jew adeIns pajedlpul yoea 1o} S|0uod QN4 0}
paredwod pade|d alem sales ‘siasgns Od (8d) -0229-91TAD ‘(2d) +£0TAD -ATTAD ‘(9d) -£0TAD .ATTAD U0 paed Jayuny
aIam (Sd - +OTTAD +pV-I-1I-OHN) SOd [elol (g) 'sjonuod O 8yl 01 paredwod uoissaidxs OTTAD 1o} pasAjeue pue (yd)
APV-1-1I-OHIN uo pareb uayl aiem s||8d “(V-0S4 pue H-OSH) Janeds plemio) uo paseq (gd) uoisnjoxa 18|gnop Agq pamoj|o)
‘S|I90 -AQvV-. uo pareb (zd) s||192 s|qein ‘(Td) S||@2 uo pareb-aid s||82 moys sio|ld () ‘uonesiunwuwi ‘u'l Buimojjo) Buni

ulI s1@sgns DA Jo uonenjeaa ul pasn Abajens buneb Answolfo moj4 "s1asqns DQ o buneb Ansawoilhko mol4 "T°S ainbiH



OW4 8ad 8ddo 8d0 OWn4 8ad

ot 0 N1 ot S0 0 [

g

R

LAY

q11Ldo
q11ado
q11as

ON44911dd
CW4911dd

OW4 aLLad
q11ao
aLLao

OW4 911aD
Q1100

q11Ldo
q11ad
q11Ado

OW4 a11ao
OW4 91La0

VAN (9) Add1 (e)



‘sajdwes AAJ pue HYT-TIVVAINI ‘pasiunwiwiun 1o} pasn alam YA pue Ad4J 10} pasn Sj01u0d ONH
aYl ‘s1asqgns DA a1y1vads Jo sulaned aduadsalon)) Jo Alejiwis ayl uo paseg "s1asqns DA bunj uatayip Anuapl 01 S|01U0D
OIN4 2u10ads 10198A [eliA Ag paulwialap 8dD pue 0zzg ‘S0TAad ‘aTTdad Siotew abeaul| Jo uoissaldxa juanbasgns Ag
pamojjo) (,OTTAD +PV-I-1I-DHIN) S|199 dnpusp dvads-uabinue [e101 uo pareb-aid alam s||8D "SPoYl1aN ul Jad se Anawolfo
Mo|} AQ parenjeAa alam S)asgns D pue adiw 29/g1vg paziunwiwil wolj paisaatey atom sbunt WAL () pue Ad4d (e)
yum uonesiunwuwi 1sod yz Ajeaioads sjonuod QN4 01 pasedwod siasgns DA pareb Buimoys sjojd SO+ aanelussalday

"19sqNns DA Yyodea uo arehb 01 sajdwes pareuldden YA pue Ad-dJd 01 paljdde ONA 214109dS-10109A [RIIA "2°E 24nbi4



OWN4 8dD

OW4 €01Add

ot ot ot o T

qLao

OW441Lad

OW4 a11do

ONn44911Ldo

V ezuanju|

q11do

q11do

q11do

OW4 8dD

q11do

OW449L1dd

q11Aas

OW4 91Ldd

q11ad

OIN4 911ad

SpY

q11do

q11as

q11as



‘dnolb AY 2yl 0] paljdde alam Gpy
10} pasn sjo.u0d QN4 8yl ‘suianed aduadsalony) jo Arejiwis ay) uo paseg "siasqns D@ Bun| uaiayip Ajnuspi 01 S|0JU0D
OWH 2i198ds 10108A [eliA AQ paulwialap 8D pue 0zzg ‘€0TdD ‘aTTdd sioxrew abeaul jo uoissaidxa juanbasgns Aq
pamo||o} (OTTAD +PV-I-1I-DOHIA) S[192 dnupuap oyvads-uabnue [e1o) uo pajeb-aid alam s||8D "SPOYIBIN ul Jad se AnawoiAd
MoJ} AQ parenjens alam s1asgns D pue adiw 9/gTvg paziunwiwi woly palsaniey aiam sbunT 'y ezuanyul (q) pue gpy (e)
yum uonesiunwuwi 1sod yyz Ajjeaiioads sjonuod QN4 01 paredwod s1asqns D paleb buimoys s1ojd SOV anneuasalday

"19sqns DA Yyoea uo a1eb 01 dnoub pajeuldden v ezuanjju] pue gpy Buimoys QN4 21198ds 10198A [elIA €' ainbi-



muscle (Chapter 3 Appendix Figure 2), as indicated in Materials and Methods
and Li et al 2018 338, Among all the vectors tested, following i.n. delivery, Influenza
A vector recruited the highest percentage of Lin~ ST2/IL-33R* ILC2 to the
vaccination site (lung mucosae). In contrast, RV and Ad5 recruited the lowest
percentage of ILC2, which was much lower than unimmunized control (p=0.0014
and p=0.0011 respectively) (Figures 3.4a and Chapter 3 Appendix Figure 3).
However, despite this, RV and Ad5 expressed elevated IL-13 levels, which were
similar to rMVA and Influenza A (Figures 3.4b and c). Among the three poxviral
vectors tested, the highest IL-13 level was detected in rMVA (rFPV vs rMVA
p<0.0001, rMVAAIL-1B8R vs rMVA p<0.0001), whilst rMVAAIL-1BR showed the
lowest (rFPV vs rMVAAIL-1BR p=0.4159) (Figures 3.4b and c). It is also
noteworthy that, all the vectors showed significantly elevated IL-13 expression by
Lin- ST2/IL-33R* ILC2 compared to the unimmunized control (rFPV p=0.0028;
rMVA p<0.0001; rMVAAIL-1BR p=0.0412; Influenza A p<0.0001; RV p<0.0001;

Ad5 p<0.0001) (Figures 3.4a-c).

Following i.m. vaccination, mainly IL-25R* ILC2s and TSLPR* ILC2, ranging from
0.25% to 2% were detected. In the context of IL-25R* ILC2, rMVA and Ad5 vector
vaccination showed significantly elevated numbers compared to unimmunised
control (p=0.0183 and p=0.0178 respectively). Furthermore, Ad5 vaccination also
showed higher proportion of IL-25R* ILC2s compared to influenza A (p=0.0004)
(Chapter 3 Appendix Figure 4). Interestingly, rMVAAIL-1BR (1.8% average)
showed a significantly elevated proportion of TSLPR* ILC2 compared to rFPV
and rMVA vaccination (p<0.0001 and p=0.0240 respectively) (Chapter 3
Appendix Figure 4). Ad5 also showed elevated TSLPR* ILC2s compared to

rEPV and influenza A vaccination (p=0.0103 and p=0.0006 respectively)
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(Chapter 3 Appendix Figure 4). Following i.m. vaccination, similar to our
previous studies extremely low or no ST2/IL-33R* ILC2 were detected with all

vaccine groups tested (Chapter 3 Appendix Figure 4).

Surprisingly, following i.m. delivery, canonical ILC2 subsets (IL-25R*, TSLPR*)
were found to express marginal IL-13. In contrast, compared to the unimmunised
control, a not yet defined ILC2 subset that lacked IL-25R, ST2/IL-33R and TSLPR
were found to express IL-13 (Chapter 3 Appendix Figures 5 and 6). Out of the
vectors tested, Ad5 showed remarkably higher proportion (2 to 3-fold) of IL-25R"
IL-33R" TSLPR cells expressing IL-13 (p<0.0001) (Chapter 3 Appendix Figure
5), which was comparatively lower than i.n. Ad5 vaccination (Figure 3.4b). It is
noteworthy that, the ILC2-derived IL-13 expression by each vector was
significantly higher following i.m. delivery compared to i.n. delivery. (Note that:
The parent ILC2 population in the i.m. groups were much greater than the i.n.
ST2*IL-33R* ILC2s. Thus, the difference in IL-13 expression by these two ILC
subsets were also represented normalised to the CD45* subset, described in

materials and methods (Chapter 3 Appendix Figure 4d).

3.4.2 Poxviral and non-poxviral vectors showed significantly different
ILC1/ILC3- derived IFN-y and IL-17A expression profiles.

Our recent intranasal rFPV vaccination studies have shown that the transient
inhibition of ILC2-derived IL-13 at the vaccination site can directly impact the level
of IFN-y and IL-17A expression by NKp46® and NKp46 ILC1/ILC3s at the
vaccination site 24h post vaccination 338. Hence, we next investigated the
induction of IFN-y and IL-17A expression by ILC1/ILC3s by different viral vaccine
vectors as per indicated in Materials and Methods using flow cytometry gating
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strategies described in Chapter 3 Appendix Figure 1. Following i.n. vaccination,
although no significant differences in the percentages of NKp46* ILC1/ILC3s
were detected compared to the unimmunized control (Figure 3.5a), compared to
Influenza A, Ad5 showed significantly reduced numbers of NKp46* ILC1/ILC3s
(p=0.042). Whist rMVAAIL-1BR recruited NKp46* ILC1/ILC3s similar to rFPV,
rMVA recruited significantly lower numbers of NKp46* ILC1/ILC3s compared to
rFPV (p=0.036) (Figure 3.5a). In the context of IFN-y expression by NKp46*
ILC1/ILC3s, RV induced the highest (average 14.5%), followed by Ad5 (average
5%) and rFPV (average 2.9%) (Figure 3.5b and c). Unlike rFPV, the deletion
mutant rMVAAIL-1BR and rMVA showed significantly lower IFN-y expression
(p=0.0187, and 0.0011 respectively), which was also lower than the unimmunized
control (p=0.0086 respectively) (Figure 3.5b and c). Expression of IFN-y by

Influenza A was similar to that of the unimmunized control.

Interestingly, following i.n. delivery 95-98% ILC1/ILC3s were found to be NKp46-
(Figure 3.6a). Although there were no differences observed between the
numbers of NKp46~ ILC1/ILC3s recruited by any of poxvirus vectors (Figure
3.6a), IFN-y expression was vastly different. rFPV was amongst the highest
inducers of IFN-y expression by NKp46-ILCs (Figure 3.6b and c), whilst showing
modest IFN-y expression also by NKp46* ILCs (Figure 3.6b and c). Out of all the
vaccine vectors tested, rMVAAIL-1BR showed the lowest IFN-y expression by
NKp46- ILC1/ILC3s (Figure 3.6b and c). Although Influenza A recruited
significantly lower numbers of NKp46- ILC1/ILC3s compared to RV and Ad5
(p=0.0004, p<0.0001 respectively), it induced the highest IFN-y expression
among the non-poxviral vectors (Figure 3.6b and c). Interestingly, the IFN-y

expression by NKp46- ILC1/ILC3s was very similar between Influenza A and
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rFPV vaccinated groups (Figure 3.6b and c). It is noteworthy that, although the
unimmunized control showed elevated NKp46- ILC1/ILC3 numbers, low or no
expression of IFN-y was observed (Figures 3.6a-b and Chapter 3 Appendix
Figure 3). Remarkably, rMVAAIL-1BR induced the highest IL-17A expression by
both NKp46™ (Figures 3.7a and ¢) and NKp46-ILC1/ILC3 subsets (Figures 3.7b
and d). rMVA and Influenza A vectors induced modest IL-17A expression by both
these subsets (Figure 3.7), whilst rFPV, Ad5 and RV showed no IL-17A
expression, similar to the unimmunized control (Figures 3.7 and Chapter 3

Appendix Figure 3.

Unlike i.n., following i.m. delivery, the proportion of NKp46* ILC1/ILC3 in the
muscle was very minimal (0-0.8%) across all vaccine vectors (Chapter 3
Appendix Figure 7a), with significant differences observed between rMVA
compared to rFPV, rIMVAAIL-18R and Ad5 (p=0.0087 p=0.0049, and p=0.0397
respectively). Additionally, only rFPV and Influenza A vaccinated groups showed
any expression of IFN-y by NKp46* ILC1/ILC3 (Chapter 3 Appendix Figure 7b).
Interestingly, IFN-y expression by these subsets was much greater following i.m
versus i.n. vaccination (rFPV i.m. ~12.06% i.n. 2.5% and influenza A i.m. ~4.67%
i.n.~1.5%) (Chapter 3 Appendix Figure 7b and 3.2). In the context of IL-17A
expression by NKp46* ILC1/ILC3, only Influenza A vaccinated animals showed
any significant expression (average 8.39%, p<0.0001 influenza A vs. all vaccine
vectors) (Chapter 3 Appendix Figure 7c). Of the poxviral vectors tested,
rMVAAIL-1BR vaccinated group also showed an increase in the proportion of
NKp46* ILC1/ILC3 expressing IL-17A (average 0.89%) although not significant

and was similar to what was observed with i.n. delivery (average 1.0%).
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Moreover, following i.m. delivery, different IFN-y and IL-17A expression profiles
were detected by NKp46- ILC1/ILC3 (Chapter 3 Appendix Figure 7e and f).
Unlike i.n. delivery, very low IFN-y expression was detected following i.m.
vaccination, and only influenza A (~0.01%) and Ad5 (~0.03%) showed any IFN-y
expression (Chapter 3 Appendix Figure 7e and f). All vectors showed different
NKp46- ILC1/ILC3-derived IL-17A expression profiles. Specifically, out of the
vectors tested, Ad5 and rMVAAIL-18R showed the highest expression (~0.58%
and ~0.84% respectively) (Chapter 3 Appendix Figure 7f). Interestingly, the
NKp46- ILC1/ILC3-derived IL-17A expression by the rMVAAIL-1BR group was
significantly elevated compared to unimmunised, rFPV, rMVA and influenza A
(p<0.0001, p=0.0064, p<0.0001, and p<0.0001 respectively) (Chapter 3
Appendix Figures 6 and 7f). Whilst, Ad5 showed significant differences
compared to unimmunised, rMVA, and influenza A vaccinated groups (p=0.0048,

p=0.0172 and p=0.0219 respectively) (Chapter 3 Appendix Figure 7e and f).

3.4.3 rFPV and rMVAAIL-1BR lead to preferential recruitment of CD11b*
CD103" conventional DCs to the lung mucosae, 24h post intranasal
vaccination.

Our previous studies have shown that transient inhibition of IL-13 at the
vaccination site can significantly modulate DC recruitment and resulting avidity of
CD8* T cells, including B cell immunity 9122124 Since we have shown that ILC2
are the major source of IL-13 at the vaccination site and this is also viral vector-
dependent 338, in this study we have also assessed the influence of viral vector
on lung DC recruitment 24h posti.n. vaccination as indicated in Figures 31.-3.3.
In this study, four different lung DC subsets was assessed (CD11b*CD103" cDC,
CD11b- CD103" cross-presenting DC, CD11b- CD8* cross-presenting DC and
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CD11b-B220* pDC (not other immune cell infiltrates)). Percentage of each DC
subset, for a given viral vector was calculated as a proportion of total MHC-II*

CD11c* DCs, as described in Materials and Methods.

In agreement with Trivedi et al 2014, these studies also showed that rFPV
recruited significantly elevated proportions of CD11b* CD103- cDCs compared to
rMVA and rVV (p=0.0062, p=0.0322 respectively). Additionally, the deletion
mutant rMVAAIL-1BR recruited the highest percentage of CD11b* CD103- cDCs,
whilst Ad5 recruited the lowest (Figures 3.8a and b). Furthermore, CD11b*
CD103" cDC recruitment by Influenza A was similar to that of rFPV, rMVA, rVV
and RV (Figures 3.8a and b). Compared to the unimmunized control, rFPV,
rMVAAIL-1BR and Influenza A showed significant elevated CD11b* CD103- cDC

recruitment (p=0.0069, p<0.0001 and p=0.0077 respectively).

3.4.4. Intranasal rVV vaccination recruited elevated numbers of CD11b-
CD103" and CD11b- CD8* cross-presenting DCs to the lung mucosae 24 h
post vaccination.

Unlike CD11b*CD103" cDC recruitment, rFPV induced significantly lower CD11b"
CD103* cross-presenting DCs compared to that of the unimmunized control
(p=0.0224), and these values were significantly lower than that of rVV, Influenza
A and RV vectors (p<0.0001, p=0.0065 and p<0.0001 respectively) (Figures
3.8a and c). Interestingly, compared to all viral vectors tested, rVV recruited the
highest percentage of CD11b- CD103" cross-presenting DCs to the lung
mucosae 24 h post vaccination (Figures 3.8a and c). Whilst, rFPV recruited the
lowest number similar to rMVA, rMVAAIL-1BR and Ad5 (Figures 3.8a and c).

Furthermore, the proportion of CD11b- CD8* cross-presenting DCs recruited by
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all the vaccine vectors showed a comparable profile to that of the CD11b- CD103*
cross-presenting DCs, where rVV showed the highest proportion of CD11b- CD8*
cross-presenting DCs (Figures 3.8a,c, 3.9). It is noteworthy that the cross-
presenting CD11b- CD103* DCs recruited by rVV, Influenza A and RV were
significantly higher than unimmunized control (p<0.0001, p=0.0067 and p=0.0113
respectively) (Figures 3.8a and c). Whereas, cross-presenting CD11b- CD8*
DCs recruited by rVV and Influenza A although were significantly higher than
unimmunized control (p<0.0001, p=0.0498 respectively), Ad5 recruitment was

significantly lower (p=0.0164) (Figures 3.9).

3.4.5. Compared to the other viral vectors, RV and Ad5 recruited elevated
CD11b"B220* plasmacytoid DCs to the lung mucosae 24h post intranasal
vaccination.

Next when the CD11b-B220* pDC recruitment profile was assessed, these DCs
showed a unique profile compared to the other three DC subsets examined. At
24 h post vaccination, RV and Ad5 recruited the highest percentage of CD11b-
B220* pDCs to the lung mucosae, whilst Influenza A, rFPV and rMVAAIL-1BR
showed the lowest (Figure 3.10). Among the poxviral vectors, rVV recruited the
highest proportion of CD11b-B220* pDCs whilst rFPV recruited the lowest, and
rMVA and rMVAAIL-1BR showed a similar pDC profile. Compared to the
unimmunised control, rVV, RV and Ad5 vectors showed significant differences in
pDC recruitment 24h post vaccination (p=0.0025, p<0.0001 and p<0.0001

respectively) (Figure 3.10).
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3.4.6. Following intranasal vaccination different viral vectors showed
different kinetic profiles 0 to 48h post vaccination.

Next, we also evaluated the DC recruitment kinetics 0 to 48 hours post
vaccination. Distinct DC kinetic profiles for each of the vectors were detected over
time. rFPV showed significant regulation of CD11b* CD103- cDCs, which was
similar to the cDC profile induced by the rMVA deletion variant (rMVAAIL-1BR),
unlike the parental rMVA (Figures 3.11a and 3.12a-b). The replication
competent rVV showed regulation of all DC subsets, with significant modulation
of cross-presenting DCs. Interestingly, cDC recruitment kinetics between rVV,
rMVA and Influenza were very similar (Figures 3.11b, 3.12a and c). Ad5
recruited a pDC profile similar to RV and a CD11b- CD8* profile similar to rvVV

(Figures 3.11b, c and 3.12d).

3.5. Discussion

This study has clearly demonstrated that not only the route of vaccination, but
also different viral vector-based vaccines can induce significantly different ILC
subsets at the respective vaccination sites 24 h post delivery. In the context of
ILC2, Lin- ST2/IL-33R* ILC2 were predominant in lung, whilst Lin- IL-25R* or/and
Lin- TSLPR* ILC2 were found in muscle 24 h post viral vector vaccination. This
was not entirely surprising as Lin~ IL-25R* ILC2 has been associated with
circulation 339340 whilst Lin- TSLPR* ILC2 is known to be skin-resident 341,
Although, Lin- ST2/IL-33R* ILC2 was the major source of IL-13 in lung, Lin™ IL-
25R TSLPR-ST2/IL-33R" ILC2s were the predominant source of IL-13 in muscle.
Interestingly, recently we have also found that following viral vector vaccination
IL-5 expression was specific to lung ILC2, not muscle (Jaeson et al. submitted),

reaffirming that ILCs can be highly plastic under different conditions (specifically
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chronic inflammatory conditions versus vaccination or infection) 326342 and why
different routes of delivery may yield uniquely different innate and adaptive

immune outcomes.

In addition to ILC2, i.n. versus i.m. vaccinations induced different proportions of
NKp46* ILC1/ILC3s unlike NKp46- ILC1/ILC3s. Specifically, significantly lower
numbers of NKp46* ILC1/ILC3s were detected in muscle compared to the lung
(~ 1% vs 4-8%), confirming that circulatory ILC1/ILC3s are scarce as opposed to
tissue resident ILCs 343. Both NKp46* and NKp46- ILC1/ILC3s were able to
express different levels of IFN-y, that were vaccine route- and vector-dependent.
Specifically, whilst both NKp46*- ILC1/ILC3 subsets were able to express IFN-y
in lung, only the NKp46® ILCs in muscle expressed IFN-y, albeit by two
vaccination groups, where the expression was in the order of rFPV > Influenza
A. Moreover, muscle NKp46- cells expressed extremely low IFN-y following
Influenza and Ad5 vaccination. Majority of i.m. delivered vectors induced
elevated ILC2-driven IL-13 and minimal ILC1/ILC3-driven IFN-y expression
compared to i.n. delivery. Additionally, our previous studies with pox-viral vectors
have shown that, compared to i.m., i.n. delivery can induce T cells of higher
avidity, associated with low IL-13 at the vaccination site 29%314.338 Furthermore,
i.n. rFPV priming has shown to induce high avidity T cells compared to i.n. rVV
and Influenza priming vaccination 131133344 (Tan, Derose et al. personal
communication). In agreement with our current study, i.n. Ad5 vaccination has
also shown comparable ILC2 gene expression profiles to i.n. rFPV, unlike i.m.
Ad5 delivery (Jaeson et al. submitted). Taken together, these findings may
explain why systemic vaccination with some viral vectors may lead to suboptimal

antiviral immunity, compared to mucosal vaccination 133:314,345.346
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Figure. 3.11. DC kinetics following intranasal viral vector based vaccination 0-48h post vaccination with rFPV, rvV
and Ad5. BALB/c mice (n=5) were i.n. immunised with rFPV, rVV and Ad5. Lungs were harvested at 12, 24 and 48 hours
post vaccination and lung DC subsets and analysed using flow cytometry as described in Materials and Methods. Cells
were pre-dated on MHC-II* CD11c* cells using fluorescence minus one (FMO) controls as described in Figures 3.1-3.3.
Line graphs (left panel) and bar graphs (right four panels) show percentage of CD11b* CD103-DCs (red), CD11b- CD103*
DCs (green), CD11b- CD8* DCs (black) and CD11b- B220* DCs (blue) recruited by (a) rFPV, (b) rvVV and (c) Ad5 to the
lung mucosae 0 to 48 hours post vaccination. Error bars represent Standard Error of mean (SEM) and p values were
calculated using One-way ANOVA followed by Tukey’s multiple comparison test for comparison between any two time
points (black lines). Statistical differences between two specific time points were determined using paired student’s t test

(grey lines). *p<0.05, **p<0.01, **p<0.001, ****p<0.0001. Experiments with each vector were repeated minimum 2-3 times
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Besides the route of delivery, each viral vector also induced a uniquely different
ILC2-driven IL-13 and ILC1/ILC3-driven IFN-y expression profiles. Specifically,
both i.n. and i.m. rFPV vaccination induced low ILC2-derived IL-13, and high
NKp46* or NKp46- ILC1/ILC3-derived IFN-y. In contrast, i.m. rMVA vaccination
induced lower ILC2-derived IL-13 compared to i.n. delivery. Knowing that, low IL-
13 is associated with improved T cell immunity, our current data may explain why
previously rMVA has been found to be more efficacious as an i.m. delivery vector
than a mucosal delivery vector 3315 Moreover, whilst i.n. delivery of rMVA,
Influenza A, RV and Ad5 induced elevated ILC2-derived IL-13, the expression of
IFN-y was lower in NKp46* ILC1/ILC3s following rMVA, Influenza A; and NKp46-
ILC1/ILCS3s following RV and Ad5 vaccinations. Interestingly, we have previously
shown that IL-4R antagonist adjuvanted vaccination that transiently inhibited IL-
13 signalling via STAT6, induced low ILC2-derived IL-13 expression associated
with elevated expression of NKp46- ILC1/ILC3-derived IFN-y 338 Additionally,
enhanced IfngR gene expression on ILC2 was also recently associated with low
ILC2-derived IL-13 (Jaeson et al. submitted). Taken together, these observations
suggest that enhanced ILC1/ILC3-derived IFN-y expression regulates ILC2-
derived IL-13 at the vaccination site, similar to the Th1/Th2 paradigm. Hence, we
propose that ILC-derived IL-13 and IFN-y balance at the vaccination site crucially

impacts the downstream vaccine-specific immunity.

Different vectors also lead to differential expression of IL-17A by NKp46* and
NKp46- ILC1/ILC3. Specifically, i.n. rMVA, rMVAAIL-1BR and Influenza A vectors
induced elevated IL-17A by both ILC1/ILC3 subsets at the lung mucosae 24h
post vaccination. However, majority of the vectors induced different levels of IL-

17A by NKp46™ ILC1/ILC3 subsets in the muscle. In asthma studies the
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importance of maintaining IL-13 and IL-17 balance has been well documented
347 Similarly, our vaccination studies have also shown that IL-13 can regulate IL-
17A expression at the transcriptional and translational level, which plays an
important role in determining the quality of T cell immunity 34¢. Knowing that i) rvV
and its derivatives (rMVA) perform better as a booster vaccine than a prime 33138
i) Influenza A prime yield poor adaptive immune outcomes (Tan, Derose et al.
personal communication) 2*4 and iii) systemic Ad5 immunization have shown to
induce less effective antiviral T cell responses 118349351 collectively our data
suggest that the early onset of high ILC1/ILC3-derived IL-17A together with low
IFN-y and high ILC2-derived IL-13 could be detrimental for inducing effective

cellular immunity.

Our study demonstrated that in addition to different ILC profiles, mucosal
vaccination with different viral vectors yielded uniquely different lung DC profiles
at the vaccination site 24 h post vaccination. We have previously shown that IL-
13 levels at the vaccination site can significantly alter DC phenotype, specifically,
inhibition of IL-13 can recruit elevated CD11b* CD103- cDCs associated with high
avidity T cells ®°. This study further substantiated our previous findings of
enhanced recruitment of CD11b* CD103" cDCs as opposed to CD11b- CD103*
cross-presenting DCs following i.n. rFPV vaccination. Moreover, moderate
proportions of CD11b- B220* pDCs were also observed with rFPV vaccination.
pDCs are known to induce antibody differentiation via IFN-y production 3¢ and
their clustering with cDCs have shown to induce efficient T cell mediated antiviral
immunity 335. We have already established that rFPV priming can induce robust
high avidity T cells and differentiated antibodies, involved in protective immunity
against viral pathogens such as HIV 122133 Thus, our current findings suggest
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that although in the context of certain viral vectors, the cDC/pDC balance may
govern the quality of T and B cell immunity, replicating vectors such as Influenza
A may employ other mechanisms (as Influenza A showed similar cDC/pDC profile

to rFPV associated with poor quality T cells).

In contrast to rFPV vaccination, rMVA lead to elevated ILC2-derived IL-13, similar
to rVV (data not shown), and both vectors significantly enhanced recruitment of
CD11bCD103* cross-presenting DCs to the lung mucosae, as shown previously
% This may explain why rMVA and rVV priming lead to low avidity T cells
following recombinant HIV vaccination '3'.133. Moreover, intranasal Influenza A,
RV and Ad5 vaccination which also lead to high ILC2-derived IL-13, preferentially
induced CD11b- CD103* cross-presenting DCs as opposed to cDCs. In a prime-
boost vaccine modality, recombinant Influenza A priming has shown to induce
enhanced magnitude of vaccine-specific T cells, however, are of low avidity
unlike rFPV priming (Tan, Derose et al. personal communication). Similarly,
recombinant Ad5 vaccination has also shown to induce high magnitude of
vaccine-specific CD8 T cells 0. Therefore, these observations suggest that
these vectors although lead to enhanced magnitude of vaccine-specific T cell
immunity (IFN-y production by T cells), may lead to low avidity T cells against
chronic infections such as HIV-1. Despite low cDCs, Ad5 and RV exhibited a bias
towards pDC recruitment. Knowing that pDC-driven IFN-y can induce effective
antibody responses, we postulate that Ad5- and RV-based vaccines could be
more efficacious in inducing humoral immunity. Similar to CD11b- CD103" cross-
presenting DCs, rVV additionally induced elevated CD11b- CD8* cross-
presenting DCs to the lung mucosa. These observations suggested that, early
induction of CD11b- CD8* cross-presenting DCs, could also be associated with
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induction of low avidity T cells. However, in the context of some pathogens, (for
example, Leishmania, and also some viruses, Influenza and HSV-1 infections),
induction of cross-presenting DCs have been associated with protective immunity
330,352,353 Thus, when designing recombinant viral vector-based vaccines, careful
selection of the vector, according to the pathogen of interest may be of great

importance.

rMVAAIL-1BR is known to induce effective memory T cell responses compared
to parental rMVA vaccination 3%4. Unlike rMVA, rMVAAIL-1BR induced low ILC2-
derived IL-13 and elevated cDCs similar to rFPV, which has shown to induce high
avidity T cells with better protective immunity. These findings indicated that
removal of a single immune evasive gene from the viral vector can significantly
alter the innate immune outcomes, specifically the ILCs and DCs, associated with
effective protective immunity. However, compared to rFPV (which showed
elevated IFN-y and no IL-17A expression), rIMVAAIL-1BR vaccination induced
suboptimal ILC1/ILC3-derived IFN-y and high IL-17A expression at the
vaccination site. It is well established that IFN-y is crucial for antiviral immunity,
and overexpression of IL-17A can lead to immune imbalance 3%. It is also known
that viral IL-18bp neutralize host IL-18 and prevent IFN-y production 3%, Thus,
the residual IL-18bp in the rMVAAIL-1BR vector could be responsible for the
observed ILC1/ILC3-derived IFN-y profile. Thus, we postulate that rMVA vector
lacking both IL-1BR and IL-18bp genes may lead to ILC/DC profiles similar to

rFPV and balanced T and B cell outcomes.

100



@s)@Sunuasaid-ssos)

@s|I9EEANPINEMOT]

leEL <«
@ET-1BY3IH
deonl guoneurdea
@saipoquue @ad ({40109 BJIN
@paienualayiq EAN
NG A
KN e < =
Ad4 v < p

@ad
HET-TEMOT

@s|PEEANPINEYSIH

@eol

@le¥L

@euguoneudep




"uolrenualapip Apoqnue annoays
paIA Aenuajod pinoo spad ‘sjeo 1 8ad Aupiae moj swnd sO@ Bunuasald ssodd ‘s|9o 1 8ad Aupiae ybiy arelsauab
SO@2 1S|Iym ‘Aj[eayioads "sawo2no sunwwi aAndepe ou0ads -aulddea Jo Aljenb syl sulwislap Ajrewnn alis uoneuIdIeA
3yl 01 paunidal slasgns D@ 'sOad Jo/pue sOQ Bunuasald-ssolo Jnidal S|PAdl £T-11 ybiy pue sOAO JO luswinioal
[enuaiajaid 01 pes| S|aAd] £T-11 MO| aJaym ‘uawiinidal D ayr soedwi Apuesiiubis naljiw ay) ul €T-7) JO |9A9] uanbasqns
3Yl '9MS uoleUIDOBA By} 1B S|BA3| £T-T1 PAAUSBP-ZDTI 98Ul SaulwIalap palalsiuiwpe J0J08A BUIDJRA [BlIA 83U "UOoITeulddeA

10199A [eJIA BuIMo||0) Y 2 8esoonw Bun| ayl 1@ Yel-ssotd Da pue DTl Jo Arewwns [eoiydeis "gr's "ainbi4



Furthermore, rVV, rMVA and rMVAAIL-1BR data clearly demonstrated that the
attenuation status of a viral vector and the presence or absence of virokines
significantly modulated the ILC cytokine expression and DC profile. The rFPV
and rMVAAIL-1BR data indicated that viral vectors that do not interfere with the
host immune system could be more efficacious at inducing vaccine-specific
immunity in humans (e.g.- Avipoxvirus compared to Orthopoxvirus). These
observations strongly highlight the notion that when designing viral vector-based
vaccines, in addition to the safety and genetic stability, inherent properties of the
viruses themselves need serious consideration (in this case, its replicative ability

within the mammalian host).

We have previously shown that ILC2s are the only source of IL-13 at the
vaccination site, 24 h post vaccination and IL-13 level in the milieu can crucially
impact the DC recruitment at the lung mucosae °°1243%_Hence, collectively our
findings suggest that, early ILC2-derived IL-13, together with ILC1/ILC3-derived
IFN-y and IL-17A, differentially impact DC recruitment/regulation at the
vaccination site (Figure 3.13), associated with adaptive immune outcomes and
this warrants further investigation. Therefore, we postulate that i) following
vaccination, ILC and DC profiles may act as predictors of downstream vaccine-
specific immunity and ii) selection of viral vector according to the pathogen of
interest (eg: virus, bacteria or parasites) may help tailor/design effective viral-

vector based vaccines against chronic pathogens.
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Chapter 4

Post viral vector-based vaccination IL-13Ra2 functions
as a master sensor on conventional dendritic cells to

regulate IL-13 in a STAT3 dependent manner. 2

This work is now published as:_Roy, S., Liu, HY., Jaeson, M.l., Deimel, L.P.,
and Ranasinghe, C. Unique IL-13Ra2/STAT3 mediated IL-13 regulation

detected in lung conventional dendritic cells, 24 h post viral vector vaccination.

Scientific Reports 2020.

% Experiments related to Figures 4.14 and 4.15 were performed by Ho-Ying Liu; and 4.16

was performed by Lachlan Deimel.
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4.1 Abstract

This study demonstrates that 24 h following viral vector-based vaccination IL-
13Ra2 functions as a master sensor on conventional dendritic cells (cDCs),
abetted by high protein stability coupled with minimal mRNA expression, to
rapidly regulate DC mediated IL-13 responses at the lung mucosae, unlike IL-
13Ra1. Under low IL-13, IL-13Ra2 performs as a primary signalling receptor,
whilst under high IL-13, acts to sequester IL-13 to maintain homeostasis, both in
a STAT3-dependent manner. Likewise, we show that viral vector-derived IL-13
levels at the vaccination site can induce differential STAT3/STAT6 paradigms in
lung cDC, that can get regulated collaboratively or independently by TGF-1 and
IFN-y. Specifically, low IL-13 responses associated with recombinant Fowlpox
virus (rFPV) is regulated by early IL-13Ra2, correlated with STAT3/TGF-p1
expression. Whilst, high IL-13 responses, associated with recombinant Modified
Vaccinia Ankara (rMVA) is regulated in an IL-13Ra1/STAT6 dependent manner
associated with IFN-yR expression bias. Different viral vaccine vectors have
previously been shown to induce unique adaptive immune outcomes. Taken
together current observations suggest that IL-13Ra2-driven STAT3/STAT6
equilibrium at the cDC level may play an important role in governing the efficacy
of vector-based vaccines. These new insights have high potential to be exploited
to improve recombinant viral vector-based vaccine design, according to the
pathogen of interest and/or therapies against IL-13 associated disease

conditions.
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4.2 Introduction

IL-13 and IL-4 share a common signalling receptor system and are known to have
overlapping as well as distinct functions 2’8, These two cytokines have been
extensively studied under allergy, asthma, helminth and parasitic infections
309,357-3%9 ]|-13 is produced by various immune cell types, specifically innate
lymphoid cells (ILC2s), CD4 and CD8 T cells 3360 and can directly impact the
function of eosinophils, basophils and dendritic cells (DCs) 36".362. Recent allergy
and asthma studies have shown that ILC2-derived IL-13 can stimulate the
migration of lung DCs to promote Th2 immunity 363, Interestingly, whilst
overproduction of IL-13 is associated with tissue pathology 34, deficiency of IL-
13 has been associated with increased susceptibility to certain skin cancers 36°.
Moreover, mounting evidence has also suggested the importance of IL-13

regulation in infection and immunity.

We have previously demonstrated that the vaccine route, viral vector combination
and cytokine milieu (level of IL-13) can significantly alter the adaptive immune
outcomes 139132133 Pox viral vector-based HIV vaccine strategies that transiently
inhibited IL-13 activity at the vaccination site, can induce high avidity/poly-
functional T cells both in mice and macaques '??'%* (Li et. al in preparation).
Interestingly, 24h post delivery of these vaccines, whilst ILC2s were found to be
the major source of IL-13 at the vaccination site 36 elevated recruitment of
CD11b* CD103" conventional DCs (cDC) to the lung mucosae were associated
with the observed adaptive immune outcomes %°. Moreover, recently we have
shown that different viral vector-based vaccines can induce unique ILC2-derived
IL-13 profiles and recruitment of different DC subsets to the vaccination site, 24
h post delivery 3¢7. Specifically, i.n. rFPV vaccination associated with low ILC2-
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derived IL-13 recruited CD11b* CD103" conventional DC (cDC) %, whilst
high/medium [LC2-derived IL-13 producers, rMVA and Ad5 vaccinations
recruited enhanced cross-presenting DCs and plasmacytoid DCs (pDCs) to the
lung mucosae, respectively. Using adoptive transfer of different DC subsets to
the lung mucosae, we have also shown that cross-presenting DCs induced low

avidity HIV-specific T cells, whilst cDC were associated with high avidity T cells

99

IL-13 can bind to IL-13Ra1 with low affinity (Kp = 30 nM) and, heterodimerize with
IL-4Ra subunit to form the Type Il IL-4 receptor complex to activate downstream
JAK1- or JAK2-/TYK2- induced STAT6 signalling 3%. Cheng et al. have also
proposed that activation of IL-13Ra1/IL-4Ra could induce STAT3 signalling
under certain IL-13 conditions '° and a recent study has shown an association
of IL-13Ra1 with STAT3 in relation to cardiac homeostasis 268, Interestingly, IL-
13Ra2, known to be the high affinity receptor for IL-13 (Kp = 440 pM) 278369,
initially thought to be a decoy receptor in mice has now been established as a
functional receptor in humans 370, Overexpression of IL-13Ra2 has been
associated with various cancers and targeted as an anti-cancer therapeutic
291,293 Although the exact signalling mechanism of IL-13Ra2 is not yet well-
characterised, in malignant glioma, IL-13Ra2 has shown to regulate activation of
STAT3 2% and initiate signalling via activation protein 1 (AP-1). Furthermore IL-
13Ra2 has also shown to induce transforming growth factor beta 1 (TGF-p1)
under certain chronic infections and autoimmune disease conditions 3°.
Recently, we have also shown that in the context of viral vector-based
vaccination, the STAT6 independent pathway (likely associated with IL-13Ra.2)

was involved in antibody differentiation 3°2. Therefore, knowing that both STAT3
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and STATG are involved in IL-13 regulation and that IFN-y can also modulate IL-
13 activity 286311371 this study focused on deciphering the IL-13 signalling
mechanisms lung cDCs employ under different IL-13 conditions (different viral
vector-based vaccination conditions), to induce vastly different adaptive immune

outcomes.

4.3 Materials and Methods

4.3.1 Mice.

Pathogen-free 6-8 weeks old female wild type BALB/c, IL-137- and STAT67 mice
on a BALB/c background were purchased from the Australian Phenomics Facility,
The Australian National University (ANU). All animals were maintained,
monitored daily, euthanized by cervical dislocation and experiments were
performed in accordance with the Australian NHMRC guidelines within the
Australian Code of Practice for the Care and Use of Animals for Scientific
Purposes and in accordance with guidelines approved by the ANU Animal
Experimentation and Ethics Committee (AEEC), protocol number A2014/14 and

A2017/15.

4.3.2 Immunisation.

BALB/c mice were intranasally immunised with 1 X 107 plaque forming units (pfu)
of rFPV, rMVA, or 2 X 107 pfu of Ad5. Mice were vaccinated with a volume of 10
Ml per nostril (total 20 ul) under mild isofluorane anaesthetic. rFPV and rMVA
were sonicated thrice for 15 seconds in ice at 50% capacity using Branson

Sonifier 450 immediately prior to vaccination.
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4.3.3 Evaluation of lung DCs and IL-4/IL-13 and IFN-y receptors using Flow
cytometry.

Lung tissues were collected 24 h post vaccination as described in Li et al. 2018
366 2 X 10° cells from each sample were blocked with anti-mouse CD16/CD32
antibody (BD Biosciences, USA) for 20 min at 4°C and cells were surface stained
with  APC-conjugated anti-mouse MHCII |-Ad (e-Biosciences, USA), biotin-
conjugated anti- mouse CD11c (N418 clone, Biolegend, USA), followed by
streptavidin Brilliant violet 421 (Biolegend, USA), anti-mouse CD11b AlexaFluor
700 (M1170 clone, Biolegend, USA) and anti-mouse CD103 FITC (2E7 clone, e-
Biosciences, USA) for 30 min on ice as previously described in 3¢7. Cells were
additionally extracellularly or intracellularly stained with anti-mouse IL-4Ra
(CD124) PE (1015F8 clone, Biolegend, USA), anti-mouse IL-13Ra1 (CD213a) PE
(13MOKA clone, e-Biosciences, USA), Biotin-conjugated anti-mouse IL-13Ra.2
(110815 clone, R&D systems, USA), followed by streptavidin PE (Biolegend,
USA), anti-mouse yc (CD132) PE (TUGm2 clone, Biolegend, USA) and biotin-
conjugated anti-mouse IFN-yRa chain (CDw119) (2E2 clone, Biolegend, USA),
followed by streptavidin PE (Biolegend, USA). For intracellular staining, cells
were fixed using Fixation buffer (Biolegend, USA) for 10 minutes at 4°C followed
by permeabilisation using 1x Intracellular staining permeabilisation wash buffer
(Biolegend, USA) for 10 minutes at 4°C prior to intracellular staining. Cells were
fixed using 1.5% paraformaldehyde followed by resuspension in PBS and
analysed using BD LSRII flow cytometer Becton Dickinson, San Diego, CA). 5
x10° events per sample were acquired and results were analyzed using FlowJo

software v10.0.7.

4.3.4 In vitro STAT3 and STATG6 inhibition assays.
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Unimmunised BALB/c lung suspensions were treated with either 100 nM of small
molecule STAT6 inhibitor (Axon Medchem) or 20 uM Stattic (small molecule
STAT3 inhibitor) in PBS overnight followed by low (100 pg/ml) or high (10,000
pg/ml) IL-13 stimulation for 3 h or 0.5 h (as mentioned in specific figures) before
evaluation of IL-4 and IL-13 receptor expression on lung DCs using flow
cytometry as described above. Biologically relevant inhibitor concentrations were

used in this study as reported previously 302372,

4.3.5 Immunofluorescence assays.

Single cell suspensions of lungs were washed to remove media and blocked with
anti-mouse CD16/CD32 Fc Block antibody (BD Biosciences, USA) for 20 min at
4°C and cells were surface stained with FITC- conjugated anti-mouse CD11c
(N418 clone, Merck, Germany), anti-mouse IL-4Ra (CD124) PE (1015F8 clone,
Biolegend), anti-mouse IL-13Ra1 (CD213a) PE (13MOKA clone, e-Biosciences,
USA), Biotin-conjugated anti-mouse IL-13Ra2 (110815 clone, R&D systems,
USA), followed by streptavidin APC (Biolegend, USA) and biotin-conjugated anti-
mouse IFN-yRa chain (CDw119) (2E2 clone, Biolegend, USA), followed by
streptavidin PE (Biolegend, USA). Cells were fixed using 1.5% Paraformaldehyde
(Biolegend, USA) and suspension cells were centrifuged onto Poly-L-Lysin
(Sigma, USA) coated glass cover slips. Cover slip containing cell pellet was
covered with 10 ul of Antifade Vectashield mounting medium with or without 4',6-
diamidino-2-phenylindole (DAPI) from Vector Laboratories, USA and mounted
onto a clean glass slide. Slides were imaged and analysed using Leica TCS SP5
confocal microscope (Leica, Germany) at 60x magnification. DAPIY CD11c*
cells were identified as viable lung DCs for receptor expression. To quantify

receptor co-expression, each CD11c* DC double positive for a given receptor
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combination (IL-13Ra1 and IL-13Ra2, IL-4Ra and IL-13Ra2, or IL-13Ra2 and
IFN-yR) was identified and quantified per imaged area as described in Figure
4.1. Proportion of each receptor combination was calculated as a percentage of
the total number of viable DCs per imaged area. Data were represented as an
average of 5 imaged areas from each experiment. To quantify IL-13/IL-4 receptor
intensity, ImagedJ software v 1.52e (for Windows) was used. During this process,
DAPI°" CD11c* cells expressing the receptor of interest were identified (Figure
4.2). Next, each cell was identified as a region of interest (ROI) and the software
generated integrated density of the ROI was used to calculate receptor intensity

as; IL-13/IL-4 receptor intensity = (Integreated density of ROI/ Area of ROI).

4.3.6 cDC sorting for Fluidigm 48.48 Biomark and qPCR assays.

Single (n=48 per vaccine group) or 500 cDCs were sorted into 5 pl or 25 pl pre-
amplification mixture respectively using a BD FACS Aria Il cell sorter, using the
gating strategy as described in Figure 4.12. The pre-amplification mixture
contained 2x reaction buffer, SuperScript® Il RT/Platinum® Taq Mix, 0.2x pooled

assays, SUPERase* In™ RNase Inhibitor and DEPC treated water per well.

Sorted cDCs in pre-amplification mixture were centrifuged at 1454 x g to release
mRNA as previously described 3%8. The cDNA was synthesised using thermo-
cycling program: 1x cycle of 50° C for 15 minutes, 95° C for 2 minutes followed
by 14- 20 cycles (for single or 500 cells) of 95° C for 15 seconds and 60° C for 4

minutes, followed by storing samples at -20° C until use.
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4.3.7 Real-time quantitative PCR (RT-qPCR) analysis of IL-4/IL-13 receptors.
RT-qPCR for 500 cells was performed using TagMan gPCR mix (containing 1 uL
of each gene expression assay (primers listed in Table 2.6), 5 uL of 2X TagMan
Universal PCR master mix, 1 uL cDNA and 4.5 pL of DEPC treated water), using
a 7900HT thermocycler program: 50°C for 2 minutes, 95°C for 10 minutes, and
45 cycles of 95°C for 15 seconds and 60°C for 1 minute. The targeted primer-
probe FAM fluorescence was detected by normalising to ROX (6- carboxy-X-
rhodamine) intensity. SDS 2.4 for Windows software was used to obtain the cycle
threshold (Ct) values (ranging from 0 to 45) and the mRNA amplification profiles.
Ct values were subject to quality control using SDS 2.4 analysis software where,
0 indicated a high expression and values closer to 45

indicated low expression levels.

4.3.8 Fluidigm 48.48 Biomark gene expression assay.

Fluidigm 48.48 gene expression assay was performed as previously described
308 Briefly, prior to loading the integrated fluidic chip (IFC) (Fluidigm), the cDNA
was diluted 1:1 cDNA:DEPC treated water. Following chip priming, 2.5uL of
diluted cDNA (in DEPC water) and 0.25 pL of 20X GE Sample Loading Reagent
was loaded onto the sample side of the chip. Subsequently, 2.5 yL of each gene
expression assay (Figure 4.3) and 2.5 yL of 20X GE Assay Loading Reagent
was loaded onto the assay side of the IFC. Next, the IFC was loaded onto the
IFC Controller MX and gene expression assay was performed and analysed
using the GE 48.48 Standard.pcl program on the Fluidigm Biomark™. The
fluorescence values obtained from the Fluidigm Biomark™ were normalised to

ROX (6- carboxy-X-rhodamine) intensity. Ct values (ranging from
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0 to 40) were subject to quality control using the Biomark Real-time qPCR
analysis software where, 0O indicated a high expression and values closer to 40
indicated low expression levels. Binary analysis was performed to determine the
proportion of cells expressing a certain gene using RStudio and Microsoft Excel

2016 software and analysed using GraphPad Prism 7.0.

4.3.9 Statistical analysis.

Lung MHC-II" CD11c* CD11b* CD103  cDC proportions were represented as a
percentage of total MHC-II* CD11c* DCs and receptor proportions were
calculated as a percentage of parent cDC population as described in 3¢7. The p-
values were calculated using either two-tailed, paired parametric Student’s t-test
or Ordinary One-way ANOVA with Tukey’s multiple comparison post-test. Gene
expression was first analysed as percentage of cDCs expressing a gene of
interest. For each gene of interest, the Ct value for the housekeeping gene (/132)
was subtracted from each sample Ct value to determine ACt, and the gene
expression level was calculated as 40—-ACt or 45-ACt. All experiments were
repeated minimum two times. Principal Component Analysis (PCA) was
performed to analyse the relationship between the genes, using a correlation
matrix created using Spearman’s rho (p) as described previously 3%. To
determine the co-expression profile with respect to only Stat3, Stat6, tgfb1 and
Ifngr1, following PCA, a k-means clustering algorithm using RStudio was used to
identify clusters. To determine statistical significance with respect to co-
expression studies, a Fisher’'s exact test was implemented with False Discovery

Rate (FDR) correction.

4.4 Results
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4.4.1 rFPV vaccination significantly up-regulated IL-13Ra2 expression on
lung cDCs 24 h post i.n. vaccination

Knowing that rFPV priming, which induced low ILC2-derived IL-13 and CD11b*
CD103 cDCs 3¢, was associated with high avidity T cells %, this study aimed to
unravel the underlying mechanisms by which IL-13 regulated cDC recruitment,
following intranasal (i.n.) rFPV vaccination. Hence, IL-4/IL-13 receptor expression
on lung cDCs (MHC-II* CD11c* CD11b* CD103") were evaluated 24 h post
delivery using flow cytometry following gating strategy described in Figure 4.4.
Data revealed that infiltrated lung cDCs in response to 24 h of i.n. rFPV
vaccination exhibited significantly higher proportion of intracellular and
extracellular expression of IL-13Ra2 compared to the unimmunised control
(p<0.0001; Figure 4.5a and b). In the context of other IL-4/IL-13 associated
receptors, IL-4Ra, IL-13Ra1 and yc were marginally or not expressed on cDCs
(p<0.001; Figure 4.5a and b). Upon vaccination although intracellular IL-13Ra.1
expression was up-regulated compared to the unimmunised control (p=0.0019),
no such difference was observed extracellularly (Figure 4.5a and b). Moreover,
unlike the other receptors, significantly higher IL-13Ra2 density was also
observed on vaccinated lung cDCs compared to the unimmunized control
(p=0.0006) (Figure 4.5c and d). Note that to validate the specificity of IL-4/IL-13
receptor antibodies, expression of these receptors was assessed on several
different immune cells as well as tissue types. Interestingly, elevated IL-13Ra.2
expression was only observed on vaccinated lung DCs not splenic (systemic)
DCs or other immune cells (CD4* T cells, CD8* T cells and B220* B cells) tested
from both tissue types (Figures 4.6 and 4.7), indicating that the IL-13Ra2

expression pattern was lung DC-specific.
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Interestingly, gPCR analysis of IL-4/IL-13 mRNA expression on lung cDCs at 24
h post rFPV vaccination revealed that //73ra2 mRNA expression was significantly
lower (associated with high Ct) (Figure 4.5e and 4.8) compared to all the other
receptors, where /l4ra and gC mRNA expression levels were much greater than
I113ra1 and /113ra2 (/l13ra2 vs ll4ra p=0.0034, //13ra2 vs gC p=0.0018), (Figure
4.5e). However, in the context of IL-13Ra2, at 72 h post rFPV vaccination,
elevated mRNA followed by reduced protein expression was observed (inverse
to 24h) (Figure 4.5f and g), indicative of a non-linear mRNA-protein regulation

of this receptor.

To further confirm the expression profiles of IL-13Ra2, IL-13Ra1 and IL-4Ra 24
h post rFPV vaccination on lung DCs, immunofluorescence staining was also
performed as described in methods and Figure 4.9a. Data showed that elevated
proportion of lung CD11c* DCs expressed IL-13Ra2, compared to IL-13Ra1 or
IL-4Ra, (p<0.0001) in accordance with flow cytomtery data (Figure 4.10a and

b).

4.4.2 IL-13 stimulation conditions lead to differential expression of IL-13Ra1
and IL-13Ra2 on CD11c”* lung DCs

As different viral vector-based vaccines have shown to induce different levels of
IL-13 at the lung mucosae, which influence DC activity 37, in vitro IL-13
stimulation was performed to mimic these vaccination conditions in order to study
the effect of IL-13 on IL-4/IL-13 receptors. Flow cytometric analysis showed that
when unimmunized lung cells from BALB/c mice were stimulated with a range of
IL-13 concentrations, at different time intervals, IL-13Ra1 and IL-13Ro2 were

differentially expressed. Within 30 minutes of low IL-13 (100
126
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pg/ml) stimulation, IL-13Ra2 was expressed, and was sustained even at 10000
pg/ml (10 ng/ml) IL-13 concentration (Figure 4.11a). In contrast, only very high
IL-13 concentrations, 10000 pg/ml (10 ng/ml) lead to the expression of IL-13Ra1
and the expression was time dependent, where at 6h the expression level was
similar to the baseline control, unlike IL-13Ra2 (Figure 4.11b). Confocal imaging
as described in methods further confirmed that very high IL-13 10000 pg/ml (10
ng/ml) can induce elevated expression of IL-13Ra1 on lung CD11c* DCs
compared to no or low IL-13 (100 pg/ml) conditions (p<0.0001) (Figure 4.11c top
and bottom panels). In contrast, both high and low IL-13 conditions, showed no
difference in IL-13Ra2 expression on lung CD11c* DCs, consistent with flow
cytometry (Figure 4.11c top and middle panels). Moreover, an average 77% and
15% of lung CD11c* DCs were found to co-express IL-13Ra2 and IL-13Ra1
under high and low IL-13 conditions respectively (Figure 4.11d). Confocal
microscopy also further confirmed that there was no IL-4Ra activity following IL-

13 stimulation (data not shown).

4.4.3 STAT3 inhibition significantly up-regulated IL-13Ra2 and down-
regulated IL-13Ra1 on lung DCs

IL-13Ra1 signalling is known to activate STAT6 278, and in some cases STAT3
36837 and IL-13Ra2 has shown to activate STAT3 and TGF-p1 299309,
Furthermore, our recent studies have shown Stat3, Stat6 and Tgfb1 gene
expression on lung ILC2s, 24 h following viral vector vaccination (Jaeson et al.
submitted). Knowing that ILC2-derived cytokines, especially IL-13, can impact

DC recruitment %7 in this study, 12 regulatory genes were assessed by single

136



High IL-13

Low IL-13
100pg/ml

()

10000 pg/ml

9TTAD

x N
A X
\ \

High
IL-13

= ©
S
3
—  +CPUET-T +TOUET-I
2 +OTTAD %
o
o;%(:g) oo Q
o
° )
&0 S
oO
£ & ¢ £ % ¢
Asuaiul Alsuaiul

CPYET-T1I Ues\

ZPHET-I

TPHET-1I UesN

X

TPHET-TI

High
IL-13

Low

IL-13



‘'sawi 9aiy) pareadal alam suswiiadxa asayl pue TO00 0>xxxx
‘T00°0>Uxxx ‘TO'0>dyx ‘SO 0>dx "1S81-1 s juapnig paldied Buisn pare|ndjed alam sanjeA d pue (INJS) ueaw Jo loui3 piepuels
Juasaidal sieq J0413 * suonIpuod uoneiNws £1-11 Yybiy pue moj 1spun TOYET-TI pue ZryeT-11 buissaidxa-09 sOQ Lo1TAD
Jo abeiuaalad ayy sareaipul ydelb reg (p) ‘Aluo TOYET-TI 1O uoissaldxe Moys smolre Moj|ak 1S|Iym ‘TOHYET-11 pue ZryET
-1 Buissaldxa-02 s LOTTAD 8YedIpul SMOLIE SUYAA "SPOYIBW Ul Paquosap Se ‘Y G0 10} pare|nwis ‘suonipuod £T-1 (moy)
lw/Bd 00T pue (Ybiy) |w/Bd 0O00T e (Sreq vlusbew) TOHET-T| pue (sieq pai) ZoYET-11 4o} Aususiul uesw paynuenb se
[lom se uoissaldxa (wonoq) TeHET-11 pue (a|ppiw) 2rdeT-11 ‘(dol) oTTaD Buipuodsaliod moys gqoT 17 ainbi4 ul paquIsap
Se S|199 oldVd J0 09X uonesyiubew e sabewi aAneluasalday (9) ‘Adodsoloiw [e204U0d BUISN OJIA Ul UOIRINWIS €T

-71 yBiy pue mo| Buimo|jo} sOQ Bun| uo uoissaldxa ZOYEST-TI pue TPYET-11 @AIR|al Jo uoenjeas *(p-2) TTt 8inbi4



Vv-0S4 v-OS4 ON4 €0TAD €07Tdd €0TAD

01 0T 0T o - 01 K o 0 o o o oo o et
WSZ W0Z  WOST DT oS 0 N0SZ  N0OZ  WOST NOOT DS [ b ' 5 - 1 L i 1 Ll L 1 L ML
L L L I L I I ! L L Eor o
b0t s N E 3 £
) Ee O E o
' o : O
b w P Eor B £ or O
re = @) = O
o W) o =
= T =
N T [N BT W £ or O
P o 3
Eor
B E 0T
E o 5

(a)

v-0S4 V-0S4 V-054d V-0SH v-0SH

W0SZ O NBOZ  NOST NOOT NS [ NOST O M0Z WOST  MDOT NOS 0 WS W00 MDST NOOT  W0S ] N0SZT NOOZ  NOST NOOT 0§ ]
1 1 L 1 L 1 | 1 1 L L 1 ! L L L 1 1 L 1

Zd

OHIN

OHIN

- ¥ost

ON4 1l
V-0SS

- %00z

(e)

F sz




‘paredipul se sjou0d QN4 Uo pased (9d) SO -€0TAD +qTTAD uo pajeb Jayuny
alam sO@ Buny e1oL (q) (Sd - OTTAD +pV-I-II-OHIN) se pajuasaidals sOQa [e10]1 Ag pamo||o} ‘(7d) +PV-I-1I-OHN Uuo pareb
uayy aJam s||8d *(V-0Sd pue H-OSd) Janeds premio} uo paseq (£d) uoisnjoxa 19|qnop Aq pamojjo} ‘(zd) sII99 ajgein -avy
-) U0 91eb 01 pasn alam (Td) S||90 pareb-aid "uonesiunwuwi 10129A [ellA “u'l Buimojjo) Bunios 199 |92 a|buls 10} SO

Bun| Ajnuapl 01 pasn s|o1u0d (ON4) U0 Snulw aduadsalon|d pue Abarens buneb Anawoilhkd mo|4 ‘2T ainbi4



1.0

-05 00 05

-1.0

\Y
Au/vv @00 @.{h.v Q./mv %(

M A N A
0l
°a
@05 Brbufl @9wis @cwis  @rqfbl 02 Ty
| | | | | ° F0€ m qA_u
LE0 S50 ev0 €20 - [@PD w K oo o ooo m n%
o O slevesle =
) o200
@D
s 2 T lov
180 i i { - @ribuf ° ° ° °
-0S
: . : : @9101S
S50 . \ XY
I P00 (3 D582 2© 2O O
P F S PP
) : i . @ewis _I_ r0
9
L0z ©
£z'0 i i - @rgfby o %
i O
w835
%
(@ Ll tos B9
N m.
=)
08 =3

ool (e)



‘'sawi oM pareadal alsam Ssjuswiladx3 ‘uone|a1iod 1sabuons ayy Juasalidal
00°T O} 1S8S0|9 SanjeA aI1aym UoISSaIdxa JO [9A8] ay} d1edIpul Blep Uone|alio) "'SPoYIaW Ul paguosap Se 1saialul Jo sauab
ayl uo pawlopad sem (zDd SA TOd) SisAleuy 1uauodwo) redidulid (q) “(wonoq) (saj9hks ¥YOdb Jo Jagunu wnwixew ay)
uasaldal Op alaym) 10V — O Se pajuasaldal auab yoes 10 |9A3] uoissaldxs ay) pue (doy) 1sasoiul Jo sauab ay) buissaidxs
S92 Jo abejusdsiad sy Jussaldal sydels (k) ‘spoylaw ul paguosap Se sauab po1dales ¢T JO uoissaldxa ay) asAjeue 0}
Aesse rewolg 8’8y WBIPIN|4 10} paLIos alem sO@D 81buls -€0TAD +dTTAD +OTTAD +II-OHIN PUB Ad=J YIM "U’l payeuldden

alam (g£=u) 221w 2/g1vg "uoneulddea Ad44 Buimoljol Yy vZ sajndsjow pare|al £T-TI/4-11 10 uoissaldx3 "€T'y ainbi-



2
=71 yby)
SOQ 42 YHET- 1 %

(€T

(€T-11 MmoOJ)
+Z2HET- 1l %

sod

~001

(a)

04T 08 E
e JU B

ZPUET-I

91V1S pue glvls-
€T+

S T

Wo.mm

ZPYUET-I

91VIS pue C1V1S-
/ET-I+

€T-11 mo1 (e)



‘'sawln aaiy) pareadal a1am sjuawiadxy "TO00 0>Uxxxx ‘TO0 0>Uxxx ‘TO 0>0xx
‘G0'0>dx 181 uosuedwos adninw sAayn] Ag pamo|jo) YAONY Aem-auQ Buisn palejnojed aiam sanjea d pue (AN3S)
ueaw Jo Joul3 plepuels juasaidal sreq Jos3 “(parejnwinsun) uonenwiis ou 0] patedwod oA Ul ‘Y € 10} SUOBIIUSIUOD
(€T-11 yby) jw/bd 0000T (P pue 2) pue (€T-11 Mmo|) |w/Bd QOT Jopun (g pue e) uomgIYul 91VIS/EIVLS PauIquiod
10 91V1S ‘€1VLS bBumojio} (y=u) 8oiw 9/g7vg Woi sOA ~OTTAD II-DHIN Bunj uo 2oHeT-1| Jo uoissaldxa aredipul sydeid
leq pue sjo|d Anawolfd moj4 ‘uonle|nwils £T-71 041IA ul Buimo|jo) sOq bun| uo gYET-TI 10 uoissaldx3 Tt ainbi4



cell Fluidigm 48.48 assay as described in materials and methods and Figure
4.12. Data revealed that, 40-60% of cDCs expressed Tgfb1, Stat3 and Stat6, 24
h post rFPV vaccination (Figure 4.13a). Also, 15-20% of cDCs were found to
express Ifngr1 and c¢d86. The cd86 expression as opposed to siglec-h further
confirmed that the sorted single cells were cDCs and not pDCs (Figure 4.13a).
Principal component Analysis (PCA) revealed that, the probability of co-
expression of Stat3 and Tgfb1 on cDCs was much greater (75%) than Tgfb1 and
Stat6 (42%) (Figure 4.13b), and co-expression of Stat3 together with Stat6 was
(53%), 24 h post rFPV vaccination (Figure 4.13b). Furthermore, the probability
of co-expression of Ifngr1 with Stat3 whilst being 39%, Ifngr1 with Tgfb1 was
22%, which were much lower than co-expression of /fngr1 and Stat6 (46%)
(Figure 4.13b). Note that in these studies, Ribosomal protein L32 (Rpl/32),
Stratifin (Ywhas) and Eukaryote elongation factor 2 (Eef2) were used as

endogenous positive control genes to validate the mRNA data (Table 2.6).

To understand the relationship between STAT3, STAT6 and IL-13Ra2 at the
protein level (by mimicking low and high IL-13 conditions at the vaccination site
post different viral vector-based vaccination), when lung cells were treated with
small-molecule inhibitors of STAT3 or STATG6 in the presence of low (100 pg/ml)
and high (10000 pg/ml or 10ng/ml) IL-13, differential regulation of IL-13Ra2 was
detected on lung DCs. These results clearly demonstrated that under low IL-13
stimulatory conditions, STAT3 inhibition caused significant up-regulation of IL-
13Ra2 compared to the uninhibited control (p<0.001) (Figure 4.14a-b). In
contrast, under these conditions, although STATG6 inhibition showed some up-

regulation of IL-13Ra2 (Figure 4.14a-b), combined STAT3/STAT6 inhibition did
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not show any change in IL-13Ra2 expression compared to STAT6 inhibition
alone, although there was some up-regulation compared to the control

(p=0.026) (Figure 4.14a-b). But surprisingly, under high IL-13, both STAT3
inhibition and combined STAT3/STAT6 inhibition induced elevated IL-13Ra2
expression on DCs (Figure 4.14c-d). Under all inhibitory conditions tested, the
profiles of IL-13Ra1 and IL-4Ra expression mimicked each other (Figure 4.14a-
d). Specifically, STAT6 inhibition caused significant up-regulation of these two
receptors on DCs compared to the uninhibited control. In contrast, STAT3 and
combined STAT3/STAT6 inhibition showed a significant down-regulation of IL-
13Ra1 and IL-4Ra compared to the uninhibited control (Figure 4.14a-d). Note
that, STATG6 inhibition induced IL-13Ra1 up-regulation, further confirming the
association of IL-13Ra1 with STAT6. Therefore, following STAT3 inhibition up-
regulation of IL-13Ra.2 was indicative of the IL-13Ra2 association with STAT3. It
is also noteworthy that, IL-4 receptors (IL-4Ra and yc) were not regulated on DCs
even upon IL-4 stimulation (Figure 4.15a-b). This confirmed that the observed

receptor regulation was triggered by IL-13 not IL-4.

4.4.4 STAT3 inhibition significantly down-regulated TGF-1 on lung cDCs
in vivo, associated with IL-13Ra2

Since Fluidigm 48.48 Biomark analysis of rFPV vaccinated lung cDCs revealed
that Stat3 and Tgfb1 gene expression were strongly correlated, next association
of STAT3 activation/phosphorylation with TGF-B1 at the protein level was
evaluated. /n vitro inhibition studies under low IL-13 (100 pg/ml) stimulation
revealed revealed that STAT3 inhibition significantly down-regulated TGF-31

expression in cDCs whilst STATG6 inhibition had no impact compared to the
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uninhibited control (Figure 4.16a-b). To understand the relationship between IL-
13, IL-13Ra2, STAT3 and TGF-B1, when STAT6” mice were vaccinated i.n. with
rFPV (which induced low IL-13 at the vaccination site and enhanced IL-13Ra2
expression on lung cDCs, (Figure 4.5)) and lung cDCs were assessed 24 h post
vaccination, phosphorylated STAT3 (pSTAT3) and TGF-B1 were both up-
regulated on STAT67-cDCs compared to the wild type counterpart (p=0.0038 and
0.0003 respectively, (Figure 4.17c-d)), suggestive of IL-13Ra2 signalling.
Moreover, significant up-regulation of IL-13Ra2 (Figure 4.18a-b) and down-
regulation of TGF-pB1 (Figure 4.18c-d) were also observed in unimmunised IL-
137~ ¢cDCs compared to WT. Taken together these observations evoked the
notion that the measured TGF-B1 and IL-13Ra2 expression profiles were linked

to IL-13.

4.4.5 IL-13Ra2 and IFN-R were co-expressed on lung cDCs 24 h following
i.n. rFPV vaccination

Our previous studies have shown that 24 h post viral vector vaccination,
ILC1/ILC3- derived IFN-y expression was inversely associated with ILC2-derived
IL-13 at the vaccination site, which significantly impacted cDC recruitment 99367,
Knowing that IFN-y is a potent IL-13 inhibitor and can also mobilise IL-13Ra2
from intracellular compartments to the cell surface 286:373.374 in this part of the
study, the association of IFN-yR and IL-13Ra2 on lung cDCs, following i.n. rFPV

vaccination was further investigated.

Data revealed that following i.n. rFPV vaccination, differential IL-13Ra2 and IFN-

YR expression levels were observed on lung cDCs (Figure 4.19a-d). Specifically,

150



m._.<.._.wa

)
+E1v1sd 04

V-0Sd
-0 m
l 5 o
09 |n1_u NSTWOr WL WOT WS 0 . WL Wor WL ML Lo
o ® 3 L
o + ]
08 F ot o
° &
-+91vlsS [ — Lo " U T
m 3 (p) %0°0L F |%096. Lo | %1870
19-491 glLvlisd 19-491 glvlisd adAjos] (9)
o° +9LVIS 1M
/oo.
0 V-0S4d
NS
o 25 B N T | 7
=T e , . w ®
_e X0 e
-0v 0 1
09 ]
% }os 3
: 91VIS /E1VLS €1VLS [011u0D On4

*
I

[=3
o
-
—~
0
=

—~

©
~

491 /£1v1Ssd

19



"'Sawll) 994y pareadal al1om sjuswiladxa
9SaUl "TO00 0>Usxxs ‘TO00>Uxxx ‘TO'0>dxx ‘GO'0>0y 1S81-) SJuspniS padied Buisn parenoed alem sanfea d pue (N3S)
ueaw Jo Jou3 plepuels asaldal sieq Jou3 "(G=u) 91w 2/g1vd LM pue ..91VIS JO uoieurddea Ad4s "utisod y vz 19
-491 pue g£1v1Sd Buissaidxs sO@o bun| ayedipu] (p pue 2) "uoniqiyul 91V1S pue £1v1S 0JIA ul Buimojjo} sOao .qTTad
SOTTAD <1I-DHIN Bunj ul uoissaidxa Tg-491 Buimoys sydeib pue sjold SOV aAneluasaidal ayedipul (g pue ) ‘spoyiaw Ul
paquasap se sinoy ¢ 1o} €T-71 MoJ jo |w/Bd 00T Ag pamojjo} 1yBIuIsA0 sIoNgIYUl 91VIS/E1VLS PauIquod 1o 91V1S ‘€1VIS
yum pareall aiem (y=u) sbun| 9/gvg pasiunwiwiun "UoleUIddBA AddJ 1sod Y $g 10 slolgiyul 91VIS pue €1VIS
J0 @ouasalid ayl ul ‘0J41IA ul uoneNWNs £T-71 uodn sHA92 Bunj uo 1g-491 pue £1viSd Jo uoneneas 2Ty ainbi4



‘'Sawll} oM pajeadal alam sjuswiiadxa
asay L "T000"0>sexsex ‘T00"0>x
‘T0'0>0x«  'G0'0>dx IS8} sjuspnis
palred Buisn parenoed alam sanea d pue
(W3S) ueaw Jo J0413 pJepuels juasaidol
sieq Jou3 ‘(dnoub 1ad g=u) 821w 9/97vg
1M pue _.E£T-T7 pasiunwwiun wolj sHA2
Bun| uo uoissaidxa TY-491 aredipul (p pue
9) pue goHeT-1| dedlpul (g pue e) "BdIW
1M pue ,€T-7] ul sOa2 Bunj uo 1g-491
pue geyeT-1l JO uonenjeas 8Ty ainbiy

Paeey

¥

S2QA3 .ZPYUET-Tl %o

V-0S4

Td-491

CPHET-TI



the percentage of cDCs expressing intracellular IL-13Ra2 was significantly
elevated compared to extracellular IFN-yR (p=0.0228) (Figure 4.19a-b).
Alternatively, extracellular IL-13Ra2 was significantly elevated compared to
intracellular IFN-yR (p<0.0001), demonstrating an inverse correlation of the two
receptors (Figure 4.19a-b). When analysis was performed to evaluate whether
lung cDCs co-expressed IL-13Ra2 together with IFN-yR following i.n. rFPV
vaccination, flow cytometry data revealed that the majority of the cDCs were
double positive for the two receptors (85%) (Figures 4.20a-b). This was further
substantiated by confocal imaging on lung CD11c* DCs where ~75% of cells co-

expressed IL-13Ra2 and IFN-yR (Figures 4.21a-b).

446 rFPV, rMVA and Adenovirus 5 (Ad5) vaccinations differentially
regulated IL-13 receptors, STAT3/STAT6 and IFN-yR on cDC 24 h post
vaccination

Knowing that different viral vectors can induce different ILC2-derived IL-13 levels
and DC subsets at the vaccination site, which were associated with different
vaccine specific adaptive immune outcomes %7, next the IL-4/IL-13 receptor
expression and regulation on lung cDCs post i.n. rMVA and Ad5 delivery were
compared to i.n. rFPV vaccination. Interestingly, even though all three
vaccinations induced significantly elevated intracellular and extracellular
expression of IL-13Ra2 on lung cDCs (95-98%), elevated IL13Ra1 and IL-4Ra
(intracellular) were only detected in cDCs, following rMVA and Ad5 viral vector
vaccination (Figure 4.5a-b and 4.22a-b). It was noteworthy that, both
intracellular and extracellular expression of the latter two receptors was
significantly lower (rFPV 1-12%, rMVA 1-58% and Ad5 2-30% respectively)

compared to IL-13Ra2 (95 — 100%) (Figure 4.5a-b and 4.22a-b).
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Interestingly, although lung cDCs obtained from rFPV, rMVA and Ad5 vaccine
groups showed expression of Stat6, Stat3, tgfb1 and Ifngr1 genes at a single cell
level as well as at the protein level (pSTAT3, pSTAT6, TGF-B1 and IFN-yR)
(Figures 4.23 and 4.24), the expression profiles were significantly different
between the three vaccine groups. Specifically, the expression of both pSTAT3
and pSTAT6 were found to be in the order of rFPV > rMVA > Ad5 (Figure 4.23a-
b). The expression of TGF-p1 was similar in rFPV and rMVA, but significantly
lower in Ad5 (Figure 4.23a-b). In contrast, in the context of IFN-yR expression,
the order was found to be rMVA > rFPV > Ad5 (Figure 4.23a-b). At the mRNA
level, rIMVA and Ad5 cDCs showed a greater probability of Stat3 and Stat6 co-
expression (79% and 76% respectively) compared to the rFPV group (Figures
4.24a-b). The probability of Stat3 or Stat6 co-expression together with Ifngr1 was
found to be in the order of rFPV (30%, 46%) < Ad5 (64%, 60%) < rMVA (71%,
83%) (Figures 4.13b and 4.24a-b). The probability of Stat3 and Tgfb1 co-
expression was found to be very similar between rFPV (75%) and Ad5 (77%)
cDCs (Figures 4.13b and 4.24b). However, Stat6 and tgfb1 co-expression profile
was in the order of Ad5 > rMVA > rFPV (93%, 70%, 42% respectively) (Fig. 4.13b

and 4.24a-b).

To investigate differential regulation of Stat3 and Stat6 under different IL-13
conditions, a PCA was performed with respect to Stat3, Stat6, Tgfb1 and Ifngr1
(Figures 4.3 and 4.24c). Distinct gene clusters with different combinations of the
four genes were analysed as described in methods and Figure 4.3. The
proportion of each co-expression combination was represented as a stacked bar
graph for each vaccine vector (Figure 4.24c), rFPV vaccination induced the
highest proportion of cDCs expressing Stat3 and Stat6 together with Tgfb1
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Figure 4.21. Evaluation of IL-13Ra2 and IFN-yR receptor co-expression on lung cDCs 24 h post rFPV vaccination
using confocal microscopy. (a) Representative confocal microscopy images and (b) bar graph show i.n. rFPV
vaccinated (n=5) lung cells expressing IL-13Ra2 and IFN-yR at magnification x60 as described in methods. Each white
arrow indicates a single CD11c* DC across all channels as well as merge image, co-expressing IL-13Ra2 and IFN-yR.

These experiments were repeated three times.
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(rFPV 30% vs rMVA 8%, Ad5 21%). Additionally, rFPV vaccinated cDCs
expressing Stat6 only (21%) and enhanced Stat3 co-expression with other
genes, indicated that the rFPV response was STAT3 dominant. Following rFPV
vaccination, much lesser proportion of cDCs expressed Stat3 and Stat6 together
with either Ifngr1 (rFPV 6%, rMVA 20%, Ad5 0%) or Tgfb1 and Ifngr1 (rFPV 15%,
Ad5 42%) (Figure 4.24c). In contrast, rMVA induced the highest proportion of
cells expressing Stat3 and Stat6 together with either Tgfb1 and Ifngr1 (44%) or
Ifngr1 only (rMVA 20%, rFPV 6%, Ad50%). Compared to rFPV, rMVA induced
lower proportion of cDCs expressing Stat3/Stat6 in combination with Tgfb1 (rMVA
8%, rFPV 30%). Following Ad5 vaccination, the majority of the cDCs expressed
Stat3 as well as Stat6 along with Tgfb1 and Ifngr1 (Ad5 42%, rFPV 15%),
comparable to the response exhibited with rMVA (44%). However, the proportion
of Ad5 cDCs expressing Stat3 as well as Stat6 together with Tgfb1 expression
was intermediary to that of rFPV and rMVA, however much higher proportion of
Ad5 cDCs co-expressed Stat6 and Tgfb1 (Ad5 10%, rMVA 8%, rFPV 3%). Also,
Ad5 vaccinated cDCs exhibited a more predominant co-expression of other
genes with Stat6 compared to Stat3, indicating that unlike rFPV, the Ad5

response was STAT6 dominant (Figure 4.24c).

4.5. Discussion

Asthma, allergy and vaccination studies have shown that lung cDCs are highly
responsive to IL-13 361.367.375  |nterestingly, this study demonstrated that, IL-
13Ra1 and IL-13Ra2 were differentially regulated on lung DCs in an IL-13
concentration and time dependent manner. At the steady-state (prior to
immunization) significantly higher percentage of lung cDCs expressed IL-13Ra2

compared to IL-13Ra1. Furthermore, both these receptors were rapidly up-
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regulated on lung DCs upon IL-13 stimulation in vitro or 24h post viral vector-
based vaccination. Specifically, IL-13Ra2 expression was maintained under both
low and high IL-13, whilst IL-13Ra1 was only observed under high IL-13
conditions, suggesting, in lung cDCs IL-13Ra2 was the primary sensor and
mediator (master regulator) of IL-13 responses. Moreover, this was further
substantiated by the presence of elevated stable IL-13Ra2 protein and minimal
MRNA expression at 24 h post rFPV vaccination, elucidating a distinct inverse
protein-mRNA regulation, unlike IL-13 mediated inflammatory conditions
288,309.376-378  Non-linear protein-mRNA regulation of other proteins 379:38
cytokines, including IL-13 38" specifically, elevated protein and rapid mRNA
degradation associated with protein stability have been previously documented
382-384  Moreover, presence of minimal //13ra2 transcript levels in most mouse
tissue types at steady-state 278376-378.385 (NCBI Gene ID: 16165) and in human
cancers post-transcriptional regulation of IL-13Ra2 by alternative epigenetic
pathways have also been reported 38. Knowing that lung is continuously exposed
to many environmental invasions (pathogens and allergens), the elevated stable
IL-13Ra2 protein on lung DC may support the notion that, at the first line of
defence (the lung mucosae), high affinity IL-13 receptor, IL-13Ra2 acts as the
primary IL-13 sensor to mediate early IL-13 regulation/homeostasis and
dysregulation of IL-13Ra2 could most likely be the cause of IL-13 mediated

inflammatory disease.

Previous studies in our laboratory have shown that transient inhibition of I1L-4/IL-
13 signalling via STAT6 (using an rFPV based IL-4R antagonist adjuvanted HIV
recombinant viral i.n. rFPV prime/i.m. rMVA or rVV boost vaccination strategy) or

transient sequestration of IL-13 at the vaccination site (using IL-13Ra2
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adjuvanted HIV recombinant viral i.n. rFPV prime/i.m. rMVA or rVV boost
vaccination strategy) can induce high avidity/poly-functional mucosal and
systemic T cells with better protective efficacy 122124, which was associated with
elevated cDC recruitment %9124, These studies also showed that IL-13 was
necessary for effective antibody differentiation 2?2, which was regulated via a
STAT6 independent pathway 3°2. When trying to unravel how IL-13 modulated
these different vaccine-specific outcomes current study revealed that, i) under
low IL-13 conditions /rFPV vaccination (which induced low IL-13 at the lung
mucosa), IL-13Ra2 expression was up-regulated on DC; ii) under low IL-
13/STATS3 inhibition IL-13Ra2 expression was up-regulated whilst TGF-$1 was
down-regulated on lung DCs, as opposed to STAT6 inhibition; iii) Moreover, up-
regulation of phosphorylated STAT3 and TGF-B1 was detected on STAT6”- cDCs
post rFPV vaccination. There findings collectively suggested that, under low IL-
13 environments, cDCs most likely mediated IL-13 activity exclusively via IL-
13Ra2 by promoting STAT3/TGF-B1 activation, which was consistent with other
findings 299399, Also, the intriguing enhanced phosphorylated STAT6 expression
on lung cDCs under low IL-13 signified a co-regulation of STAT3/STAT6 during
this process. However, performing vaccination studies in IL-13Ra2” mice, to
establish the ‘direct’ association of IL-13Ra2 signalling via STAT3 to induce TGF-
B1 would have added great value to our findings and this warrants further

investigation.

Under high IL-13, in addition to our study reconfirming the well-characterised IL-
13Ra1/IL-4Ra. signalling via STAT6 278, we also showed regulation of IL-13Ra2
and co-expression of both IL-13Ra1 and IL-13Ra2 on lung DCs. These

observations suggested that i) unlike low IL-13 conditions, DCs responded to high
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IL-13 predominantly via IL-13Ra1/STAT6 pathway and ii) under high IL-13
conditions, IL-13Ra2 likely regulated IL-13 in a STAT3 dependent manner.
Moreover, the unexpected up-regulation of IL-13Ra2 under high IL-13 and dual
STAT3/STATG6 inhibition also suggested the possible involvement of STAT3-
independent IL-13Ra2 signalling mechanisms, similar to IL-4 signalling via
STAT1 and STAT5 38 (redundancies built into the system to regulate IL-13). In
inflammatory diseases and high IL-13 conditions, IL-13Ra2 is recognized to be a
decoy receptor that sequesters excess IL-13 376377 |nterestingly, rMVA and Ad5
vaccination, which promoted high IL-13 367, expressed Stat6 mRNA and
phosphorylated STAT6 on lung cDCs, associated with IL-13Ra1 signalling
together with Stat3 and phosphorylated STAT3 activation. Knowing that IL-
13Ra2 can regulate IL-4Ra/STAT6 38, promote TGF-B1 expression and latter
can also regulate STAT6 39, we propose that elevated IL-13 in the milieu post
viral vector vaccination i) can activate IL-13Ra1/STAT6 signalling whilst
promoting IL-13 sequestration by IL-13Ra2 in a STAT3 dependent manner on
lung cDCs and ii) IL-13Ra2 can also regulate STAT6 in a STAT3 dependent
manner, to prevent excessive IL-13 signalling on lung cDCs to maintain

homeostasis at the lung mucosae (Figure 4.25).

Studies have shown that STAT6 and STAT3 can be differentially regulated,
according to the state of viral infection/vaccination. Specifically, in the context of
viral vector-based vaccination whilst IL-13/STAT®6 signalling has been shown to
dampen effective antiviral immunity 3232 however in acute and primary viral
infections, it has shown to improve antiviral immunity 263277, This study showed

that viral vector induced IL-13 “level” in the cell milieu significantly altered the
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STAT3/STATG6 equilibrium. Specifically, rFPV vaccination, associated with low
ILC2-derived IL-13 at the vaccination site 366:3%  exhibited enhanced STAT3
expression (both at mRNA protein levels), which correlated with TGF-1 on lung
cDCs, suggesting a positive regulation of IL-13Ra2/STAT3 by TGF-1. In
contrast, a negative association of Stat3 with Ifngr1, was confirmed by the inverse
correlation and co-expression pattern of IFN-yR with IL-13Ra2 on c¢DCs,
suggesting that IL-13Ra2 could be negatively regulated by IFN-y, under low IL-

13 conditions, which is in agreement with studies by Daines et al. 6.

Data revealed that as opposed to rFPV vaccinated lung cDCs, rMVA vaccinated
lung cDC (associated with high ILC2-derived IL-13 at the vaccination site 367),
exhibited both STAT3 and STAT6 expression, associated with an IFN-yR
expression bias (both at the mRNA and protein levels). Interestingly, Ad5
vaccinated lung c¢cDC, (associated with moderate ILC2-derived [L-13,
intermediate of rFPV and rMVA 367), showed higher association of STAT3 with
IFN-yR compared to TGF-1 (both the mRNA and protein levels). Knowing that
IFN-y can regulate IL-13 responses 37!, these observations indicated that
following viral vector-based vaccination, at the cDC level the differential
environmental immune responses to IL-13 are not only determined/regulated by
STAT3/STAT6, but also by TGF-f1 and IFN-y either collaboratively or
independently, which was consistent with cancer/inflammation studies 391-3%4,
Interestingly, rapid STAT3 activation has shown to control some viral infections
277,395,3% whilst, STAT6 independent mechanisms have also been associated with
effective antibody differentiation 3°2. Moreover, IL-13 mediated enhanced IFN-y
signalling has been shown to exacerbate respiratory viral infections 311397,

Collectively, our findings propose the notion that in the context of viral vector-
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based vaccination and recruitment of DCs, vectors that promote low ILC2-derived
IL-13, induce IL-13Ra2 signalling and STAT3/TGF-p1 activation, are associated
with effective T and B cell immune outcomes. In contrast, vectors that promote
high ILC2-derived IL-13 induce IL-13Ra1/STATG6 signalling and elevated IFN-y
activity, lead to suboptimal vaccine-specific T cell outcomes. This may explain
why in a prime-boost vaccine modality, choice of viral vector or adjuvant used in
a ‘prime’ can crucially impact the vaccine-specific functional CD8 T cell avidity
133 (knowing that booster vaccination mainly expands the initial high or low avidity

T cell subset generated during priming) '%4.

In conclusion, our current study demonstrated a dual role of IL-13Ra2/STAT3 in
IL-13 regulation of lung cDCs at the lung mucosae. Specifically, under viral
vaccination-induced low IL-13, IL-13Ra2 functioned as a signalling receptor on
lung cDCs, whilst, under high IL-13, mediated homeostasis by sequestration of
excess IL-13 in the cell milieu, both involving STAT3 activation and co-regulation
of STAT3 and STAT6 (Figure 4.25). Hence, fully understanding these IL-13,
STAT3/STATG6 regulatory paradigms, have high potential to help design more
efficacious vaccines against chronic pathogens and also therapies against other

IL-13 related diseases.
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Chapter 5

Differential IL-13 receptor regulation on lung dendritic
cells likely governs the unique pox viral vector-based

vaccine immune outcomes. 2

4 Experiments related to ILCs was performed by Dr. Zheyi Li.
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5.1 Abstract

Current study revealed that following intranasal poxviral vector-based
vaccination, IL-13Ra2 and IL-13Ra.1 were differentially regulated on lung DCs, in
a viral vector and time dependent manner, where IL-13Ra2 was the immediate
IL-13 sensor. Following recombinant fowlpox (rFPV) vaccination, known to
induce low ILC2-derived IL-13 at the lung mucosae, IL-13Ra2 whilst being the
immediate IL-13 mediator on lung cDCs, low affinity Type Il receptor complex IL-
13Ra1/ IL-4Ra regulated responses 48-72h post delivery. In contrast, replication
competent recombinant vaccinia virus (rVV), which induced high ILC2-derived IL-
13, exhibited sustained elevated expression of IL-13Ra2 together with IL-
13Ra1/IL-4Ra on lung cDC. Latter indicating that, in the context of rvV
vaccination, IL-13Ra2 likely was involved in sequestration of excess IL-13 in the
milieu, whilst signalling via the low affinity IL-13Ra1/IL-4Ra complex, resembling
IL-13 regulation under chronic inflammation conditions. Interestingly, cDC
obtained from replication abortive, recombinant Modified Vaccinia Ankara
(rMVA), known to induce moderate ILC2-derived IL-13, showed an intermediary
IL-13 receptor regulation profile to rFPV and rVV. Moreover, the deletion variant
of rIMVA, rMVAAIL-1BR vaccination depicted a unique IL-13 regulatory profile
where IL-13Ra2/IL-4Ra.  antagonism was likely at play. These findings
demonstrated that the host tropism, replication status and presence or absence
of immunomodulatory genes in a viral vector considerably impacted IL-4/IL-13
receptor regulation on lung DCs. The differences observed may explain how and

why despite encoding the same vaccine antigens, different viral vectors yield
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vastly different immune outcomes (eg. rFPV priming induce highly poly-functional
cytotoxic CD8 T cells compared to rVV and/or rMVA vaccination). Taken together
our findings imply that fate of a vaccine is influenced by the balanced and timely
regulation of IL-13 by IL-13Ra2 and IL-13Ra1 on lung DCs, at the early stages

(24-72h) of vaccination.
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5.2 Introduction

Cytokine IL-13 can be characterized as a double edge sword, as under different
disease conditions the ‘level’ of IL-13 can promote vastly different immune
outcomes. Specifically, although overproduction, has been associated with
allergic asthma 295269, fibrosis 264265 tumor progression 267:268  atopic dermatitis
257,266 |ack of IL-13 has been linked to susceptibility to helminth, parasitic and
some bacterial infections (eg. K. Pneumonia) 252275276 Moreover, in some acute
and primary viral infections, whilst IL-13 has been associated with improved
antiviral immunity 263277 in the context of viral vector-based vaccination,
presence of IL-13 has been detrimental for the induction of effective T cell

immunity whilst being crucial for effective antibody formation 132302,

Our recent studies have demonstrated that following viral vector vaccination
Innate Lymphoid Cell 2 (ILC2) are the major source of IL-13 at the vaccination
site 24 h post delivery 3% and ILC2-derived IL-13 level can significantly alter the
DC recruitment 367, responsible for uniquely different immune outcomes °°.
Specifically, low ILC2-derived IL-13 induced by recombinant fowlpox virus
(rFPV), preferentially recruited cDCs not pDC to the lung mucosae unlike
recombinant modified vaccinia Ankara (rMVA) or Vaccinia Virus (rVV) 367 and,
the specific nature of a virus also significantly modulated this activity (eg. rMVA

vs rIMVAAIL-1BR) 367,

It is well established that during IL-13 signalling, low affinity receptor IL-13Ra1

(Ko = 30 nM) heterodimerizes with IL-4Ra to form the functional IL-13Ra1/IL-
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4Ra Type |l receptor complex, which signals via STAT6 278. However, the exact
signalling mechanism of the high affinity IL-13Ra2, (Kp = 440 pM) 3783% g
currently not well characterized, although deemed functional in humans 278:293.399,
Interestingly, these two receptors have been defined to have unique functions
under different IL-13 conditions. For example, whilst, increased IL-13 production
following asthma and allergy has shown to be regulated by IL-13Ra.1 262, under
reduced IL-13 conditions, IL-13Ra1 has also shown to maintain homeostasis and
lung repair 312, Interestingly, the lesser-known IL-13Ra2 has been implicated in
promoting lung and intestinal fibrosis, secondary methicillin resistant during
staphylococcus aureus (MRSA) infection and liver pathology during some chronic
infections 309311 Moreover, over-expression of IL-13Ra2 has been associated

with poor prognosis of several cancer types 288293,

Our recent intranasal viral vector-based vaccine studies have revealed that on
lung DCs IL-13Ra2 acts a major IL-13 sensor and plays a dual role at the lung
mucosae (Roy et al. (submitted)). Specifically, under low IL-13, IL-13Ra2
performs as the primary signalling receptor, whilst under high IL-13, helps to
maintain homeostasis. Knowing that different viral vectors can induce variable
ILC2-derived IL-13 levels at the lung mucosae 3¢7, in this study we have
attempted to unravel how IL-4 and IL-13 receptors get regulated on cDCs and

pDCs 24-72h post pox viral vector vaccination.
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5.3 Materials and Methods

5.3.1 Mice.

Pathogen-free 6—-8 weeks old female BALB/c mice were purchased from the
Australian Phenomics Facility, The Australian National University (ANU). The
mice were maintained, monitored daily and euthanized using Australian NHMRC
guidelines within the Australian Code of Practice for the Care and Use of Animals
for Scientific Purposes and in accordance with guidelines approved by the ANU
Animal Experimentation and Ethics Committee (AEEC), protocol number

A2014/14 and A2017/15.

5.3.2 Viral vector based vaccination.

BALB/c mice were intranasally immunised with 1 X 107 plaque forming units (pfu)
of FPV-HIV, MVA-HIV, MVA-AIL-1BR-HIV, VV-HIV, as described previously 3¢7.
rFPV, rMVA, rMVA-AIL-1BR and rVV were sonicated thrice for 15 seconds on ice
at 50% capacity using Branson Sonifier 450 immediately prior to vaccination.
Mice were vaccinated with a volume of 10 ul per nostril (total 20 pl) under mild

isofluorane anaesthetic.

5.3.3 Evaluation of lung ILC2s and corresponding IL-13 expression using
flow cytometry.

Lung tissues were harvested 24 h post vaccination in complete RPMI and single
cell suspensions were prepared as described previously 396367 Briefly, lungs

were cut into small pieces, enzymatically digested with digestion buffer containing
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1 mg/ml collagenase (Sigma-Aldrich, St Louis, MO), 1.2 mg/ml Dispase (Gibco,
Auckland, NZ), 5 Units/ml DNase (Calbiochem, La Jolla, CA) in complete RPMI.
Samples were filtered using 100um falcon cell strainers followed by red cell lysis
and cells were re-suspended in complete RPMI, rested overnight at 37°C under
5% CO2 as per our previous studies prior to staining 36367 Lung cells were
stained with lineage markers (FITC-conjugated anti-mouse CD3 (clone 17A2),
CD19 (clone 6D5), CD11b (clone M1/70), CD11c (clone N418), CD49b (clone
HMa2), FceRla (clone MAR-1)), PE-conjugated anti-mouse ST2/IL-33R (clone
DIH9), APC/Cy7-conjugated anti-mouse CD45 (clone 30-F11), Brilliant Violet
421-conjugated anti-mouse CD335 (NKp46) (clone 29A1.4) obtained from
Biolegend and PE-eFluor 610-conjugated anti-mouse IL-13 (clone eBio13A)
purchased from eBioscience as previously described 3. Briefly, following
treatment with Brefeldin A for 5 hours, cell surface staining was performed
followed by intracellular staining after fixing and permeabilising the cells. All
samples were fixed with 0.5% paraformaldehyde and 1.4 x 108 events from each
lung sample were acquired on a BD LSR Fortessa. Data were analysed using
Tree Star FlowJo software (version 10.0.7) using gating strategies previously

described 306367

5.3.4 Evaluation of IL-4 and IL-13 receptor expression on lung cDCs and
pDCs using flow cytometry.

Lung tissues were harvested and prepared into single cell suspensions from
mice, following 24, 48 or 72h post vaccination in complete RPMI. 2 X 108 cells

from each sample were blocked with anti-mouse CD16/CD32 Fc Block antibody
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(BD Biosciences, USA) for 20 min at 4°C and cells were stained with DC markers,
APC-conjugated anti-mouse MHCII I-Ad (e-Biosciences, USA), biotin-conjugated
anti-mouse CD11c (N418 clone, Biolegend, USA), followed by streptavidin
Brilliant violet 421 (Biolegend, USA), anti mouse CD11b AlexaFluor 700 (M1170
clone, Biolegend, USA), anti-mouse CD103 FITC (2E7 clone, e-Biosciences,
USA) and anti-mouse B220 PercpCy5.5 (RA3-6B2 clone, e-Biosciences, USA)
for 30 min on ice. To evaluate IL-4 and IL-13 receptors, cells were also
extracellularly either stained with anti-mouse IL-4Ra (CD124) PE (I015F8 clone,
Biolegend, USA), anti-mouse IL-13Ra1 (CD213a) PE (13MOKA clone, e-
Biosciences, USA), Biotin-conjugated anti-mouse IL-13Ra2 (110815 clone, R&D
systems, USA), followed by streptavidin PE (Biolegend, USA), anti mouse yc
(CD132) PE (TUGmM2 clone, Biolegend, USA). Cells were further fixed using 1.5%
paraformaldehyde followed by resuspension in PBS and analysed using BD
LSRII flow cytometer Becton Dickinson, San Diego, CA). 5 x10° events per
sample were acquired and results were analyzed using FlowJo software v10.0.7

and gating strategies described in Figure 5.1a-c.

5.3.5 Statistics.

IL-4 and IL-13 receptor proportions were calculated as a percentage of parent
MHC-II* CD11c* CD11b* CD103 cDC and MHC-II* CD11c* CD11b- B220* pDC
population. Please note that less than 10 receptor expressing cells were reported
as undetectable expression. The p-values were calculated using either unpaired
non-parametric Student’s t-test or Two-way ANOVA with Tukey’s multiple

comparison post-test. All experiments were repeated minimum 2-3 times.
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5.4 Results

5.4.1. rFPV and rVV vaccinated lung cDCs exhibited uniquely differential IL-
4/1L-13 receptor expression profiles 24h-72 h post delivery.

We have previously shown that the nature and replication status of a viral vector
can significantly alter the ILC2-derived IL-13 level at the vaccination site 367
Moreover, under low and high IL-13 conditions, IL-13 receptors can be
differentially regulated (Roy et al. (submitted)), Therefore, in this study we have
further evaluated the cDC associated IL-4/IL-13 receptor kinetics 24-72 h post
rFPV and rVV vaccination as per described in methods. Results indicated that
compared to rFPV which does not replicate in mammalian cells, replication
competent rVV induced considerably elevated ILC2-derived IL-13 at the lung
mucosae by an ST2/IL-33R" ILC subset at 24h post vaccination (p<0.0001)
(Figure 5.2). Moreover, there was also a significant regulation of the different IL-
4/1L-13 receptors on cDC where the number of cells that expressed IL-13Ra2
were much greater than IL-13Ra1 and IL-4Ra. Interestingly, although the
percentage of cDCs expressing IL-13Ra2 was much greater at 24 - 48h (90%)
compared to 72 h post rFPV delivery (~80%) (p<0.0001) (Figure 5.3a), the IL-
4Ra and IL-13Ra1 on ¢cDC were significantly up-regulated at 48 and 72 h (24 vs
48 h and 24 vs 72 h p<0.0001) (Figure. 5.3b-c). In contrast, post rVV vaccination
significantly elevated and sustained IL-13Ra2 expression (99%) was detected
over time (Figure 5.4a), whilst the IL-13Ra1/IL-4Ra expression trends were
found to be very similar to rFPV vaccination (Figure 5.4b-c). Unlike the other

receptors, the expression of yc, which heterodimerises with IL-4Ra. to form the
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IL-4 type | receptor complex (IL-4Ro/yc), was not significantly
expressed/regulated on cDC at 72 h post vaccination post vaccination (Figure

5.5a-b).

In the context of receptor densities (mean fluorescence intensity), 24 to 72 h post
rFPV vaccination, the IL-13Ra2, showed a downward trend (Figure 5.6a), where
as an upward trend was observed with IL-13Ra1 and IL-4Ra (Figure 5.6b-c). In
contrast, post rVV vaccination down-regulation of both IL-13Ra2 and IL-13Ra1
densities were detected at 48h (24 vs 48 h p<0.0001), followed by an up-
regulation at 72 h, comparable to 24 h was observed (Figure 5.7a-b). However,
IL-4Ro  densities on rVV vaccinated cDC were gradually but significantly
increased overtime (24 vs 48 h p=0.0127, 48 vs 72 h and 24 vs 72 h p<0.0001)
(Figure 5.7c). In general, the IL-13Ra2 receptor densities on cDC following rFPV

and rVV were approximately ten times greater than that of IL-13Ra1 and IL-4Ra.

5.4.2 rMVA and rMVAAIL-1BR vaccination induced vastly different IL-13Ra.2,
IL-13Ra1 and IL-4Ra expression profiles on lung cDCs 24-72 h post
delivery.

We have previously shown that a single deletion of virokine IL-1BR from rMVA
(rMVAAIL-1BR) could promote significantly lower ILC2-derived IL-13 expression
and enhanced cDCs at the lung mucosae, compared to parental rMVA 367, Thus,
next the IL-4/IL-13 receptor expression profiles were assessed 24 - 72 h post

delivery of these two vectors using flow cytometry as per indicated in methods.
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Specifically, data revealed that compared to 24 and 48 h post rMVA vaccination
significantly lower percentage of cDCs expressed IL-13Ra2 at 72 h (~95% vs
~50%) (p<0.0001) (Figure 5.8a), where as IL-4Ra and IL-13Ra.1 expression was
significantly enhanced at 48h compared to 24h (~1 vs 3 and ~3 vs 6%)
(p<0.0001) with no detectable expression at 72 h post delivery (48 vs 72 h
p<0.0001) (Figure 5.8b-c). Although, with rMVAAIL-1BR, similar IL-13Ra2 and
IL-13Ra1 expression profiles to rMVA were detected (Figure 5.9a-b), vastly
different IL-4Ra expression profile was observed at 72 h, not only between the
two vaccination groups (rMVA 0%, rMVAAIL-1BR ~20%) but also during 24 - 72
h post rIMVAAIL-1BR delivery (24 vs 48 h and 24 vs 72 h p<0.0001) (Figure 5.9c).
Once again the yc was not expressed on cDCs 72 h following rMVA and

rMVAAIL-1BR vaccination (Figure 5.10a-b).

In the context of receptor densities, IL-13Ra2 densities following rMVA and
rMVAAIL-1BR were also ~10 times greater than that of IL-13Ra1 and IL-4Ra.

On rMVA and rMVAAIL-1BR vaccinated cDC, although the IL-13Ra2 and IL-
13Ra1 receptor densities tracked similar to that of the proportion of cDCs
expressing each receptor (Figure 5.11a-c and 5.12a-b), the IL-4Ra densities
showed significant up-regulation at 72 h post rMVAAIL-1BR vaccination, unlike

rMVA, (rMVA vs rMVAAIL-1BR p<0.0001) (Figure 5.12c).

5.4.3 Following pox viral vaccination lung pDCs exhibited differential IL-

13Ra2/IL-13Ra1 expression profiles to cDCs
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Knowing that pDCs can modulate antibody differentiation by induction of type |
interferons 336400 plus our recent studies showing that IL-13 is necessary for
effective antibody differentiation 122257 and also viral vector induced ILC-derived
IL-13 significantly impacted the pDC recruitment to the lung mucosae 367, we next
evaluated the IL-4/IL-13 receptor regulation on pDCs post poxviral vaccination.
Surprisingly, data revealed that although rFPV and rVV vaccinations showed
regulation of IL- 13Ra2, IL-13Ra1, IL-4Ra and yc, post rIMVA and rMVAAIL-1BR
vaccination no detectable expression of the latter three receptors was found on
lung pDC even though elevated expression of IL-13Ra2 was detected 24 and 48
h post delivery (24 vs 48 h p<0.0001) (Figure 5.13a-b). The IL-13Ra2 expression
on pDCs post rFPV vaccination was found to be in the order of (24 > 48 <72 h)
(24 vs 48 h and 48 vs 72 h p<0.0001) (Figure 5.14), where as rVV showed a
significant up-regulation of IL-13Ra2, both at 48 and 72 h, compared to 24h post
delivery (24 < 48 <72 h) (24 vs 48 h and 24 vs 72 h p<0.0001) (Figure 5.15).
Interestingly, very low number of rFPV vaccinated pDCs expressed IL-4Ra, IL-
13Ra1 and yc at 24 h and 48 h (= 3%) and no detectable expression was
observed at 72h post delivery (Figure 5.14 and 5.16a). In contrast, significant up
regulation of IL-4Ra. and IL-13Ra.1 were detected on rVV vaccinated lung pDCs
48 to 72 h post delivery (20 - 80%) where very high proportion of pDCs expressed
IL-13Ra1 (24 vs 48 and 24 vs 72 h p<0.0001) and IL-4Ra (24 vs 48 p<0.0001
and 24 vs 72 h p=0.0003) compared to 24h (= 2%) (Figure 5.15). Moreover, less
than 2% of rVV vaccinated pDCs expressed yc at 24 h and no detectable

expression was found at other time points (Figure 5.15 and 5.16b).
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rFPV vaccinated pDCs showed significant decrease in IL-13Ra2 (24 vs 48 h p =
0.0002; 24 vs 72 h p = 0.0003), IL-13Ra1 (24 vs 48 hand 24 vs 72 h p = 0.0284)
and IL-4Ra densities (24 vs 48 h and 24 vs 72 h p = 0.0277) over time (Figure
5.17). In contrast, rVV vaccinated pDCs showed significantly elevated IL-13Ra.2
density at 72 h (24 vs 72 h p<0.0001), IL-13Ra1 (24 vs 48 h p=0.0002; 24 vs 72
h p<0.0001) and IL-4Ra. densities (24 vs 48 h and 24 vs 72 h p<0.0001) over
time (Figure 5.18). Similar to cDCs, the expression/regulation of yc on pDCs were
also not very significant (Figure 5.16). Interestingly, the expression densities of
IL-13Ra2 on rVV vaccinated pDC were also found to be approximately 10 times

greater than that of IL-13Ra1 and IL-4Ra.

5.5. Discussion

The enhanced IL-13Ra.2 expression unlike IL-13Ra.1, detected on lung cDCs and
pDCs 24 h following pox viral vector vaccination, have strengthened our previous
findings that IL-13Ra.2 may be the early sensor/mediator of IL-13 responses at
the first line of defense, the lung mucosae (Roy et al. (submitted)). Moreover, the
dissimilar expression of IL-4 Type | receptor complex (IL-4Ra and yC) on cDCs,
further substantiated that at early stages of vaccination, IL-13 performed a more
predominant role in shaping the vaccine-specific immune outcomes, than IL-4,
which was also consistent with our previous findings 22302, Specifically, where,
we have shown that pox viral vector-based vaccines, that have transiently
inhibited IL-13 at the vaccination site by significantly dampening ILC2-derived IL-

13 activity at the lung mucosae, 24h post delivery 3°¢ have been associated with
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enhanced lung cDC recruitment °° and induction of high avidity T cells 23367 |n
this study the replication abortive (in mammalian cells) rFPV and replication
competent rVV yielded uniquely different ILC2-derived IL-13 and IL-13 receptor
regulation on lung cDCs. rFPV vaccination, which was linked to low ILC2-derived
IL-13, showed up-regulation of IL-13Ra2 on ¢cDC 24 h and down-regulation 72 h
delivery, whist the opposing was observed with Type Il receptor complex (IL-
4Ro/IL-13Ra1) (Figure 5.19). This once again indicated that on lung cDCs the
high affinity IL-13Ra2 was most likely associated with IL-13 signalling at the early
stages (24 h) of rFPV vaccination, whilst, low affinity IL-13Ra1 gained function at
later stages of delivery. In contrast, post rVV vaccination (under high ILC2-
derived IL-13), constantly elevated IL-13Ra2 expression 24-72 h (Figure 5.19)
suggested that, under this condition IL-13Ra.2 was likely involved in sequestration
of the excess IL-13, produced by the replication competent vector (specifically
48-72 h) whilst signalling was mainly controlled by the low affinity Type Il receptor
complex (IL-4Ra /IL-13Ra1). These uniquely different early events may explain
‘how and why’ i) in a prime-boost vaccination modality, rFPV prime can generate
high avidity T cells, unlike rVV 33 and ii) the order of vector delivery significantly

impact vaccine-specific adaptive immune outcomes.

Recently, we have shown that rMVA vaccination can induce much higher IL-
33R/ST2*ILC2-derived IL-13 and reduced cDC recruitment at the lung mucosae
compared to rFPV vaccination. 3¢7. Moreover, the level of IL-13 induced by these
vectors were in the order of rFPV < rMVA < rVV (rMVA 2x higher and rVV 7x

higher than rFPV) 367 Interestingly, in this study early (24 to 48 h) post vaccination
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IL-13/IL-4 receptor regulation was very similar between rMVA and rVV, indicative
of the two vectors possessing similar IL-13 regulation mechanisms (sequestration
of IL-13 by IL-13Ra2 and signaling via IL-13Ra1/IL-4Ra). Nevertheless, 72 h
post rMVA delivery exhibited significantly reduced IL-4/IL-13 receptor activity
compared to the replication competent rVV (Figure 5.19), potentially associated
with the continuous ILC2-derived IL-13 production at the vaccination site by rvVV

continuously activating IL-13Ra2, unlike the replication abortive rMVA.

Interestingly, unlike parental rMVA, the IL-1BR deletion variant rMVAAIL-18R
vaccination, which showed similar ILC2-derived IL-13 levels and lung cDC activity
at the lung mucosae to rFPV, 357 also exhibited down-regulation of IL-13Ra2 (and
also IL-13Ra1) and an up-regulation of IL-4Ra, 72 h post vaccination (Figure
5.19). Given that, IL-13Ra2 can inhibit IL-4Ra activity 4°', these observations
inferred that, rMVAAIL-1BR most likely regulated the vaccine-derived IL-13
responses 24 - 72 h post vaccination by IL-13Ra2 signalling and regulation of IL-
4Ra by IL-13Ra2 antagonism, with no IL-4Ra/IL-13Ra1 (Type Il receptor
complex) signaling, unlike rFPV or rMVA. Interestingly, we have recently shown
that compared to rFPV, rIMVAAIL-1BR vaccination generated not only significantly
lower ILC2-derived IL-13 but also ILC1/ILC3-derived IFN-y, (likely due to the
residual viral IL-18 binding protein neutralizing host IL-18 preventing host IFN-y
production). Thus, in the context of rMVAAIL-1BR, we postulate that the
imbalance of IL-13/IFN-y expression may be linked to the differential IL-13Ra1/IL-

13Ra2 regulation compared to rFPV.
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Figure 5.19. Comparison of IL-4/ IL-13 receptor expression on lung cDCs and pDCs between 24 - 72 h following
viral vector vaccination. IL-4/IL-13 receptor expression obtained from Fig 1-6 have been summarised to compare and
contrast receptor expression between lung cDCs and pDCs between 24 — 72h hours post viral vector vaccination. Line
graphs show (a) IL-13Ra2, (b) IL-13Ra1, (¢) IL-4Ra and (d) yc on lung cDCs and pDCs following rFPV (red), rVV
(black), rMVA (grey) or rMVAAIL-1BR (green) vaccination.



Analogous to the cDCs, IL-13Ra2 and IL-13Ra1/IL-4Ro. expression on lung
pDCs were found to be significantly different 24 - 72 following different pox viral
vector-based vaccination. Interestingly, rFPV, that induced low IL-13 at the
vaccination site, showed significantly elevated c¢cDC and moderate pDC
recruitment to the lung mucosae, where as the opposing was true with r\V\/ 306367,
In the context of rFPV vaccinated lung pDC, enhanced IL-13Ra2 expression and
no significant IL-13Ra1/IL-4Ra regulation over time (Figure 5.19), once again
highlighted an association of IL-13Ra2 signalling under low IL-13 unlike rVV.
pDCs have long been associated with effective antibody maturation and
development 33400 and recently we have shown that following pox viral
vaccination, the presence of IL-13 was crucial for effective antibody
differentiation, via an STAT6 independent manner 302492 |ntriguingly, our current
findings further corroborate that in the context of pDC, IL-13 signaling/regulation
via IL-13Ra2 may be involved in this process. Furthermore, rFPV primed pDCs,
which exhibited enhanced IL-13Ra2 and minimal IL-13Ra1/IL-4Ra regulation on
pDCs, has also shown to induce modest antibody responses in mice and
macaques 22123, Whilst, rVV vaccination, which was associated with enhanced
IL-13Ra2 and IL-13Ra1/IL-4Ra activity, has shown robust neutralizing antibodies
in mice and humans 49349 _ |n contrast, rMVA vaccination which has shown to
induce much lower magnitude of antibody responses compared to rVV
137,266,406,407 " interestingly, showed reduced lung pDCs compared to rVV, and
down-regulation of IL-13Ra2 by 72 h post vaccination with no IL-13Ra1/IL-4Ra

activity. These observations insinuate that, the ability of different viral vectors to
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induce effective antibodies responses may also be governed by IL-13 regulation

of IL-13Ra2 and IL-13Ra1/IL-4Ra on lung pDCs, at early stages of vaccination.

Moreover, rVV vaccination has shown to induce enhanced pDCs and cross-
presenting DCs 367, associated with induction of greatly elevated VV-specific
antibody as well as T cells responses both in mice and humans 403-405:408,409
However, when rVV has been used as a vaccine vector, the quality of T cell
responses induced to the encoded vaccine antigens have been much inferior
compared to rFPV 33, These observations, together with our current findings
suggest that, in the context of viral vector-based vaccines, more attenuated and
unrelated the vector to the host it may have the capacity to induce more
efficacious and high quality vaccine-specific immune outcomes. This may also
explain why, in a prime-boost vaccination modality, rFPV or canarypox vector
prime have shown to induce more effective immune outcomes than other pox
viral vectors 121.123.131.133 = gpecifically, given that priming creates the initial
antigen-specific T cell population, which gets expanded during the booster

vaccination 122124,

Collectively, our findings reveal that the host tropism, replication status as well as
presence or absence of immunomodulatory genes in a viral vector can
significantly impact the IL-4/IL-13 receptor regulation on lung DCs. These findings
may elucidate why despite encoding the same vaccine antigens, different viral
vectors yield vastly different vaccine-specific immune outcomes. Taken together

our observations evoke the notion that efficacy/fate of a vaccine is likely governed
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by the early effective regulation and balance of IL-13 by IL-13Ra2/IL-13Ra1 on

DC at the vaccination site.
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Chapter 6

General Discussion
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6.1 Synopsis

Designing a successful vaccine against any chronic pathogen frequently poses
many challenges. Specifically, in the context of HIV, high epitope variability,
which leads to immune evasion and immune recognition 410411 existence of
different HIV clades in different geographic locations 412413 have made designing
an effective vaccine that can induce long lasting adaptive immunity, which
recognizes the broad breadth of HIV antigens, extremely difficult. Whilst an HIV
vaccine with cross-reactive or broadly neutralizing antibody responses remain
elusive 414, studies have also established that cytotoxic CD8* T cells are crucial
in preventing viral replication and pathogenecity 4’418, Two decades of work in
our laboratory have established that the route of vaccination, choice of viral
vaccine vector and the vaccination induced cytokine milieu (IL-4/IL-13) critically
influenced the fate of a vaccine 122-124130-133 " Studies by Wijesundara et al.
showed that in a heterologous poxvirus vector-based HIV prime-boost
vaccination modality, the priming vector crucially impacted the functional avidity
of HIV-specific CD8* T cells '33. Specifically, rFPV prime was shown to induce
CD8* T cells of higher functional avidity compared to rMVA or rvVV 33
Furthermore, novel recombinant poxviral vector-based HIV vaccines co-
expressing IL-4/IL-13 inhibitors, which transiently blocked IL-13 or STAT6
signalling at the vaccination site, was shown to significantly influence cellular and
humoral immune responses 122124 Specifically, i.n. rFPV/ i.m. rMVA or rVV
poxvirus prime-boost vaccination strategy, that transiently inhibited STAT6
signalling at the lung mucosae was shown to induce both high avidity/poly-

functional cytotoxic T cells as well as effective antibody responses in mice and
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non-human primates 122123 (Li et al. in preparation). In comparison, transient
sequestration of IL-13 from the milieu only improved the functional avidity of T
cells 24, These studies clearly demonstrated that, IL-13 at the vaccination site,
whilst being detrimental to functional avidity of T cells, was essential for effective
humoral immunity. Trivedi et al. using these novel vaccines, also showed that
reduced IL-13 levels at the vaccination site promoted cDC recruitment to the
vaccination site associated with high avidity T cell induction °°. Furthermore
investigating which cells expressed IL-13 at the vaccination site 24h post viral
vector, Li et al. for the first time established that ILC2 were the major producer of
IL-13 306, This PhD project sought to unravel some of the fundamental
mechanisms by which IL-13 modulated DC activity at the vaccination site. The
major findings of this project were:

1. Viral vector-induced IL-13 levels at the vaccination site differentially
regulated DC recruitment to the vaccination site, 24 h post delivery.

2. Enhanced expression of IL-13Ra2 detected on lung DCs was regulated in
a vector-dependent manner (according to the level of IL-13 induced).

3. Following viral vector vaccination, low IL-13 conditions induced IL-13Ra.2
signalling via STAT3 in lung cDCs, governed by TGF-1 regulation, whilst
high IL-13 conditions induced IL-13Ra1 signalling, where IL-13Ra2
regulated |IL-13 homeostasis at the lung mucosae.

4. On lung cDCs, the densities of IL-13Ra2 and IFN-yR co-expression, 24 h
post viral vector delivery, were found to be linked to different vaccine-

specific T cell outcomes (observed in previous studies).

224



6.2. Viral vectors have not only their own ILC2-derived IL-13 profiles but
also their own DC signature.

Findings in this thesis for the first time demonstrated that different viral vector-
based vaccines expressing the same vaccine antigen can not only crucially
impact the recruitment of different ILC and ILC2-derived IL-13 levels, but also the
DC recruitment to the vaccination site, 24 h post delivery. Specifically, each viral
vector exhibited its own ILC2-derived IL-13 profile as well as a DC signature.
These findings further substantiated our previous findings, eliciting the
importance of the priming vector, in a prime-boost modality. Previous studies
have shown that the priming vaccination generates the initial vaccine-specific T
cell pool, which gets expanded by the booster, responsible for the final T cell
outcomes 122124 Specifically, in this study, i.n. rFPV priming which induced low
ILC2-derived IL-13, showed enhanced cDC recruitment to the lung mucosae.
Whilst i.n. rMVA and rVV priming which induced high ILC2-derived IL-13,
recruited enhanced cross-presenting DCs. Using the novel IL-4/IL-13 inhibitor
vaccines, adoptive transfer studies by Trivedi et al. have clearly shown that in a
prime-boost modality, whilst cDCs were involved in the induction of high avidity
T cells, cross-presenting DCs were associated with induction of low avidity T cells
133, Moreover, recent studies by Li et al. have also shown that different ILC2-
derived IL-13 levels in the lung and muscle correlated with varying T cell
outcomes following viral vector-based vaccination 3%, Taken together, these
current findings have further unravelled some of the fundamental IL-13 related
mechanisms at the innate immune cell level, specifically how ILC-DC cross talk

at the vaccination site shape the downstream adaptive immune outcomes.
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Chapter 3 studies also demonstrated that manipulation of the inherent properties
of the viral vector can significantly impact the ILC2-derived IL-13 as well as
associated DC profiles at the vaccination site. For example, a single deletion of
virokine IL-1BR from rMVA vector significantly reduced the ILC2-derived IL-13
levels at the vaccination site, compared to the parental rMVA and lead to
enhanced cDC recruitment to the lung mucosae, similar to rFPV. In the context
of rMVA, deletion mutants of immune evasive genes such as IL-18 binding
protein or C6L and F1L have also been tested 183185419 |nterestingly, although
the T cell outcomes of these mutant variants have been established, underlying
mechanisms leading to the differential quality or magnitude of these T cell
responses have not yet been characterized. These findings further lead into one
of the major caveats in the current vector-based vaccine design, where the nature
of the viral vector is often overlooked when designing vaccine against different
pathogens. This study, for the first time, has demonstrated i) how a viral vector
critically influenced the fate of a vaccine, and ii) how characterizing the IL-13
associated DC profiles, specifically unraveling the mechanisms of ILC-DC cross
talk at the vaccination site may hold the key to better vector-based vaccine design

in the future.

6.3. Viral vector-based vaccination, lung cDC and dual role of IL-13Ra2.
Chapter 4 and 5 studies for the first time unraveled one of the mechanisms by
which lung DCs shape different cellular and humoral immune outcomes, 24 h

post intranasal viral vector-based vaccination, where IL-13Ra2 was the main IL-
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13 regulator on lung cDCs and pDCs. Specifically, how cDCs modulate high
avidity T cells °°724 and pDCs regulate antibody differentiation 97420, via IL-
13Ra2/STATS3. Interestingly, studies by Hamid et al. also pointed towards the
involvement of a STAT6 independent mechanism (likely IL-13Ra2 related),
involved in the latter process 3°2. These finding clearly showed that according to
the vector-specific IL-13 level, IL-13Ra2/STAT3 performed a dual role at the
vaccination site (at the lung mucosae), where under low IL-13, IL-13Ra2/STAT3
lead to TGF-B1 activation, whilst, under high IL-13, the receptor performed a
sequestration role to maintain homeostasis, similar to inflammatory conditions
295.2% These observations were further corroborated by other vaccination studies
where TGF-B1 was linked to enhanced protection associated with CD4* T cells
421422 whilst, early STAT6 signalling was associated with poor vaccine-specific T
cell outcomes 22132, Collectively, these observations, indicated that promoting
low IL-13 production, leading to early enhanced IL-13Ra2/STAT3/TGF-B1
expression, as opposed to IL-13Ra1/STAT6/IFN-yR by cDCs may be a useful

strategy when designing effective T cell-based vaccine strategies in the future.

One of the most unexpected findings of this thesis was the elevated expression
of IL-13Ra.2 not only on vaccinated cDCs, but also naive lung cDCs (even though
vaccination further up-regulated the expression). Knowing that the lung is
constantly exposed to air-borne impurities and pathogens, and IL-13 is
profoundly involved in lung inflammation, taken together these findings
suggested that elevated IL-13Ra2 expression on lung cDCs could be an inherent

mechanism by which lung DCs at the first of defence regulate IL-13 mediated
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lung inflammation. Furthermore, given that IL-13Ra2 is known to play different
roles in immune protection 2°52% as well as disease (cancer) progression 2°,
current findings suggested that this may occur via how effectively different
environmental factors regulate cDC/IL-13Ra2. Findings of this thesis also
advocated the notion that dysregulation of IL-13Ra2/IL-13Ra1 balance leading
to STAT3/STAT6 malfunction may be the main cause of allergy/asthma, including
exacerbation of certain IL-13 mediated disease conditions, specifically certain

cancers.

6.4. Viral vector-specific IL-13Ra2/IFNyYR co-expression profiles on lung
cDCs likely influence vaccine-specific T cell outcomes.

Chapter 4 studies also revealed that each viral vector-specific IL-13 level can also
influence the relative expression of IL-13Ra2 and IFN-yR on lung cDCs, 24 h post
delivery. Interestingly, rFPV vaccination, which induced low ILC2-derived IL-13
and elevated ILC1/ILC3 derived IFN-y at the lung mucosae, 24 h post delivery,
was associated with co-expression of enhanced IL-13Ra2 and low IFN-yR on
lung cDCs (Figure 6.1). In contrast, rMVA, which induced opposing ILC-derived
IL-13 and IFN-y levels at the lung mucosae, showed elevated IL-13Ra2
expression and IFN-yR response bias on lung cDCs (Figure 6.1). The moderate
ILC-derived IL-13 and IFN-y producer, rAd5 vector showed an intermediary IL-
13Ra2/IFN-yR profile to rFPV and rMVA (Figure 6.1). Remarkably, in this study
the cDC recruitment to the lung mucosae was in the order of rFPV > Ad5 > rMVA.

Ad5 showed reduced cDC and elevated pDC recruitment to the lung mucosae.
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Interestingly, cDCs have been associated with high avidity T cell induction ®°, and
pDCs with effective antibody immunity %7429, Also, recent findings have shown
that although rAd26 HIV vaccination induced enhanced HIV Env-specific
antibody and ADCC responses in animal models and Phase 1 trials 232:233:423:424
did not induce effective HIV-specific CD8* T cell immunity. Knowing thati.n. rFPV/
i.m. rMVA vaccination can induce both high avidity/poly-functional
mucosal/systemic CD8" T cells, ADCC and effective Env-specific antibody
responses in non-human primates '23 (Li et al. in preparation), taken together the
findings in this thesis, knowing that rFPV induced cDCs leading to high quality T
cells 139132 data suggested that in the future an i.n. rFPV/i.m.rAd26 booster
strategy may have high potential to induce more effective balanced T and B cell
vaccine outcomes . Collectively, these findings also propose the notion that the
IL-13Ra2/IFN-yR co-expression patterns on lung cDCs may also reflect the
different avidities/qualities of vaccine-specific T cells, following viral vector

vaccination.

6.5. Viral vectors, IL-13 and DC profiles and how can these factors be
modulated for better vaccine design.

Studies in our laboratory have shown that mucosal vaccination induced high
avidity T cells associated with low IL-13 expression, whilst systemic vaccination
induced low avidity T cells associated with high IL-13 expression by vaccine-
specific T cells 130132 Lj et al. have also shown that mucosal rFPV vaccination
induced low ILC2-derived IL-13 compared to systemic vaccination 3%. Also, the

chapter 3 related ILC studies substantiated Li et al.’s findings. Thus, extrapolating
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the ILC-derived IL-13 and related DC profiles with different viral vectors 24h post
i.n. delivery (low IL-13 associated with cDC, high IL-13 with cross presenting DC),
data suggested that intramuscular vaccination which induced high IL-13 in the
muscle, may have high potential to lead to recruitment of enhanced cross-
presenting DCs, associated with low avidity T cell induction. Interestingly, this
may explain why for over two decades, systemic HIV vector-based vaccination

strategies have yielded extremely poor outcomes in HIV Phase | clinical trials

144,204

For many years, immune potentiating adjuvants (4-1BBL), chemokines and
cytokines (IL-2, IL-12, IL-18, type | and Il interferons), have been co-expressed
together with vaccine antigens, to improve vaccine-specific immunity 206
209,212,213,425-427 - Although maijority of these vaccines have elicited “enhanced T
cell immunity, measured by IFN-y production”, have not improved the “quality of
T cell immmunity” in animal models and most have shown poor immune outcomes
in humans 2%42'4_|n contrast, vaccines antagonizing cytokine signaling at the
vaccination site (such as IL-4R antagonist, IL-13Ra2), have shown to induce
higher quality T cell immunity in mice and non-human primates 122124131 Why
sequestration of cytokines yield better quality T cells compared to overexpression
were recently corroborated by Mahboob et al., where they showed that
overexpression of cytokines (e.g. IL-13, IFN-y, ) had no impact on the ILC2-
derived IL-13 or ILC1/ILC3-derived IFN-y expression at the vaccination site

(Mahboob thesis 2016), whilst Li et al. showed that vaccines sequestering IL-25
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at the vaccination site, which altered ILC activity can differentially modulate ILC2-
derived IL-13 expression 24 h post i.n. or i.m. vaccination 4?8, Taken together
these findings indicated that, rather than over-expression of cytokines,
antagonism (e.g. IL-4R antagonist, IL-13Ra.2 and IL-25 binding protein) 122:124:428
which alters ILC/DC profiles at the vaccination site could be of more value in the
context of inducing high quality T cells and protective efficacy against chronic
viral pathogens. Knowing that IL-6, IL-10 and VEGF can alter DC function with
respect to STAT3 activity in cancer therapy 4?°, co-expression of “DC targeted

molecules” in viral vector-based vaccines, may warrant further investigation.

Unlike HIV-1 infection, in the context of bacterial pathogens such as
Mycobacterium tuberculosis and Chlamydia trachomatis, CD4* T cells have been
associated with host protection 43%-43¢_ Studies have shown that cross-presenting
DCs effectively present bacterial and fungal antigens to CD4* T cells 437438, Thus,
taken together the findings of the current study, a prime-boost vaccination
approach, using rMVA prime, which induces high ILC2-derived IL-13 and
elevated cross-presenting DCs followed by a relevant booster (rFPV, rAd or
protein), have high potential to yield effective antigen-specific CD4* T cell
outcomes against these pathogens. In summary, these findings further
highlighted that understanding the route and vector-specific ILC and DC profiles
at the vaccination site may help tailor pathogen-specific vaccine design, to yield

desired protective immune outcomes.
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In conclusion, this study for the first time demonstrated that the viral vector-
specific ILC2-derived IL-13 at the vaccination site crucially impacted the DC
subsets recruited to the lung mucosae. The fate of a viral vector-based vaccine
was determined by how the IL-13-driven IL-13Ra2 on lung cDCs was regulated,
specifically by STAT3/TGF-B1 or STAT6/IFN-yR, where the former lead to high
avidity T cell induction unlike the latter. Hence, not only the encoded antigens,
but also the viral vector-associated IL-13 and DC regulation profiles should be
carefully taken into consideration when designing viral vector-based vaccines
against chronic pathogens. Vaccine strategies that can manipulate STAT3 and/or
STAT6 activity may have high potential to yield exciting and different adaptive

immune outcomes against different pathogens, in the future.

6.6 Limitations:

¢ One of the main limitations of this study was the unavailability of IL-13Ra.2
and STAT3 knock out mice on the BALB/c background, which would have
helped to confirm the ‘direct relationship’ of IL-13Ra2, STAT3 and TGF-
B1 under low IL-13 conditions.

e Knowing that viral vector-based vaccination induced much greater ILC2-
derived IL-13 in muscle than lung, a comparative study using i.m. delivery
of different viral vectors to evaluate lung DC subsets recruited to the
muscle, 24h post delivery would have added value to the work.

e Establishing the ‘direct’ cross-talk between ILC2-derived IL-13 and lung
DCs using ILC2"- mouse model on BALB/c background would have been

useful to further confirm findings of the thesis.
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6.7 Future directions:

e Designing a database denoting the ILC profiles (e.g. ILC2-derived IL-13,
ILC1/ILC3-derived IFN-y and IL-17 levels) and DC profiles with expression
patterns of IL-13Ra2, STAT3, STAT6, TGF-B1, IFN-yR levels, 24h post
delivery, for commonly used viral vectors as well as adjuvants following
intranasal and intramuscular vaccination could be a powerful reference
library/repository, which may help design more effective vector-based
vaccine strategies, according to the pathogen of interest in the future. This
may help restrain/prevent the current notion that, when designing vaccines
“same vector or adjuvant would fit every pathogen”.

¢ Knowing thatin addition to DCs, macrophages and monocyte-derived DCs
also polarize Th1 and Th2 immunity, it would be of value to test whether
these cells have any association with the IL-13 levels at the vaccination
site, or the observed outcomes are DC-specific.

¢ Now, knowing that in the context of viral vaccination DCs play a key role
in governing the fate of the vaccine, it would be also of interest to further
unravel other underlying mechanisms, specifically how different lung DCs
selectively present antigens to activate specific T cell clones to induce
mucosal homing.

e Perform pull-down assays to assess whether there are any other receptors
that complex with IL-13Ra2 to initiate STAT3 signalling or IL-13Ra2
remodeling post IL-13 binding to initiate signalling.

e This study demonstrated that following viral vector vaccination, STAT3/

STATG6 play an important role in lung cDC regulation. Hence, it would be
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of interest to characterize how these molecules also regulate cross-
presenting DCs and pDCs following viral vector vaccination.

In the future, following viral vector based vaccination, subjecting sorted
DCs to parallel RNA single cell sequencing (MARS-seq) 3° may also help
to generate a viral vector-specific genetic signature (find molecules other
than the observed regulatory elements), which may help design better

vaccines strategies in the future.
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