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Abstract 

 
Dendrites have active properties capable of generating dendritic spikes that could boost the 

impact of distal synaptic inputs. The strong passive filtering of the membrane and generation 

of local dendritic spikes enable different dendritic regions to function as independent 

computational compartments. While there is a wealth of information about cortical processing 

in apical tuft and basal dendrites, the functional role of apical oblique dendrites of layer 5 

pyramidal neurons (L5PNs) are less understood. In this thesis, I aim to understand to functional 

role of thin apical oblique dendrites of L5PNs in the cortex. Using a previously published multi-

compartment model of a L5PN, I first investigated the excitability of apical oblique dendrites 

and the extent of action potential (AP) back-propagation. In the model, I found that a 2-AP 

train at f  > 35 Hz elicited an oblique branch spike in certain dendrites.  The spike is mediated 

by activation of voltage-gated sodium and voltage-gated calcium channels. In addition, oblique 

branch spikes manifest as after-depolarizing potentials (ADP) at the soma. I then 

experimentally verified the generation of spikes by imaging the dendritic activity of oblique 

branches of L5PNs from the somatosensory cortex in vitro. I used our custom-built two-photon 

(2P) holographic microscope to perform functional calcium imaging on thin oblique branches 

of L5PNs in vitro. Oblique branch spikes are evoked at a critical frequency of fc = 57±5 Hz 

(from calcium imaging) and fc = 72±4 Hz (from ADP measurements) of a 2-AP train. 

Generation of spikes in oblique dendrites could establish their role as independent 

computational compartments that could boost coincident synaptic inputs. To further improve 

optical recording along dendrites, I proposed novel optical recording techniques to enhance the 

signal-to-noise ratio  (SNRs) of the detected signals. A 4-fold improvement in the SNR was 

obtained with temporal gating for multi-site holographic calcium imaging, while a 6-fold 

increase in SNR was obtained for voltage imaging when using scattered photons to excite 

voltage indicators. These two novel SNR enhancement techniques can facilitate experiments 

that require imaging of activity in thin dendrites. 
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Chapter 1: Introduction 
 

 

 

 

1.1 Structure and function: a guiding theme to study how the brain works 
The interplay between structure and function is a common feature in biology. Nature shows us 

many clever examples of structural designs that underlie important functions. For example, 

Japan’s “Shinkansen” bullet train engineers integrated bird parts into the train design such as: 

the beak of a king fisher, wings of an owl, and the belly of a penguin. As a result, Japan’s bullet 

train efficiently travels at high-speed through tunnels while keeping the aerodynamic noise low 

for the nearby residents (Eiji Nakatsu, Shinkansen 500-series, Japan Railway Company, 1997). 

Thus, taking inspiration from nature’s design and understanding their structure-function 

relationship will help researchers create better products and processes (Benyus, 2002).  

The theme “structure and function” has driven our efforts to understand the brain. With 

the invention of the microscope, biologists and neuroanatomists started to study the structure 

of the brain under high magnification (for a historical account, see Shepherd (2015a)). Camillo 

Golgi invented a staining technique (also called the “black reaction”), which revealed the 

structure of nerve cells, showing that they consist of a cell body, protoplasmic prolongations 

from the cell body, and an axis cylinder (now known as the axon). An account of Golgi’s work 

can be found in his 1906 noble lecture (Golgi, 1906). Ramón y Cajal then used Golgi’s staining 

method to trace the structural development of cells in the nervous system. In 1889, Ramón y 

Cajal introduced the new term “dendrites” to refer to the complex prolongations that extend 

from the cell body (Cajal, 1889). An English translation of Cajal’s work introducing the new 

term dendrites is described in the book by Shepherd (2015b), and I quote, 

“As a particular meaningful result, I consider the initial one-sided [unipolar] 

development of all central nerve cells. Each neuroblast gives rise to an axis cylinder 

[axon] which from its cell of origin pushes out toward a certain target area. 

Considerably later it begins the generation of new extensions which with increasing 

branching spread out in the region of the cell. Dendrites-fibers, or dendrites, we 

can call them, in contrast to the axis fibers, in order not to need an adjective each 

time to describe them (Shepherd, 2015b).” 

Ramón y Cajal, the father of modern neuroscience and an artist himself, produced detailed 

illustrations of the structure of neurons with their elaborate dendrites that puzzle scientists as 
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to their underlying function to this very day (Mel, 1994; Shepherd, 2015b; Swanson and 

Newman, 2016). Ramón y Cajal proposed two ideas that give insight into brain function: the 

neuron doctrine and the law of dynamic polarisation. The neuron doctrine states: “The neuron 

is the basic anatomical and physiological unit of the nervous system (Shepherd, 2015a).” The 

neuron doctrine points out that a neuron with its complex branching patterns is a finite unit. 

Cajal also proposed the law of dynamic polarisation, which states: “The transmission of 

nervous impulses is always from the dendritic branches and the cell body to the axon or 

functional processes (Shepherd, 2015a).” Synaptic transmission describes the conduction of 

impulses from one neuron to another. In a synaptic event, axon terminals of pre-synaptic 

neurons release neurotransmitters such as acetylcholine (Dale, 1906; Fishman, 1972; Todman, 

2008), and glutamate (Watkins and Evans, 1981). These neurotransmitters diffuse at the 

synaptic cleft at a given time course (Clements et al., 1992), bind to neurotransmitter receptors 

on the post-synaptic membrane, and activate ion channels generating post-synaptic potentials 

(Brock et al., 1952; Eccles, 1972).  

Indeed, the brain is a complex organ containing billions of cells with different cell types 

defined by their geometry, chemical, and molecular composition. At the same time, the brain 

is a powerful computing system capable of processing multi-sensory inputs and performing 

cognitive functions such as reasoning and storing memories. The complexity of the brain 

requires studies that involve imaging brain structures and activity at different scales ranging 

from: brain regions, network of neurons, single neurons, dendrites, synapses, ion channels, 

proteins, down to signalling molecules (Lichtman and Denk, 2011).  

In this thesis, I aim to understand how the brain works by focusing on the functional 

role of a specific set of dendrites, the apical oblique dendrites of layer 5 pyramidal neurons 

(L5PNs) in the cortex. I investigated the generation of putative dendritic spikes in thin oblique 

branches. I utilized three approaches namely: (1) use of multi-compartment model; (2) single-

cell electrophysiology; and (3) fluorescence calcium imaging. I built a microscope that uses 

two-photon multi-site holographic excitation to enable simultaneous recording of calcium 

activity at different sites along the neuron’s dendritic tree. Using these techniques, I present 

evidences that apical oblique dendrites generate dendritic spikes during low-frequency burst of 

back-propagating action potentials (bAPs). I refer to these dendritic spikes as “oblique branch 

spikes.” The active nature of somatic action potentials (APs) to back-propagate into the 

dendritic tree provides a retrograde signal that activates voltage-gated channels in the dendrites 

(Stuart and Sakmann, 1994). In addition, we propose two techniques that can be used to optical 

record these oblique branch spikes with voltage imaging namely: temporal gating and “single-
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photon excitation by scattered photons (1PESP)” to improve the signal-to-noise ratio (SNR) of 

the optically recorded voltage and calcium transients. I provide preliminary experiments 

demonstrating the efficacy of these techniques. I conclude by pointing to possible future 

experiments that would investigate how oblique branch spikes play a role in in dendritic 

integration.  
  

1.2 Cerebral Cortex 
The cerebral cortex processes most sensory information, apart from olfaction (see Figure 1.1a 

for cross-sections of the rat brain showing the cortex). The cortex is organized in a columnar 

manner with six layers (Mountcastle, 1997). Specific layers receive different thalamic 

projections. For example, in the whisker-barrel system, layers in the barrel cortex receive axon 

terminals in an organized fashion via the lemniscal and paralemniscal pathways. Axons of 

VPM neurons follow the lemniscal pathway terminating at layer 4 and layer 6 of the cortical 

column (Figure 1.1b). On the other hand, neurons in the posterior medial nucleus (POm) from 

the thalamus project their axons to the primary (S1) and secondary somatosensory cortex (S2) 

via the paralemniscal pathway. Axons in this pathway terminate to layer 1 and layer 5a of the 

cortical column.  

 In 1991, Felleman and Van Essen proposed that the cortex connectivity consists of feed-

forward and feedback streams of information (Felleman and Van Essen, 1991). The feed-

forward stream includes neurons: in the thalamus, in the supragranular layer (layers 1-2/3), and 

in the infragranular layers (layer 5-6) of the cortex with axons that terminate to layer 4. On the 

other hand, the feedback stream of information is carried by neurons from the thalamus and in 

the infra- and supra-granular layers of the cortex with axons that terminate to layer 1 and layer 

6. In addition, a fraction of neurons in layer 5 form uni- and bidirectional connections among 

themselves (Markram et al., 1997; Markram et al., 2015). 

 The layers of the cortex are populated with neurons of different cell types, densities, 

and morphologies. Excitatory and inhibitory neurons populate all layers in the cortical column. 

Each neuron type exhibits diverse morphology and serves different functions (Figure 1.1b) 

(for comprehensive summaries, see Jiang et al., 2015; Markram et al., 2015; Rojo et al., 2016).  
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Figure 1.1 The cortex and its laminar organization. a, The whole-brain and cross-sectional 
view (i.e. parasagittal and coronal sections) of a mouse brain with the cortex, highlighted in 
purple), occupying the upper-half of the brain. b, A patch of membrane (indicated by the green 
box in Figure 1.1a) showing axonal projections arriving at different layers in the 
Somatosensory cortex. Axons from POm (green) and VPM (red) neurons in the thalamus 
terminate at layer 4 (lemniscal pathway) forming discrete barrels or at layer 4 and layer 1 
(paralemniscal pathway). Within the cortical column, inputs to layer 4 are received by 
inhibitory somatostatin (SS) interneurons and layer 4 star pyramidal neurons, which 
interconnects with excitatory pyramidal neurons across different layers and modulates the 
output of L5PNs. Figure 1.1a is taken from the mouse brain atlas of the Allen Brain Institute 
(http://atlas.brain-map.org/). Figure 1.1b is adapted from Petersen (2007). 
 



	 15 

In this study, I focused on cortical pyramidal neurons in the somatosensory or barrel 

cortex. Layer 1 is the input layer where most of the axons from the POm terminate. This layer 

contains mostly inhibitory cells (e.g. neurogliaform cells). Layers 2 and 3 contain excitatory 

layer 2/3 pyramidal neurons and interneurons. Layer 4 is the input layer of the barrel cortex 

where afferents from the VPM terminates. This layer contains spiny stellate neurons, basket 

cells and layer 4-star pyramidal neurons (L4SP), with a strong overlap of the axons and 

dendrites of these neurons (Lubke et al., 2000; Egger et al., 2008). Layer 5 consists of 

pyramidal neurons (L5PNs), the output neurons of the cortex, with an apical trunk that extends 

up to layer 1 (Groh et al., 2010; Oberlaender et al., 2011; Oberlaender et al., 2012) and with 

axons that project back to the thalamus (Hattox and Nelson, 2007).  

L5PNs can be further categorised into layer 5a (L5aPNs) and layer 5b pyramidal 

neurons (L5bPNs). The upper portion of layer 5 consists of slender tufted L5aPNs with a thin 

apical trunk but elaborate apical tuft dendrites in layer 1. The bottom portion of layer 5 contains 

thick-tufted L5bPNs, which have thick apical trunks and elaborate apical oblique dendrites in 

layer 4 and tuft dendrites in layer 1. With its dendritic tree crossing all layers, L5PNs are 

hypothesized to play a vital role in coupling feed-forward and feedback streams of information 

(Larkum, 2013). Feed-forward inputs arrive in layer 4 and layer 1 of the cortex, which activate 

inhibitory somatostatin (Som) interneurons and L4SP neurons. These neurons then modulate 

the output of L5aPNs and L5bPNs. In vivo recordings have shown that slender-tufted L5aPNs 

fire during active whisking task while the thick-tufted L5bPNs repetitively fire and are more 

involved during passive whisker touch (de Kock et al., 2007; de Kock and Sakmann, 2009). 

Layer 6 contains L6 pyramidal neurons, which have apical trunks that extend only up to layer 

4, with a few short apical tuft branches (Ferrer et al., 1986; Ledergerber and Larkum, 2010). 

While different cell types populate different layers, recent studies that combined 3D anatomical 

reconstruction of neurons with thalamic axon innervation in vivo show that locations of 

different cell types do not necessarily match with independently defined cell layer borders 

(Oberlaender et al., 2011; Oberlaender et al., 2012). In particular, layer 5 exhibits a mixed 

distribution of L5aPNs and L5bPNs, except for a narrow zone at the borders of layers 4/5 and 

layers 5/6, where L5aPNs and L5bPNs are homogenously distributed, respectively. 
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1.3 Pyramidal Neurons 
Pyramidal neurons are the primary excitatory neurons in the brain (for reviews, see DeFelipe 

and Farinas (1992), and Spruston (2008)). They populate brain regions that are involved in 

cognitive processes such as: the cerebral cortex, the hippocampus, and the amygdala. Like 

other neuronal types, pyramidal neurons exhibit diverse dendritic branching morphologies 

(Figure 1.2) and it is a growing interest to uncover the role of dendrites in information 

processing (Mel, 1993; Mel, 1994).  

Pyramidal neurons have pyramid-shaped cell bodies with dendritic projections at the 

base and apex of the cell body (Spruston, 2008). At the base of this cell are thin projections 

from the soma called the basal dendrites. Another long thick branch stems out at the top of the 

soma and extends towards the brain surface, known as the main apical trunk. Layer 4 and layer 

2/3 pyramidal neurons have short (~200 µm) apical trunks while L5PNs have long apical trunks 

(~800 µm), which span across all layers of the cortical column. At the end of the main apical 

trunk is a bifurcation point from which forms the nexus of a set of dendrites referred to as the 

apical tuft dendrites.  

 

 

 
 
Figure 1.2 Pyramidal neurons from different brain regions. Morphological reconstructions 
of pyramidal neurons from different cortical areas. Each neuron has a soma, basal, apical, and 
apical tuft dendrites. Each neuron also has a distinct dendritic arborisation. For example, CA1 
and CA3 neurons in the hippocampus have dense apical dendrites as compared to Layer 2/3 
and L5PNs. Figure 1.2 is taken from (Spruston, 2008). 
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Dendrites receive inputs from different layers. As discussed in the previous section, 

each dendritic region (i.e., basal, and apical dendrites) carries different streams of synaptic 

information from other neurons. At the synaptic connection, the synaptic cleft physically 

separates the axon terminal of a pre-synaptic neuron and the spine head or dendrite of the post-

synaptic neuron. When a pre-synaptic neuron fires an AP, its axon terminals (or boutons) 

release neurotransmitters (e.g., acetylcholine, glutamate, and GABA) to the extracellular space 

and specifically to spine heads of dendritic branches of a receiving neuron. The extracellular 

space between a bouton and a spine forms a synaptic cleft between the firing neuron (pre-

synaptic) and the receiving neuron (post-synaptic). Once released, the neurotransmitters bind 

to the receptor sites of different ligand-gated channels (e.g., AMPA and GABA receptors) on 

the membrane of the post-synaptic neuron generating a post-synaptic potential (for a review of 

different ion channels, see Purves (2004)). The soma and the axon receive inhibitory GABA-

ergic synaptic inputs while the apical tuft dendrites receive excitatory synaptic inputs.  

Dendrites act as low-pass filters, which help segregate synaptic inputs coming from 

distal dendrites and proximal dendrites. As recorded from the soma, distal inputs are strongly 

attenuated and delayed compared to proximal inputs. Triple electrode recordings, at the soma 

and two sites along the apical trunk of L5PNs, showed an exponential drop of the excitatory 

post-synaptic potential (EPSP) amplitude from the distal site (>40-fold) to the soma (Williams 

and Stuart, 2002). This strong passive filtering of the membrane requires more distal synapses 

to be activated in order to fire an AP at the soma. Somatic impact of distal synaptic inputs can 

be boosted with the recruitment of local dendritic spikes (reviewed in Etherington et al. (2001)).  

 

 

1.4 Dendritic spikes 
Synaptic potentials suffer attenuation and broadening as they propagate to the soma, reducing 

their capacity to bring the neuron to reach the threshold for firing APs (Stuart and Spruston, 

1998). One way to boost the somatic impact of distal synaptic inputs is by the recruitment of 

regenerative events called dendritic spikes. 

Over 60 years of studies now show that dendrites have active properties, which can 

transform and boost synaptic inputs (for reviews, see London and Hausser (2005), Major et al. 

(2013), and Stuart and Spruston (2015)). Dendritic spikes are regenerative potentials that arise 

from the activation of voltage-gated channels in the dendrites. The unique conditions required 

for activation of dendritic spikes in vitro imply that dendrites themselves are capable of 



	 18 

performing complex dendritic computation such as coincidence detection, logical and-or 

operation, and temporal discrimination (London and Hausser, 2005). With the advancement of 

genetically encoded calcium and voltage indicators that optically reports membrane activities 

of dendrites, scientists are now beginning to unravel how dendritic spikes play a role in sensory 

perception in vivo (Lavzin et al., 2012; Xu et al., 2012; Smith et al., 2013; Palmer et al., 2014; 

Manita et al., 2017). 

There are three types of dendritic spikes, namely: sodium, calcium, and NMDA spikes 

(Figure 1.3). These spikes exhibit distinct temporal profiles arising from the kinetics of the 

channels that mediate them (as indicated by blue arrows in Figure 1.3a-c). Heterogeneous 

expression of these channels across the dendritic tree forms local dendritic spike domains 

(Figure 1.3d). Sodium spikes show fast activation of ~2 ms duration and have been recorded 

in thin apical oblique branches (Golding and Spruston, 1998; Kamondi et al., 1998; Losonczy 

and Magee, 2006).  

 

 
 
Figure 1.3 Sodium, calcium, and NMDA spikes. a, The generation of fast (~2 ms) sodium 
spike by injecting currents at a dendrite. The membrane voltage a non-linear increase in the 
peak amplitude at a certain current injection, which is abolished by bath application of sodium 
channel blocker (0.5 µM Tetrodotoxin, TTX). b, The generation of calcium spike (~10 ms 
depolarization) by a train of bAPs via the critical frequency protocol resulting to a non-linear 
increase in the intracellular calcium and total charge. c, The generation of broad (>50 ms) 
NMDA spikes with an extracellularly injected current, which non-linearly increases the total 
charge and is blocked by NMDA receptor antagonist, APV. d, The non-uniform distribution 



	 19 

of voltage-gated sodium and calcium, and NMDA receptors along the dendritic tree give rise 
to location-specific dendritic spikes. (Golding and Spruston, 1998; Golding et al., 1999; 
Larkum et al., 1999a; Golding et al., 2002; Stuart and Spruston, 2015) 
 

 

Calcium spikes are mediated by the activation of voltage-gated calcium channels at the nexus 

of the apical trunk causing a long (50 ms) and wide-spread depolarization of the dendritic tree 

(Amitai et al., 1993; Schiller et al., 1997; Golding et al., 1999; Larkum et al., 1999a; Larkum 

et al., 2007). A train of bAPs above a critical frequency can provide sufficient depolarization 

in the dendritic tree to recruit calcium spikes in the distal apical trunk (Larkum et al., 1999a). 

The critical frequency protocol (which will be discussed in Chapters 2 and 4) provides a 

systematic approach to characterize the frequency of bAP train to recruit calcium spikes 

(Larkum et al., 1999a). NMDA spikes results from regenerative activation of NMDA receptors 

leading to plateau potentials that last more than 100 ms (Schiller et al., 2000; Major et al., 2008; 

Larkum et al., 2009; Antic et al., 2010a). NMDA receptors are ligand-gated channels expressed 

at excitatory synapse, but are intrinsically voltage-dependent due to internal block by 

magnesium ion at resting membrane potentials (Schiller et al., 2000; Major et al., 2008). A 

combination of these different types of spikes can also be evoke under strong synaptic inputs. 

For example, multiple synaptic inputs to the apical tuft dendrites of L5PNs can generate 

NMDA spikes, which can generate enough depolarization at the nexus of the apical tuft to 

cause the generation of a global Ca2+ spike (Larkum et al., 2009). 

Recently, dendritic patch-clamp recordings and two-photon calcium imaging at tuft 

dendrites of L5PNs and layer 2/3 pyramidal neurons showed that global calcium spikes (Xu et 

al., 2012; Ranganathan et al., 2018) and local NMDA spikes (Lavzin et al., 2012; Smith et al., 

2013; Palmer et al., 2014) are recruited in vivo. Dendritic spikes were observed when animals 

are performing an active-sensing whisker task (Xu et al., 2012; Ranganathan et al., 2018) or 

given a visual (Smith et al., 2013) or hind paw sensory stimulus (Palmer et al., 2014). In 

addition, NMDA spikes were recorded in layer 4 spiny stellate neurons in the barrel cortex and 

in vivo. These NMDA spikes are thought to contribute to angular tuning of whisker deflection 

(Lavzin et al., 2012). 

Probing dendritic spikes along thin dendrites is challenging. Investigating whether thin 

dendrites (such as the basal dendrites) can generate dendritic spikes requires a combination of 

electrophysiology and imaging. For example, several studies coupled patch-clamp techniques 

with laser-uncaging and fluorescent voltage and calcium imaging to induce and record 
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dendritic activity in basal dendrites of L5PNs (Schiller et al., 2000; Antic, 2003; Kampa and 

Stuart, 2006; Nevian et al., 2007; Branco et al., 2010). Early work using glutamate-uncaging 

with UV lasers combined with a somatic patch showed that basal dendrites support the 

generation of NMDA spikes (Schiller et al., 2000). Functional calcium imaging studies of thin 

basal dendrites showed the local generation of regenerative calcium spikes (Kampa and Stuart, 

2006). On the other hand, voltage imaging (Antic, 2003)  and dendritic patch-clamp recordings 

(Nevian et al., 2007) provided evidences that support the generation of sodium and NMDA but 

not calcium spikes in basal dendrites. With the capacity of basal dendrites to generate dendritic 

spikes, scientists have hypothesized that basal dendrites can act as separate integrative 

compartments favouring two integration modes: (1) sub-threshold, location-dependent 

summation, and (2) local amplification of incoming spatiotemporally clustered information 

through dendritic spike generation (Branco et al., 2010). Moreover, excitatory inputs to 

proximal basal dendrites sum linearly over a narrow time window, while distal inputs were 

amplified and integrated over a broader time window (Branco et al., 2010). Multi-compartment 

models showed asymmetric membrane potential responses in basal dendrites with proximal 

synaptic inputs driving stronger responses than distal inputs (Behabadi et al., 2012). 

A systematic approach to determine the condition required for generation of dendritic 

spikes evoked by bAPs is the critical frequency protocol. This protocol involves using a series 

of brief somatic current pulses (I = 3-4 nA, Δ𝜏	=	2 ms) at a range of frequencies (10 ≤ f ≤ 200 

Hz) to elicit a train of APs that back-propagates into the dendrites initiate non-linear 

regenerative dendritic activity (Larkum et al., 1999a). The critical frequency protocol can be 

performed with just somatic patch-clamp recording alone or in combination with dendritic 

recording or fluorescence calcium imaging (Larkum et al., 1999b; Kampa and Stuart, 2006; 

Barth et al., 2008; Ledergerber and Larkum, 2010; Shai et al., 2015) (see Figure 1.4).  

With dendritic and somatic patch configuration, the somatic recordings are aligned at 

the peak of the last AP in the train. Then, the dendritic voltage (taken at a time point where 

maximum depolarization is observed at the highest frequency) is measured for different 

frequencies of the bAP train. The dendritic voltage is plotted with the frequency of the bAP 

train and the curve is fitted with a sigmoid function (see Figure 1.4b-c). The critical frequency, 

understood as the minimum frequency of the AP train that evokes a dendritic spike, is taken 

from the inflection point of the sigmoid fit from the relation of dendritic voltage with frequency 

of the AP train. With just the somatic patch-clamp recording, the critical frequency can be 

determined from the after-depolarizing potential (ADP) at the soma (Figure 1.4b). 

Alternatively, with functional fluorescence calcium imaging, the peak amplitude of dendritic 
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calcium transients associated with the bAPs can be measured (see Figure 1.4d-e). There is no 

need to align the optical calcium traces with the last bAP as the decay time of the fluorescence 

signal are long (~100 ms) relative the time-course of a single bAP (~1 ms).  

 

 
 
Figure 1.4 Dendritic-somatic patch clamp and fluorescence calcium imaging 
configuration for the critical frequency protocol. a, Schematic of sites for patch clamp 
electrodes at the apical trunk (red), soma (black), and imaging at the nexus of the apical tuft 
(green box) used in the critical frequency protocol. b, The recordings from the soma (black) 
and dendrite (red) during a 4-bAP train at 50 Hz and 120 Hz. The somatic and dendritic 
recordings were aligned to the last bAP in the train. c, The dendritic amplitude (red) and the 
after-depolarizing potential (black) at the soma across frequencies. The data were fitted with a 
sigmoid function. d, The somatic recordings of the bAP train and the associated calcium 
transients at the nexus of the apical tuft. e, The peak amplitude of the fluorescence calcium 
transient with the frequency of the bAP. The curve was fitted with a sigmoid function. Figure 
taken from Ledergerber and Larkum (2010). 
 

Functional differences in dendritic spike generation between apical and basal dendrites 

have also been reviewed (Antic et al., 2010b). Dendritic NMDA spikes, generated in the apical 

tufts, can maintain a sustained dendritic depolarization critical for synaptic modification of 

distal synapses (Golding et al., 2002). In contrast, dendritic NMDA and Ca2+ spikes initiated at 

proximal locations in basal dendrites can bring the neuron into a sustained depolarized state, 

which resembles a cortical up-state (Milojkovic et al., 2004). Dendritic spikes can thus create 

conditions for causal interactions of active synaptic inputs setting up long-term synaptic 
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modifications in synaptic strength, as occurs during long-term potentiation (Bliss and 

Collingridge, 1993; Antic et al., 2010b; Gambino et al., 2014).  
 

 

1.5 Optical recording of dendritic spikes 
Dendritic spikes were first recorded using electrophysiological techniques. However, optical 

recording methods have been useful in probing spikes especially in thin dendritic domains. 

Optical recording using functional imaging with voltage and calcium indicators allow wide-

field and non-invasive readout of the membrane activity (Hausser, 2014; Daria and Bachor, 

2015). In the succeeding sections, I review the development and mechanisms behind calcium 

and voltage indicators, which enables optical recording of dendritic spikes.  

 

1.5.1 Functional calcium imaging 

Functional calcium (Ca2+) imaging is now an indispensable tool in neuroscience since calcium 

activity can be correlated with fundamental neuronal processes. The transport of calcium 

between the extracellular and intracellular space is via ion channels such as: voltage-gated 

calcium channels (VGCCs), NMDA channels, AMPA channels among others (Catterall, 2000; 

Clapham, 2007; Higley and Sabatini, 2008; Grienberger and Konnerth, 2012). The expression 

and distribution of these channels in neurons have been extensively studied (Hille, 2001). The 

majority of Ca2+ influx occurs via VGCCs (Miyakawa et al., 1992; Markram and Sakmann, 

1994; Christie et al., 1995) with Ca2+ pumps actively extruding Ca2+ ions to maintain a constant 

intracellular Ca2+ concentration (Carafoli, 1991).  Also, intracellular organelles (e.g., 

endoplasmic reticulum and mitochondria) act as Ca2+ stores and contribute to Ca2+ 

homeostasis, as well as other functions (Berridge et al., 2000). Internal Ca2+ stores both buffer 

excess Ca2+ and act as a source of intracellular Ca2+ (Verkhratsky and Petersen, 1998). Figure 

1.5 shows how the intracellular Ca2+ concentration changes in response to the firing of an AP 

(bottom trace). At resting state, Ca2+ channels and pumps stay inactive keeping the internal 

calcium concentration at about 50-100 nM (Berridge et al., 2000).  When a neuron receives 

excitatory synaptic inputs, the excitatory post-synaptic potentials propagate to the soma 

inducing a depolarization. As the neuron depolarizes to the threshold for an AP generation, 

VGCCs activate allowing Ca2+ ions to flow into the cell. Ca2+ influx via VGCCs also initiates 

neurotransmitter release in presynaptic terminals (Smith and Augustine, 1988). 
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Figure 1.5 Ca2+ dynamics during neuronal activity. a, Schematic of a neuron with voltage-
gated Ca2+ channels (green), Ca2+ pumps (orange) and internal Ca2+ stores. b, Internal Ca2+ 
concentration versus time. c, Voltage versus time. When a neuron fires an action potential Ca2+ 
influx via voltage-gated Ca2+ channels increases the internal Ca2+ concentration. Intracellular 
Ca2+ level returns to the resting state by extrusion of Ca2+ from the cytoplasm by Ca2+ pumps 
and buffering by internal Ca2+ stores. Figure taken from Castanares et al. (2019). 

 

Chemical calcium indicators are synthesized with calcium binding sites and a 

fluorophore attached to it. The spectral properties (i.e., excitation and emission spectra) of the 

chemical fluorescent indicator determine the efficiency of the conversion of excitation photons 

to fluorescence photons. The common fluorescent calcium indicators (e.g., Fura-2, OGB-1) are 

excited with ultra-violet (UV) or blue light. When free intracellular calcium ions dock to the 

calcium binding sites, the dye molecules undergo a conformational change in their structure 

leading to changes in the spectral properties (excitation and emission) of the dye molecule 

(Tsien, 1980; Grynkiewicz et al., 1985). In addition, calcium indicators have characteristic 

calcium binding affinity constant, dissociation constant, and resting fluorescence. The 

dissociation time constant is the rate of which the bound calcium ion unbinds from the indicator 

(i.e., a shorter dissociation constant results in faster fluorescence decay time). Helmchen and 

Tank (2015) established a single-compartment approach to model the calcium dynamics 

relating the intracellular calcium concentration with the increase in fluorescence relative to the 

resting fluorescence, ΔF/F. Figure 1.6 shows a sample recording (at 100 frames per second 

using Andor Zyla 4.2 camera) of primary hippocampal cultures loaded with calcium indicator 
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(Cal-520 AM). Bath application of 1mM KCl triggered a synchronous burst activity in the 

network as observed by the calcium transients at the somas and dendrites of the neurons.  

 

 
Figure 1.6 Recorded calcium transients during burst firing of primary hippocampal 
culture neurons. a, Epifluorescence single-photon image of the fluorescently labelled cultures 
with a calcium indicator. Regions of interest were drawn over the responding sites. b, The time-
series fluorescence response of the ROIs after stimulating the cultures with a drop (~100-
200µL) of 1 mM potassium chloride (KCl) in the bath. Figure modified from Castanares et al. 
(2019). Scale bar in Panel a is 40µm. Figure taken from Castanares et al. (2019). 
 

 

1.5.2 Historical overview of chemical and protein derived calcium indicators 

Tsien (1980) synthesized the first calcium dye indicator, which was modified from the selective 

Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) to form 1,2-bis(o-aminophenoxy) 

ethane-N,N-N’,N’-tetraacetic acid (BAPTA). At that time, the major issue in the design of the 

indicator was to make it selective between Mg2+ and Ca2+ (quinolinic derivative Quin-2) as 

well as its capacity to be loaded into cells without disrupting the membrane (Quin-2 

acetoxymethyl or AM esters) (Tsien, 1981; Tsien et al., 1982). The next generation of Ca2+ 

indicators was based on Fura-2 which greatly improved the fluorescence yield by 30-fold by a 

larger blue-shift in the excitation/emission spectra with increasing Ca2+ concentration 

(Grynkiewicz et al., 1985). However, the application was limited since Fura-2’s working 

wavelength is in the UV range, which can be phototoxic to the cells. Later on, visible-

wavelength Ca2+ indicators, based on rhodamine (Rhod-2) and fluorescein (Fluo-2/Fluo-3), 

were developed (Minta et al., 1989). Another recently developed calcium indicator is Cal-520 

which is a new BAPTA-based calcium indicator with a better signal-to-noise ratio (SNR ~ 2-
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fold) and faster decay time (0.2 s slow-component) compared to oregon green bapta-1(OGB-

1) (Tada et al., 2014). Cal-590, a red-shifted version of Cal-520, has been successfully used to 

image calcium activity of deep layer 5 and layer 6 pyramidal neurons in vivo (Tischbirek et al., 

2015). These chemical calcium indicators are loaded into cells using methods such as: whole-

cell patch (Tank et al., 1988; Eilers and Konnerth, 2009), electroporation (Haas et al., 2001; 

Nevian and Helmchen, 2007; Judkewitz et al., 2009; Dempsey et al., 2015), and multi-bolus 

loading (Stosiek et al., 2003; Barreto-Chang and Dolmetsch, 2009; Tischbirek et al., 2015; 

Cameron et al., 2016). 

In 1997, Roger Tsien’s group revolutionized calcium imaging with the development of 

genetically encoded calcium indicators (GECIs) referred to as ‘Cameleons’ (Miyawaki et al., 

1997). These sensors are derived from a concatenation of recombinant calcium binding 

domain, Calmodulin, with a GFP-derived fluorescent protein pair (Whitaker, 2010). Later, the 

sensor was improved with the use of just single-GFP derived molecule which is now known as 

GCamp (Nakai et al., 2001). GCamp indicators have undergone several improvements, and its 

recent versions (i.e., GCamp6s and GCamp6f) are now widely used in experiments in vivo 

(Tian et al., 2009; Akerboom et al., 2012; Chen et al., 2013). These GECIs can be expressed in 

cells using methods such as:, AAV viral injection (Tian et al., 2009), and use of transgenic 

mouse lines (Heim et al., 2007; Zeng and Madisen, 2012). GECIs are useful in recording 

calcium activity at the cell bodies and dendrites while the animal receives sensory inputs or 

performs a behavioural task (Xu et al., 2012; Palmer et al., 2014).  

 

1.5.3 Functional voltage imaging 

Imaging the electrical activity of neurons is regarded as the holy grail in neuroscience(Emiliani 

et al., 2015; Bando et al., 2019). The cell membrane that separates the intracellular and 

extracellular space has a thickness of about 4nm. The membrane acts as a capacitor, where an 

electric field (~107-108 V/m) arises due to the separation of ions by the membrane. Voltage 

indicators (VIs) rely on detecting the changes in the electric field across the membrane (for 

review see (Peterka et al., 2011)). There are several mechanisms that facilitate reporting of the 

changes in electric field or equivalently the membrane potential such as: redistribution 

(Waggoner et al., 1977), reorientation, electrochromism (Loew et al., 1979), Förster energy 

transfer (FRET) and second-harmonic generation (Moreaux et al., 2002; Dombeck et al., 2005). 

In the next section, I will focus the review on electrochromism which is the mechanism 

observed by the voltage indicator (i.e., JPW-1114) used in this work. 
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Electrochromic voltage indicators rely on the direct interaction of the chromophore with 

the electric-field without involving any chromophore movement (Loew et al., 1979; Fluhler et 

al., 1985). These VIs, derived from styryl and hemicyanine dyes, are polar and lipophilic. These 

dyes also emit bright fluorescence when bound to a lipid membrane. When the membrane 

experiences a voltage transient, the membrane-bound chromophores are subjected to a change 

in the electric field, which induces linear shifts in the spectral excitation and emission 

properties otherwise known as the Stark effect. For example, Figure 1.7 illustrates the spectral 

shift for the case of an electrochromic dye (JPW-1114) where a change in the membrane 

potential, ΔV, shifts the excitation (blue curve) and emission (red curve) spectra to the right 

(dotted curve). The shift increases the absorption efficiency (at 532 nm excitation) resulting in 

more “red” fluorescence photons emitted. The choice of excitation wavelength determines the 

sensitivity of the recording. Illuminating at the peak of excitation spectrum yields the maximal 

fluorescence yield but it results in a minimal sensitivity, dF/F, or SNR. Using an excitation 

wavelength at the rising or falling gradients of the excitation spectrum (wleft and wright in Figure 

1.7), provides higher sensitivity (Zhou et al., 2007; Loew, 2010). One issue with 

electrochromic VIs is the translocation of  the dye molecules between the inner and outer leaflet 

of the membrane resulting to a reduction of the sensitivity (Moreaux et al., 2000). With dye 

molecules binding to either the inner and outer leaflet of the membrane, the Stark effect 

effectively cancels out resulting in low sensitivity. Such phenomena is otherwise referred to as 

“flip-flop,” which was addressed by synthesizing dyes to be hydrophilic and hydrophobic at 

either ends (e.g. di-8-ANEPPS) (Loew et al., 1992). 

 
Figure 1.7 The spectral shift in excitation and emission spectra of electrochromic VSDs 
due to a voltage transient. This small rightward spectral shift with membrane depolarization, 
ΔV, increases the excitation coefficient at that band of wavelength (~532 nm), which further 
increases the number of emitted fluorescence photons.  
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1.5.4 Promising fluorescent voltage indicators 

Several voltage sensors are commercially available such as the oxonol and hemicyanine dyes. 

Other novel voltage sensors can be obtained by communicating with the people who synthesize 

them. In this section, I highlight some of the reliable and recently synthesized voltage indicators 

that can be used to detect dendritic spikes in single neurons. 

One of the commonly used dyes to probe neuronal activity is the JPW-1114 (or its di-

methyl analogue JPW-3028) which belongs to the class of hemicyanine or styryl dyes (Loew, 

2011). JPW-1114 is commercially distributed as Di-2-ANEPEQ (ThermoFisher catalogue no. 

D6923). This dye is water-soluble making it suitable for loading onto single cells by 

intracellular injection with a patch pipette (Popovic et al., 2012). This dye has been used to 

detect subthreshold and supra-threshold membrane potentials at the axon-initial-segment 

(Palmer and Stuart, 2006; Foust et al., 2010; Popovic et al., 2011), soma (Berger et al., 2007), 

apical trunk, thin oblique and basal dendrites (Antic, 2003; Zhou et al., 2008b; Holthoff et al., 

2010; Zhou et al., 2015), as well as dendritic spines (Palmer and Stuart, 2009; Popovic et al., 

2014). Combining voltage and calcium indicators allows simultaneous recording of 

fluorescence voltage and calcium activity. For example, using JPW-1114 and Calcium Green 

can be excited at 488 nm (exciting at the JPW-1114 at the rising gradient of its excitation 

spectrum) while a proper dichroic mirror can separate the detection of their respective 

fluorescence  (Bullen and Saggau, 1998). 

Fluorinated voltage-hemicyanine dyes are improved versions of the hemicyanines dyes 

and exhibit better sensitivity (Loew, 2011; Yan et al., 2012). Fluorination is done by adding 

fluorine substituents on the dye chromophore that allows fine-tuning of the excitation and 

emission spectra of the dyes (Yan et al., 2012) for single- and multi-photon excitation. The 

fluorinated di-2-AN(F)EPPTEA was used to record back-propagating action potentials at 

oblique dendrites and apical tuft dendrites of neurons using a two-photon microscope (Acker 

et al., 2011).  ANNINE-6 and ANNINE-6P, a variant of the styryl dyes with a rigid “annelated” 

ring framework is promising particularly for two-photon application in vitro (Kuhn et al., 2004; 

Fromherz et al., 2008) and more recently in vivo (Roome and Kuhn, 2018). The ANNINE-6P 

has good solubility in water and has a high voltage sensitivity and SNR when excited by a 

narrow band light source at 488 nm (for single-photon) and 976 nm (for two-photon) (Kuhn et 

al., 2004).  

An example of a hybrid FRET indicator is the DiO/dipycrilamine (DPA) sensor, which 

showed considerably large voltage sensitivity from in vitro recordings (Bradley et al., 2009). 

DiO is a lipophilic green fluorescent particle which specifically binds to the cellular membrane; 



	 28 

while, DPA exhibit strong absorption with “green” photons. When the neuron fires an action 

potential, the change in the electric field draws the DPA molecules close to the DiO particles 

and quenches its “green” fluorescence photons. As a result, the fluorescence signal decreases 

for every action potential. While FRET sensors are bright, their time-constants are slower (~µs) 

than the electrochromic dyes (~ns). In addition, the acceptor DPA increases the membrane 

capacitance, which broadens the width of the optical trace of the action potential (Bradley et 

al., 2009). The DiO/DPA voltage-sensor has been demonstrated to be compatible with two-

photon excitation (Fink et al., 2012; Tran-Van-Minh et al., 2016).  

Genetically encoded voltage indicators (GEVIs) are a recent development in optical 

voltage reporters (Kralj et al., 2012; Gong et al., 2014; Hochbaum et al., 2014; St-Pierre et al., 

2014; Carandini et al., 2015; Gong et al., 2015). GEVI designs utilize voltage-sensing 

fluorescent proteins, Forster energy transfer FRET, or the use of opsins (for review see, Antic 

et al., 2016). A few notable ones are the ASAP (St-Pierre et al., 2014; Chamberland et al., 

2017), VSFP-Butterfly (Akemann et al., 2012; Akemann et al., 2014; Carandini et al., 2015), 

Quasars (Hochbaum et al., 2014) and Ace1Q-mNeon/Ace2N-mNeon (Gong et al., 2015).  

 

 

1.6 Microscopes used for recording dendritic spikes  
The development of calcium and voltage indicators drives new designs of optical microscopes 

that can acquire dynamic changes in fluorescence with high temporal and spatial resolution. 

Optical recording of dendritic spikes is performed by acquiring the changes in fluorescence, 

dF/F, from either calcium or voltage indicators. To record dendritic spikes (20-100ms), voltage 

indicators can be used with the sampling rates of at least 100Hz. Slower acquisition times with 

calcium indicators can also be used but with additional interpolation techniques. The 

fluorescence from these indicators can be acquired using microscopes operating in either 

single-photon (1P) or two-photon (2P) excitation (see Figure 1.8).  

Wide-field (Epifluorescence) 1P microscopes use high-energy photons (e.g. blue) to 

excite fluorophores in a wide area of the sample. The fluorescence signal from the illuminated 

region is captured via a camera (or multi-channel detector). Electron multiplying CCD cameras 

(EMCCD cameras; e.g., from Andor & Photometrics) have high sensitivity (i.e., ~90% 

quantum efficiencies at 600-800 nm), large dynamic range (up to 200,000e− well depth), and 

high sampling rates up to 4 kHz. For neuronal cultures, 1P wide-field microscopy with an 

EMCCD camera enables the recording of action potentials from VSDs and GEVIs (Zhou et 
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al., 2008a; Kralj et al., 2012). For tissue samples, several studies have utilized confocal 

microscopes coupled with an EMCCD to record dendritic spikes (Kampa and Stuart, 2006; 

Canepari et al., 2007), membrane potentials in dendrites (Antic, 2003; Popovic et al., 2015), 

fast APs in axons (Palmer and Stuart, 2006; Popovic et al., 2011) and bAPs in spine heads 

(Popovic et al., 2014). However, 1P excitation exhibits low resolution along the optical axis 

and can introduce strong photo-bleaching of the fluorescent indicators. Also, the capacity of 

1P illumination to work in vivo is very limited due to poor tissue penetration.  

On the other hand, a 2P laser-scanning microscopes use non-linear absorption of two 

photons with energies half of those required for 1P absorption to excite the same fluorophore. 

A 2P microscope typically uses a near-infrared femtosecond pulsed laser that is focused on the 

sample via a high numerical aperture objective lens (NA ~0.8-1.0). With non-linear excitation, 

the fluorescence is only emitted within the diffraction-limited focal volume of ~0.1 µm3 (Zipfel 

et al., 2003) where there is a high probability of simultaneous two photon  absorption by the 

fluorophore. To record the fluorescence across multiple regions of the sample, the focused laser 

beam is scanned in a point-to-point manner (e.g., 100 Hz to 1 kHz) (Katona et al., 2011; Katona 

et al., 2012; Grewe et al., 2014; Schuck et al., 2018). The beam is steered using a mechanical 

(e.g., galvanometric mirrors, resonant scanners) or crystal based instruments (e.g., acousto-

optic deflectors (AODs)). A single-channel detector such as a photomultiplier tube or 

photodiode collects the fluorescence signal at each point. Then, a 2D fluorescence image is 

reconstructed from the set of single time point recordings. 

Several laser-scanning modes are utilized to tune the spatio-temporal resolution of the 

acquisition and minimize the stress on the beam steering device. These laser scanning modes 

include raster-scan, line-scan, minimal-inertia trajectories and random-access scans (Katona et 

al., 2011; Katona et al., 2012; Grewe et al., 2014; Schuck et al., 2018). The raster scan is a 

common mode wherein the laser spot sweeps the image region in a zig-zag motion. Raster-

scan imaging is implemented using galvanometric mirrors (GMs) and resonant scanners at rates 

of up to 100 Hz. Mechanical inertia in galvanometric mirrors limits the spatial range and 

temporal resolution of the recordings. Minimal-inertia beam trajectories, beam paths that pass 

only the sites of interest, can further increase the temporal resolution of the acquisition. An 

optimization algorithm can be implemented to pre-calculate the best beam trajectory that passes 

the cell bodies while minimizing the mechanical inertia of the GMs (Schuck et al., 2018). Line 

scans, which uses the fast-scan of the resonant scanning mirrors, can achieve ~5 kHz 

acquisition rates. Line scans along a dendritic segment proves to be fast enough to detect bAPs 

and spike (Acker et al., 2011; Tran-Van-Minh et al., 2016; Roome and Kuhn, 2018).  
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Our approach to record dendritic spikes is via a multi-site, multi-channel recording 

using the holographic projection technique. This technique allows projection of the multiple 

excitation foci “at the same time” with changes in fluorescence captured by a camera (see ★	

in Figure 1.8). The temporal resolution of the recording is dictated by the maximum frame rate 

of the camera for a given imaging area (e.g., ~2 kHz for Red Shirt Imaging, or in our hands, 

0.4 kHz for Andor Ixon 897 EMMCD camera with 128x128 pixels).  

 

 

 
 

Figure 1.8 A summary of single-photon (1P) and two-photon (2P) microscopes used to 
perform high-speed fluorescence detection. 1P microscopy allows wide-field illumination 
of the sample that are <50 µm deep. On the other hand, two-photon microscopy allows deeper 
penetration on the tissue. Several modes of beam-scanning and beam-shaping are capable to 
readout fluorescent activity from multiple sites of the sample at high frame rates. 
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1.7 Optical probing of dendritic spikes in apical obliques dendrites 

In the previous sections, I discussed a general overview of the brain down to the structure and 

function of PNs in the cortex. I also covered dendritic spikes in different dendritic domains 

(tufts and basal) of PNs and the optical techniques to probe them. However, the main question 

I pose in this thesis is to understand spikes in a specific dendritic domain of L5PNs, the apical 

oblique dendrites. Oblique dendrites are thin branches that bifurcate from the main apical 

trunk. Most studies on thin oblique branches were done in hippocampal CA1 PNs while there 

are only a handful of studies done in L5PNs. To gain a better perspective on my main research 

question, this section reviews some findings on oblique dendrites in CA1 PNs and L5PNs. 

 

1.7.1 Properties of apical obliques dendrites of CA1 PNs.  

CA1 PNs have numerous thin oblique dendrites, which receive approximately 80% of the 

synaptic input from the Schaeffer collaterals (Frick et al., 2003) (Figure 1.2). Several studies 

have assessed how thin oblique dendrites affect forward and back-propagation of action 

potentials and dendritic spikes in silico (Vetter et al., 2001; Migliore et al., 2005; Ferrante et 

al., 2013), in vitro (Gasparini et al., 2004; Canepari et al., 2007; Gasparini et al., 2007) and in 

vivo (Kamondi et al., 1998). In addition, a few notable works have assessed how the interaction 

of somatic AP with EPSPs leads to increased levels on calcium in oblique dendrites and the 

induction of long-term potentiation (LTP) (Magee and Johnston, 1997; Losonczy and Magee, 

2006; Canepari et al., 2007).  

In silico studies showed that dendritic morphological characteristics (i.e., number of 

branch points, diameter of the dendrites, and branch point morphology) and dendritic ion 

channel densities influence the efficacy of bAP invasion of the dendritic tree (Vetter et al., 

2001; Migliore et al., 2005). Goldstein and Rall (1974) reported that the efficacy of bAP 

propagation was dependent on the impedance mismatch measured as the geometric ratio (𝐺𝑅 =

	 𝑑'
(/*

' /𝑑+
(/*, where dj is the diameter of the jth daughter branch and da is the parent branch 

where the action potential is propagating). A lower GR will result to a decrease or failure in 

the AP conduction. Furthermore, numerical calculations predict that the peak of the AP 

increases as it conducts from the branch point to the sealed end tip (Goldstein and Rall, 1974). 

Using multi-compartmental modelling of morphological reconstructions of different neuronal 

cell types,  Vetter et al. (2001) observed that dendritic morphology and voltage-gated sodium 

and potassium channel densities act together to generate a diverse extent of AP propagation in 

different neurons. Furthermore, Migliore et al. (2005) showed that in CA1 pyramidal neurons, 



	 32 

bAPs invade the oblique branches in an “all-or-nothing” fashion tuned by the distribution of 

A-type potassium and hyperpolarization-activated cyclic nucleotide-gated (HCN or Ih) 

channels. The increase in Ih densities at oblique branches facilitates bAPs while the increase 

in the A-type potassium channel density from trunk to oblique branches limits bAP invasion. 

CA1 PNs show that apical oblique dendrites exhibit active properties and voltage-gated 

ion channels (e.g., voltage-gated calcium, sodium, A-type potassium, calcium-activated SK 

channels, NMDA and AMPA receptors) (Frick et al., 2003; Canepari et al., 2007; Gasparini et 

al., 2007). Calcium influxes associated with single bAP or a train of bAPs in apical obliques 

of CA1 pyramidal neurons were observed (Frick et al., 2003; Gasparini et al., 2007). Frick et 

al. (2003) hypothesized that an increase in the surface-volume (s/v) ratio of small diameter 

oblique dendrites at the branch point compared with the main apical trunk would yield a larger 

Ca2+ signal in the oblique branches (if the bAP amplitude, calcium channel density, calcium 

channel type, and calcium buffering-extrusion were constant). However, Frick et al. (2003) 

observed that the amplitude of the calcium signals remained constant from the main apical 

trunk and up to ~40 µm along the oblique branches (Figure 1.9c). This calcium signal 

normalisation was due to an increased density of A-type potassium channels from the main 

apical trunk to the oblique branches as blocking the channels with 2-4 mM 4-aminopyridine 

(4-AP) in the bath solution resulted in a larger bAP-associated calcium signals in the oblique 

dendrites. Gasparini et al. (2007) further showed that the calcium influx in the oblique dendrites 

associated with bAP trains follows a biphasic response were the calcium signal increased along 

the proximal oblique segments then progressively decreased at the distal oblique segments. 

The distance-dependent decrease of the calcium signal in the distal oblique segments was 

reduced by the application of BaCl2, another A-type potassium channel blocker, in the bath. 

Pairing bAP trains with asynchronous synaptic stimulation boosted the calcium influx in distal 

oblique segments (Canepari et al., 2007; Gasparini et al., 2007). Combined voltage and calcium 

imaging showed that synaptic activation of NMDA receptors via extracellular stimulation was 

enough to recruit large calcium influx in the oblique branches where the calcium influx seems 

not to affect the membrane potential profile at the soma (Canepari et al., 2007). The increased 

levels of intracellular calcium with synchronous activation of synapses and bAP trains may 

cause local changes in the ionic conductance and can be a mechanism for a branch specific 

plasticity proposed by Alkon (1999). The activation of voltage-gated sodium channels and/or 

AMPA and NMDA receptors led to the generation of dendritic oblique spikes as recorded in 

vitro and in vivo (Kamondi et al., 1998; Losonczy and Magee, 2006). Kamondi et al. (1998) 

showed that apical obliques of CA1 PNs can exhibit a large amplitude fast spike (LAS), 
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possibly a sodium spike, and a putative calcium spike in vivo (Figure 1.9a). In a later study, 

Losonczy and Magee (2006) confirmed that sodium spikes are recruited in oblique dendrites 

by synchronous activation of spines (with AMPA and NMDA receptors) within a 6-ms 

integration window (Figure 1.9b). This fast sodium spike was accompanied with a large 

calcium influx suggesting the presence of voltage-gated calcium channels in the oblique 

dendrites.  

Several computer modelling studies have assessed the propagation of bAPs and 

dendritic oblique spikes with the morphology of CA1 PNs (Migliore et al., 2005; Ferrante et 

al., 2013). Bernard and Johnston (2003) reported a distance dependent sodium spike threshold 

along an oblique branch. The threshold of the sodium spike in oblique branches is influenced 

by the branch-point tapering (e.g., husky, lanky, and regular) with a husky branch-point taper 

resulting to the convergence of dendritic and AP spike threshold (Ferrante et al., 2013). In 

addition, oblique sodium spike seldom reaches the soma determined by the unfavourable 

impedance mismatch (large GR >1, from oblique branch to the main apical trunk) and the 

distance of the stimulation site (Migliore et al., 2005). However, an oblique spike with 

sustained dendritic activity (~10 mV) can influence the soma. This sustained activity can be 

through synchronous supra-threshold activation of neighbouring oblique branches.  

Overall, recordings from CA1 pyramidal neurons show that apical oblique dendrites 

express ion channels (i.e., voltage-gated sodium, calcium, A-type K channels and calcium-

activated SK channels) and AMPA and NMDARs that enable them to actively participate in 

dendritic integration. Indeed, there is sufficient evidence that oblique dendrites in CA1 

pyramidal neuron participate in dendritic integration.  
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Figure 1.9 Evidence of synaptic contacts and active properties of oblique dendrites of 
CA1 PNs. a, Biocytin reconstruction of the recorded CA1 PN in vitro with a dendritic patch 
recording at an oblique dendrite. The membrane potential response with a step current showed 
a large amplitude spike (LAS) followed by a putative calcium spike (*). b, 2P reconstruction 
of a CA1 PN with the uncaging sites targeting the spines at an oblique dendrite. The 
synchronous activation of the 7 spines led to the recruitment of a fast sodium spike which added 
fast 4 mV depolarization to the EPSP at the soma. c, The calcium transients along the oblique 
dendrites relative to the main apical trunk. Figures 1.8a-c are taken from Kamondi et al. (1998), 
Losonczy and Magee (2006), and Frick et al. (2003), respectively. 
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1.7.2 Properties of apical oblique dendrites of cortical L5PNs 

In contrast to CA1 PNs, L5PNs in the cortex have a fewer number of oblique dendrites. 

Biocytin reconstructions under high magnification light microscope showed uni- and bi-

directional connections among L5PNs (Markram et al., 1997). Majority (63.2%, 56/106) of the 

total synaptic contacts were found at the basal dendrites while a considerable fraction (27.4%, 

29/106) were observed at the oblique branches (Markram et al., 1997) (Figure 1.10a). A 

computer modelling study reveals that the distribution and number of oblique dendrites 

branching out from the apical trunk of L5PNs influence the capacity of somatic APs to evoke 

Ca2+-AP in the nexus (Schaefer et al., 2003). 

There are few findings suggesting that apical oblique dendrites of L5PNs exhibit active 

properties. Studies performing voltage imaging in cortical L5PNs show that bAPs invade the 

apical oblique dendrites with less filtering (maintained width of bAP) compared to what is 

expected in passive cable theory (Antic, 2003; Zhou et al., 2015) (Figure 1.10b). In addition, 

bAPs failed to invade select distal oblique dendrites when propagating along branch points 

(Zhou et al., 2015). Using calcium imaging, Schiller (2002) reported non-uniform calcium 

influx along the dendritic tree during associated with an inter-ictal paroxysymal depolarization 

shift (PDS) responses in L5PNs (Figure 1.10c) with the largest calcium influx in an apical 

oblique branch (see ★	 in Figure 1.10c).These calcium influxes indicate that voltage-gated 

calcium channels are expressed in oblique branches of L5PNs. 

Quadruple-paired somatic recordings of L5PNs with AP-EPSP pairing protocol 

generated LTP at proximal (<200 µm from the soma) L5PN-L5PN synaptic connections as 

estimated from the 2.2 ± 0.2 ms EPSP rise time (Sjostrom and Hausser, 2006). The frequency 

of the AP train used was 50 Hz, a frequency well below the critical frequency of evoking Ca2+ 

spikes at the nexus of the apical tufts (Larkum et al., 1999a). The results suggested that the 

mechanism of LTP induction could not be explained by recruitment of Ca2+ spikes at the nexus 

via coincidence of bAPs and EPSPs proposed by Larkum et al. (1999b). The induction of LTP 

with AP trains indicated that oblique dendrites of L5PNs allowed bAP invasion (via voltage-

gated sodium channels) and calcium influx (possibly via AMPA and NMDA receptors) which 

are precursors for activity-dependent synaptic plasticity (Koester and Sakmann, 1998; 

Sjostrom et al., 2001)  or meta-plasticity (Abraham and Bear, 1996).  
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Figure 1.10 Evidence of synaptic contacts and active properties of oblique dendrites of 
L5PNs. a, The reconstruction of biocytin filled L5PN in vitro highlighting potential synaptic 
contacts (1 and 2 encircled regions) at oblique dendrites (Markram et al., 1997).  b, 
simultaneous voltage imaging recording of bAPs in L5PNs showing efficient invasion of bAPs 
in proximal oblique branches (Antic, 2003). c, Large calcium influx (★) associated with PDS 
in apical oblique dendrite in L5PN (Schiller, 2002) 
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Thus, few studies support that apical oblique dendrites of L5PNs are endowed ion 

channels (e.g., voltage-gated sodium and calcium channels, and NMDA and AMPA receptors) 

that may play a role in dendritic integration of these branches. However, it remains unknown 

whether apical oblique dendrites support the generation of local dendritic spikes or oblique 

branch spikes.  

 

 

1.8 Summary and general aim of this thesis 
Since Cajal (1889), our current knowledge on dendrites has progressed. Dendrites are not just 

passive membrane structures that conduct synaptic inputs. But, they actively participate in 

signal transduction and are capable of locally boosting arriving synaptic inputs via the 

recruitment of regenerative dendritic spikes. Several studies have characterized the 

mechanisms and condition to generate these dendritic spikes in vitro (as discussed in Section 

1.4). With the strict requirement to elicit the dendritic spikes (i.e., pairing of bAPs with EPSPs, 

synchronous activation of spines, and a critical frequency of bAP trains), these modalities 

support that dendrites (structure) play an important role in information processing in the brain, 

a process called dendritic integration (function).  

The general aim of this work is to understand the functional role of a specific set 

of dendrites, the apical oblique dendrites of L5PNs in the cortex. I pose some questions 

that would help build on answering the general aim. While a handful of works have shown the 

active properties of oblique dendrites in CA1 PNs (as discussed in Section 1.5), the findings 

may not necessarily be all translatable L5PNs. Figure 1.11 illustrates several questions to study 

regarding the oblique dendrites of L5PNs (some of which were investigated in CA1 PNs). First, 

how does the branch-point morphology of oblique dendrites of L5PNs modulate forward and 

back-propagating spikes (Figure 1.11a-b) (Migliore et al., 2005; Ferrante et al., 2013)? 

Schaefer et al. (2003) investigated this problem in silico and found that neurons that have more 

proximal oblique branches (< 140 µm from the soma) exhibited strong coupling between the 

somatic AP and Ca2+-AP at the nexus. Second, can bAPs recruit dendritic spikes in oblique 

dendrites of L5PNs (Figure 1.11c)? BAPs have been shown to reliably invade proximal 

oblique branches (Antic, 2003). Another study done by Schiller (2002) showed large calcium 

influx in oblique dendrites of L5PNS during a PDS or epileptic like discharges at the soma 

(Figure 1.11c). A good follow up on this study would be to systematically characterize whether 

this large calcium influx can consistently be evoked with trains of bAPs. Third, can pairing of 
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bAP trains with synaptic inputs (evoked via extracellular stimulation, or 2P glutamate 

uncaging) induce Alkon (1999)’s theory of branch specific plasticity (Figure 1.10d)? This 

experiment has been done in CA1 PNs in several groups (Gasparini et al., 2007; Canepari et 

al., 2013) but not intensively in L5PNs (Sjostrom and Hausser, 2006). 

 

 
 
Figure 1.11 Illustration on how oblique dendrites and their properties affect forward and 
back-propagating spikes. a, Morphological factors (e.g., the number of branch points and 
dendrite diameter) that determine the attenuation of forward propagating synaptic potentials or 
spikes. b, branch-point morphology and tapering affect the efficacy of bAP invasion. c, bAPs 
activate ion channels at oblique dendrites which may generate regenerative potentials. d, 
Coincidence of bAPs with EPSPs at the oblique branches may strengthen synaptic coonections 
especially in branches that can generate an oblique branch spike. 
 

The specific aims of this Ph.D. project are the following:  

1. To understand the generation of dendritic spikes in apical oblique dendrites of 

Layer 5 cortical pyramidal neurons. 
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In this aim, we specifically aim to answer the question: Under what conditions can 

oblique dendrites of cortical L5PNs generate an oblique branch spike? To answer 

this question, I used a published multi-compartment model of an L5PN by Shai et 

al. (2015) to investigate how bAPs invade the oblique dendrites. I uniquely show 

that certain oblique dendrites exhibit dendritic spikes following low frequency train 

of bAPs. Next, I characterized the generation of a branch-specific dendritic spike 

and analyzed the ion mechanisms behind its generation in certain apical obliques. 

The findings in the model served as a guide and starting point for my experimental 

investigations of the putative oblique spikes in oblique dendrites of L5PNs. 

 

2. To experimentally generate and observe oblique branch spikes in apical 

obliques of L5PNs. 

To achieve this aim, I designed a microscope system to optically record dendritic 

activity in thin oblique branches of L5PNs with the use of fluorescent calcium 

indicators. I combined this microscope with the somatic whole-cell patch clamp 

technique to perform multi-site functional 2P calcium imaging at oblique dendrites 

of L5PNs in vitro.  

  

3. To improve the signal-to-noise ratio (SNR) of the recorded fluorescent calcium 

and voltage transients by proposing new optical techniques. 

I present two methods namely, multi-site functional calcium imaging with temporal 

gating and voltage imaging via single-photon excitation by scattered photons 

(1PESP). Preliminary results from these techniques showed promising 

improvements in the SNR using the multi-site holographic detection system. 

 

 

1.9 Overview of chapters  
This thesis is organized as follows: 

Chapter 2: Numerical evidence of putative dendritic spikes in oblique dendrites. 

Using Shai et al. (2015) L5PN model, I found a putative oblique branch spike with critical 

frequency of fc2 = 35 Hz trains of 2-AP train. I presented the analysis done to classify the 

oblique branches that exhibit these spikes. I also present the ionic mechanism of this oblique 

spike and how it affected neighbouring oblique branches. In the L5PN model, I found that the 
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oblique branch spike is a branch-specific fast sodium spike followed by a broad depolarization 

due to the activation of high-voltage activated calcium channels.  

Chapter 3: General Methods: Two-photon holographic multi-site detection system 

and sample preparation. In this chapter, I discuss our multi-site functional calcium imaging 

system and the brain slicing procedure. Among the optical systems that can be used to excite 

fluorescent calcium and voltage indicators, I used a 2P holographic microscope to enable 

simultaneous multi-site detection. I used this system to perform calcium imaging in oblique 

dendrites of L5PNs. 

Chapter 4: Experimental evidence of oblique branch spikes in oblique dendrites 

of L5PNs in vitro. In this chapter, I present experimental (matched with numerical) evidence 

for calcium spikes in oblique dendrites in L5PNs. Calcium imaging, somatic whole-cell 

recordings of after-depolarizing potentials, local laser-pruning of oblique dendrites, were used 

to provide evidence that select oblique dendrites can generate oblique branch spikes following 

a low-frequency burst of bAPs. 

Chapter 5: Techniques for enhancing signal-to-noise ratio (SNR) of fluorescent 

calcium and voltage recordings. I present two techniques namely: multi-site functional 

calcium imaging with temporal gating, and functional voltage imaging via single-photon 

excitation via scattered photon (1PESP), that can potentially enhance the SNR of calcium and 

voltage recordings. Preliminary results showed a ~3-fold enhancement using each of the 

technique. We envisage future works to refine these techniques which can be useful for 

recording fast dendritic activities with fluorescent voltage- and calcium indicators. 

Chapter 6: General discussion and future directions. I highlight the findings from 

the multi-compartment model (in Chapter 2), calcium imaging and laser dendrotomy (in 

Chapter 4), and voltage imaging in dendrites and trunk (in Chapter 5). This work shows that 

select distal oblique dendrites can generate dendritic oblique spikes during low-frequency 

bursts of bAPs. Apical oblique dendrites of L5PNs are not just thin passive membrane 

structures that receive thalamic inputs and form intracortical connections amongst axons 

of neighbouring L5PNs; but they may also actively participate in dendritic integration, 

possibly by coincidence detection, and reinforce the strength of synaptic connections via 

the recruitment of oblique branch spikes. 
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Chapter 2. Numerical evidence of putative dendritic spikes in 

oblique dendrites 
 

 

 

 

2.1 Introduction 
Neuroscientists have long investigated how spikes are generated and conducted in a neuron. 

Over half a century ago, Hodgkin and Huxley reported the first intracellular electrical recording 

of action potentials in giant squid axons (Hodgkin and Huxley, 1945). Hodgkin and Huxley 

(1952) then later established the mathematical foundations on the activation/inactivation of ion 

channels (i.e., sodium and potassium channels) that generate action potentials (APs). In the 

same period, Wilfrid Rall pioneered the use of cable theory to understand how current and 

membrane potentials flow within the complex branching structure of dendrites (Rall, 1959; 

Rall, 1969; Rall and Rinzel, 1973). Indeed, with the development of patch-clamp technique 

(Sakmann and Neher, 1984), scientists were able to record membrane potentials along the 

apical trunk. One important finding was the active back-propagation of action potentials 

(bAPs) into the dendritic tree (Stuart and Sakmann, 1994), which can offer fast retrograde 

signal and can set off local dendritic spikes (Stuart and Sakmann, 1994; Larkum et al., 1999a; 

Larkum et al., 1999b). The complex dendritic morphology influences the propagation of 

electrical signals in neurons and affects how bAPs invade the neuron’s dendritic tree. Relative 

timing between bAPs and synaptic inputs onto certain dendrites can initiate changes in synaptic 

strength (Markram et al., 1997; Sjostrom et al., 2001; Kampa et al., 2006). Hence, bAPs have 

important consequences to synaptic plasticity and understanding how they invade different 

dendritic domains could provide fundamental basis to learning and memory. 

To evaluate how morphology plays a role in the invasion of bAPs, we first attempt to 

understand back propagation of action potentials via numerical modelling. Multi-compartment 

models are excellent tools to understand how the distribution of ion channels and dendritic 

morphology influence spike generation and propagation in neurons. In fact, several studies 

have shown that membrane morphology and characteristics such as: branching patterns 

(Mainen and Sejnowski, 1996; Vetter et al., 2001), branch-point tapering (Ferrante et al., 2013), 

distribution of apical oblique dendrites along the apical trunk (Schaefer et al., 2003), and 

passive membrane resistance of thin dendrites (Antic, 2003) modulate the forward-propagating 
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dendritic spikes and bAPs. A seminal work by Mainen and Sejnowski (1996) demonstrated 

how dendritic morphology influences the firing patterns of neurons. In their work, they 

modelled a neuron with two regions: soma and dendrites (Figure 2.1). The soma had sodium 

and potassium channels, which are essential to generate action potentials, while the dendrites 

had voltage-gated and calcium-dependent ion channels. The parameter, ρ, described the ratio 

of the membrane area between the dendrites to the axo-somatic compartment. A coupling 

parameter, 𝜅, joined the soma and the dendritic region. Tuning the 𝜅 and ρ while maintaining 

the same ion channel conductance reproduced a spectrum of firing patterns from regular firing 

of small compact cells to burst firing of L5PNs. 

 

 

 
 
Figure 2.1 Dendritic morphology shapes action potential firing properties of neurons. a, 
The reduced compartmental model of soma and dendrites. b, The electrical origin of after-
depolarization dendritic in nature which is influenced by the coupling parameter, 𝜅, and the 
dendritic, somatic surface area ratio, 𝜌. c, The firing pattern of different multi-compartmental 
neuron models incorporating the same channel models. Figure taken from (Mainen and 
Sejnowski, 1996). 
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Using multi-compartmental models of neurons, scientists can interrogate how 

distribution of different voltage-gated ion channels determine the generation and propagation 

of dendritic spikes. These numerical experiments can be confirmed in the laboratory via 

dendritic recordings in vitro. Intuitive manual tuning (Migliore et al., 2005; Almog and 

Korngreen, 2014; Shai et al., 2015; Zhou et al., 2015) or computer-assisted multi-parameter 

search (Hay et al., 2011) of the density of dendritic conductance could aid in generating models 

that match experimental recordings. These multi-compartment models allow simulation of 

hypothetical experiments that are not possible with current techniques. Their results give new 

insights that are yet to be tested. 

 

 

2.2 Chapter aims 
The goals of this chapter are: (1) to investigate bAP invasion along the complex dendritic tree 

of a L5PN multi-compartment model; and (2) to establish a condition (using the critical 

frequency protocol) for generating a putative dendritic spike in apical oblique dendrites, or I 

refer as an oblique branch spike. I use a published multi-compartment model of a L5PN (Shai 

et al., 2015) and loaded it into the NEURON-Python simulation environment (Hines et al., 

2009).  The results from the simulation served as a guide for my in vitro experiments. 
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2.3 Methods 
2.3.1 Active properties of the dendritic tree of the L5PN model 

I used a published model of a L5PN (Shai et al., 2015) obtained from ModelDB (accession 

number: 180373) to investigate the active properties of oblique dendrites in a L5PN (see Figure 

2.2 below). In the model, the densities of ion channels are expressed as conductances (g_bar) 

in S/cm2 and listed in Table 2.1. In this study, I used the biophysical mechanism (i.e., ion 

channels and their distribution) contained in the L5PCbiophys5.hoc file from the (Shai et al., 

2015) model. Except in the blocking experiment which will be described in Section 2.3.3, I 

kept all the conductance and their distribution along the dendritic tree the same as in the (Shai 

et al., 2015) model. 

The L5PN model (using the morphology file: cell1.asc) consists of: the soma, basal 

dendrites, axon, thick apical trunk and 9 thin apical oblique dendrites (Figure 2.3a). Oblique 

dendrites in L5PN emanate from the main apical trunk starting from proximal regions to the 

soma. In this study, I refer to oblique branch by their oblique number, O#n, with O#1 being the 

first oblique branch from the soma. 

 

 
Figure 2.2 Active dendritic properties of the model. a, The morphology (“cell1.asc”) of the 
L5PN neuron (Shai et al., 2015). b, Ion channel distribution and active properties of the 
NEURON model. The distribution of different ion channel conductance across the dendritic 
tree.  
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Table 2.1 List of parameters used in the published L5PN model 

Ion channel Variable Conductance 
(S/cm2) 

Activation/Inactivation 
parameters References 

Low voltage-
activated calcium 

conductance 
Ca_LVA 

soma:  0.000557 
apical: 0.022 
nexus: 0.2271264 
basal: none 
axon: 0.000813 

somatic:  
decay = 279.67951,  
gamma = 0.000509 
 
apical:  
decay = 35.725651,  
gamma = 0.000637 
 
axon:  
decay = 277.300774, 
gamma = 0.000525 

Avery and 
Johnston (1996) 

High voltage-
activated calcium 

conductance 
Ca_HVA 

soma: 0.000644 
apical: 0.000701 
basal: none 
axon: 0.000222 
 

Reuveni et al. 
(1993) 

Hyperpolarization
-activated cyclic 
nucleotide–gated 

conductance 

Ih 

soma:  0.000075 
apical: 0.00015 
basal: 0.00005 
axon: 0.00005 

 Kole et al. 
(2006) 

M-currents and 
other potassium 

conductance 
Im 

soma: 0.000008 
apical: 0.00099 
basal: none 
axon: 0.013322 

 Adams et al. 
(1982) 

Small 
conductance 

(SK)-type 
calcium activated 
potassium current 

SK_E2 

soma: 0.09965 
apical: 0.000002 
basal: none 
axon: 0.000047 

 Kohler et al. 
(1996) 

Shaw-related 
potassium 
channel 

SKv3_1 

soma: 0.338029 
apical: 0.001808 
basal: none 
axon: 0.473799 

 Rettig et al. 
(1992) 

Dendritic voltage-
gated sodium 

channels 
NaTs2 

soma: 0.998912 
apical: 0.021489 
basal: none 
axon: none 

 Colbert and Pan 
(2002) 

Voltage-gated 
sodium channels 

for action 
potential 

generation: 6x 
mtau 

Nap_ET2 axon: 0.005834  Magistretti and 
Alonso (1999) 

NaTa_t axon: 3.89618  Colbert and Pan 
(2002) 

Passive properties gpas 

soma: 3e-5 
apical: 6e-5 
basal: 6e-5 
axon: 3e-5 

  

Axial resistance Ra 100 MΩ   

Specific 
Membrane 
capacitance 

cm 1 F/cm2   
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In the Shai et al. (2015) L5PN model, the neuron has different conductance distributed 

to the axon, soma, apical, and basal dendrites (see Table 2.1). For visual presentation, I plotted 

conductance and grouped them into: soma, dendrite (which is the apical section), and nexus 

(which are apical segments located 685-885 µm from the soma) (Figure 2.3). The maximum 

conductance for the high voltage-activated calcium (gCa_HVA) are the same for all regions. 

The soma consists of the following maximum conductance: fast inactivating sodium current 

(gNaTs2), small-conductance calcium activated potassium current (gSK_E2), fast non-

inactivating potassium current (gSKv3_1). The dendrites and the nexus have similar densities 

of sodium, calcium, and potassium currents. At the dendrites and nexus, the calcium activated 

potassium conductance, gSK_E2, is minimal (0.000002 S/cm2) as compared to the soma with 

(0.09965 S/cm2). A step distribution of Ih was used in the model with twice the conductance 

at the apical dendrite as compared to the soma, gIh_dendrite = 2*gIh_soma. A high density of 

low-voltage activated calcium conductance (gCa_LVA) at the nexus allow for the generation 

of Ca2+-AP (Figure 2.2b).  

 

2.3.2 Implementing the critical frequency protocol in the model 

I adapted the critical frequency protocol, introduced by Larkum et al. (1999a), to find 

conditions to generate oblique branch spike in the L5PN model. In my simulation, I injected 2 

or 4 current pulse trains (current, I = 4.1 nA, pulse width, Dt = 2 ms, frequency range 10 < f < 

150 Hz) at the soma to evoke a 2-AP or a 4-AP train which evolves into 2-AP and 4-AP train 

at the dendrites. The after-depolarizing potential (ADP) was measured as the average 

membrane potential within 10 to 18ms time-window with the time where the peak of the last 

AP occurs set to t = 0, ADP =	 (8)12 𝑉4	𝑑𝑡
26
27 . 

 
 
2.3.3 The program flow of the script and defined functions in NEURON  

Using the ion-channel distributions and conductance values in the model (see 

L5PCbiophys5.hoc), I added sub-routines in the Shai et al. (2015) NEURON script to 

investigate the generation of oblique branch spikes in apical oblique dendrites with a train of 

bAPs (see algorithm in Table 2.2 below). These sub-routines are: oblique tracing, branch 

dendrotomy, and conductance blocking.  

I structured the NEURON script into four steps: (A) Initialization; (B) Pre-run; (C) 

Stimulus setup; and (D) Run (see Table 2.2). During the Initialization, the adaptive 

integration (CVode.active(0)) is disabled with a fixed integration time step, h.dt = 0.025 ms. 
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The Initialization step loads the morphology file (cell1.asc) and biophysics (i.e., the ion 

channels and their distribution contained in L5PCbiophys5.hoc), and allocates recording 

vectors for the time, voltage, and conductance.  

 

Table 2.2 Script implemented in NEURON 
A. Initialization 

0. Import neuron as h 
    Disable CVode, h.CVode.active(0) 
1. Load morphology file and biophysics 
2. Call oblique tracing routine 
3. Initialize recording vectors: t, voltage, conductance 
4. If (dendrotomy), call branch dendrotomy routine 

 
B. Pre-run 

5. Pre-run, this step is executed only once to generate the state file, "state_0.dat" 
h.tstop = 3750 ms, h.dt  = 0.025 ms 
while (h.t < 3000) 
          h.fadvance() 
save state to "state_0.dat" 

6. Load state file, "state_0.dat" 
7. If (blocking), call conductance blocking routine 

 
C. Stimulus setup: 4-AP train, Npulse = 4 

8. Add current clamp stimulus at the soma 
for i in Npulse: 

stim[i].delay = 3100 ms + i*1000./frequency 
stim[i].amp   = 4.1 nA 
stim[i].dur     = 2 ms 

 
D. Run 

9. Continue simulation 
 while (h.t < 3000) 

h.fadvance() 
10. Export voltage/conductance traces within the 3100-3500 ms time window 

 

Pre-run. To save time when running the numerical experiments, a Pre-run simulation 

step is initiated starting from h.t = 0  up to h.t = 3000 ms. At this point,  a state file is generated 

containing the configuration of the model and the status of the membrane potential of the 

neuron. Note that at t < 3000 ms,  the resting membrane potential slowly hyperpolarizes to Vm= 

-85 mV. Saving the status at t =3000 ms ensured that the model has reached a stable state before 

performing any numerical experiment ono the neuron. The Pre-run took approximately 3-5 

mins (using CPU with intel Core i5 2.9GHz with 8GB RAM) and can be performed only once 

to generate the required state file for a given morphology. When changing the morphology (i.e. 

dendrotomy) and ion-channel distributions, a new state file needed to be generated. Further 

numerical experiments only needed the saved state file to load the same state variables into the 

model.  
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Stimulus setup adds the pertinent current pulses (2 or 4-pulse trains) at the soma with 

a given frequency.  

Run performs the necessary experiment (i.e. critical frequency protocol), which exports 

all recording variables upon completion. 

I added subroutines into the run script to investigated the effects of dendrotomy and 

blocking of conductance in a specific branch to the generation of dendritic oblique spike. A 

main oblique branch was removed (i.e., disconnected from the main apical trunk) and the 

somatic ADP with critical frequency protocol was recorded. The conductance blocking routine 

was used to investigate how blocking specific conductance (e.g., gCA_LVA, gCA_HVA, or 

gNa_Ts2) in an oblique branch affected the generation of dendritic oblique spikes. The branch 

dendrotomy routine was used to study how the removal of an oblique branch affected spike 

propagation. 

Oblique tracing routine. I wrote a code using the subtree function in NEURON to 

collect all the sections that belong to the same oblique branch and to output O#1 to O#9 main 

oblique branches. An example of the code is shown below,  

 
Code: 

obl1= h.SectionList() 

obl1.subtree(sec=L5PC.apic[104])  

 

where the argument of the subtree function is the section of the oblique branch that is connected 

to the main apical trunk. This function returns a list of sections of that branched from section 

L5PC.apic[104] inclusive, which are: 

 
Output: 

L5PC.apic[104], L5PC.apic[105], L5PC.apic[106], L5PC.apic[107],  

L5PC.apic[263], L5PC.apic[264], L5PC.apic[265],  

L5PC.apic[631], L5PC.apic[632], L5PC.apic[633], L5PC.apic[634], L5PC.apic[635], 

L5PC.apic[636], L5PC.apic[637], L5PC.apic[638], L5PC.apic[639] 

 

This function was applied for other oblique branches generating a set of lists from O#1 to O#9, 

which also corresponds to the oblique number described in Section 2.3.1. 
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Branch dendrotomy. The dendrotomy routine requires the user to input the oblique 

branch (from O#1 to O#9 oblique) and disconnects all segments except for the first order 

branch, i.e. the one that is connected directly to the trunk. 
 
Code: 
cut_obl = obl5  
for i, sec in enumerate(cut_obl): 
    if(i==0): 
        remove_sec = sec 
        cut_obl.remove(sec=remove_sec) 
    else: 
        break 
for sec in cut_obl: 
    h.disconnect(sec=sec) 
 

Removal of conductance in an oblique branch. I also investigated the influence of 

removing a specific conductance in an oblique branch. Given a list containing all the segments 

belonging to an oblique branch (e.g, O#1=Obl1), I made a code that loops over the sections 

within the list to set a conductance (e.g., gCA_HVA) to zero. 
      
Code: 

for seg in obl1: 
        seg.gCa_HVAbar_Ca_HVA = 0 

 

This changes the specific conductance (seg.gCa_HVAbar_Ca_HVA) of O#1=obl1 without 

affecting the other oblique branches. 

 

2.3.4 Numerical quantification of linear and non-linear responding oblique branches 

I classified the membrane potential responses of the oblique branches in the L5PN model into: 

linear and non-linear response. I devised a procedure to record the membrane potential at each 

segment following a 2-AP train with frequencies ranging from 20 < f < 150 Hz. The procedure 

performs the following: takes the difference of the peaks of the bAPs, ΔbAP21; plots ΔbAP21 as 

a function of frequency; and fits the plot with a sigmoid function,  

𝑆 𝑓 fit = 	
𝐴

[1 + exp	(−𝛽(𝑓 − 𝑓F*))]
 (2.1) 

where A is the amplitude of the difference between the two peaks, β is the steepness of the 

increase with frequency, and fc2 is the critical frequency for the 2-AP train. The scatter of the 

data points plotted between b versus A aided me to identify a threshold for characterising non-

linear responding branch segments (β ≥ 0.3 and A ≥ 20 mV). The other branch segments with 
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β < 0.3 and A < 20 mV exhibited a linear response with insignificant difference between the 

peaks as a function of frequency. 

 

2.4. Results 
2.4.1 105 Hz critical frequency for generating Ca2+-AP at the nexus of the apical tuft  

With the L5PN model, Ca2+-AP was initiated at the nexus of the apical tuft during a 4-AP train 

at 105 Hz. Figure 2.4 shows the NEURON model and the membrane potential at the soma and 

nexus of the apical tuft with the train of bAPs. For a train of 4-bAPs at frequencies above 105 

Hz, the dendritic Ca2+-AP was recruited having a broad depolarization of 40 ms. This dendritic 

Ca2+-AP contributed to the ADP at the soma. This critical frequency for generating Ca2+-AP 

was higher as compared to the 84 Hz (with 3-AP train) reported by (Shai et al., 2015).  

 

 
Figure 2.3 The generation of Ca2+-AP in the L5PN model. a, A digital rendering of a stained 
L5PN with the recordings of the membrane potential at the soma and nexus of the apical tuft 
(red) in response to a train of bAPs. b, The somatic (black) and dendritic (red) recording in 
response to 4-AP train at 100 and 105 Hz. At 105 Hz, the dendritic Ca2+-AP was recruited. c, 
the ADP with the step-increases at 105 Hz due to the Ca2+-AP. 
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2.4.2 Shifts in the critical frequency in the model with the amplitude and pulse-width of 

the injected current  

In the model, I found that the critical frequency shifts with the current amplitude, I, and pulse-

width, Δ𝜏, (Figure 2.5a). I mapped out the parameter space (I vs. Δ𝜏) with the critical 

frequency.  

In the model, I found a minimum current of 4.1 nA with a 2 ms pulse width to reliably 

evoke an AP in a 4-AP train. A lower current amplitude resulted to a failure in AP firing. At 

4.1 nA and 2 ms, the critical frequency was fc4 = 105 Hz. Surprisingly, increasing the amplitude 

from 4.1-5.0 nA while keeping the pulse with at 2 ms resulted to a lower critical frequency of 

fc4 = 85 Hz as seen from the time-integral, change in the intracellular calcium and ADP (see 

Figure 2.5a). I mapped out the parameter space (I vs. Δ𝜏) and observed that “shifts” in the 

critical frequency were more prominent when increasing the current amplitude of pulse trains 

with pulse widths of Δ𝜏	=1.5-3.0 ms. In the proceeding simulation runs, I fixed the injected 

current to 4.1 nA and 2 ms.  

		
	

Figure 2.4 The shifts in the critical frequency with the amplitude and pulse width of the 
injected current in the Shai et al. (2015) model. a, The normalized response with frequency 
of: the time-integral of the membrane potential, change in the intracellular calcium 
concentration, and the ADP as measured at the soma. b, a parametric plot of I vs tw with z-
color as the critical frequency from 60-120 Hz for the pair of I and Δ𝜏. The black region 
indicates current amplitude & pulse width combinations that exhibit AP failure or additional 
APs. 
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2.4.3 Invasion of a 4-bAP train in the dendritic tree 

In the model, I also investigated the invasion of bAPs in the dendritic tree. Snapshots of AP 

propagation into the dendritic tree during a 4-AP train at 105 Hz are shown in Figure 2.6. The 

invasion of the bAPs was different in the nexus and in the oblique dendrites. The peak 

amplitudes the bAPs exponentially decreased as they reach the nexus, whereas at oblique 

dendrites, the bAP amplitudes increased. For the O#3 and O#5 oblique dendrites, a large 

increase in the membrane potential (Figure 2.6, green trace) was observed after the second 

bAP.  

Another way to study the bAP invasion is to measure the peak depolarization at each 

segment by subsequent bAP in a bAP train. Figure 2.7 shows another visualization of the 

invasions of bAP in the apical trunk and oblique branches using a 4-AP train at 105 Hz. The 

depolarization by the bAPs, ΔbAP, is plotted against path distance of segments of the oblique 

dendrites and the main apical trunk from the cell body, D_soma. The points are scaled to the 

diameter of the segments. A strong attenuation of the bAP is observed along the main apical 

trunk (see Figure 2.7a and 2.7c). The first bAP robustly invades oblique dendrites (O#1, O#2, 

O#3, and O#5) with an increasing bAP amplitude towards the sealed end of the oblique 

consistent with Goldstein and Rall (1974) analytical model. Following the second bAP, there 

is a 20-40 mV rise in the membrane potential at O#5 (green) and O#3 oblique which persisted 

during the third bAP. After the fourth bAP, Ca2+-AP at the nexus of the apical tuft was recruited 

causing a global depolarisation of the dendritic tree. Thus, the simulation shows a unique and 

persistent depolarization (i.e., an oblique branch spike) in few oblique dendrites after the 

second bAP.  
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Figure 2.5 Snapshots of the invasion of bAPs in the dendritic tree taken at different times. 
(left) The multi-compartmental model of a L5PN with z-color is the membrane potential at 
each compartment in response to a train of 4 current pulses (4.2 nA, 2 ms, 105 Hz) injected at 
the soma. (right), the recorded membrane potential at the soma, nexus of the apical tuft and 
selected segments of oblique dendrites from time points a-b-c-d-e. 
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Figure 2.6 The invasion of AP train along the trunk and oblique dendrites in the L5PN 
model. a, Location of different apical oblique dendrites. b, Peak amplitude of the bAP in the 
obliques for the 1st bAP and the relative difference of the: (c) 2nd; (d) 3rd; and (e) 4th bAP with 
the 1st bAP.  The color assignments for obliques are: O#1 (red), O#2 (orange),  O#3 (brown), 
O#4 (yellow), O#5 (green), and O#6 to O#9 (blue). The main apical trunk is grey.  
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2.4.4 Dendritic spike in oblique dendrites evoked at low-frequency burst of bAPs 

From Figure 2.7b, I observed an oblique branch spike generated at an oblique dendrite with a 

2-AP train. I then performed the critical frequency protocol and found a critical frequency of 

fc2 = 35 Hz as measured from the ADP at the soma (Figure 2.8). On the other hand, the 2-AP 

train at 105 Hz did not recruit the Ca2+-AP at the nexus of the apical tuft. 

 

	  
Figure 2.7 The multi-compartment model of L5PN captures an oblique branch spike in 
oblique dendrites. a, A digital rendering of a stained L5PN with the recordings of the 
membrane potential at the soma, oblique dendrite (blue), and nexus of the apical tuft (red) in 
response to a train of bAPs. b, The measured after-depolarizing potentials with frequencies for 
2-AP train. c, The step-increase in the ADP at fc2 = 35 Hz following the generation of the 
oblique branch spike.  
 
 
 
2.4.5 Classifying oblique branches that exhibit linear and non-linear membrane potential 

response with a 2-AP train 

While there was a clear non-linear rise in the membrane potential in the O#5 oblique branch, I 

quantified the responses in all the segments of the multi-compartment model into linear and 

non-linear as described in Section 2.3.4. A parametric plot of A and β is shown in Figure 2.9a 

below. The distribution of the data points aided me to separate the responses by a threshold 
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region defined by: β ≥ 0.3 and  A ≥ 20 mV. The responses equal and above the threshold were 

non-linear. This classification recovered O#3 and O#5 oblique as two non-linear responding 

oblique branches (Figure 2.9c). The classification with the voltage response was consistent 

when measuring the sodium or calcium currents at the oblique segments instead (Figure 2.9b). 

 

 
Figure 2.8 Classification of linear and non-linear responding oblique dendrites of a L5PN 
multi-compartment model. a, The parametric plot of fit parameters β and A of the voltage 
responses of the segments with AP trains at 20-150 Hz. (a, inset), An example of the paired 
pulse response from segments of two oblique dendrites (i.e., apic[9] and apic[17]) is shown in 
the inset. A region defined by: β > 0.3 and A > 20 mV, classifies the non-linear from the linear 
responding segments. b, The parametric plot of the normalized paired pulse of the sodium and 
calcium currents in the model with β. The red points indicate the same segments as classified 
in the paired pulse voltage response. c, The L5PN model with the locations of the non-linear 
responding segments (highlighted in red) based from the β vs. A classification. Note: A is the 
differences in the peak amplitude of the membrane potentials for 2- and 1-bAP, and β is the 
steepness parameter from the sigmoid fit (described in Equation 2.1). The vertical and 
horizontal error bars in Panel a are the confidence intervals for A and β based from the fit. 
 

 

2.4.6 Conductance analysis of the dendritic oblique spike 

I investigated the ion channels involved in the generation of the oblique spike in the L5PN 

model. I blocked specific conductance (i.e., gCa_LVA, gCa_HVA, and g_NaTs2, using the 

method described in Section 2.3.3) and measured the membrane potential of a linear (O#2 
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oblique branch) and two non-linear responding (O#3 and O#5 oblique branch) oblique 

dendrites and the soma in response to 30 and 40 Hz AP train (see Figure 2.10 below).  

In the control condition, the non-linear responding obliques (O#3 and O#5 oblique) as 

classified in the previous section showed a large depolarization, an oblique branch spike, at 40 

Hz consisting of a fast spike followed by a broader depolarization (~50 ms duration) (see 

Figure 2.10b). I investigated the effect of removing the calcium and sodium conductance in a 

specific branch (Figure 2.10c-e). Setting the low-voltage activated calcium conductance to 

zero, gCa_LVA = 0, did not affect the generation of the oblique branch spike. On the other 

hand, removing the high-voltage activated calcium conductance, gCa_HVA = 0, abolished the 

broad 20 ms depolarization but revealed a fast spike (see Figure 2.10d) particularly for O#5 

and O#3 non-linear responding oblique branches. This fast spike was confirmed to be mediated 

by sodium conductance, gNa_Ts2. Thus, based from the L5PN model, the oblique branch spike 

is a fast sodium spike that is followed by a broad depolarization due to recruitment of high-

voltage activated calcium channels. 

 

 
 

Figure 2.9 The conductance analysis of branches exhibiting the putative oblique spike. a, 
The L5PN model with the labelled oblique branches according to the number of branch points 
before it from (from O#1 to O#9). b, The membrane potential at different recording sites 
namely: (O#2, O#3, and O#5) oblique branches, the nexus, and the soma with 30- and 40 Hz 
AP-trains. c-e, The membrane potential in response to 40 Hz AP-train at the recorded sites with 
the conductance set to zero (removed) in that given oblique branch only. Scale bars indicated 
50 mV (vertical) and 20 ms (horizontal). 
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I tested whether the removal of conductance in a specific branch affected the 

neighbouring oblique branches during the 2-AP train at 40 Hz (Figure 2.11). Extending the 

analysis made in Figure 2.10, I examined the changes in the membrane potential when 

removing a conductance of an oblique branch (indicated by ★). The removal of conductance 

in the O#5 oblique did not affect the oblique spike in O#3 branch. However, the removal of 

spike in O#3 oblique also removed the oblique spike in the O#5 oblique (Figure 2.11c). In 

addition, there was a noticeable decrease in the membrane potential at the nexus and the ADP 

at the soma. Surprisingly, removal of the sodium conductance at O#2 linear responding oblique 

resulted to no oblique spikes at O#3 and O#5 branch (Figure 2.11d). A summary of how the 

changes in conductance in one oblique affects the spike generation in the neighbouring oblique 

is shown in Figure 2.12. These results suggest that in the L5PN model, the oblique dendrites 

are coupled with one another such that the activation of conductance in an oblique branch 

affects the membrane potential of neighbouring oblique branches. 

 

 
 

Figure 2.10 Influence of blocking a conductance in a single branch to neighbouring 
oblique dendrites. a, The L5PN model with the labelled oblique branches according to the 
number of branch points before it from (from O#1 to O#9). b-c, changes in the membrane 
potential of the oblique branches when the conductance of obliques: O#5, O#3, and O#2 were 
removed, respectively.  

 

 



	 59 

 
Figure 2.11 The initiation/removal of dendritic oblique spikes with changes in 
conductance of specific oblique branches. a, The time-integral of the membrane potential 
with the frequency of 2 bAP-train at the soma, nexus, and oblique dendrites (#5, #3, #1) for a 
branch where the sodium (gNa_Ts2) or calcium (gCa_LVA, gCa_HVA) conductance was set 
to zero. The time-integral is normalized to the time-integral at 20 Hz. b, The sigmoid fit 
parameters (A, β, and critical frequency (fc)) with an abolishment of the critical frequency when 
gNa_Ts2 in #2 oblique was set to zero. There error bars are errors in the fit. c-e, The sigmoid 
parameters (fc, β, A) with the changes in the conductance for a given branch. 
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2.4.7 Dendrotomy at oblique dendrites in the L5PN model 

I tested whether the step-increase in the ADP is due to the recruitment of the oblique branch 

spike. I selectively removed the oblique branches one at a time and check for changes in the 

ADP amplitude (Figure 2.13). I found that removing O#1 and O#4 oblique branches, which 

responded in a linear way did not significantly change the ADP. However, cutting the O#3 and 

O#5 (non-linear) oblique dendrites caused the cell to fire an extra spike within 10-40 Hz and 

significantly reduced the ADP amplitude beyond fc2 = 40 Hz. Removing #2 oblique (linear) 

dendrite also reduced the ADP. The removal of O#2 oblique could have altered the bAP 

propagation as this branch had a large membrane area. 

 

 
 
Figure 2.12 Dendrotomy in the NEURON model. a, The dendritic section of the L5PN model 
only showing the O# 1-5 apical oblique branches, b, The ADP in response to a two-pulse spike 
train upon removing a given oblique. The black trace is the ADP response in the control 
condition when all the oblique dendrites are intact. ADP which were > 30mV showed 
additional APs at that frequencies.  
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2.5 Summary 
The works of Hodgkin, Huxley and Rall laid the mathematical foundations for modelling how 

currents and voltage flow within neurons (Hodgkin and Huxley, 1952; Rall, 1959; Rall, 1969; 

Rall and Rinzel, 1973). Numerical platforms, such as NEURON, now enable us to test how 

dendritic morphology (structure) affects AP firing (function) in single neurons.  

Using a published multi-compartment model of a L5PN (Shai et al., 2015), I 

investigated the propagation of bAPs along the dendritic tree and the generation of dendritic 

spikes. A 4-AP train at 105 Hz generated a dendritic Ca2+-AP at the nexus. The propagation of 

bAPs varied in oblique dendrites. A 2-AP train did not elicit Ca2+-AP at the nexus; however, 

oblique branch spikes were elicited in select oblique branches with a 2-AP train at fc2 = 35 Hz. 

From the parametric plot of A and β, I determined a threshold (A ≥ 20 mV and β  ≥  0.3) that 

classified O#3 and O#5 oblique branches that exhibit this oblique branch spike. Based on my 

conductance analysis, the oblique branch spike is a fast sodium spike followed by a broad 

depolarization due to recruitment of high-voltage activated calcium channels.  

The generation of dendritic spikes depends highly on the three-dimensional 

morphology of the dendritic tree. The ability to change dendritic morphology could potentially 

provide a new way to analyse neuronal function particularly on the generation of dendritic 

spikes and branch-specific dendritic computation. While dendrotomy is an invasive way to 

probe neuronal function, it allows for testing the causal relationship between spikes in oblique 

dendrites and the frequency-dependent step-rise in the ADP. This test could have been 

performed by highly localised pharmacological approaches such as: focal uncaging of blockers 

or focal drug application via a sharp pipette (Frick et al., 2003). However, such experimental 

techniques are challenging to implement especially when the oblique dendrites are very close 

to each other. In Chapter 4, we discuss how we performed highly targeted dendrotomy on 

specific oblique spikes using a focused  femtosecond laser beam isolates the targeted dendrite 

from the cell while maintaining cell-viability (Go et al., 2016). 

In the L5PN model, numerical blocking experiment and dendrotomy reveal that oblique 

branches are coupled with one another. For example, an oblique spike initiated in the O#3 

oblique branch depolarized the neighbouring O#5 branch enough to set off an oblique spike in 

O#5 branch. The removal of obliques spikes in O#5 and O#3 branch by either blocking sodium 

channels in O#3 branch or O#2 branch resulted in a significant decrease in the ADP at the 

soma. Furthermore, physically removal branches O#2, O#3, and O#5 via dendrotomy 

abolished the step response in the ADP. This is consistent with observations in multi-
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compartment models of CA1 PNs (Migliore et al., 2005). In hippocampal neuron multi-

compartment models, fast sodium spikes did not effectively depolarize the soma due to the 

unfavourable impedance mismatch (spike propagating from oblique to main apical trunk) at 

the branch points (Migliore et al., 2005; Ferrante et al., 2013); however, sustained activation 

of several oblique branches can overcome this loss and add to the ADP at the soma (Migliore 

et al., 2005). Based from these numerical results, oblique dendrites in L5PNs may function as 

a coincidence detector with branches that seem to be coupled to one another. A train of APs 

with frequencies, f > 35 Hz, generates an oblique branch spike in a specific branch, which leads 

to a sustained depolarization of the neighbouring oblique branches via the activation of voltage-

gated calcium channels. This sustained dendritic depolarization contributes to the somatic ADP 

bringing the neuron close to the AP threshold and to fire another AP. 

Multi-compartmental models are great tools to visualize how signals, such as bAPs and 

dendritic spikes, propagate in a single neuron. They provide insights on how signals affect thin 

dendritic branches, which is hard to access in experiments with current patch-clamp techniques. 

Using the modelling results as a guide, we can design experimental methods and optical 

techniques to test these findings. In addition, matching experimental dendritic recordings (via 

patch clamp and calcium or voltage imaging) with modelling results allow us to infer the 

distribution of channels in dendrites, which shapes the active properties of the membrane. 

Indeed, multi-compartment models can be used as a guide to investigate the properties and 

signal propagation in dendrites. In the next chapters, I test the predictions from this model by 

investigating the generation of oblique branch spikes in L5PNs in vitro. 
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Chapter 3. General Methods Section: Two-photon holographic 
multi-site detection system and sample preparation 
	

	

	

	
3.1 Introduction 
Functional fluorescence calcium and voltage imaging are indispensable tools in probing 

membrane activity in thin dendrites. Optical recording of dendritic spikes via voltage imaging 

requires microscopes with high spatial and temporal resolution. There are several microscope 

designs that enable fast functional fluorescence imaging. Single-photon (1P) microscope 

systems such as epifluorescence, confocal, and spinning disk microscopes can achieve high 

frame rate recording. However, single-photon fluorescence imaging is limited to thin (50-100 

µm) samples as blue/green light is strongly scattered by the tissue. On the other hand, two-

photon (2P) line-scanning or holographic microscopes can be used to perform functional 

imaging both in slices and in intact brain preparation.  

 In this work, we developed a 2P multi-site holographic fluorescence detection system 

to record calcium activity in neurons. Arbitrarily projecting multiple foci on neuronal segments 

loaded with calcium indicators allowed simultaneous 2P-excitation, wherein the fluorescence 

photons from each site are collected by a multi-channel detector (e.g., a camera). Using this 

system, I performed calcium imaging at oblique dendrites of L5PNs. 

 The next section provides a background on the different microscope modalities used 

for functional calcium imaging highlighting the advantages and disadvantages of each optical 

design. Then, I proceed to present the design of our 2P multi-site system. I also enumerate the 

procedure used to prepare our tissue samples. Lastly, I give a comparative review of different 

optical systems used to record fast dendritic spikes in vitro.  

 

Background  
Functional calcium imaging requires microscopes with sufficient spatiotemporal resolution. 

Figure 3.1 shows different microscope modalities to image fluctuations in fluorescence 

emitted by fluorescent calcium indicators due to changes in intracellular calcium concentration. 

The discussion focuses on how the excitation beam is delivered and on how the emitted 

fluorescent photons are recorded. 
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1P functional imaging can be achieved using a conventional epifluorescence 

microscope (Figure 3.1a) and a two-dimensional multi-channel image sensor (or camera) for 

video acquisition with a frame rate of at least ~20 frames/s (Connor, 1986; Lasser-Ross et al., 

1991). This type of microscope uses 1P excitation with high energy (e.g., light source to excite 

the calcium indicator. Conventional epifluorescence microscopes have poor axial 

discrimination and are limited to thin samples such as thin neuronal slices or cultures due to 

light scattering in the tissue. When imaging neuronal activity within thick (>300 µm) brain 

slices or from an intact brain (in vivo), it is important to discriminate fluorescence photons 

emitted from different axial planes. Selectively recovering fluorescence photons from a single 

plane is achieved using a confocal microscope (Figure 3.1b). In a confocal microscope, the 

focused beam scans the sample and the fluorescence photons via a single-channel detector such 

as a photomultiplier tube (PMT). A pinhole, placed before the detector, restricts the collection 

in-focus fluorescence to the PMT. The numerical aperture of the lens and the size of the pinhole 

define the thickness (or depth-of-focus, DOF) of the imaging plane. Raster scanning can be 

achieved by mechanically scanning the beam via galvanometer-mirrors (slow) and/or resonant 

scanning mirrors (fast). The speed of scanning and the size of the region-of-interest scanned 

defines the temporal resolution (frames/s) of the system. Confocal microscopes have been used 

for functional calcium imaging in a range of preparations (Williams and Fay, 1990; Eilers et 

al., 1995). 

The increased temporal resolution provided by recent camera technologies (e.g. 

sCMOS and EMCCD) allows high-speed image acquisition at 1000 frames/s or more. High 

camera frame rate allows for fast imaging in a single focal plane when conventional bright-

field microscopy is combined with illumination by a sheet of light along the imaging plane of 

a bright field microscope (Figure 3.1c). Light sheet microscopy, as it is commonly known 

today, was first referred to as “orthogonal-plane fluorescence optical sectioning microscopy” 

(Voie et al., 1993), and later as “selective plane illumination microscopy” (Huisken et al., 2004; 

Huisken and Stainier, 2009). This method is now heavily used in studying calcium dynamics 

of neuronal circuits in zebrafish (Ahrens et al., 2013; Wolf et al., 2015).  

The two-photon (2P) laser-scanning microscope follows the same image acquisition 

protocol as the confocal microscope where a focused laser beam is raster-scanned across the 

sample (Figure 3.1d) (Denk et al., 1990). The main difference, however, is the use of a non-

linear excitation process where a fluorophore absorbs two low-energy photons (λ ~800 nm) as 

compared to using one high-energy photon (λ ~400 nm) for 1P excitation. The very low 

probability of two photons to be simultaneously absorbed by a fluorophore requires a highly 
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focused femtosecond (fs ~10-15 s) pulsed laser. The principle can be extended to three or more 

photons resulting in much lower non-linear excitation probabilities (Horton et al., 2013). Since 

the probability of multi-photon excitation is highest in the focal plane, the fluorescence 

emanating from the sample is within the DOF, thereby eliminating the need for a pinhole before 

the detector. 

 

 
Figure 3.1 Common microscope modalities to perform functional calcium imaging. a, 
Single- photon (1P) epifluorescence microscope; b, 1P confocal microscope; c, 1P light-sheet 
microscope; d, Two-photon (2P) microscope; e, Extended depth-of-focus 2P microscope; f, 
Patterned illumination via a holographic multi-foci 2P microscope. Relative axial 
discrimination is shown in dashed lines for the different imaging modalities. Figure taken from 
(Castanares et al., 2019) 
 

Removal in the use of a pinhole allows more fluorescence photons to be acquired by the 

detector. An additional advantage of this method is that low-energy photons in the near-infrared 

(NIR) are scattered less, thereby giving better access to neurons embedded deep within brain 

tissue (Svoboda et al., 1997; Helmchen et al., 1999; Helmchen and Denk, 2005). Scanning 

speeds for 2P microscopes have been significantly enhanced with acousto-optic deflectors 

(AOD) (Saggau et al., 1998), which can randomly position beams in 3D in less than 10 µs 
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(Katona et al., 2012). AODs have now been commonly used for high-speed functional calcium 

imaging (Katona et al., 2012). While 2P microscopes have good 3D spatial resolutions, the 

temporal response suffers when recording neurons in a volume. One way to increase the 

temporal resolution is to reduce 3D information into 2D by increasing the DOF (Dufour et al., 

2006; Katona et al., 2012). Figure 3.1e describes a system with extended DOF by reducing the 

effective numerical aperture of the objective lens. A variant of such extended DOF allows 

depth discrimination and has been used for fast volumetric calcium imaging (Theriault et al., 

2014).  

The holographic 2P microscope (Figure 3.1f) uses a spatial light modulator (SLM) to 

shape the incident beam into different patterns (e.g., multiple foci or user-defined patterns) 

(Nikolenko et al., 2008; Daria et al., 2009; Dal Maschio et al., 2010; Castanares et al., 2016; 

Bovetti et al., 2017; Song et al., 2017). The fluorescence photons emitted from the multiple 

excitation sites are recorded simultaneously using a multi-channel detector such as a 

photodiode-array, linear photo-multiplier tube array, or a camera. Parking the holographic foci 

at the sites of interest allow longer beam dwell time yielding a better signal-to-noise ratio of 

the recordings compared to ones acquired with beam-scanning (Bovetti et al., 2017). Individual 

foci in a multi-focal pattern can also be sequentially illuminated using a digital micro-mirror 

device (DMD), allowing fluorescence to be sequentially acquired using a single-channel 

detector (Ducros et al., 2013). With a high-speed DMD (operating at 22,000 samples/second 

switching speed), the fluorescence signal from 8-11 sites can be decoded with a temporal 

resolution of 0.72 ms (Ducros et al., 2013). When used without a DMD, holographic projection 

enables simultaneous illumination of multiple foci and high- speed detection with temporal 

resolution limited by the frame rate of the camera.  

Our 2P multi-site fluorescence detection system utilized the holographic microscope 

design. We used phase-only holographic projection to shape a single laser beam into arbitrarily 

positioned multiple foci. These foci were then used to generate 2P excitation at sites of interest. 

The fluorescence from each site were recorded by a fast camera at the same time. 

 

3.2 Chapter aims  
This chapter aims: (1) to review the theory of holographic projection, (2) to describe the 

techniques used in this thesis such as our novel multi-site fluorescence detection system, and 

(3) to discuss different optical systems used to detect dendritic spikes. 
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3.3 Methods 
3.3.1 Phase-only holographic projection 

The phase-only holographic projection method entails the pre-calculation of a computer-

generated hologram (CGH) and encoding the hologram on an optical device such as a phase-

only spatial light modulator (SLM). The SLM is a two-dimensional liquid-crystal array of 

phase-shifting pixels with a nominal phase shift of 2p at its specified operating wavelength. 

When the SLM is illuminated, the optical transformation in the far field (or at the focus of a 

lens) projects the optical field pattern suitable for multi-site excitation of calcium indicators 

(Figure 3.2a). Calculation of the appropriate CGH can be achieved by an iterative optimization 

algorithm or by the superposition of combined prism and lens phase functions to project 

independently positioned multiple foci (Liesener et al., 2000). For N holographically projected 

foci distributed around the focal volume, the input phase, j	(u, v), is described by  

 
h u, v = a u, v exp iφ u, v 	

= exp i
2π
λ

NA
R

uxT + vyT +
2NAr
R

*

zT

X12

T

 
(3.1) 

where (𝑢, 𝑣) are 2D pixel coordinates at the SLM, NA is the numerical aperture of the lens, 

l is the wavelength of the laser, R is the radius of the operating or illuminated region at the 

SLM, while (𝑢, 𝑣) and 𝑟* = 𝑢* + 𝑣* are Cartesian and radial coordinates at the hologram 

plane, respectively. The 3D spatial coordinate positions of the spots at the output are 𝑥], 𝑦], 𝑧] . 

In phase-only holographic projection, the SLM encodes only the phase component, 𝜑 𝑢, 𝑣 , 

discarding the amplitude, 𝑎 𝑢, 𝑣 . To visualize the 3D intensity distribution of the 

holographically projected multiple foci, Daria et al. (2009) numerically modelled the light 

propagation from the SLM to the focal volume via the Fresnel diffraction integral. Each focus 

can be positioned arbitrarily within the focal volume and is bounded by the space-bandwidth 

product of the optical system. Figure 3.2b shows the intensity distribution along the xz-plane 

with two intensity maxima (N = 2) of two foci positioned at (±2.25/h, 0, 0). The smaller 

intensities beside the two foci are high diffraction orders, which account for some losses in the 

projection (Palima and Daria, 2006). The normalized transverse (x,y) and axial (z) coordinates 

are related to spatial coordinates by 𝜂 = 𝑁𝐴𝜆12  and 𝜉 = 𝑁𝐴*𝜆12. 
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Figure 3.2 Phase-only holographic projection. a, Schematic for phase-only holographic 
projection. b, Numerically evaluated intensity distribution of two foci and high diffraction 
orders along the xz-plane. Note the following: R (beam radius); f is the focal length of the lens; 
PSLM is the power of the incident beam, Pf1 and Pf2 are the normalized power of foci 1 and 2, 
respectively; PT is the total power at the focal plane. Figure taken from (Castanares et al., 2019). 
 

The profiles of the foci are characterized by the convolution of the Fourier transform of a 

circular aperture associated with the 3D point-spread function of the optical system and N delta 

functions. As such, the circularly symmetric two-dimensional (2D) intensity profile of each 

diffraction-limited spot is described by the normalized Airy pattern. 

Daria et al. (2009) evaluated the fundamental optical throughput as the number of foci 

is increased. First, the intensity distribution at the focal plane of a lens is calculated using two-

dimensional Fourier transform (FT), 𝐼 𝑘𝑥, 𝑘𝑦 = (𝜋𝑅*)1* 𝐹𝑇 𝑒(𝑢, 𝑣) *, where (kx, ky) are 

spatial frequency coordinates at the Fourier plane. The intensity distribution is then normalized 

with the square of the illuminated area using Parseval’s theorem (Goodman, 2005). Figure 

3.3a shows the two-dimensional intensity distribution of ten foci (N = 10) arbitrarily arranged 

in the focal plane. To evaluate the fundamental optical throughput, the power at the focal plane 

was calculated,  𝑃m = 	 𝐼mdA , integrating the intensity over a circular area, A, around each 

focus (see representative circular area in Figure 3.3a). Figure 3.3b shows the normalized 

power per focus, 𝑃m, as N is increased (square markers). Also shown is the total power, 𝑃n =

𝑃m (triangular markers). Note that PT is slowly decreasing over a range of N indicating that 

fundamental losses due to higher diffraction orders are maintained even as N is increased. For 

𝑁 ≥ 2, the normalized power of each focus follows a fit given by, 
𝑃m
𝑃pqr

=
𝛿(𝑟)
𝑁

 (3.2) 

where 𝑃pqr 	is the average power of the incident beam measured at the SLM and d = 0.84, 

radially symmetric measure of the first-order diffraction efficiency (Daria et al., 2009). 
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Figure 3.3 Intensity distribution and optical throughput. a, Multi-foci configurations for N 
= 10 foci derived numerically via two-dimensional Fourier transform using Equation 3.1 as 
input. b, Plot of the average power per focus (Pf, squares) and total power (PT, triangles) as the 
number of foci (N) is increased. Figure taken from (Castanares et al., 2019). 
 

 

3.3.2 2P multi-site fluorescence detection system 

I briefly describe our microscope system shown in Figure 3.4. A femtosecond-pulsed Ti:S 

laser (Chameleon Ultra II, Coherent) is split to a beam scanning and holographic arm via a 

polarizing beam splitter (PBS1) sending the S-polarized beam to a xy-galvanometer-scanning 

mirrors (GM). The P-polarized laser beam, on the other hand, is directed towards the SLM via 

a set of beam expansion lenses. A Fourier Transform Lens (FTL) is placed in front of the SLM 

to produce the multiple foci at its Fourier plane. PBS2 couples the S-polarized beam forming 

a standard 2P microscope together with tube lenses (TL), dichroic mirror (DM) and the 

photomultiplier tube (PMT). The P-polarized beam from the SLM is also coupled to the 

microscope using PBS2. The SLM is used to encode a phase map onto the laser and relayed 

via a 4f-lens configuration (FTL and TL) to the back aperture of the objective lens (OL). The 

fluorescence from the sample passes through the DM for imaging to either the photomultiplier 

tube (PMT) or the electron-multiplied CCD camera (EMCCD, iXon Ultra 897, Andor, Oxford 

Instruments). Whole-cell patch clamp recordings were performed with a standard patch-clamp 

system (Penner, 1995) that was integrated in the microscope. Fine glass electrodes (2.0mm 

Outer Diameter, with open tip pipette resistances of 5-7 MΩ) were pulled using a pipette puller 

(P-97, Sutter Instruments). A multi-clamp amplifier (Multi-Clamp 700b, Molecular Probes) 

connected to an A/D converter (ITC-16, Instrutech) injects and records current from the 
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electrode. The acquisition of current clamp recordings and fluorescence images was 

synchronized by digital triggering of the camera software (Andor Solis) and multi-clamp 

acquisition software (Axograph). 

	
Figure 3.4 Schematic diagram of our custom-built two-photon laser scanning and 
holographic microscope. The femtosecond laser directed by a polarizing beam splitter (PBS) 
to the laser scanning arm or the holographic arm by adjusting the polarization angle of the 
beam relative to the PBS. In laser scanning mode, the beam is deflected using galvanometer 
mirrors and the fluorescence is collected using a PMT. In holographic mode, the beam is 
projected onto a spatial light modulator (SLM) where it is shaped into user-positioned multi-
foci onto the sample. The fluorescence of each site is simultaneously recorded by an electron-
multiplied CCD (EMCCD) camera. Note the following abbreviations: L is convex/focusing 
lens, DM is dichroic mirror, FM is a flip mirror, M is a mirror, and λ/2 is a half-wave plate 
polarizer. 
 

3.3.3 Sample preparation 

Salt solutions  
Before surgery, two types of artificial cerebral spinal fluid solutions: (1) slicing (sACSF) and; 

(2) normal (nACSF) were prepared (see Table 3.1 for the recipe). The slicing ACSF contained 

(in mM): 1.25 NaH2PO4, 1.0 MgCl2, 125.0 NaCl, 2.5 KCl, 2.0 CaCl2, 25 NaHCO3, and 10.0 

glucose. The high concentration of magnesium blocks NMDA receptor activation of the 

neurons during the slice preparation. The sACSF is used throughout the surgery and brain 

collection procedure.  On the otherhand, the nACSF is only used during patch-clamp recording. 

A reservoir of sACSF was prepared in a 100 mL beaker with a custom-made mesh to contain 
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the brain slices. The sACSF reservoir was heated up to 34 oC in a water bath. Constant bubbling 

of carbogen (95% O2 + 5% CO2) was maintained in this solution. 

    Table 3.1 ACSF solution used for slice incubation and recording 
10x stock solution: (1L) 73.05g NaCl 

1.725g NaPO4 (Mw = 137.99g/mol) 

21.0g NaHCO2 (Mw = 84.01g/mol) 

2.24g KCl (Mw = 74.55g/mol) 

500mL Slicing ACSF 

(sACSF): 

50mL 10x stock solution 

3mL    1M MgCl2 

0.5mL 1M CaCl2 

4.5g glucose 

add deionized water 

stirred and bubbled with 95% carbogen 

1L Normal ACSF (nACSF): 100mL 10x stock solution 

1mL 1M MgCl2 

2mL 1M CaCl2 

9.0g glucose 

add deionized water 

stirred and bubbled with 95% carbogen 

	
Slice preparation 

Whole rat brains were harvested from P26-P34 young adolescent male Wistar (ASD429) Rats 

following the protocol approved by the Australian National University Animal Ethics 

Committee (Animal Ethics protocol no: A2018/35). The rats were sedated with 2-4% 

isoflurane in oxygen (3L/min) by inhalation. As the animal was unconscious, verified by tail 

pinching, its head was decapitated using a guillotine. The isolated head was submerged to an 

ice-cold sACSF. The rat brain was carefully removed from the skull. An incision was made of 

the left hemisphere of the skull (Figure 3.5a). The brain was placed in another iced sACSF for 

2-3 mins to cool. Then, the rat brain was placed on a glass petri dish with a filter paper to dry 

out excess solution. With a blade oriented normal to the table, the olfactory bulb was cut from 

the brain (Figure 3.5b). A wedge was inserted at one end of the dish creating a 5-10o tilt (see 

Figure 3.5c). The use of the wedge compensated the natural curve of the brain in the attempt 

to conserve the dendritic tree of large L5PNs. After the cut, the wedge was removed flattening 

the dish onto the table and then the cerebellum was cut. The brain was mounted on a filter 

paper with the cut end of the near the cerebellum facing up. Using another dry filter paper, the 

brain tissue was held up, the anterior end dried up with another filter paper, and then mounted 



	 72 

on the vibratome stage initially loaded with a super glue (Loctite). The brain tissue was oriented 

such that the primary somatosensory cortex was parallel to the vibratome blade. The tissue and 

glue was allowed to bond for 1 min. Then the sACSF was poured onto the bath while 

maintaining a constant bubbling of carbogen. From the posterior end of the tissue, 1.7-2.0 mm 

of tissue was remove (this section contains the visual and auditory cortex) to reveal to 

somatosensory cortex. A key indicator of S1 region is the formation of arc white matter (corpus 

collosum, axonal projections to S1, indicated by A in the image) and the kink (indicated by K 

at the lower right part of the tissue, Figure 3.5d).  During the cut, the stage was moved 500 µm 

up then the blade was engaged to cut. As the blade cuts through up to the hippocampus, the 

vibratome blade was disengaged and the stage was moved down by 200 µm. Using a needle, 

the cortex was cut-off from the rest of the tissue. With a glass pipette, the sliced tissue was 

transferred the sACSF bath. This sequence was repeated until 6 coronal slices were recovered. 

The slices were incubated at 34 °C for 30 mins and kept at room temperature afterward. Healthy 

neurons can be recorded from the slices in the next 6-8 hours. 

 
Figure 3.5 Surgery and slice preparation. a, The approach of the cuts to open up skull and 
expose the brain. b, The estimated cut to remove the olfactory bulb and cerebellum. c, A slight 
tilt 5-10o in the angle of cut was used which help orient the dendritic tree of layer 5 pyramidal 
neurons in a plane avoiding cutting the apical trunk. d, Sample images of the coronal slices 
within the somatosensory cortex region (stained for visualization). Images are taken from the 
rat brain atlas (Paxinos and Watson, 2006).  
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Culture preparation 

Preparation of cultured primary hippocampal neurons was performed in accordance with the 

protocol approved by the Australian National University Animal Ethics committee. 

Hippocampal tissue was dissected and dissociated from the brains of post-natal day 1-2 rats 

(Wistar). The tissue was then incubated in dissociating Papain solution at 37 °C in a water bath 

for 20 min. It was then triturated, incubated in DNAase solution at room temperature for 10 

min, followed by resuspending in the plating medium (Dulbecco’s modified Earl’s medium 

supplemented with 10% fetal bovine serum, 1% L-glutamine, 1% penicillin- streptomycin and 

1% B-27 supplement). The cells were then plated onto the pre-treated, poly-L-lysine coated 

glass coverslips and allowed to grow in an incubator at 37 °C and 5% CO2.  

 

3.3.4 Electrophysiology and 2P calcium imaging 

Calcium imaging was performed on oblique dendrites of L5PNs in the somatosensory cortex 

of rats in vitro. Electrophysiology recordings were done on neurons in brain slices (as presented 

in the previous Section 3.3.3). L5PNs were patched with a glass containing (in mM): 115.0 K-

gluconate, 20.0 KCl, 10.0 HEPES, 10.0 phosphocreatine, 4.0 ATP-Mg, 0.3 GTP, 0.13 Alexa-

Fluor-488 (Sigma Aldrich), and 0.3 Cal-520 potassium salt (AAT-Bioquest). 

The L5PNs were held at -65 mV, a typical resting membrane potential for these 

neurons. A 30 min to 1 hr loading time before imaging was observed to allow the dye to diffuse 

into the dendritic tree. In some cases, during the dye loading, the series resistance of the pipette 

increased to values comparable to the recorded input resistance of the cell, 25-30 MΩ, which 

introduced measurement errors (e.g., the measured height of APs at the soma). To correct this 

increase in the series resistance, I applied a brief negative suction to the pipette with the buzz 

function (50-100 ms) in the multi-clamp amplifier to dislodge the clog at the tip of the 

electrode. If the brief suction didn’t work, I slowly retracted the electrode and repatched the 

cell with a fresh electrode. Fluorescence imaging was done using the microscope described in 

Section 3.3.2. Fluorescent calcium indicator and tracer (0.3 mM Cal-520 potassium salt and 

0.13 mM Alexa-Fluor-488 dissolved in K-gluconate based intracellular solution) were loaded 

into the L5PNs via a patch pipette in whole-cell patch configuration. While typical fluorescence 

calcium imaging and structural tracing involved the use of two indicators that have different 

overlapping spectrum, here I used Alexa-Fluor-488 and Cal-520 indicators. Each indicator 

emits green fluorescence but have different 2P absorption. I used 810 and 890 nm 2P 

wavelength to excite Cal-520 and Alexa-Fluor 488, respectively. Cal-520 has a low baseline 
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fluorescence (Tada et al., 2014). When the neuron was at rest, it was difficult to trace the 

oblique dendrites from the Cal-520 signal. To overcome this issue, I first acquired a 2P image 

of the target oblique branch at 890 nm which strongly excited Alexa-Fluor 488 tracer. Then for 

calcium imaging, then the 2P wavelength was switch to 810 nm which gave strong fluorescence 

signal from Cal-520 but minimal signal from Alexa-Fluor 488 tracer.  

Our 2P microscope has a 150x150 µm2 field-of-view (FOV) determined by the OL 

(1.0NA, 40x, water immersion lens, Nikon) (Figure 3.6a). However; the size of the imaging 

area by the EMCCD was determined by the desired frame rate. At full frame (512x512 pixels) 

acquisition, the camera can capture up to 56 frames per second. For higher frame rates such as 

100 frames/s used in my experiment (with acquisition setting in Andor Solis: 0.099ms exposure 

per frame, frame-transfer mode, 50x gain) was achieved with the optically centred crop mode 

feature. 

 
 

Figure 3.6 The interleaving protocol to measure the differences in the calcium influx 
between single AP and two AP train. a, The 2P image from the microscope with the 150x150 
µm FOV of the scanning mirrors, imaging window of the EMCCD camera, and the positioned 
holographic sites. b, The 2P stitched image of the neuron’s dendritic tree. c, A sample of 
recorded fluorescence calcium transients associated with 1- (red) and 2-AP train (black) at train 
frequencies of f = 50, 60, and 70 Hz. The difference of the traces was calculated (blue) and 
fitted with an exponential decay. The somatic recording of the membrane voltage is shown in 
response to current injections (I = 3.3 nA, Δ𝜏 = 2 ms). Scale bar is 50 µm. 
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In the crop mode, acquisition was restricted only to fraction (128x128 pixels) of the camera’s 

total pixels. The unused pixels were shielded from any light using an adjustable circular iris 

placed in front aperture of the camera. Thus, our imaging area was limited by the camera 

128x128 pixel window which translated to an approximately 50x50 µm2-area at the sample 

plane. Holographic multi-foci (3-4 sites) were positioned along oblique dendrites within the 

imaging area (Figure 3.6b). I recorded the responses in one region at a time with the critical 

frequency protocol. In cases where multiple branches were observed within the 50x50 µm2 

imaging window, 1-2 sites were positioned on each branch. Slight movements, particularly 

along the z-axis, defocused the imaged branch and reduced the fluorescence signals. To 

account for changes in the baseline fluorescence, we implemented a protocol that interleaved 

1- and 2-AP train (see Figure 3.6c). Three trials using this interleaving protocol were recorded. 

 

 

3.4 Results 
3.4.1 Imaging dendritic spikes at the nexus of apical tuft dendrites 

I experimentally verified the generation of this Ca2+-AP spike and the shift in the critical 

frequency with the amplitude of the injected current (see Figure 3.7). I patched onto the cell 

body of L5PNs and injected a low (I = 3-5 nA) and high (I = 5-10 nA) current amplitude in the 

critical frequency protocol with parameters: 4 current pulses, Δ𝜏 = 2 ms pulse width, and 20 ≤ 

f ≤ 120 Hz frequency. Calcium responses were recorded at the nexus or the main apical trunk 

of the L5PNs (Figure 3.7a). Only 4 out of 8 of the recorded neurons showed a detectable (β ≥ 

0.3) critical frequency. Figure 3.7b shows the normalized integral of the calcium transient 

(measured in dF/F) with increased amplitude or duration of the current pulse. The average 

critical frequencies with low(2-5nA) and high(5-10nA) amplitude of current injection were fc4 

= 74±8 Hz and fc4 = 76±9 Hz, respectively. With the preliminary recordings (N = 4), no clear 

conclusion can be made with the difference in the critical frequencies between I = 2-5 nA and 

I = 5-10 nA current injection. It is possible that this shift in the critical frequency (as discussed 

in Chapter 2, Section 2.4.2) could be an artefact in the model. To avoid discrepancy in the 

results, all simulation run were done with a fixed current amplitude and pulse-width (I = 4.2 

nA,  Δ𝜏	=	2ms). Results from the model should be confirmed with experimental data. Future 

studies can look at resolving this artefact. One approach is to test other multi-compartment 

models (with different morphology and biophysics file) and check whether the same shift in 

the critical frequency can be observed. 
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Figure 3.7 Influence of current amplitude with the critical frequency from in vitro 
recordings. a, 2P reconstructed image of L5PN loaded with fluorescent indicators (Alexa-
Fluor 488 and Cal-520) with the recorded region indicated by the red ROI. b, The normalized 
peak amplitude of the calcium transients with frequency of somatic AP trains at 5.06 nA (black) 
and 9.70 nA (red) injected current. c, The plot of the critical frequencies of 4-AP train to elicit 
the Ca2+-AP at the apical trunk with low (3-5 nA) and high (5-10 nA) amplitude of current. 
The scale bar is 50 µm. 
 

 

 

3.4 Summary 
In this chapter, I presented our 2P multi-site system to perform fast fluorescence calcium 

imaging. The arbitrarily multi-foci excitation sites were generated using a spatial light 

modulator with an encoded phase hologram. The 2D phase-only hologram was calculated as a 

superposition of prism and lens function to position each focus independently in 3D at the 

sample plane. The fluorescence from excitation site were recorded at the same time by an 

EMCCD camera. Depending on the size of the imaging ROI of the camera, the frame rate can 

be set to capture 50 to 0.5 kHz which can be potentially used for voltage imaging. Several 

studies have successfully recorded dendritic spikes using 1P and 2P microscope systems. Our 

multi-site detection system with the use of 2P holographically projected foci presents a novel 
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optical design for fast 2P calcium and voltage imaging. Our multi-site detection system with 

the use of 2P holographically projected foci presents a novel optical design for fast 2P calcium 

and voltage imaging. With the system, we were able to detect Ca2+-AP at the apical trunk of 

neurons having a critical of fc4 = 74±8 Hz (N = 4 neurons).  
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Chapter 4. Experimental evidence of oblique branch spikes in 

oblique dendrites of L5PNs in vitro   
 

 

 

 

4.1 Introduction 
As presented in Chapter 1, Section 1.4, dendrites have active properties with some dendritic 

sections capable of generating dendritic spikes that boost the impact of distal synaptic inputs. 

The strong passive filtering of the membrane and generation of local dendritic spikes enable 

different dendritic regions to function as independent computational compartments (Larkum et 

al., 2009; Major et al., 2013). While there is a wealth of information about cortical processing 

in apical tuft and basal dendrites, the functional role of apical oblique dendrites of L5PNs are 

less understood.  

Oblique dendrites of L5PNs are strategically located in layer 4 of the cortical column, 

which may potentially receive direct synaptic inputs from thalamocortical projections in layer 

4 (Constantinople and Bruno, 2013). In addition, biocytin reconstructions also show that apical 

oblique dendrites of L5PNs receive nearly 1/3 of all synaptic connections from neighboring 

L5PNs (Markram et al., 1997). I hypothesize that oblique dendrites of L5PNs may form another 

independent computational compartment with the generation of oblique branch spike as 

described numerically in Chapter 2. 

Dendritic recording together with pharmacology would be the direct approach to 

identify the generation of dendritic spikes as shown by previous studies (Schiller et al., 1997; 

Kamondi et al., 1998; Nevian et al., 2007; Larkum et al., 2009). However, oblique dendrites, 

because of their small diameters, presents a challenge in recording their membrane potential 

activity with an electrode. To overcome this limitation, I investigate the generation of oblique 

branch spikes using fluorescence calcium imaging with whole-cell patch. Moreover, from 

Chapter 2, branch-specific generation of dendritic spikes were observed and application of 

highly localised pharmacological agents could be challenging. To analyse the causal effect of 

the spikes, I applied laser-dendrotomy on specific obliques. Experimental recordings such as 

dendritic calcium transients, somatic ADP, and laser dendrotomy, provide consistent evidence 

that oblique branch spikes are recruited with low-frequency burst of APs firing. 
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4.2 Chapter aim 
This chapter aims to present experimental evidence of oblique branch spikes in apical oblique 

dendrites of cortical L5PNs in the somatosensory region in vitro. 

 

4.3 Methods 

4.3.1 Analysis of calcium response and the after-depolarizing potential (ADP) 

The critical frequency was measured from: (1) fluorescence calcium transients at oblique 

dendrites, and (2) ADP recordings at the soma. In probing the non-linearity at oblique dendrites 

via calcium imaging (with intracellularly loaded 0.3mM Cal-520 (potassium salt, AAT-

Bioquest) dissolved in internal solution), I used the interleaving protocol described in Chapter 

3, Section 3.3.4. Briefly, 2-AP trains of a set of randomly picked frequencies were used. As a 

reference, a brief single pulse was injected to determine the calcium response associated with 

1-AP. The difference between the amplitude of the calcium transients for 2- and 1-AP was 

assigned as the amplitude of the calcium response, Ca21, at the oblique dendrite at that given 

frequency.  

As for the ADP measurements, I performed the critical frequency protocol with two (2-

AP) and four action potential (4-AP) trains on the same cell to test whether the number of 

pulses influences the generation of a dendritic spike. Note that I use 2-AP when referring to 

somatic recordings (e.g., ADP measurements) and 2-bAP for dendritic calcium recordings. To 

reliably fire a train of APs from 4 to 150 Hz, I used current amplitudes from I = 3-5 nA, which 

was ~1.4x the minimum current required to elicit a single AP. The ADP was measured as the 

average membrane potential within 5-7 ms after the last AP. Then, I calculated the relative 

change in the ADP with respect to the mean ADP at low frequencies, ΔADP(f) = ADP(f) – 

<ADP(4 Hz ≤ f ≤ 10 Hz)>. Lastly, the relationship of the ΔADP(f) or Ca21 with frequency was 

fitted with a sigmoid function described by, 

𝑆 𝑓 fit = 	
𝐴

[1 + exp	(−𝛽(𝑓 − 𝑓t))]
 (4.1) 

with the amplitude, A = ACa (for calcium response) or AADP (for ADP response), and the 

steepness parameter, β.  

 

4.3.2 Classification of linear and non-linear responses in Ca21 and ADP 

I classified the sigmoid-fitted responses (Ca21 vs. f and ΔADP vs f) into linear and non-linear. 

From the modelling results in Chapter 2.4.5, I applied the criteria: β < 0.3 as a linear and β ≥ 
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0.3 as a non-linear response. To account for the detection noise in the experiment, I also 

included a criteria on the amplitudes ACa  ≥  0.1dF/F (for calcium imaging) and ΔADP  ≥ 1mV 

(for ADP) as a detectable signal. Note that β tends to saturate (go very large) for small 

amplitudes (ACa and ΔADP). I visually inspected the sigmoid fits checking for over-fitting.  

 

4.3.3 Quantification of the recorded sites 

From the 2P images, I quantified the locations of the recorded sites as: the distance from the 

soma to the branch point, D_soma; the distance from the branch point to the recorded site, 

D_trunk; and the oblique number, O# (also described in Chapter 2). These locations were 

measured from the 2P z-projected images using Simple Neurite tracer plugin in FIJI (Longair 

et al., 2011).  

 

4.3.4 Laser dendrotomy 

Targeted dendrotomy using a focused femtosecond laser beam can be used to isolate the 

targeted dendrite from the cell while maintaining cell-viability (Go et al., 2016). The focal 

incision was within the diffraction limit (~1 µm) matching that of typical diameters of apical 

obliques. First, I identified neurons that exhibited a step-wise increase in the ADP at around fc2 

~60 Hz. I then randomly target oblique dendrites. The cell was held in voltage clamp at typical 

resting membrane potential, (Vhold = -65 mV). The laser intensity and shutters were configured 

to deliver an average power <P> = 80 mW, with 0.5 to 3-sec laser exposures at λ = 890 nm. 

The 2P image of the target oblique dendrites were captured before dendrotomy to verify that 

the branches were in-focus. A slight defocus of the beam reduced the efficiency of the cut. 

During dendrotomy, a successful cut was directly followed by large inward currents at the 

soma, indicative of action potential firing due to membrane opening at the incision site. The 

membrane potential decayed back to a stable, but a depolarised potential after 10 mins 

(requiring -50 to -200 pA holding current to maintain the cell at -65mV). 

 

4.3.5 Analysis 

Linear regression analysis was used to test for correlations of calcium responses with the 

location of recorded sites, with the strength of the correlation described by the Pearson 

correlation coefficient, R2. Paired student t-test was used to assess statistically significant 

differences of the data for a given p-value (p <0.01, * p <0.1, ** p <0.01, *** p<0.001).  The 

standard error, ε, for the experimentally determined critical frequencies from calcium imaging 

and ADP measurements are expressed as ε = ± √(var[fcn]/N and N is the number of L5PNs.  
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4.4 Results 
4.4.1 Calcium imaging at oblique branches of L5PNs 

I performed calcium imaging at oblique dendrites of L5PNs (N = 13 cells) with the critical 

frequency protocol. The increase in the amplitude of the calcium transients with the frequency 

of AP trains was variable at different oblique branches (see Figure 4.1 for representative 

traces). Some oblique branches (represented with blue trace in Figure 4.1b) and a few 

recordings at the apical trunk (represented with red trace in in Figure 4.1b) showed a linear 

response (β < 0.3) for the relation of Ca21 vs. f of the AP train. In some obliques, I observed a 

non-linear increase in the calcium transient (represented with green trace in Figure 4.1b) that 

was set-off after the second AP at f = 70Hz AP train. This large increase in the amplitude of 

the calcium transients persisted at higher frequencies as observed in the relation of Ca21 vs. f 

(Figure 4.1e-Top). A large fraction of recorded cells (16 cells, 13 rats) exhibited a spikelet 

after the 2nd AP and were not included in this analysis, as the added spike induced large changes 

in the intracellular calcium and changed the effective frequency of the AP train (see Table 4.1 

for summary of the recordings).  

 
Figure 4.1. Variable calcium influx on different oblique branches. a, The schematic of an 
L5PN with its apical oblique dendrites. b-d, Representative traces of the calcium 
transients recorded at different oblique dendrites (blue and green) and apical trunk (red) from 
a L5PN following a train of 2-APs at 50 Hz (b) and 70 Hz (c). A non-linear increase in the 
calcium transient recorded in an oblique branch (green) after the second bAP (d, indicated by 
an arrow). The traces of calcium transients associated with a single bAP is also shown (grey). 
e, The amplitude difference between the two calcium transients, Ca21, from 40 Hz to 100 Hz 
two AP trains fitted with a sigmoid function. 
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An aggregate of the fitted responses is shown by the parametric plot of A and β in 

Figure 4.2. The noise floor observed in the recording was ~0.1 dF/F. A fraction of the recorded 

neurons (8 out of 13 cells) showed non-linear increase in intracellular calcium at a critical 

frequency of fc2 = 57±5 Hz (N = 8 neurons) for the 2-AP train. Fitting a linear regression lines, 

there were no correlations of ACa with the oblique number (O#, R2 = 0.039) and location of the 

recorded sites (D_soma: R2 = 0.020, D_trunk: R2 = 0.001) (Figure 4.2b-d). Figure 4.3 shows 

the calcium responses versus the frequency of 2-AP train of neurons that exhibited an oblique 

branch spike. 

 

 
 
Figure 4.2 Pooled summary of the recorded responses from oblique dendrites. a, A 
parametric plot of the non-linear parameter, β, and ACa. The red region, described by ACa ≥ 
0.1dF/F and β ≥ 0.3, indicates the set of ACa and β parameters in which I considered the response 
as non-linear. b, The oblique number (O#) with ACa. c, The path distance of the recorded sites 
from the main apical trunk, D_trunk, for the classified linear (black) and non-linear (red) 
responding oblique dendrites. d, The distance from the branch point of the recorded oblique 
dendrites to the soma. 
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Figure 4.3. The calcium transients vs. frequency with the sigmoid fit from neurons that 
exhibited an oblique branch spike. a, The critical frequency with 2-AP train and b, The Ca21 
vs. f of neurons with the generation of oblique branch spikes. 
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4.4.2 Morphologies of the responding neurons and the location of the recorded sites 

Representative 2P fluorescence images of L5 pyramidal neurons are shown in Figure 4.4, with 

oblique dendrites showing non-linear responses indicated. These neurons had large dendritic 

trees that span ~1 mm of the cortex. It was important to verify that the nexus of the apical tuft 

was intact in the recorded neurons. A neuron with a cut apical trunk would exhibit different 

active properties (e.g., the threshold of AP initiation and propagation of bAP) as a large 

capacitive load is removed from the neuron (Bekkers and Hausser, 2007), which could 

potentially affect the critical frequency of AP train required to set-off an oblique branch spike. 

 

 
 
Figure 4.4 Representative two-photon images of neurons loaded with Cal-520 and Alexa-
Fluor 488 indicators. The dendrites are marked with the recorded sites (red and yellow 
circles). The yellow circles are segments with a non-linear rise in the calcium transient, while 
the red circles are segments that exhibited a linear increase in the calcium transient. The scale 
bar is 50 µm.  
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Table 4.1. L5PNs recorded in calcium imaging experiment 
 

Total (27) NL response 
(8) Linear (3) with spikelet 

(16) 
080218_cell3 051018_cell1 051518_cell1 052818_cell1 

051018_cell1 061218_cell5 060418_cell4 052418_cell3 
051518_cell1 062118_cell4 080218_cell2 052818_cell2 

052418_cell3 072618_cell3  053018_cell1 

052818_cell1 073018_cell2  053118_cell1 

052818_cell2 081418_cell1  053118_cell2 
053018_cell1 090618_cell2  061218_cell2 

053118_cell1 100418_cell1  061218_cell4 

053118_cell2   073118_cell1 
060418_cell4   073118_cell3 

061218_cell2   080218_cell3 

061218_cell4   080218_cell5 

061218_cell5   080818_cell1 
062118_cell4   081418_cell5 

072618_cell3   082718_cell7 

073018_cell2   082918_cell3 
073118_cell1    

073118_cell3    

080218_cell2    
080218_cell5    

080818_cell1    

081418_cell1    

081418_cell5    
082718_cell7    

082918_cell3    

090618_cell2    
100418_cell1    

 
 

Note: L5PNs with spikelets were not included in the analysis 
as the frequency of the AP train was not controlled. 
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4.4.3 The influence of oblique spike to the ADP 

I investigated whether the dendritic oblique spike contributes to the ADP at the soma and tested 

whether the non-linearity in the ADP could serve as an indicator of an oblique branch spike. A 

total of 144 neurons were patched establishing a whole-cell configuration and their ADP were 

examined with the critical frequency protocol of 2-AP and 4-AP train. However, only 100 

neurons were included in the analysis (see Table 4.2). The remaining 45 cells (31.2%) 

exhibited no clear ADP or additional spikelet which made them unusable for the ADP analysis. 

Non-linear increase in the DADP were observed starting with critical frequencies ≥ 50 Hz 

(Figure 4.5). A sample somatic recordings, with traces aligned to the peak of the last AP, of 

an L5PN in response to 2-AP and 4-AP train is shown in Figure 4.5a. The ADP was measured 

as the average membrane potential within t = 0.510-0.518s time window (indicated as a dotted 

rectangle in Figure 4.5a).  

 
Figure 4.5 Measured after-depolarising potentials in neurons at different frequencies for 
two- and four-AP trains. a, A representative somatic recordings with the two (2-AP, light 
grey) and four (4-AP, dark grey) AP train with the traces aligned at the last AP. The 
corresponding ADP is shown at the bottom. b, The varied ADP responses of different neuron 
with 2-AP (blue) and 4-AP (red) trains. The scale bars for the amplitude for all cells is the same 
as that shown in neuron 3(b – Neuron id 3). c, the heat map visualization of the ADP responses 
from a large neuron sample (100 cells, 29 rats) sorted with increasing critical frequency for the 
2-AP train. 
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With the aligned somatic traces, two distinct bands in the time window indicating a step 

increase in the ADP. The corresponding changes in the DADP with frequency of 2-AP (blue) 

and 4-AP (red) train are shown in Figure 4.5a-bottom. This L5PN exhibited critical 

frequencies, fc2 = 62 Hz and fc4 = 62, 92 Hz (two inflection points with 4-AP train). Recordings 

from other L5PNs showed varied critical frequencies with some (neuron id: 55 and 5) having 

the same critical frequencies for 2-AP and 4-AP trains and others (neuron id: 10, 57, and 22) 

with a lower critical frequency with 2-AP than the 4-AP train (see Figure 4.5b). A summary 

of all the ADP recordings is shown in the heat map with the responses arranged according the 

increasing critical frequency for 2-AP train (Figure 4.5c). 

The responses in the ADP were grouped into 4 categories namely: no detectable non-

linear increase in the ADP (no fc, 27 neurons), with critical frequency only with 2-AP train (fc2, 

2 neurons), with critical frequency only with 4-AP train (fc4, 35 neurons), and with critical 

frequencies with 2- and 4-AP trains (fc2 and fc4, 36 neurons) (Figure 4.6a). There were 27% of 

the sample recorded L5PNs did not show any critical frequency, which could be due to either: 

cut-off apical trunk from the slicing preparation, or the under expression of voltage-gated ion 

channels at the apical trunk in developing young adolescent mouse (~P30 day old). There were 

neurons that exhibit only one critical frequency for 2-AP or 4-AP train. There were 35% of the 

recorded neurons exhibited critical frequencies with 4-AP train, fc4 = 98±4 Hz, which due to 

the recruitment of Ca2+-AP at the nexus of the apical tuft (Larkum et al., 1999). Interestingly, 

there were 36% of neurons that exhibit critical frequencies with the 2- and 4-AP train. The two 

critical frequencies were significantly different (p = 0.0013 <0.01, paired student t-test, 36 

neurons) (Figure 4.6b). On average, the critical frequencies for 2- and 4-AP trains were: fc2 = 

72±4 Hz and fc4 = 82±3 Hz, respectively. The critical frequencies for 2-AP train from calcium 

imaging and ADP were similar: fc2 = 57±5 Hz (for calcium imaging) to fc2 = 72±4 Hz (for ADP). 

I investigated the critical frequency for the 2-AP train in the presence of NMDA 

receptor antagonist. L5PNs were patched and their critical frequencies for 2-AP trains were 

measured under normal ACSF (control) (Figure 4.6c). Then, 25 µM of DL-APV (DL-2-

Amino-5-phophonopentanoic acid sodium salt dissolved in ACSF, Tocris) was bath applied in 

the recording chamber for 15 mins. A sample recording of the ADP responses from a neuron 

before (control ACSF) and after 15min bath application of APV is shown in Figure 4.6d. There 

was no significant change (p = 0.375, paired t-test, 4 neurons) in the: ADP, nonlinearity, and 

critical frequencies in the presence of DL-APV (Figure 4.6e-g). Thus, the step-increase in the 

ADP was not due to the activation of NMDA receptors. 



	 88 

 
Figure 4.6 Summary of the critical frequencies of large neuronal sample and the effect of 
APV with the ADP with an oblique branch spike. a, A sample 2P images of the neuron with 
the corresponding after-depolarizing potentials (from 4 Hz to 100Hz, light blue to dark blue 
traces) before and after laser ablation of an oblique dendrite. b, A voltage-clamp recording of 
the membrane current with the laser ablation showing a decay of holding current to a new set 
value after 10 mins indicating that the membrane of the incised site has partially resealed. 
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Table 4.2. Recordings in the ADP experiment 
 

Date Upon break-in  
(144) 

 
Included in the 

Analysis 
(100) 

 
062118 4 2 
021819 6 6 
021919 6 5 
022119 3 3 
022219 8 8 
072618 4 2 
073018 5 2 
073118 3 3 
080218 5 3 
080818 5 2 
082618 6 2 
082718 6 4 
082918 3 3 
090318 6 4 
090418 6 1 
090618 4 3 
091718 2 2 
092718 4 1 
092818 2 1 
100218 5 5 
100402 2 2 
100818 4 2 
100918 2 2 
101718 5 4 
101818 6 3 
102418 5 4 
102518 6 6 
112118 6 4 
112218 5 5 
112818 5 4 
112918 5 2 

 
    

Note: L5PNs that did not show a clear ADP were not 
included in the analysis. 
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4.4.4 Targeted Pruning of thin oblique dendrites 

So far in Section 4.4.3, I reported that the critical frequency from calcium imaging was similar 

to critical frequency from the ADP. I further verified that this rise in the ADP was not mediated 

by NMDA receptor activation. However, it remains unknown whether oblique branch spikes 

triggered the step increase in the ADP. To test for a causal link between oblique branch spikes 

and the step-rise in the ADP, I removed oblique dendrites via laser dendrotomy (as described 

in Section 4.3.4).  

Four L5PNs with critical frequencies fc2 < 100Hz were examined (see Figure 4.7a for 

ADP recordings from two neurons). Before dendrotomy, the extent of the oblique branch was 

imaged using 2P scanning. Segments 10-20µm bifurcating from the main apical trunk were 

cutted. Just after 3-sec exposure of the focused beam (dendrotomy), the AP firing was recorded 

at the soma and the holding current gradually decayed back to a set value (-30 to -200pA, 

Figure 4.7b), which indicated resealing of the membrane at the incision site. The cut site was 

also verified with 2P imaging with no fluorescence signal from segments beyond the incision 

site (Figure 4.7a). From the changes in the holding current (Figure4.7c) and the shift in AP 

threshold from the phase-plots(Figure 4.7d-e), dendrotomy affected the excitability of the 

neurons. 

 The ADP responses were monitored before and after dendrotomy. For two of the cells 

(yellow and blue), cutting their distal oblique dendrites (237 and 170 µm from soma) removed 

the step-rise in the ADP. For the other two cells (red and green), cutting the proximal oblique 

dendrites (D_soma = 20 and 140 µm from the soma) did not remove the step-rise in the ADP 

(Figure 4.7a-top and Figure 4.7f-h). The variability in the removal of the step-increase in the 

ADP when cutting the oblique branches indicate that specific oblique dendrites contributed to 

the ADP. While more recordings are needed to draw conclusions, preliminary recordings 

indicate that cutting one or two oblique branches was potentially enough to abolish the step-

rise in the ADP. It remains to be verified whether the cut branches which led to a removal of 

the step-rise in the ADP were also the ones that generated the oblique branch spike.  
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Figure 4.7 The effect of cutting oblique dendrites with the after-depolarizing potentials. 
a, The sample two-photon images of the neuron with the corresponding after-depolarizing 
potential before and after laser ablation of an oblique dendrite. b, The changes in the holding 
current, AP, and AP threshold of the recorded neuron before and after dendrotomy. c, The 
voltage-clamp recording of the membrane current with the laser ablation showing resealing of 
the membrane after 10mins. c, A pair plot of the amplitude, β, and critical frequencies of the 
ADP of four neurons (red, green, blue, and yellow) before and after dendrotomy. The distance 
of the targeted oblique from the soma is indicated next to the data. 
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4.5 Discussion and summary 
Fast sodium spikes have been reported in the apical obliques of CA1 pyramidal neurons 

(Losonczy and Magee, 2006); however, whether oblique branch spikes could be generated in 

L5PNs is unknown. The thin diameter of oblique dendrites makes it difficult to probe the 

presence of oblique branch spikes with conventional patch-clamp recordings (although see 

Figure 3 in Kamondi et al. (1998)). I investigated the generation of oblique branch spikes in 

thin oblique dendrites of L5PNs in vitro using our 2P multi-site detection system.  

Non-linear increase in the fluorescence calcium signals at oblique dendrites and after-

depolarizing potentials were observed with low frequency bursts of bAPs using the critical 

frequency protocol. Calcium imaging showed non-linear (β > 0.3) increases in intracellular 

calcium with fc2 = 57±5 Hz burst of a 2-bAP in select oblique branches, indicating of an oblique 

branch spike (as also captured in the multi-compartment model presented in Chapter 2). The 

occurrence of this oblique branch spike was heterogeneous did not show any relation with O#, 

D_soma, or D_trunk. ADP measurements at the soma also recovered two distinct critical 

frequencies, with fc2 = 72±4 Hz and fc4 = 82±3 Hz for 2- and 4-AP trains, respectively. The step 

increase in the ADP was not mediated by NMDA receptors. Taken together, these results 

provide experimental evidence of oblique branch spikes in L5PNs in vitro. Furthermore, there 

is 1/3 probability that an L5PN would exhibit an oblique branch spike and a Ca2+-AP at the 

nexus of the apical trunk which would be seen in its critical frequency (fc2 and fc4). 

With dendrotomy, the removal of oblique branches may have been enough to abolish 

the step-increase in the ADP. From the preliminary recordings (N = 4), it remains uncertain if 

dendrotomy of oblique branches indeed caused changes in the ADP considering dendrotomy 

also altered the excitability and health of some cells (i.e., cells became more depolarized). With 

fine tuning of optical parameters to keep the changes in the holding current to a minimum and 

additional experiments, dendrotomy can be a potential tool to interrogate a possible causal link 

of oblique branch spikes with the ADP as discussed in Chapter 2. 

Calcium imaging, dendrotomy, and multi-compartment modelling revealed that this 

oblique branch spike occurs only in a few (1 to 2) oblique branches. Based on the L5PN model 

in Chapter 2, the branch-specific response can be attributed to the efficacy of bAP invasion in 

oblique dendrites. One factor that affects bAP propagation along the dendritic tree is the 

dendritic morphology. In vitro patch-clamp recordings (Kim and Connors, 1993; Stuart and 

Sakmann, 1994; Williams and Stuart, 2000; Gasparini, 2011) and voltage imaging (Antic, 

2003; Grewe et al., 2010) in L5PNs show activity, morphology, and distance-dependent 
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attenuation of bAPs. Studies using multi-compartmental models indicate that this attenuation 

is due several factors such as: extent of dendritic branching, number of branch points, branch 

point tapering, changes in dendritic diameter, and leaking of currents from the main apical 

trunk to the oblique dendrites (Vetter et al., 2001; Migliore et al., 2005; Ferrante et al., 2013). 

Aside from branching patterns, other works have also shown that the heterogeneous 

distribution of A-type potassium channels, which opposes membrane excitability and are 

expressed at high levels in the dendritic tree, impact on bAP invasion of oblique dendrites 

(Hoffman et al., 1997; Frick et al., 2003; Gasparini et al., 2007; Zhou et al., 2015). Thus, 

regulation of bAP invasion at the obliques by dendritic branching pattern and heterogeneous 

expression of A-type potassium channels may explain branch specificity of dendritic spikes in 

different oblique dendrites in L5PNs. 

In summary, the result of this chapter adds to the set of frequency-dependent activation 

of dendritic spikes across different parts of the neuron (Figure 4.7 on the next page). The Ca2+-

AP at the nexus of the apical tuft are recruited via a train of bAPs with fc4 ~100 Hz (Larkum et 

al., 1999). Calcium spikes at distal segments of the basal dendrites are generated with AP trains 

at critical frequencies of fc3 ~120 Hz (Kampa and Stuart, 2006). In this Chapter, I reported that 

low frequency (fc2 = 57±5 Hz, from calcium imaging, or fc2 = 72±4 Hz, from ADP) 2-AP train 

generated an oblique branch spike in L5PNs. These critical frequencies are well within the 

frequencies of high-frequency (f = 330±10 Hz) burst firing of action potentials in these thick-

tufted L5PNs (Chagnac-Amitai et al., 1990; Amitai et al., 1993; Williams and Stuart, 1999). 

Oblique branch spikes could well be another computational tool that participate in the dendritic 

processing inputs (possibly the thalamic inputs in layer 4 and intercortical inputs from 

neighbouring L5PNs) arriving at the proximal (oblique regions) of L5PNs. 

  



	 94 

 

 

 

 

 
 

Figure 4.8. Critical frequency responses at different dendritic regions. Previous works 
showed a critical frequency response at the basal and nexus of the apical tuft dendrites. The 
critical frequency protocol showed that a fc4 ~100 Hz AP train recruits a dendritic Ca2+-AP at 
the nexus (Larkum et al., 1999). A critical frequency response was also reported to be exhibited 
at distal segments basal dendrites at    fc3 = 120-200 Hz AP train recruiting a mix of sodium 
(Nevian et al., 2007) and calcium spikes (Kampa and Stuart, 2006). This work shows that 
oblique branch spikes are evoked at select oblique branches at fc2 ~60 Hz train of APs.  
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Chapter 5. Development of techniques to enhance calcium and 

voltage imaging on dendrites. 
	

	

	

	

5.1 Introduction 
Functional imaging using voltage and calcium indicators facilitates optical readout of dendritic 

activity of thin dendrites. As discussed in Chapter 3, several works using calcium and/or 

voltage imaging have been used to record dendritic spikes and bAPs at the apical trunk as well 

at thin basal and oblique dendrites (Larkum et al., 1999; Antic, 2003; Kampa and Stuart, 2006; 

Canepari et al., 2007; Katona et al., 2012; Popovic et al., 2015). Calcium imaging offers high 

signal-to-noise ratio (SNR) by reporting the changes in the intracellular calcium (Grienberger 

and Konnerth, 2012). Unfortunately, the combination of multiple intracellular calcium sources 

and slow changes in calcium concentration (~200 ms) requires interpolation techniques (e.g., 

shift-mean algorithm (Rama, 2015)) to correlate calcium transients with bAPs. On the other 

hand, the temporal resolution of voltage imaging can report the time course of fast changes in 

the membrane potential (such as bAPs), but suffers from a low SNR. The thin membrane (~4 

nm) makes it challenging to pack or co-locate a sufficient number of fluorescent voltage 

indicators that sense changes in the electric field across the membrane (Peterka et al., 2011).  

Thus, there is a continuing development of more sensitive indicators as well as optical 

approaches to perform calcium and voltage imaging of small neuronal structures (such as 

spines and dendrites) or neuronal populations (Fromherz et al., 2008; Yan et al., 2012; St-Pierre 

et al., 2014; Gong et al., 2015; Popovic et al., 2015; Antic et al., 2016; Roome and Kuhn, 2018). 

 In line with these developments, we initially proposed a 2P multi-site fluorescence 

detection system (as described in Chapter 3), which offers simultaneous illumination onto the 

sample and parallel detection of fluorescence from different sites. The technique has proven 

useful to analyse the generation of oblique branch spikes along apical obliques (as presented 

in Chapter 4). Such patterned illumination/detection can therefore be used for functional 

imaging either via calcium or voltage indicators. However, by conservation of energy, the 

intensity of each focus decreases as the number of foci is increased (Daria et al., 2009). Due to 

the non-linearity of 2P excitation, the fluorescence per site drops by a factor of ~1/N2, where 
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N is the number of sites. Another factor to consider is the exposure of the sample to the laser 

beam. Unlike in laser-scanning microscopes where the beam’s focus illuminates a point on the 

sample for a short dwell time (~ 4µs with resonant scanner coupled with regular galvo mirror 

at 30 frames/sec, (Schultz et al., 2017)), the multi-foci pattern in holographic projection 

constantly exposes the sites on the sample throughout the recording. Increasing the incident 

laser power can provide higher fluorescence intensity from each focus, but higher power also 

increases the photon flux and local heating, which can cause photo-damage on the tissue 

(Podgorski and Ranganathan, 2016). Thus, there is a need to efficiently excite fluorescence 

from each site while maintaining low photon flux to minimize photo-damage.  

In this chapter, I present two spatio-temporal excitation modalities to improve the SNR 

namely: (1) temporal gating of the excitation laser for multi-site 2P functional calcium 

imaging; and (2) voltage imaging single-photon excitation by scattered photons (1PESP). 

These two techniques are currently under development in our laboratory. The aim is to 

characterize and implement these techniques for future functional imaging on dendrites. To 

improve the SNR in the multi-site functional calcium imaging method, I incorporated a 

temporal gating technique as an approach to improve the fluorescence yield of our 2P multi-

foci excitation. As a proof-of-principle experiment, we tested the temporal gating technique by 

recording calcium transients in neuronal cultures. To improve the SNR in the functional voltage 

imaging, I describe the 1PESP technique, which is a unique excitation protocol that resulted in 

a 1.8fold SNR enhancement in the recorded voltage transients. 

 

   

5.2 Chapter aims  
This chapter aims to: (1) characterize the enhancement in the SNR of multi-site functional 

calcium imaging via temporal gating; and (2) present a novel oblique illumination technique, 

1PESP, as applied to functional voltage imaging to analyse the invasion of bAPs in thin oblique 

and basal dendrites. 

 

 

5.3. Temporal gating for efficient calcium imaging  
An approach to improve the fluorescence yield in 2P excitation is via temporal gating where 

the excitation beam is modulated at a lower gating rate (~0.5 MHz) to maintain a low average 

power but with a compensatory increase in the peak power. Aside from the high-peak powers, 
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delaying the pulsed excitation of fluorophores long enough for its triplet state to relax between 

two pulses has been shown to enhance fluorescence yield and prevent photo bleaching as 

applied in 1P (Donnert et al., 2009) and 2P excitation (Donnert et al., 2007). Here, we utilized 

the temporal gating technique with 2P excitation to improve the fluorescence yield and SNR 

of recorded calcium transients using the 2P multi-site holographic fluorescence detection 

system (Castanares et al., 2016). 

 

 

5.4 Method for implementing multi-site functional calcium imaging with 

temporal gating 
5.4.1 Mathematical basis of fluorescence enhancement with temporal gating  

In this section, I present a mathematical derivation of the improvement in the fluorescence 

yield with temporal gating. Multiple foci in a single z-plane are generated using prism phase 

maps encoded on the SLM (see Equation 3.1). The 2P fluorescence, F(r), generated from each 

focus at radial distance r from the optical centre is given by,  

𝐹 𝑟 = 	𝛼𝑃 𝑟 *, (5.1) 

where α accounts for all the relevant quantities (e.g. dye concentration, 2P cross-section, 

numerical aperture of the focusing lens, etc) for generating 2P fluorescence from a single foci 

(Xu and Webb, 1996). 

With a temporally gated beam, we set an incident beam with an “on” state within a 

bunch width, τ, while the “off” state is given by fR
-1 – τ, where fR is the gating frequency. From 

Equation 5.1, the time-averaged 2P fluorescence per foci, <F(r)>, within an exposure time, 

To, is given by 

𝐹 𝑟 =
	1
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= 𝑓R 𝜏 ∙ 𝐹(𝑟) + 0	

(5.2) 

where fR
-1 = To. Since light is only gated within 0 to t, the second term vanishes and the 

fluorescence from temporally gated beam observes a linear relationship with the duty cycle, 𝜏 

fR .  
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Prior to holographically dividing the beam, the laser is temporally gated and from 

conservation of energy, the time-average laser power, <Pout>, (within fR of the temporally 

gated beam is given by:  

𝑃out 𝑓R
12 = 	𝜏 𝑃in 	 (5.3) 

where <Pin> is the average power within the “on” state, τ, used for generating 2P fluorescence. 

For an ungated beam, τ = fR
-1 sets <Pout> = <Pin>. On the other hand, for τ <<  fR

-1 then 

<Pout> << <Pin>, which results in a low average power but with high <F(r)> set by <Pin>. 

Therefore, within the exposure time To, the average excitation laser before holographically 

dividing the beam is <Pout> and its relation with <F(r)> is derived by combining Equations 

5.2 and 5.3, which results to  

 

𝐹(𝑟) = 𝛼
1
𝜏𝑓R

𝛿(𝑟)
𝑃out
𝑁

*

.	 (5.4) 

 

Because of the non-linear relationship of the fluorescence with the input power <Pin> 

described in Equation 5.1, we see an improvement in the fluorescence by a factor of 1/(𝜏 fR). 

In the experiments, we enhance the average fluorescence, <F(r)>, by maintaining a low average 

output power per site, <Pout>/N, using different gating frequencies, fR. 

 

5.4.2 Holographic 2P microscope with an acousto-optic modulator (AOM)  

As proof-of-principle experiment, we constructed a simpler version of the microscope 

presented Chapter 3 (Figure 5.1) without electrophysiological capabilities. This holographic 

system is equipped with an AOM device to temporally gate the excitation laser and a blue LED 

source for wide-field 1P epifluorescence imaging. 

The system utilized a femtosecond Ti:S laser (Coherent MIRA 900 pumped with a 12 

W Coherent Verdi G) for 2P excitation set at λ = 800 nm. An AOM (AA Opto ST110-A1-B4) 

driven by a radio-frequency driver (AA Opto-MODA110-B4-33, τ = 140 ns pulse width, and 

a gating frequency, fR, set to 0.8 and 1.6 MHz) modulated the pulsed NIR beam. The temporal 

gating frequencies were chosen from prior work of Gautam et al. (2015), which showed 

minimal photo-damage (as indicated by < 10% change in the input resistance of the neurons). 

The laser beam was expanded 4x (L2/L1 = 200mm/50mm) and was projected to a reflective 

phase-only SLM (Meadowlark Optics XY-512). A half-wave plate was placed before the beam 
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expander to align the beam polarization with the preferred polarization angle of the SLM to 

achieve the maximum diffraction efficiency. The SLM was encoded with a phase-only 

hologram, which shaped the beam’s wavefront to produce multiple foci at the Fourier plane of 

lens, L3 (f = 150 mm). Lens L4 (f = 300 mm) and the objective lens (OL, Carl Zeiss 20x, NA = 

1.0) formed a 4f-lens configuration to relay the optical field at the Fourier plane (of L3) to the 

sample plane of OL. A dichroic mirror, DM1(Thorlabs FM202), reflected the NIR excitation 

laser towards the OL and transmitted the collected fluorescence towards the tube lens (L5, f =2 

00mm) and the CMOS camera (Thorlabs DCC3240M, ~60% quantum efficiency at λ = 550 

nm). A short-pass filter (FES700, Thorlabs) was placed before the camera to filter the laser 

beam. We also incorporated a single-photon epifluorescence path that consisted of an LED 

operating at a wavelength of λ = 470 nm (Thorlabs M470L3), lens (L6, f = 125 mm), and a 

dichroic mirror (DM2, Thorlabs DMLP490R). Due to slight systematic optical misalignments, 

we encoded aberration corrections represented by Zernike polynomials, Z(n, m), (2nd-order 

astigmatism, Z(2, 4) = 8, and spherical aberration, Z(0, 4) = 6).  

	
	

Figure 5.1 A two-photon holographic microscope with an acousto-optic modulator for 
temporal gating. The schematic diagram shows a custom-built two-photon holographic 
microscope with an epifluorescence capability to allow for either 2P multi-site or wide-field 
1P imaging. Inset, an illustration of how the femtosecond pulses (80 MHz cycle) are bunched 
into an envelope wave with a period of fR

-1 using an AOM. We define the following as follows: 
L1-L6 are lenses, Ti:S is the titanium Sapphire femto-second laser, SLM is the spatial light 
modulator, DM1-DM2 are dichroic mirrors, CMOS is the camera, OL is the objective lens. 
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5.4.3 Calibration with Fluorescein dye  

We prepared 10 mM of Fluorescein dye solution in a 100 µm-thick well mounted on a glass 

slide to measure the relationship of the fluorescence with the average power per focus using an 

ungated and temporally gated beam (fR = 0.8 and 1.6 MHz). The holographically projected 

multiple foci were positioned at the sample plane. The fluorescence was captured at 20 frames 

per second with 50 ms exposure time. The CMOS camera (DCC3240C, Thorlabs) was set with 

3.0x sensor gain, 2x2 binning, 120 black level offset and a region of interest (480x336 pixels) 

covering the area where the spots are projected. The fluorescence images as a function of time 

were analysed using a script in ImageJ (National Institute of Health). Within each image, we 

selected 5x5 pixels to measure the average grey levels of each focus as a function of time. The 

signal to noise (SNR) per spot was determined for the ungated and temporally gated beam with 

2 to 6 mW average power per focus. The average power under the objective was measured 

with a power meter (PM100A with S130C sensor, Thorlabs).  

 

5.4.4 Calcium imaging on cultured hippocampal neurons  

We performed fluorescence calcium imaging on primary hippocampal neuronal cultures (Days 

In Vitro, DIV 26-33) using temporally gated beam (see Chapter 3, Section 3.3.3 for the culture 

preparation). On the day of imaging, the cultures were bathed in 10 µM Cal-520 (AAT 

Bioquest, CA) in culture medium for 15 mins. The cultures were then washed with culture 

external medium, consisting of (in mM): 125 NaCl, 3 KCl, 2 CaCl2, 1 MgCl2, 25 HEPES and 

10 D-Glucose, for 30 mins.  

To determine the locations of the neurons, the sample was first imaged with blue light 

via the single-photon epifluorescence path of the microscope. Neurons were identified as 

elongated cells about 10 µm in diameter and exhibit higher levels of baseline fluorescence 

compared to their glial neighbours. Based from the wide-field image, eight foci were positioned 

on the somas and dendrites of neurons. An extracellular bipolar electrode was placed near the 

recorded region to stimulate neuronal activity and correspondingly trigger calcium transients 

from the neurons. A train of current pulses (15 µA, 100 ms pulse at 0.5 Hz) was delivered by 

a custom-built current stimulator. The stimulator and acousto-optic modulator were triggered 

using a digital acquisition (DAQ) device (PCI-6363, National Instruments). The fluorescence 

from the holographically projected sites was captured at 20 Hz (50 ms exposure time) for 10 

seconds with the CMOS camera (DCC3240C, Thorlabs).  
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5.4.5 Data Analysis 

The raw fluorescence signals were analysed in MATLAB (Mathworks). The signal-to-noise 

ratio of each site was calculated as, 

𝑆𝑁𝑅(𝑟) = 	 𝐹 𝑟 /𝜎	 (5.5) 

where <F(r)> was measured from the camera’s grey level (8-bit) readings after background 

subtraction and 𝜎 = 𝜎on* + 𝜎off* 2/* is the quadrature of the standard deviation of the 

fluorescence, 𝜎on, and the dark noise, 𝜎off, following a normal distribution. The noise 

fluctuation distribution was verified to follow a normal distribution (chi-square goodness of fit 

test at 5% significance level of rejection, MATLAB). 

The SNR and slope (<P>/N, average power per site) values are sample averages (mean 

± S.E). The improvement in SNR was determined by taking the normalized value of the SNR 

at a given gating frequency relative to the ungated beam. The SNR with temporal gating were 

compared to that of an ungated beam using paired sample t-test (ns, p > 0.05; *, p ≤ 0.05; **, 

p ≤ 0.01, ***, p ≤ 0.001, in R programming language). 

The calcium activity was visualized with the relative change in the fluorescence, which 

is calculated as, 

∆𝐹
𝐹
=
𝐹 𝑡 − 𝐹�
𝐹� max

	 (5.6) 

where <Fb> was the baseline fluorescence just before the first triggered fluorescence activity, 

<Fb>max was the maximum of the pooled baseline fluorescence from all sites. The relative 

change in the fluorescence traces were further filtered with wavelet denoising (first order db1 

wavelet, Matlab). 

 

 

5.5 Preliminary results showing improved fluorescence yield and SNR with 

temporal gating 

We first compared the fluorescence yield of eight holographically generated foci of temporally 

gated and ungated beam incident in a chamber with Fluorescein dye for a pre-set average power 

per site. A time-series and histogram of the fluorescence at <Pout>/N = 2 to 6 mW for 

temporally gated and ungated beam are shown in Figure 5.2a. Note that <Pout>/N is an 

approximate measure of the average power per focus. Also, note that the spread of <F(r)> 

measured for each <Pout>/N considers differences in excitation average power per focus due 
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to δ(r) in (Equation 3.2 in Chapter 3). Figure 5.2b shows the relationship of the fluorescence 

with <Pout>/N in a log-log plot with base 2. The slopes (1.9±0.1, 1.79±0.08, 1.82±0.05 for 0.8 

MHz, 1.6 MHz, and ungated beam, respectively) are in good agreement with a two-photon 

excitation process (slope = 2.0). The fluorescence signals from 0.8 MHz and 1.6 MHz 

temporally gated beam were 6.7 (p < 0.001) and 3.7 (p < 0.001) fold higher compared to the 

ungated beam. Using chi-square goodness of fit test (at 5% significance level of rejection, 

Matlab), we verified that 93% (167/180) of the fluctuation in the fluorescence followed a 

normal distribution (Figure 5.2c). 

	

	
Figure 5.2 The increase in fluorescence yield from holographic sites with temporal gating. 
a, Sample time-series across <Pout>/N ~2 to 6 mW for ungated and temporally gated beam 
and sample negative images of the fluorescence from the holographic sites at <P>/N = 4 mW. 
b, The plot of fluorescence of each site with power. c, The fluctuations of the fluorescence with 
power. d, The pooled SNR of each site for gated beam (fR = 0.8 and 1.6 MHz) relative to the 
SNR of the ungated beam (U). Figure taken from Castanares et al. (2016). 
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We used Gaussian statistics to describe the fluctuations in the fluorescence. It was observed 

that the standard deviation showed a weak correlation (max slope 0.17±0.02, ungated beam) 

with power, which may be due to the laser noise. Next, we determined the pooled ratio SNR 

of the temporally gated beam with respect to the ungated beam shown in Figure 5.2d. We 

observed 6.6±0.1 and 3.9±0.1fold increase in the SNR for 0.8 and 1.6 MHz, respectively.  

 We then applied temporal gating for imaging calcium activity of cultured hippocampal 

neurons loaded with Cal-520 AM dye. Triggered activity was evoked by applying a train of 

current pulses using an extracellular bipolar electrode near two neurons of interest (Figure 

5.3a). Eight foci were positioned at the somas and dendrites of two neurons. Site one was 

placed outside the two neurons and its fluorescence was used to subtract the correlated noise 

with the other sites. The raw traces in Figure 5.3b shows that the temporally gated beam 

yielded higher fluorescence than the ungated. In addition, triggered calcium activity was 

observed. A sample trace of the triggered calcium activity with 0.8 MHz temporally gated 

beam is shown in Figure 5.3c. Except for site 4, the six other sites showed fast fluorescent 

transients (~500 ms time constant) that were well timed with the current. The pooled SNR (48 

samples from <Pout>/N ~3, 4, and 6 mW) increased by 3.9±0.4 (p < 0.0001) and 3.7±0.3 (p < 

0.0001) for 0.8 and 1.6 MHz temporally gated beam, respectively (Figure 5.3d). 	

 

Figure 5.3 Enhancement of SNR with temporal gating. a, Fluorescence image of the 
neuronal cultures loaded with Cal-520 dye with eight holographically projected two-photon 
sites. b, Time-series plot of the fluorescence of each site for ungated and temporally gated 
beam at 4 mW average power. c, ΔF/F under 0.8 MHz and 4 mW temporally gated beam. d, 
Pooled SNR ratio of the temporally gated beam relative to the ungated beam. The scale bar is 
10 µm. Figure taken from Castanares et al. (2016). 
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5.6 Voltage imaging using single-photon via scattered photon illumination 

(1PESP) 
Voltage imaging is a promising tool to record rapid changes in the membrane potential and can 

be useful to understand the generation and propagation of dendritic spikes. However, the low 

SNR of voltage indicators limits its applications. For example, electrochromic voltage-

sensitive dyes exhibit ~1% dF/F optical response from the shift in absorption and emission 

spectrum during a voltage spike. These electrochromic voltage-sensitive dyes (VSDs) exhibit 

fast temporal response which can record fast spikes waveform such as APs and dendritic 

spikes.  

While temporal gating could effectively improve the SNR as discussed in the previous 

section, the main issue with using VSDs is not due to low fluorescence yield. In fact, VSDs 

produce bright fluorescence but the low optical readout (dF/F) is due to the following issues: 

(1) the small Stark shift in most electrochromic VSDs; and (2) the small fraction of VSD 

molecules that are bound to the cellular membrane that report changes in the electric field. The 

first issue makes it difficult to find an appropriate 2P excitation wavelength to observe the 

small Stark shift in the VSD’s spectral response with changes in membrane potential. However, 

by 1P excitation using a monochromatic light with appropriate energy specifically tuned to the 

rising or downward curve the VSD’s absorption spectrum, the Stark shift associated with 

changes in membrane potential can be observed. The second issue results in low SNR due to 

the fact that only a small fraction of the molecules reports the changes in membrane potential. 

The responding VSDs, those that bind to the 4nm plasma membrane, respond to the changes 

in the electric field during a voltage transient and report the membrane activity. On the other 

hand, bulk of the fluorescence comes from non-responding VSDs or those that bind to 

intracellular structures, which do not respond to voltage transients in the membrane. Non-

responding VSDs contribute to the overall baseline fluorescence and shot noise in the 

recording. The small fraction of VSDs that are responding to changes in membrane potential 

results in a high background fluorescence signal and minimal transient response of ~1% dF/F.  

We hypothesize that a way to improve the SNR is to limit the excitation only to the 

responding VSDs and lessen the fluorescence of non-responding VSDs. Direct single-photon 

illumination on neurons loaded with VSDs produces a high background fluorescence signal 

which can saturate the sensor. We propose a unique method to reduce the baseline fluorescence 

and increase the response by restricting the illumination only at the edge or boundary of the 

neuron (see Figure 5.4 below). Instead of direct illumination, the beam focus is placed on the 
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neuropil beside the cell of interest. The scattered photons from the focus of excite the VSDs 

that are situated at the membrane boundary. Indirect oblique illumination of the sample also 

reduces the probability of photo-damage or heating as the light is only illuminating the 

neighbouring tissue. In addition, the reduced fluorescence from the unresponsive VSDs lowers 

the baseline fluorescence which then maximizes the use of the gain of a multi-channel sensor 

such as an EMCCD camera. From here on, I refer to this indirect oblique illumination as 

“single-photon excitation by scattered photons (1PESP)”. 

 

 
Figure 5.4 An illustration of the 1P-ESP. a, The scattered photon excitation uses a single- or 
patterned illumination of the excitation beam. The fluorescence is recorded by a fast EMCCD 
camera. b, An illustration of the proposed enhancement with 1P-ESP by reducing the 
background fluorescence from non-responsive voltage-sensitive dye molecules (VSDs) and 
limiting mostly to exciting the responsive VSDs with the scattered photon illumination on the 
neighbouring neuropil. Enhancement is made with the use of the EM gain of the camera. c, A 
sample image of the oblique illumination where the 532 nm beam focus (★) was positioned at 
~5 µm from the soma (S) of the neuron loaded with JPW-1114 VSD. The scattered light 
produced highly heterogeneous fluorescence at the membrane surface of the soma which could 
be the responsive VSDs. Scale bar is 5µm. 
 

 

5.7 Method for implementing 1P-ESP 
5.7.1 Intracellular loading of JPW-1114 voltage indicator 

We prepared 300-µm thick coronal slices at the primary somatosensory cortex as described in 

Chapter 3, Section 3.3.3. A voltage indicator JPW-1114 was intracellularly loaded in L5PNs 

via a patch pipette following previous loading protocols (Stuart and Palmer, 2006; Popovic et 
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al., 2012). JPW-1114 are large molecules relative to the ions present in the intracellular 

solution. They tend to clump at the tip of the pipette which blocks the flow and causes 

undesirable pressure build-up. I paid close attention to two steps in the loading procedure to 

circumvent this problem. The first step was to prepare a stout pipette tip (with ~ 5-6MΩ open 

pipette resistance), which allowed good control of pressure in the pipette especially when the 

dye molecules start to clump at the tip (see Table 5.1 for the micro-pipette puller settings). The 

stout pipette did not provide stable electrophysiological recordings but maintained good 

loading of the VSD into the cell. The second step was to introduce a small volume of dye-free 

intracellular solution at the tip to help form a good seal when setting up the patch. The 

intracellular solution was front-loaded first using a 20-mL syringe (pulling 1-5 mL air pocket) 

for 20 seconds. Then, the same electrode was back-filled with 0.8 mM JPW-1114 in 

intracellular solution. Microbubbles were carefully cleared inside the tip to avoid undesirable 

pressure build-up. 

 

Table 5.1 Glass puller settings for 2.0mm OD glass capillaries 
Time between pull: ~30mins, Heat ramp: 580 units 

Loop Heat Pull Velocity Time 

1-3 580 - 31 250 

4 572* 10 23 250 

   Heat on 15.45-15.80s 

   Note: *Add to the heat ±3 units to make the tip size (smaller, +, or bigger, -) 

 

Using micromanipulators, the dye-filled micro-pipette was quickly made to contact 

with the neuron to minimize spillage of the dye onto the neuropil. A whole-cell patch was 

established and the dye was allowed to diffuse into the soma for 30-45 mins. In some cases, 

during the loading, the series resistance substantially increased. This increase in the series 

resistance was often due to the clumping of the VSD at the tip changing the series resistance. 

To check for cell viability, 100 ms voltage-step was injected to see if action potential currents 

can still be evoked at the soma. If so, the patch was maintained until sufficient loading at the 

soma was observed. Otherwise, large clumps of the VSD prevented good dye loading into the 

cell, which made the cell unusable for voltage imaging. With successfully loaded cells, the 

electrode was retracted after one hour and the cell was incubated at 34 oC for 1-2 hours before 

repatching it with a standard pipette (not stout) loaded with intracellular solution without VSD. 
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During the incubation, I went on to load neighbouring neurons with the VSD using the same 

procedure. 

To compare the extent of VSD loading into the dendrites, I present 2P reconstructed 

images of L5PNs. One L5PN was loaded with JPW-1114 while another L5PN was loaded with 

Alexa-Fluor 488 using the same loading procedure described above. VSD molecules are 

heavier than standard fluorescent morphology tracer dyes limiting the spatial extent of the 

loading (Figure 5.5). Alexa-Fluor 488 labelled the whole dendritic tree of the L5PN extending 

up to ~1 mm from the soma. On the other hand, the VSD (JPW-1114) labelled the soma and 

dendrites extending only up to 150-200 µm away from the soma. The VSDs bound to the 

membrane yield brighter fluorescence compared to the intracellular regions.  

 

 
 

Figure 5.5 Comparison of the extent of loading of calcium and voltage indicators. Two-
photon z-project image of the dendritic tree of L5PNs loaded with: (a) Cal-520 and Alexa 
Fluor-488, and (b) JPW-1114. Both were imaged at 890 nm and were taken at >1hr of loading. 
(c) Magnified view of the 2P image at the apical trunk showing strong fluorescence signal of 
JPW-1114 at the membrane. The scale bars on the left and right are 50, and 5 µm, respectively. 
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5.7.2 Integrated two-photon and single-photon holographic microscope 

To perform voltage imaging via 1PESP, we integrated a 1P holographic projector into our 

existing holographic 2P multi-site detection system (Figure 5.6). A 1W diode-pumped solid 

state (DPSS) laser (l = 532 nm) was expanded and projected onto a spatial light modulator 

(SLM, Hamamatsu) for encoding with a computer-generated phase hologram. Using 4f relay 

lenses, the phase-encoded beam is reduced back to its initial diameter (~2 mm) and coupled 

onto the system via the NIR scanning beam path for 2P microscopy.  

 
Figure 5.6 The single-photon holographic attachment integrated with our existing two-
photon holographic and laser-scanning microscope. The use of a dichroic mirror 
(DMLP805) and a cascade of long-pass (FEHL600) and laser-line green filter (NB1-K12) was 
crucial in the design. The inset shows the transmission profile of dichroic mirrors and filters. 
 

Coupling is achieved via a dichroic mirror, while the relay lenses set a conjugate image of the 

phase hologram onto the scanning mirrors. From the scanning mirrors, both the NIR and 532 

nm beams were projected onto the objective lens with a short-pass dichroic mirror DM2 

(DMSP805, Thorlabs) for optimal reflection of the NIR laser for 2P microscopy. Since DM2 

is not optimized to reflect the 532 nm laser, rotating the polarization of the 532-nm beam with 

a half-wave plate maximized the reflection up to some extent (~10%). Since DM2 has been 

chosen to provide optimized illumination for 2P imaging, the 1P holographic module has an 
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overall power output of 0.4% onto the sample (Pobjective/Plaser = 0.8mW/200mW). This power 

was nonetheless was sufficient to excite the VSDs. On the detection side, several filters were 

used, which consisted of a back-polished laser-line mirror (NB1-K12 1064/532, Thorlabs) and 

600 nm long-pass filter (FELH600, Thorlabs) to completely filter out the green excitation laser. 

The laser-line mirror results in an overall extinction of T~1x10-9 % for 510-540 nm which 

strongly blocked the 532-nm beam. The fluorescence was acquired using an EMCCD camera 

(Ixon Ultra 897, Andor) with parameters: 0.0022 s (400 frames per second) exposure time, 50x 

EM gain, 128x128 pixel optically centred crop mode.  

 

 

5.8 Preliminary results showing improved SNR with 1PESP 
5.8.1 Signal-to-noise ratio with different regions-of-interest (ROIs)  

To improve the SNR of the voltage responses, I first need to establish an appropriate ROI to 

use when extracting the time-series fluorescence data from the image sequence. From the setup, 

the camera captures the image containing fluorescence signals of the responding and non-

responding VSDs. I compared the SNR with different sized ROIs namely: whole-field, user-

defined covering a region of fluorescence (ROI1), user-defined tracing only the fluorescent 

segment (ROI2). 

Figure 5.7 shows 2P images of two neurons loaded with JPW-1114 and the optically 

recorded membrane potential at the soma and oblique dendrites. The EMCCD camera acquired 

in- and out-of-focus fluorescence from the single-photon green excitation. For the same data, 

three different ROIs were drawn (e.g., whole-field: blue, ROI1: red, ROI2: green). Time-series 

data containing APs, bAPs, and 100 ms long hyperpolarization were observed. I compare the 

SNRs of the AP, bAPs, and the hyperpolarization extracted from the different ROIs (e.g., whole 

field, ROI1, ROI2). For large structures such as the soma, taking the whole-field ROI extracted 

the optical transient with the best SNR (SNR=16.1, Figure 5.7a). For thin dendritic structures 

where the fluorescence only fell on to a fraction of the total camera pixels, taking the whole-

field (SNR = 15.3, Figure 5.7b) smoothened out the signal. In this case, a defined ROI that 

traced out the fluorescent regions yielded a better result (SNR = 22). Across different data sets, 

the average SNR were 8.22±0.7 (for a single bAP) and 0.94±0.08 (for the hyperpolarization) 

as shown in Figure 5.7c. The recovered SNR from different user-defined ROIs were similar to 

whole-field ROI (single bAP: p = 0.47 > 0.5, p = 0.27 > 0.5, hyperpolarization: p = 0.10 > 0.05, 

1.5 >0.05, paired t-test). ROI2 yielded a slightly better SNR for responses in dendrites. In the 
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succeeding measurements, a user-defined ROI2 (a region tracing only the fluorescent segment) 

was used in extracting the responses from the image sequence. 

 

 

 
 

Figure 5.7 The recovered optical transients and the SNR of the spike and 
hyperpolarization for different regions-of-interest. a-b, The two-photon image of neurons 
loaded with VSD (0.8mM JPW-1114 via a patch pipette). Three different regions of interest 
namely: whole-field (blue), user-defined1 (ROI1, red) and user-defined2 (ROI2, green) were 
used and the resulting optical transient is plotted.c, Plots of the signal-to-noise ratio of a single 
bAP and hyperpolarization for the different drawn ROIs. 
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5.8.2 Improvement of SNR in the optical voltage recordings by 1P-ESP 

Optical voltage recordings of bAPs along the apical trunk were made with different beam 

positions with respect to the dendrite. The position of the laser site was inferred by the line 

profiles of the fluorescence along the dendrite (see Figure 5.8). Locating the beam > |±2 µm| 

from the trunk produced uniform fluorescence signal; whereas, locating the beam close to the 

trunk (< |±2 µm|) produced a strong fluorescence signal from the boundary (see Figure 5.8b). 

The optical voltage transients were recovered from a fixed ROI (highlighted in yield box), 

which maintained the same mean fluorescence signal for different beam positions. 

 

 
Figure 5.8 Differences in the fluorescence signal from apical trunk of a neuron loaded 
with VSDs with beam positions. a, A diagram of the line scan made across the apical trunk 
of the neuron loaded with JPW-1114 VSD. b, Images of an apical trunk with the 532-nm beam 
positioned at different locations at a time.  
 

I compared the SNR of the optical traces recovered with different beam positions. 

Figure 5.9 shows a 5-trial average response for different beam positions capturing bAPs along 

the trunk. A characteristic artefact was observed at the start of every recording possibly due to 

mechanical vibrations via opening of the beam shutters. A sufficient delay introduced before 

the current stimulus (t > 0.3 s) avoided the contamination of the artefact with the optical voltage 

spikes. The SNR is the ratio of the amplitude and baseline noise (SD) of the optically recorded 

voltage traces. When the beam is located at the centre of the dendrite (beam position = 0), the 

amplitude of the spike was low compared to that when the beam was located at +1 µm from 

the dendrite (see Figure 5.10). Moreover, SD in win2 was minimal when the beam was 

positioned (< |±1 µm|) from the trunk. Taking the ratio, A/(2*SD), the SNR is highest at 1 µm 
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position from the trunk, which shows a 1.8fold improvement in the SNR (i.e., win2 = 6.58/3.53, 

see Figure 5.10d). With 1PESP, I found that the SNR was maximum when the beam was 

positioned ~1 µm away from the trunk (see Figure 5.10e).  

 

 
Figure 5.9 The optically recorded voltage spikes from different beam positions. a, The 
single photon image of the dendrite loaded with VSDs for different laser positions. b, 
Transverse profiles of the fluorescence along the dendrites with beam positions. c, The 
corresponding optical voltage transients (16-bit Fluorescence signal, F, as read from the 
EMCCD) at the apical trunk with AP firing.  

 

As expected, the SNR was low when the beam focus was located at the centre of the 

trunk. While, positioning the beam directly on the trunk excited more VSDs on that segment. 

The low SNR is due to recording of VSDs that did not report changes in the membrane 

potential. Instead, the SNR was maximum when the laser spot was positioned 1.0 µm away 

from the apical trunk. Positioning the beam away from the dendrite illuminates one side of the 

branch exciting the edge-bound responsive VSDs while reducing the fluorescence from the 

non-responsive VSDs. While these preliminary analysis provided good results, more 

experiments are required. to investigate dye saturation and photo-damage comparing voltage 

imaging via 1PESP and direct illumination. 
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Figure 5.10 SNR enhancement with 1P-ESP. a, The average amplitude of the optical spike 
recorded relative to the baseline. b, The standard deviation of the baseline measured just before 
the spikes (win2). c, The mean fluorescence at the recorded trunk for different beam position. 
d, The signal-to-noise ratio for different beam position. e, The optical trace of the membrane 
potential at beams positions: D = 0 µm (brown) and D = 1 µm (red) with the electrical recording 
from the cell body. 
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5.8.3 Multi-site 1P-ESP  

I also performed multi-site 1PESP where three foci were positioned to illuminate a distal basal 

dendrite (dend1) and an axon (dend2) (see Figure 5.11a). The corresponding time-series trace 

recovered by taking ROIs (dend1, background, and dend2) is shown in Figure 5.11b. We see 

that the Dend1 showed two bAPs that were above the background signal. Dend 2 did not show 

any response possible because the branch was previously damaged before the recording as 

indicated by the blebbing. 1PESP illumination can be extended from a single to multi-foci 

illumination sites to record membrane activity of several dendrites simultaneously. 

 

 
Figure 5.11 Multi-site 1P-ESP. a, Two-photon image a neuron loaded with JPW-1114 with 
the EMCCD active window (blue box) and two dendrites to record the voltage transient (D1-
basal dendrite and D2-axon). b, The ROI drawn for each dendrite. c, The optical voltage-
transient (average of 10 trials – light blue line and after 2-point moving average – solid line) 
showing bAPs (in red region) and hyperpolarization (in green region) at the basal dendrite D. 
BAPs were elicited by a 40Hz AP firing with the current injection at the soma. D2, although 
showed fluorescence, did not exhibit a response possibly due to previous photo-damage as 
observed from the axon blebbing. 
 

 

5.8.4 Optical recordings at thin oblique and basal dendrites 

Voltage imaging via 1PESP captured the invasion of back-propagating action potentials 

invasion at thin basal and oblique dendrites of L5PNs. Dendritic responses of thin basal and 

oblique dendrites are shown in Figure 5.12. The AP train were at 50- and 100 Hz invaded these 

segments. Broadening of the optical response after the 3rd bAP in the 100 Hz train was observed 
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at the distal segment of the basal dendrite (B2b) and along the apical trunk (1) indicative of a 

dendritic Ca2+ spike either from the nexus or locally at the basal segment (see Figure 5.12, 

sites 3, B2a and B2b).  

 

 
Figure 5.12 Back-propagating action potentials reliably invades trunk, oblique dendrites 
and basal dendrites. a, Two-photon image of a L5 pyramidal neuron loaded with the VSD 
showing targeted sites for voltage imaging. b, Fluorescence images corresponding to the sites 
in a excited via 1P excitation with fluorescence acquired via the EMCCD camera. c, The 
electrophysiological recording (bottom trace) and voltage-imaging traces (average of 5 trials) 
for 50 Hz and 100 Hz 4-AP train. Scale bar is 50 µm. 
 

 

I also probed for the generation of an oblique branch spike in apical oblique dendrites 

with the 2-AP train for a set of frequencies (Figure 5.14). The optical traces were then aligned 

with the 2nd AP and the integral of the optical transients were calculated. Based on the 

NEURON model (in Chapter 2), the oblique branch spike would be followed by a broad 20-

50 ms depolarization due to the activation of high-voltage activated calcium channels. 

Unfortunately, no broadening of the membrane potential was observed in this branch (N=1 

cell). The recorded branch could possibly be a dendrite that does not exhibit an oblique branch 

spike.  

 



	 116 

 
 

Figure 5.13 Sample optical voltage recordings at oblique dendrites. a, Two-photon 
fluorescence image of neuron loaded with 0.8mM JPW-1114. b, Optical voltage transients at 
a segment of an oblique dendrites in response to 2-AP train. The transients were aligned at the 
peak of the second bAP. The optical transient associated with single bAP is shown in grey as 
a reference. c, The difference of the integral of the optical voltage response for 2- and 1-bAP. 
Scale bar is 50 µm. 
 

 

5.9 Discussion  
5.9.1. Multi-site functional calcium imaging with temporal gating 

With temporal gating, the overall fluorescence yield by 2P holographic multi-foci sites was 

increased while maintaining a low average power on the sample by modulating the 80 MHz 

femtosecond pulses with an AOM driven at 0.8 and 1.6 MHz gating frequencies. At the off-

states, the AOM dumped the beam thereby throwing away most of the laser power. This limits 

the maximum laser power and consequently the number of foci that can be generated. 

Alternatively, one can use an expensive regenerative amplifier (RegA) which is capable of 

delivering 200 kHz pulse repetition rate without significant loss of average power (Theer et al., 

2003). However, a RegA operates at a pre-set wavelength adding complexity when tuning the 

excitation to different wavelengths. Nevertheless, temporal gating with an AOM and a 
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femtosecond pulse laser (e.g., Ti:S) with an average output power of >2 W presents a flexible 

alternative to achieve an enhancement in fluorescence.  

In a previous work in our lab, Gautam et al. (2015) showed that the increase in 

fluorescence with temporal gating with beam scanning translates to improvements in 

penetration depth and minimal photo-damage, as indicated by the change in the input resistance 

of the cell. I extended this work by applying it to 2P multi-site holographic illumination 

(Castanares et al., 2015). Our results showed up to 3.9±0.4 increase in the fluorescence yield 

with temporally gated beam while observing triggered calcium transients from the neurons.  

A limitation of this study is that lack of characterization with penetration depth and 

signal cross-talk between neighbouring holographic sites. Temporal gating may enhance 

penetration depth as previous reports were able to image deeper with lower repetition rates by 

a factor of 2.0x (40µm/20µm, fR = 1.2 MHz) in brain slices (Gautam et al., 2015) and ~1.4x 

(860µm/600µm, fR = 200 kHz) in living intact brain (Theer et al., 2003). Another potential 

limitation with the detection of 2P multi-site fluorescence is cross talk from scattered 

fluorescence from each focus, especially when imaging through deep opaque tissue. 

Characterization of the scattering of holographic sites with depth will provide a benchmark on 

the allowable distance between sites to minimize the cross-talk. Bovetti et al. (2017) , with 

their 2P holographic system, performed scattering calibration of two neighbouring (10 µm 

apart) neurons at different depths and found that a parameter S, which measures ability to 

separate the two peak signals, dropped to 50% at 300 µm depth (see supplementary Figure S6 

in (Bovetti et al., 2017)). Lastly, a potential concern with 2P holographic patterned illumination 

is local heating due to long beam dwell time. While long dwell-times allow higher time-

averaged fluorescence per site, it may also induce local heating and cell damage (Podgorski 

and Ranganathan, 2016; Picot et al., 2018). Picot et al. (2018) provides a theoretical estimation 

with experimental verification of the temperature rise in 2P laser scanning and holographic 

illumination. Researchers can utilize Picot et al. (2018)’s numerical model to find optimal 

parameters of the a holographically projected patterned illumination (e.g., average laser power 

and dwell time) to reduced photo damage.  

High fluorescence yield and SNR are crucial for imaging fast changes in fluorescence 

(~1 ms), where the number of fluorescence photons (ΔF/F) is low. When imaging with rapidly 

changing fluorescence, an EMCCD camera can be used and can be set near camera saturation 

by applying gain or reducing the frame rate to overcome imaging noise. An increase in 

fluorescence from temporal gating offers high SNR while maintaining high frame rates (>1 
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kHz). As a proof-of-principle demonstration, we used a standard CMOS camera (max QE 60%, 

3x Gain) to capture enhancement of the fluorescence with temporally gated excitation. Further 

improvement can be made in detection by using a more sensitive camera (e.g., sCMOS or 

EMCCD). In Figure 5.14, we extrapolate the enhancement in fluorescence when using an 

EMCCD camera, to allow for high-speed detection of fast changes in fluorescent signals. We 

consider the relation of the photo-electrons with time via photo-conversion, 

N(t)~QE·G·photons(t), where G is the electronic gain from the camera. With temporal gating, 

the increase in the number of photo-electrons is due to the higher number of photons generated 

from a higher fluorescence yield. Since there are more photo-electrons with a 0.8 MHz 

temporally gated beam with respect to the ungated beam, the exposure time of the camera can 

be reduced to collect the same total number of photo-electrons, N0.8MHz/Nungated = 1, (see 

point B in Figure 5.15). In this case, the resulting exposure time of the CMOS camera with the 

temporally gated beam is 7.58 ms, allowing 130 Hz frame rate.  

 

 
Figure 5.14 Further signal enhancement of SNR with the use of an EMCCD camera. 
Diagram of the relative number of photoelectrons with exposure time for 0.8 MHz (red line) 
temporally gated and ungated beam (black line) captured by the CMOS camera, and for 0.8 
MHz temporally gated beam using an EMCCD (blue line). The exposure time can be reduced 
down to 7.58 ms (red broken line) with 0.8 MHz temporally gated beam for collecting the same 
number of photo-electrons (N0.8MHz/Nungated = 1, horizontal broken line) as that of the 
ungated beam at 50 ms exposure. Using an EMCCD with temporal gating, the exposure time 
can be further reduced to ~0.28 ms (blue broken line). Figure taken from Castanares et al. 
(2016). 
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Furthermore, using an EMCCD camera for the detection (max QE 96%, 50x EM Gain), 

the relative number of photo-electrons generated increases by 26.7-fold 

([QE·G]EMCCD/[QE·G]CMOS) allowing a much shorter exposure time for collecting the 

same number of photo-electrons compared to the ungated beam (i.e., 0.28 ms corresponding to 

3.6 kHz frame rate see point A in Figure 5.14). By substituting the CMOS with an Electron-

Multiplied CCD (~96% QE at 550 nm and 50x EM Gain), higher image acquisition with a 

descent SNR can be achieved. This enhancement can then be applied to image responses from 

fast voltage indicators. 

Initially, I performed two-photon voltage imaging with the temporal gating technique 

however, the longer 2P excitation wavelength of the JPW-1114 VSD limited the experiment. 

Fluorescence signal was observed from neurons loaded with JPW-1114 at 920 nm NIR beam. 

At 920-nm 2P excitation, I initially chose the to excite the dye at the rising edge of its 

absorption spectrum. However, it was difficult to find an appropriate 2P excitation wavelength 

to demonstrate the necessary Stark shift following changes in the membrane potential. With 

2P excitation, I was not able to observe neuronal spikes at the soma (data not shown). One 

possible explanation for this is that optimal 2P excitation wavelength for JPW-1114 is not 

within the operating wavelength of our laser and optical system. The 1P excitation wavelength 

of JPW-1114 is optimal at the downward edge of its absorption spectrum (~532 nm) and for 

2P it is estimated to be at 𝜆	>1060 nm. Other labs have developed and characterized the spectral 

characteristics of their stark-shift VSDs in HEK and hippocampal neuronal cultures (Kuhn and 

Fromherz, 2003; Kuhn et al., 2004; Yan et al., 2012; Acker and Loew, 2013) and slices (Acker 

et al., 2011; Acker and Loew, 2013). Kuhn et al. (2004) found that the maximal fluorescence 

response of ANNINE-6 was recorded when illuminating the dye at the downward edge with -

0.35%/mV at 514 nm (for 1P excitation) and -0.52% at 1040 nm (for 2P excitation). Fluorinated 

variants of VSDs also exhibit optimal 2P excitation wavelengths from 1160-1290 nm with 

changes in fluorescence of 8-14%/ 100 mV (Yan et al., 2012). I tried increasing the 2P 

excitation wavelength; however, the output power of our NIR laser significantly decreased at 

longer wavelengths (from 4W at 800 nm down to ~500 mW at 1000 nm) limiting the intensity 

of the excitation beam. With very low power output, it was not possible to demonstrate 

temporal gating at wavelengths higher than 1050nm using our existing laser. Instead, I used 

single-photon voltage imaging with 532 nm laser. While tissue scattering is one of the main 

problems in using a short-wavelength light source, I investigated whether scattered photons 

could be sufficient indirectly excite the VSDs. 
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5.9.2 Voltage imaging with 1P-ESP 

Integrating 1P (532 nm laser beam) excitation in our current multi-site detection system, I was 

able to optically record APs at the soma and bAPs along thin dendrites using JPW-1114 VSD. 

First, by scanning the illumination transverse to the dendrite, I observed a 1.8fold improvement 

in the SNR of the optically recorded voltage transients by offsetting the position of the beam 

focus ~1µm from the target dendrite. We hypothesized that the improvement is due to 

excitation of responding VSDs at the membrane and fluorescence signal amplification by the 

EMCCD gain. Second, the voltage imaging via 1P-ESP can be extended to use multi-foci 

illumination enabling the recording of multiple dendrites at the same time. Foust et al (2015) 

proposed using computer generated holography with patterned illumination that took shape of 

the neuronal structures (e.g. dendrites and soma) to deliver direct 1P excitation of the VSD 

(Foust et al., 2015).  In our case, we used holographic patterned illumination to deliver indirect 

or scattered photon illumination to improve the SNR. We have shown that voltage imaging via 

1PESP revealed that bAPs invade thin oblique dendrites of L5PNs. Future follow-up 

experiments utilizing 1PESP are envisaged to optically capture the oblique spikes with voltage 

imaging. 

 

 

5.10 Summary 
In conclusion, I presented the development of two techniques: (1) multi-site functional calcium 

imaging with temporal gating; and (2) voltage imaging with 1PESP. These two techniques aim 

to enhance the SNR of the optical recordings of dendritic activity. By temporal modulation of 

holographically projected multi-foci, the SNR increases up to 3.9±0.4 fold (at fR = 1.6 MHz) of 

the recorded calcium transients. By extrapolation of the enhancement, we predict that coupling 

temporal gating with an EMCCD camera allows for fast (kHz) acquisition while maintaining 

a descent SNR suitable for high-speed 2P imaging. While temporal gating has been proven to 

effectively improve the SNR, its applicability to 2P voltage imaging is still limited.  The low 

SNR associated with voltage imaging is not due to low fluorescence yield but due to a small 

number of voltage indicators that are bound to the thin membrane (~4nm). Moreover, it is 

difficult to find an appropriate 2P excitation wavelength to excite electrochromic voltage 

indicators to exhibit a Stark shift associated with changes in membrane potential. Hence, in an 

attempt to improve the SNR of voltage imaging, I presented a new oblique illumination 

technique, 1PESP, that exhibits an SNR enhancement in the optical voltage transients. By off-
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setting the position of the beam (~1 µm) to the structure of interest (apical trunk), we recorded 

1.8fold improvement in the SNR. The 1PESP can be extended with 1P multi-foci excitation 

allowing for recording of multiple dendrites at the same time. With the preliminary results, 

these two techniques can potentially be applied to optically probe membrane activity of thin 

dendrites that will potentially offer better spatial and temporal resolution. 
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Chapter 6. General discussion and future directions 
 

 

 

 

6.1 Summary  
The general aim of this thesis is to understand to functional role of thin apical oblique dendrites 

of L5PNs in the cortex. Specifically, I aim to identify specific characteristics of apical oblique 

dendrites that influence neuronal computation. To carry out this aim, I started with numerical 

modelling of a L5PN and found unique characteristics, such as dendritic spikes evoked on 

select apical oblique dendrites following low frequency trains of back-propagating action 

potentials. The numerical results guided my experiments where I used functional calcium 

imaging to confirm the existence of dendritic spikes in apical obliques of cortical L5PNs, which 

I refer to as oblique branch spikes, of cortical L5PNs in vitro. In addition to studying oblique 

branch spikes, the experience I gained while performing the experiments pushed me to develop 

new protocols to improve the optical recording techniques of dendritic activity. Overall, this 

work provides novel insights on the function of apical obliques of L5PNs and at the same time 

proposed new approaches to improve the SNR of the optically recorded neuronal activity. 

 

6.2 Discussion of specific findings 
Aim 1: The first aim of this thesis is to understand the generation of dendritic spikes in apical 

oblique dendrites of L5PNs. Using multi-compartment model of a L5PN published by Shai et 

al. (2015), branch specific dendritic spikes were generated with a 2-AP train at a critical 

frequency of fc2 = 35 Hz. By analysing the ionic mechanisms numerically, I conclude that the 

oblique branch spike is a fast sodium spike followed by a broad 20 ms depolarization due to 

the recruitment of high voltage-activated calcium channels.  

The Shai et al. (2015) model exhibits dendritic active properties such as the Ca2+-AP 

spike at the nexus of the apical tuft. In Chapter 2, I studied the extent of bAP invasion at 

oblique dendrites of the L5PN model. I used the critical frequency protocol to establish the 

conditions to generate dendritic spikes. I observed a strong attenuation of the bAPs in the model 

as they propagate back to the dendritic tree. As control, I injected current pulses (current, I = 

4.2 nA, pulse duration, Δ𝜏	= 2 ms) at the soma to produce a 4-AP train, which evolves as 4-AP 

train to the apical dendrites and evokes a Ca2+-AP at the nexus of the apical tufts at a critical 
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frequency of fc4 = 105 Hz of the 4-AP train. Surprisingly, I found that a 2-AP train generated 

with the same stimulation parameters as the 4-AP train sets off a dendritic spike at fc2 = 35 Hz 

at specific apical oblique branches. The 2-AP train with the same parameters were not enough 

to evoke a Ca2+-AP spike at the nexus of the apical tufts.  

I systematically quantified the dendritic segments that exhibits an oblique branch spike 

by analysing the relative changes of the peak membrane potential with varying frequencies of 

the 2-AP train. I used a sigmoid function to fit the curve of the changes in the peak membrane 

potentials as a function of frequency. From the sigmoid fit, I recovered a threshold of A ≥ 20 

mV and β ≥ 0.3, where A is the change in the amplitude of the membrane potential and b is the 

slope parameter. I classified the responses into linear, b < 0.3, and non-linear, b ³ 0.3. In the 

model, the non-linear responding segments are observed only in oblique dendrites (referred to 

as their oblique number O#) O#3 and O#5, which suggest that the oblique branch spike is 

branch-specific. Moreover, the critical frequency is specific to certain branches around a 

nominal fc2 = 35±5 Hz. 

I investigated the ionic mechanisms of the oblique branch spike in the L5PN model by 

blocking (or setting the conductance to zero) the calcium (gCa_LVA, gCa_HVA) and sodium 

(g_NaTs2) conductance of a linear responding branch (O#2) and two non-linear responding 

branches (O#3 and O#5). Blocking the gCa_HVA, or the high-voltage activated calcium 

conductance, removed the broad 20 ms depolarization but maintained a fast spike. The fast 

spike is due to the activation of g_NaTs2 conductance. From the results in the simulation, I 

conclude that the oblique branch spike is a fast sodium spike followed by a broad 20 ms 

depolarization due to the recruitment of high voltage-activated calcium channels. 

 An active (depolarized) oblique branch boosted the excitability of the neighbouring 

branches and the added an after-depolarizing potential (ADP) at the soma. Plot of the ADP as 

a function of frequency also produced step increase at fc2 = 35 Hz. In Chapter 2, Section 2.4.6, 

I studied how blocking the conductance of an oblique dendrite affected the neighbouring 

branches and the ADP at the soma. Blocking the conductance of O#5 did not alter the dendritic 

spike in O#3. However, blocking the sodium conductance in O#3 shifted the critical frequency 

of O#5 to a higher frequency. Moreover, blocking the conductance in O#2 completely removed 

the oblique branch spikes in O#3 and O#5 and significantly reduced the ADP at the soma. I 

also altered the morphology of the neuron by physically removing an oblique branch (via 

dendrotomy). Removing the non-linear responding branches O#3 and O#5 and the linear O#2 

branch led to a reduction in the ADP. The results suggest that the activity of an oblique dendrite 
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provided an added sustained depolarization, which helped neighbouring oblique dendrites to 

reach the threshold of generating an oblique branch spike.  

 

Aim 2: The second aim is to experimentally generate and observe dendritic spikes in 

apical obliques of cortical L5PNs. I experimentally verified the occurrence of oblique branch 

spikes in L5PNs as presented in Chapter 4. I developed and used our 2P multi-site detection 

microscope coupled with patch-clamp recording system to perform functional calcium imaging 

in oblique dendrites and electrophysiology of L5PNs in the somatosensory cortex (as presented 

in Chapter 3). Oblique branch spikes occur at a higher critical frequency (fc2 = 57±5 Hz, from 

calcium imaging) as compared to that measured in the model. When dendritic spikes are 

evoked in certain oblique branches, they manifest as an ADP from the whole-cell patch-clamp 

recordings at the soma. I conclude that the dendritic spikes predicted in silico occur 

experimentally. 

 

From the experiment, select oblique branches exhibited a non-linear increase in the 

intracellular calcium with a 2-AP train beyond a certain critical frequency. The critical 

frequencies of the oblique branch spikes were fc2 = 57±5 Hz (8 out of 13 neurons from calcium 

imaging). Adapting the criteria (β ≥ 0.3) for classifying linear and non-linear responses (see 

Chapter 2, Section 2.4.5), I recovered neurons whose oblique dendrites exhibited a non-linear 

increase intracellular calcium. The locations of these non-linear responding segments were 

from O#4 to O#7 oblique branches. Plotting the ADP as a function of frequency sets of a step 

increase in the ADP at the same critical frequency observed at the branches. Recordings from 

17 neurons were not included in the analysis as they exhibited an extra spikelet after the 2nd 

bAP which altered the efficacy of the critical frequency analysis. In contrast to the model, the 

average critical frequencies of oblique branch spike were higher, fc2 = 57±5 Hz (from calcium 

imaging) and fc2 = 72±4 Hz (from ADP), suggesting that the oblique branches were less 

excitable (or depolarized by a more attenuated bAPs) in the experiment.  

The plot of the ADP as a function of frequency showed a distribution of critical 

frequencies with 2- and 4-AP train. From the L5PN model, the oblique branch spike has a 

lower critical frequency compared to the Ca2+-AP at the nexus of the apical tuft. In the 

experiment, I found that 2% (2/100 neurons) and 35% (35/100 neurons) exhibited a single 

critical frequency at 2- and 4-AP train, respectively. Interestingly, similar fraction (36%) of 

recorded neurons exhibited two different critical frequencies of: fc2 = 72±4 Hz and fc4 = 82±3 

Hz (**, p = 0.0013< 0.01). Furthermore, application of 0.25 µM DL-APV, an NMDA 
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antagonist, did not change the critical frequency in the ADP vs frequency plot. These blocking 

experiment results support that the oblique branch spike and Ca2+-AP in the nexus of the apical 

tufts were recruited by bAPs and not by synaptic events.  

Lastly, preliminary results with dendrotomy showed that cutting oblique branches 

changes the ADP at the soma. Using a tightly focused femto-second laser with reasonably 

higher power, I precisely severed an oblique branch from the neuron. After dendrotomy, the 

site of the severed oblique sealed as verified with 2P fluorescence imaging; however, the cut 

site might have partially sealed (also indicative of an unhealthy cell) as observed by an increase 

in the required holding current (from -100 to -200 pA) to keep the cell at -65mV and shifts in 

the action potential-threshold. The critical frequency protocol was performed before and after 

dendrotomy. Neurons showing a non-linear step increase in the ADP were selected for 

dendrotomy experiments. No calcium imaging was performed before dendrotomy which 

allowed for large number of neurons to be recorded. Hence, choosing dendrites to severe was 

done randomly and based on the location from the soma. When oblique branches O#3 and O#7 

located 170 µm and 237 µm from the soma were cut, the neuron no longer produce a non-linear 

step increase in the ADP. On the other hand, cutting O#1 and O#6 branches situated 20 µm 

and 140 µm from the soma still maintained a step increase in the ADP at the same critical 

frequency as before the dendrite was cut. Indeed, there is a heterogeneity in the responses of 

the ADP when cutting specific oblique branches. 

 Overall, the evidence from calcium imaging, ADP measurements, and dendrotomy 

support to a dendritic oblique spike in L5PNs in vitro recruited with 2-AP train. Similar to what 

was observed in the model, the oblique spike was found to be in select oblique branches. 

Although I have not investigated what factors determine the location of the oblique spike, I 

observed that the dendritic spike occurred between branches O#4 to O#7 (experimentally), and 

O#3 and O#5 (model). Cutting the branches close to the soma (20 and 140 µm) did not affect 

the ADP. On the other hand, cutting branches suspected to evoke a dendritic spike no longer 

produced a step increase in the ADP at the specified critical frequency measured before 

dendrotomy.  

 

Aim 3. The third aim is to improve the signal-to-noise ratio (SNR) of the recorded 

fluorescent calcium and voltage transients by proposing new optical techniques. I presented 

novel techniques namely: (1) multi-site functional calcium imaging with temporally gated 

excitation laser; and (2) functional voltage imaging via single-photon excitation by scattered 

photons (1PESP). Functional calcium imaging with temporally gated excitation laser 
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produced a 3-fold improvement in the SNR, while and functional voltage imaging via 1P ESP 

enhanced the SNR by 1.8-fold. I conclude that these two techniques can improve the SNR of 

the recorded calcium and voltage transients and can be applied to record and analyse dendritic 

spikes in apical oblique dendrites in the future.  

  

Temporally gating the excitation fs-laser holds promise of enhancement in the 

generated 2P fluorescence as determined by the modulation parameters (𝜏 – duration of the 

modulating pulse and fR – the gating frequency). We initially derived the mathematical theory 

that showed a 1/(𝜏fR) factor enhancement in the recorded fluorescence signal (see Equation 

5.4) due to the non-linearity of the 2P-excitation process. We experimentally implemented the 

temporal gating technique using an AOM. We characterized the enhancement by recording 

electrically triggered transients from hippocampal neuronal cultures loaded with fluorescent 

calcium indicator (Cal-520AM). The SNR increased by 3.9±0.4 and 3.7±0.3-fold relative to 

the ungated beam using fR = 0.8 MHz and fR = 1.6 MHz, respectively. Extrapolating from these 

results, we estimated that the use of an EMCCD camera and temporally gated beam (fR = 0.8 

MHz) allows for a 3-fold increase in photo-electrons collected within a 1 ms exposure 

compared to using an ungated beam. This modality will be suitable for 2P imaging fast 

fluorescent voltage transients. 

When I shifted and attempted to perform functional voltage imaging, I discovered 

another technique to improve the SNR of optically recorded voltage transients. I discovered 

that using scattered photons to excite VSDs can reduce the background fluorescence and limit 

the excitation only to VSDs that report voltage changes in the membrane. I refer this technique 

as functional voltage imaging via single-photon excitation by scattered photons (1PESP). As 

observed in previous studies (Antic, 2003; Stuart and Palmer, 2006) and in this work, neurons 

loaded with VSDs exhibit high baseline fluorescence (resulting to a typical <1% dF/F response) 

due to the binding of VSDs with intracellular lipid compartments that do not respond to changes 

in membrane potential. I hypothesized that a way to improve the SNR is to limit the excitation 

only to the responding VSDs and lessen the fluorescence of non-responding VSDs, which 

produces a large background signal. With reduced background, the SNR is improved by 

increasing the gain of the sensor, such as an EMCCD camera. I experimentally verified the 

theory by integrating a 1P excitation into our existing 2P microscope and performed 1P voltage 

imaging with 532 nm laser spot illumination on L5PNs intracellularly loaded with VSD (JPW-

1114). I optically recorded action potentials along the main apical trunk and at thin basal and 
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oblique dendrites and resulted in an SNR ~3.8 using an EMCCD camera (with parameters 50x 

EM gain, 0.0022s exposure time, 400 frames per second). By deliberately offsetting the 

position of the laser focus from the dendrite (~1.0 µm) of interest, I found a 1.8-fold 

improvement, with SNR from 3.5 to 6.6.   

 Thus, temporal gating and 1PESP are approaches to enhance the SNR of fluorescent 

voltage and calcium recordings. These techniques can be implemented in current microscope 

systems either by addition of an AOM or using a low-repetition rate fs-laser (for temporal 

gating) or off-setting the position of laser focus (for 1PESP). Future works are envisaged to 

use these techniques. 

 

6.3 Implications of my results 
The role of apical oblique dendrites of cortical L5PNs is still not fully understood. While 

several studies have investigated the apical obliques of hippocampal CA1 PNs (as presented in 

Chapter 1, Section 1.7), only few studies have investigated the oblique dendrites of L5PNs. 

Findings made in hippocampal CA1 PNs may not all be translatable to cortical L5PNs.  

In silico and in vitro studies of L5PNs have investigated how the distribution of oblique 

branches modulate forward- and back- propagating spikes (Vetter et al., 2001; Antic, 2003; 

Schaefer et al., 2003; Zhou et al., 2015). Vetter et al. (2001) showed that dendritic branching 

and density of sodium channels modulate the forward propagation of dendritic Na+ APs 

initiated at the apical trunk and oblique dendrites. Invasion of bAPs in proximal oblique 

dendrites was observed to be reliable with less filtering (maintained bAP width) at the oblique 

branches (Antic, 2003); however, bAPs failed to invade a few distal oblique branches (higher 

oblique number) due to attenuation at branch points, minute differences in dendritic diameter, 

and to the non-uniform distribution of A-type K+ conductance in oblique dendrites (Zhou et 

al., 2015). Furthermore, simulation studies show that the addition of oblique branches in close 

proximity to the soma (d < 140 µm) can increase the coupling of the nexus Ca2+-AP and the 

somatic-AP from 35% to 60% (Schaefer et al., 2003). These studies suggest that bAPs, 

modulated by dendritic branching and dendritic conductance, can drive strong depolarization 

in oblique dendrites to recruit dendritic non-linearity such as an oblique branch spike. Schiller 

(2002) reported large calcium influx in a select oblique branch during a PDS (epileptic-like) 

discharge at the soma (see Figure 1.9c). This could be a first evidence of an oblique branch 

spike in L5PNs; however, the conditions of reliably eliciting this oblique branch spike was not 

established. 
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Several studies have also investigated the anatomical and functional synaptic 

connections at the apical oblique dendrites (Markram et al., 1997; Sjostrom and Hausser, 2006; 

Oberlaender et al., 2012). Biocytin reconstructions and paired-patch clamp recordings have 

shown that L5PNs form intracortical connections among each other via axon-oblique 

connection (Markram et al., 1997; Oberlaender et al., 2012). Furthermore, repetitive somatic 

AP-firing have shown to induce the activity dependent LTP in the axon-oblique connections 

(Sjostrom and Hausser, 2006). It remains unknown as to the mechanism for the increased level 

of intracellular calcium as required for LTP induction. One possible mechanism can be a 

prolonged activation of calcium channels due to an oblique branch spike. In basal dendrites, 

calcium spikes are implicated to play a role in spike-timing dependent plasticity (Kampa et al., 

2006). A similar mechanism may exist with an oblique branch spike in oblique dendrites. 

In this study, I found that apical obliques of L5PNs do exhibit branch-specific oblique 

branch spikes with a lower critical frequency of fc2 = 57±5 Hz (from Calcium imaging) and fc2 

= 72±4 Hz (from ADP) as compared to the fc4 = 82±3 Hz (from ADP) critical frequency for 

recruiting Ca2+-AP at the nexus of the apical tuft. Previous works showed a critical frequency 

response at the basal and nexus of the apical tuft dendrites (Schiller et al., 1997; Larkum et al., 

1999; Kampa and Stuart, 2006; Nevian et al., 2007) (see Figure 6a). The critical frequency 

protocol showed that bAPs recruited a Ca2+-AP at the nexus at fc4 = 98±6 Hz Larkum et al. 

(1999). On the other hand, a critical frequency of fc3  > 100 Hz (120-200 Hz) with 3-AP train 

also recruited calcium spikes in distal segments of the basal dendrites (Kampa and Stuart, 

2006). Some studies also reported that basal dendrites support sodium and NMDA spikes 

(Schiller et al., 2000; Nevian et al., 2007). This work has shown that dendritic spikes could be 

evoked at select oblique branches with a 2-AP train at fc2 ~60 Hz train. Conductance analysis 

in the Shai et al. (2015) L5PN model showed that the oblique branch spike is a fast sodium 

spike followed by a broad depolarization due to the activation of high-voltage activated 

calcium channels. To verify ionic mechanisms experimentally, future work will involve the 

design of pharmacological experiments onto specific oblique branches such as the use of caged 

ion-blockers or by puff application or iontophoresis.  

 

The discrepancy in the critical frequencies of the oblique branch spike from the 

experiment and model. The critical frequency of this oblique spike was higher in the 

experiment (fc2 = 57±5 Hz, from Calcium imaging) than in the model (fc2 = 35 Hz, from ADP). 

This suggests that the oblique dendrites of L5PNs in vitro were less excitable (or depolarized 

by a more attenuated bAPs) compared to oblique dendrites in the model. Hyperpolarizing 
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voltage-gated ion channels such as A-type potassium channels could play a role in dampening 

the excitability of oblique dendrites of L5PNs like the findings in CA1 PNs (Frick et al., 2003; 

Gasparini et al., 2007). Future studies can investigate the influence of hyperpolarizing channels 

by local application of channels blockers on an oblique branch either by puff application or 

iontophoresis. 

 

The discrepancy in the critical frequencies of the oblique branch spike as measured with 

calcium imaging and the step-increase of the ADP at the soma. The critical frequencies in 

the ADP measurement were higher as compared to the ones recovered from calcium imaging. 

A possible explanation for this is that the oblique spikes do not effectively propagate to the 

soma due to the unfavourable mismatch at the branch points. This ineffective forward 

propagation of oblique spikes to the soma has also been studied multi-compartment models of 

CA1 PN (Migliore et al., 2005). Migliore et al. (2005) also found that a sustained activity in 

the obliques in the CA1 PN model was required to influence the soma. Consistent with this 

finding, I also observed in the Shai et al. (2015) L5PN model that removing the oblique spikes 

in two non-linear branches (O#3 and O#5) significant decreased the ADP at the soma. 

 

Likelihood of generating a dendritic spike in apical oblique dendrites of L5PNs. L5PNs 

exhibit intrinsic burst firing making it likely to recruit oblique branch spikes in apical obliques. 

In vitro recordings have shown that L5bPNs fire in burst of 3-4 APs at frequencies up to 300 

Hz (Agmon and Connors, 1989; Chagnac-Amitai et al., 1990; Connors and Gutnick, 1990; 

Kim and Connors, 1993; Williams and Stuart, 2000). Bursting of L5bPNs in the barrel cortex 

have also been documented in awake rats ~17% of the time during a whisker stimulus (de Kock 

and Sakmann, 2008). The origin of the ADP leading to burst AP firing is due to the recruitment 

of nickel-sensitive calcium channels along the apical trunk (Amitai et al., 1993; Williams and 

Stuart, 1999). This work shows that non-linear responses of oblique branches contribute to an 

additional ADP at the soma. Plotting the ADP as a function of frequency reflected two distinct 

critical frequencies of fc2 = 72±4 Hz and fc4 = 82±3 Hz. Considering that the oblique branch 

spike presented in this study occurs at a much lower critical frequency (fc2 ~60 Hz, from 

experiments), oblique branch spikes are likely to be recruited first before the Ca2+-AP at the 

nexus of the apical tuft. Future in vivo studies can focus on quantifying the occurrence of the 

oblique branch spike when the rodent is at rest or is actively performing a certain task.  
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Voltage imaging in oblique dendrites. The results from calcium imaging showed a non-linear 

increase in the intracellular calcium in a few oblique dendrites. However, calcium imaging is 

an indirect measure of membrane activity as there are many other sources of Calcium (see 

review, Grienberger and Konnerth (2012)). Voltage imaging is a better approach to verify the 

generation of dendritic (fast sodium) spikes in oblique dendrites. Several studies that used 

intracellularly loaded VSD (e.g., JPW-1114) have optically recorded dendritic spikes in 

dendrites and APs in axons with 1P excitation (Antic, 2003; Stuart and Palmer, 2006; Foust et 

al., 2010; Popovic et al., 2011; Popovic et al., 2015). It would be interesting to apply the same 

recording modalities and investigate the generation oblique spikes with 2-AP train above fc2 ~ 

60 Hz. In general, voltage imaging requires a fair number of trials to obtain a good SNR of the 

voltage traces. The 1PESP technique can then be utilized to enhance the SNR of the recordings 

using only few trials.  

 On the other hand, 2P voltage imaging is a promising tool to investigate the dendritic 

spikes such as the oblique spike presented in this study. 2P imaging should be performed with 

VSDs that have 2P excitation spectra that matches the operating wavelength of the femto-

second laser available. There are few promising studies that have successfully recorded 

dendritic spikes with 2P microscope systems in vivo (Acker et al., 2011; Tran-Van-Minh et al., 

2016; Roome and Kuhn, 2018). A notable study by Roome and Kuhn (2018), where they 

recorded dendritic activity of Purkinje neurons in an awake mouse, reported the following:  (1) 

voltage spikelets where generated during a dendritic complex spikes but had no direct 

correlation with somatic activity, (2) bAPs were highly attenuated at the dendritic tree, and (3) 

variable voltage hotspots were locally observed but did not evoked corresponding calcium 

signals. Roome and Kuhn (2018) provided evidence for dendritic integration and 

compartmentalization of dendritic from somatic activity in vivo and awake condition. 

With 2P line-scan voltage imaging as in the study by Roome and Kuhn (2018), rigid 

filtering of traces and data analysis has to be made recover the true voltage signals. We propose 

that temporal gating could be another “active” technique to improve the SNR of the recorded 

voltage transients. One potential issue with temporal gating is the possibility of inducing 

artefacts in the recording due to the “gating” of the beam. This would appear as a sharp 

frequency and its harmonics in the frequency spectrum of the voltage signal. A solution around 

this problem is to use lock-in detection to synchronize the acquisition of the voltage transients 

with the gating of laser beam. This approach has been done with 1P single-channel recording 

with a balanced detection (Bullen et al., 1997).  
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6.4 Limitations of the study 
Oblique dendrites in a L5PN are sparsely distributed along its trunk (50-300 µm from the soma) 

and extend laterally ~50 µm. In order to get good statistics as to which oblique dendrites exhibit 

a dendritic calcium spike, multiple oblique branches have to be recorded at the same time. In 

this study, I was only able to perform two-photon calcium imaging on a few oblique branches 

at a time due to the limited imaging window of the camera to achieve a descent frame rate (~ 

100 fps) to capture the calcium transients at oblique dendrites.  

A fast two-photon microscope with a larger imaging ROI would increase the throughput 

of the recording. Single-photon epifluorescence microscope can offer a high throughput 

approach to simultaneously imaging multiple oblique branches at the same time and with large 

field-of-view (Antic, 2003; Zhou et al., 2015). However, signal cross-talk can be a problem 

especially when the dendrites overlap (along the z-axis) with each other. Single-photon 

epifluorescence microscopes have poor axial discrimination of the fluorescence photons. In 

contrast, two-photon microscopes offer minimal cross-talk with the localized excitation 

volume and allow imaging multiple dendrites along a single z-plane (Hill et al., 2013).  

The use of an improved EMCCD camera or coupling the holographically projected 

beam into a galvanometric scanning mirrors can increase the throughput of the recording. First, 

the development of faster EMCCD cameras with large imaging window operating at higher 

frame-rates may cover more regions of interest. Along with this development are hardware-

specific firmware that enable fast multiple-ROI recording while keeping the required frame 

rate (such as the PCO prime multi-ROI function). This limits the recording to the ROIs and 

minimizes the file size of the acquired image sequences. Another way to extend the field-of-

view to increase the throughput of the experiment is to couple the holographic beam with the 

galvanometric scanning mirrors (GM) (Go et al., 2019). We have successfully characterized 

the robustness of this design using our collaborator’s existing 2P GM scanning microscope. 

The holographic active region will still be determined by the SLM and the relay lenses used; 

however, the pattern can be move across the sample using the galvanometric mirror instead of 

moving the sample stage. In the future, we plan to integrate the design to our system here at 

ANU.  
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6.5 Future Directions 
Investigate the increased excitability of oblique dendrites. Thin oblique dendrites are 

susceptible targets for branch-specific plasticity. These dendrites have high-impedance due to 

their thin diameters relative to the apical trunk. As such, they yield large depolarizations when 

bAPs invade causing voltage-gated conductance (i.e., voltage-gated calcium and potassium 

channels) to open up and lead to the generation of spikes. The increased levels of intracellular 

calcium paired with synaptic inputs can promote induction of spike-timing-dependent 

plasticity (STDP) (Kampa et al., 2006; Sjostrom and Hausser, 2006), Long-term potentiation 

(LTP) (Magee and Johnston, 1997; Canepari et al., 2007), branch-specific plasticity (Cichon 

and Gan, 2015) or excitotoxicity (Morse et al., 2010). An LTP experiment on thin basal 

dendrites, by pairing single AP firing of a pre-synaptic neuron with a burst of APs (3 APs at f 

≥ 200 Hz, generating a dendritic calcium spike in the basal dendrite of the post-synaptic 

neuron) showed an increase in the average EPSP amplitude (Kampa et al., 2006). Another 

interesting study is to perform the experiments done by Sjostrom and Hausser (2006) that 

paired APs and EPSPs while imaging the calcium or voltage activity at the oblique dendrites. 

This would validate whether oblique branch spikes participated in the induction of LTP in the 

oblique branches.  

Another important aspect is to test whether oblique branch spikes affect sensory inputs. 

Several works have shown that dendritic Ca2+-AP at the nexus and NMDA at the apical tuft 

branches spikes enhances sensory inputs (Lavzin et al., 2012; Xu et al., 2012; Smith et al., 

2013; Palmer et al., 2014; Ranganathan et al., 2018). Future experiments can investigate the 

membrane activity of oblique dendrites of L5PNs while the rodent is performing a whisking 

task. Chemical and optical modulation of voltage-gated potassium channels (Kv) in oblique 

dendrites in vivo would also be a good experiment to assess how branch-specific modulation 

of Kv channels affect sensory processing. 

The excitability of oblique dendrites can be regulated by the dense expression of 

hyperpolarizing voltage-gated channels (e.g., potassium channels). CA1 PNs show 

normalization of the calcium influx due to the reduction in the bAP amplitude in the oblique 

dendrites by the activation of Barium sensitive voltage-gated A-type potassium channels (Frick 

et al., 2003; Gasparini et al., 2007). Drawing insights from a multi-compartment model, Zhou 

et al. (2015) suggested a heterogeneous density distribution of A-type potassium channels in 

the oblique dendrites which could explain their findings of branch-specific efficacy of bAP 
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invasion at the oblique of L5PNs in vitro. Blocking A-type potassium channels may lead to 

hyper-excitability of oblique dendrites. 

An increase in excitability of oblique dendrites can potentially be linked to 

neurodegenerative disease. A few studies have also shown that oblique dendrites became 

“hyper-excitable” in the presence of amyloid beta proteins, which blocks voltage-gated 

potassium channels (Good and Murphy, 1996; Chen, 2005; Morse et al., 2010). Also, large 

calcium events in oblique dendrites are observed during epileptic discharges (Schiller, 2002). 

Future works can focus on how oblique branch spikes play a role in plasticity and disease. This 

adds to the growing interest on how abnormalities of dendritic excitability may be linked to 

brain disease (for review, see Palmer (2014)).  

Thus, the excitability of oblique dendrites can be a feature or a bug in neuronal 

computation. Excitability of oblique dendrites with the generation of dendritic spikes can be 

an important component for the induction of branch-plasticity. In contrast, hyper-excitability 

of oblique dendrites can be an abnormality in the dendritic activity which could be linked with 

neurodegenerative disease. Voltage-gated A-type potassium channels regulate this excitability. 

A study of post-status epilepticus (post-SE) mouse model showed that potassium currents 

decreased after 1 hour of post-seizure due to the internalization of potassium channels from the 

membrane surface (Lugo et al., 2008). The mechanisms behind the up- and down-regulation 

of voltage-gated potassium channels that regulates the excitability of oblique dendrites remains 

to be studied. 

 

 

6.6 Conclusion: The role of apical oblique dendrites in information 

processing 
Taking a big picture view of this thesis, I go back to the main aim of this research, “What is 

the functional role of apical oblique dendrites in information processing?” While this work has 

shown the intrinsic property that select apical oblique dendrites in L5PNs can generate oblique 

branch spikes, it provided evidence that apical oblique dendrites may potentially participate in 

dendritic integration which opens up exciting research questions. How do oblique branch 

spikes interact with other dendritic spikes in the apical trunk and basal dendrites? Do they 

enhance processing of sensory inputs? Do they play a role in learning and memory? 

Apical oblique dendrites of L5PNs play a role in relaying sensory inputs and integrating 

active-sensing and passive whisker representation (see Figure 6b). Oblique dendrites of L5PNs 
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are strategically located across layers 2/3 to layer 4 which are densely innervated by axon 

terminals from neurons in the VPM. 3D reconstructions of the density of VPM axon-dendrite 

overlap have shown a unimodal peak at layer 4 for slender-tufted L5PNs (or layer 5a pyramidal 

neurons, L5PN-a) suggesting VPM innervations at the apical oblique dendrites (Oberlaender 

et al., 2012). The overlap between axons from VPM neurons and dendrites of thick-tufted 

L5PNs (or layer 5b pyramidal neurons, L5PN-b) indicate a bimodal distribution at the 

boundaries of: layer 4-5 and layer 5-6 suggesting that synaptic connections are formed at the 

apical oblique and basal dendrites of these thick-tufted pyramidal neurons (Oberlaender et al., 

2012). The slender-tufted L5PNs are active during active-sensing whisking tasks such as object 

localization but inactive during quiet or non-whisking states (de Kock and Sakmann, 2009). 

Layer 5b (or the thick-tufted) neurons exhibit burst firing during quite period and are more 

involved in passive whisker touch, inputs via VPM thalamic afferents. Connections formed 

among apical tuft and oblique dendrites of L5PNs gave rise to cell-specific intracortical micro-

circuit. Pairs of L5PNs form unidirectional and bidirectional with axon-dendritic synaptic 

connections: at the apical tuft (for layer 5a to layer 5b neurons) (Oberlaender et al., 2011) and 

at apical oblique dendrites (layer 5b to layer 5b) (Markram et al., 1997). A recent work by 

Ranganathan et al. (2018) using calcium imaging in vivo have shown that a non-linear mixed 

representation of neuronal activity in the barrel cortex was produced during an adaptive active-

sensing whisker task, where the mouse was tested to track a moving object with its whisker 

(see Figure 6c). This representation involved the activation of a set of L5PNs that exhibited 

unique selectivity of touch magnitude and location to represent a given task. Ranganathan et 

al. (2018) suggested that non-linear mixed representation could potentially be mediated by 

plateau potentials (e.g. NMDA and calcium spikes) in the apical tuft dendrites and apical trunk 

of L5PNs. It is possible that oblique branch spikes can strengthen the intracortical activity 

within L5PN-L5PN connections.   

In conclusion, this work has shown that select apical oblique dendrites in L5PNs can 

carry out the generation of oblique branch spikes following a lower frequency of a train of 

bAPs as compared to the the Ca2+-AP at the nexus of the apical tuft. My findings expand our 

understanding of the passive and active function of oblique dendrites of L5PNs. (Schaefer et 

al., 2003) reported that the distribution of oblique dendrites along the apical trunk passively 

tunes to coupling between the firing of Na+-AP at the soma and Ca2+-AP at the nexus of the 

apical tuft. This work, along with the work of Losonczy and Magee (2006), reveal that sodium 

mediated dendritic spikes are generated in apical oblique dendrites by either low-frequency 

burst of back-propagating action potentials or clustered and distributed synaptic activation 
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along an oblique branch. These spikes can be a mechanism to significantly raise the 

intracellular calcium levels which promotes local-branch plasticity, a theory proposed by 

Alkon (1999). Thus, apical oblique dendrites of L5PNs are not just thin passive membrane 

structures that receive thalamic inputs and provide intracortical connections amongst L5PNs; 

but they may also actively participate in dendritic integration and reinforce the strength of these 

axon-oblique connections with the recruitment of the oblique branch spikes. 

 
Figure 6. Role of apical oblique dendrites of L5PNs. a, Illustration showing different critical 
frequencies of generation calcium spikes in the apical tuft dendrites (Larkum et al., 1999), basal 
dendrites (Kampa and Stuart, 2006), and oblique branch spikes in oblique dendrites (this 
study). b, A diagram of the intracortical layer 5 micro-circuit in the primary somatosensory 
cortex, S1, that are active during a passive and active whisking task. Note that a fraction of 
VPM terminals synapse onto the apical oblique dendrites and basal dendrites of layer 5a (or 
slender tufted) and layer 5b (or thick-tufted) pyramidal neurons. Note that this circuit diagram 
only highlights connections of VPM axons to layer 5 pyramidal neurons. There also exists 
synaptic connections of different cells types (e.g. layer 4 and L2/3 pyramidal neurons and 
interneurons) to layer 5 pyramidal neurons. c, Different sensing modes, touch(passive), active-
sensing, and adaptive-object localization, that correlates with the activity of layer 5 
microcircuit in a column of the barrel cortex. Figure 6c is modified from Xu et al. (2012) and 
Ranganathan et al. (2018). 
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