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Abstract

Consumer choice models are a key component in fields such as Revenue Manage-
ment and Transport Logistics, where the demands for certain products or services
are assumed to follow a particular form, and sellers or market-makers use that infor-
mation to adjust their strategies accordingly, choosing for example which products
to display (assortment problem) or their prices (pricing problem).

In the last couple of decades, online markets have gained relevance, providing a set-
ting where consumers can easily compare different products, before deciding to buy
them. More information is now available, and the purchasing decisions not only de-
pend on the quality, prices and availability of the products, but also on what previous
consumers think about them (a phenomenon commonly known as Network Effects).
Hence, in order to create a suitable model for this kind of market, it is relevant to
understand how the collective decisions affect the market evolution.

In this thesis we consider a particular subset of those online markets, cultural mar-
kets, where the products are for example songs, video games or e-books. This kind
of market has the special feature that its products have unlimited supply (since they
are just a digital copy), and therefore we can exploit this in our models, to justify
assumptions of the asymptotic behaviour of the market.

We study some variations of the traditional Multinomial Logit (MNL) model, char-
acterising the behaviour of consumers, where their purchasing decisions are affected
by the quality and prices (initially fixed) of the available products, as well as their
visibilities in the market interface and the consumption patterns of previous users.
We focus particularly on the parameters associated to the network effects, where
depending on the strength of the network effects, it is possible to explain: herd be-
haviours, where an alternative overpowers the rest; as well as more well-distributed
settings, where all the alternatives receive enough attention. Which we interpret as a
notion of fairness, since higher quality products get a larger market share.

Finally, using the model where market shares are distributed according to the quality
of the products, we study pricing strategies, where sellers can either collaborate or
compete. We analyse the effect of both type of strategies into the choice model.
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Chapter 1

Introduction

1.1 Thesis Statement

The main goal of this thesis is to understand how consumer behaviour is affected
by network effects, given by the consumption history, as well as position biases,
where only selected products are shown in the first positions. For chapters 3 and
4 we consider a two steps model based on a Multinomial Logit model, where the
consumers can try a product and then decide whether to buy it or not. In the last
chapter, we use a variation of the Multinomial Logit model with network effects,
where we incorporate the prices into the purchasing decisions. Using these models
we provide to the firm running the market and the sellers, the best strategies that they
can follow based on the available information, so they can maximise their revenues.

Although many concepts used in this thesis can have a variety of meanings, for
the purpose of this thesis we consider them defined as follows:

• (un)Predictability: We say that the outcome of a market is predictable, if given a
fixed set of products, the long-run distribution of the market is defined only by
the intrinsic characteristic of the products (such as their quality) and the market
structure (such as the chosen ranking). If on the other hand, the initial appeals
and early dynamics heavily affect the market outcomes, then we say that they
are unpredictable.

• Inequality: We say that a market outcome is unequal, if it suffers from "Rich-
gets-Richer" effects, where popular products take over the whole market.

• Inefficiency: We say that a market outcome is inefficient if it leads to subop-
timal results, where for example "bad" products are very popular and "good"
products take the last positions in the rankings.

Our primary objective is to maximise the market efficiency, represented by the
expected number of purchases. Note also that the higher this objective is, the lower
the probability that consumers try a product but then decide not to purchase it.
Hence, if we interpret this last action as an inefficiency, maximising the expected
efficiency of the market also minimises unproductive trials.

1



2 Introduction

1.2 Introduction

The widespread use of internet, has created many new type of markets that are
reshaping the global economy, for example, people now watch movies on Netflix

instead of renting a DVD at Blockbuster.
These Internet-based markets do not necessary follow the same rules as tradi-

tional markets (which have been well studied for decades), since their structure can
be fairly different, where for example products can have unlimited supply (e.g., dig-
ital goods like songs), and millions of users from all across the world can access to
them instantaneously. All these new type of markets open research opportunities
in many disciplines such as Economics, Operations Research and Computer Science,
where researchers could tackle problems like novel pricing schemes, subscription-
based fees, recommendations systems and many more.

A very interesting feature of these markets is the effect of consumption history,
reflected in a social signal (e.g., 5 stars rating, number of views, etc.), over the purchas-
ing decisions of upcoming customers, phenomenon that in the literature is referred
as social influence or network effects. Consumers make their purchasing decisions
(choose one product over the others, or do not purchase anything) not only based on
the quality and prices of the available alternatives, but also based on market-specific
features such as rating systems that keep track of past consumption and opinions.
These network effects become even more relevant when the prior information about
the products is scarce, so the willingness to try/pay is heavily influenced by the
opinion of the rest (Wisdom-of-the-Crowd e.g., Wang et al. [2014]).

In this thesis we will pay special attention to a sub-class of internet-based markets,
called Trial-Offer markets, which are a setting where consumers can try products be-
fore deciding to buy them or not, an example of these markets are the Freemium
phone apps, where you get for free the basic version, but you can pay to obtain
the complete one (or an ad-free version). Many authors (e.g.,[Salganik et al., 2006;
Tucker and Zhang, 2011; Viglia et al., 2014]) have explored the impact of network
effects on consumer behaviour in these markets, where consumer can experience
different types of social signals: A market place may report the number of past pur-
chases of a product, its consumer ratings, and/or its consumer recommendations.
Recent studies [Engstrom and Forsell, 2014; Viglia et al., 2014] however came to the
conclusion that the popularity signal (based on the number of past purchases or
the market share) has a much stronger impact on consumer behaviour than the av-
erage consumer rating signal. These two experimental studies were conducted in
very different settings, using the Android application platform in one case and hotel
selection in the other. Consumer preferences are also influenced by product visibil-
ities, a phenomenon that has been widely observed in internet advertisement (e.g.,
[Craswell et al., 2008]), in online stores such as Expedia, Amazon, and iTunes, as
well as physical retail stores (see, e.g., [Lim et al., 2004]).

Despite the ubiquitousness of social signals in internet-based markets (including
for songs, albums, movies, hotels, and cell phones to name only a few), there is con-
siderable debate in the scientific community about the benefits of network effects.
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Many researchers have pointed out the potential negative implications of network
effects. The seminal work of Salganik et al. [Salganik et al., 2006] on the MusicLab

experimental market demonstrated that network effects can introduce significant un-
predictability, inequality, and inefficiency in Trial-Offer markets. To investigate this
hypothesis experimentally, they created an artificial music market called the Musi-
cLab. Participants in the MusicLab were presented a list of unknown songs from
unknown bands, each song being described by its name and band. The participants
were divided into two groups exposed to two different experimental conditions: the
independent condition and the social influence condition. In the first group (indepen-
dent condition), participants were provided with no additional information about
the songs. Each participant would decide which song to listen to from a random
list. After listening to a song, the participant had the opportunity to download it. In
the second group (social influence condition), each participant was provided with an
additional information: The number of times the song was downloaded by earlier
participants. Moreover, these participants were presented with a list ordered by the
number of downloads. Additionally, to investigate the impact of social influence,
participants in the second group were distributed in eight “worlds” evolving com-
pletely independently. In particular, participants in one world had no visibility about
the downloads and the rankings in the other worlds. The MusicLab is a Trial-Offer
market that provides an experimental test-bed for measuring the unpredictability
of cultural markets. By observing the evolution of different worlds given the same
initial conditions, the MusicLab provides unique insights on the impact of social
influence and the resulting unpredictability.

These results were reproduced by many researchers (e.g., Salganik and Watts
[2009, 2008]; Muchnik et al. [2013]; van de Rijt et al. [2014]). More recently, [Hu et al.,
2015] studied a newsvendor problem with two substitutable products with the same
quality in which consumer preferences are affected by past purchases. The authors
showed that the market is unpredictable but can become less so if one of the prod-
ucts has an initial advantage. [Altszyler et al., 2017] has recently studied the impact
of product appeal (how attractive they are) and product quality (how good they are)
in a trial-offer market model with network effects under a finite time horizon. The
authors showed that there exists a logarithmic trade-off between the two: the final
product market share remains constant if a decrease in product quality is followed
by an exponential increase in the product appeal. Other researchers have focused
on understanding when these undesirable side-effects arise and where they come
from. [Ceyhan et al., 2011] studied a market specified by a Logit model where a
constant J captures the strength of the social signal. They showed that the market
behaviour (e.g., whether it is predictable) depends on the strength of the social sig-
nal. Their results did not consider product visibilities, which is another important
aspect of Trial-Offer markets. Indeed, various researchers (e.g., Lerman and Hogg
[2014]; Abeliuk et al. [2015, 2017]) indicated that unpredictability and inefficiencies
often depend on how products are displayed in the market. In particular, Abeliuk



4 Introduction

et al. [2015] shows that social influence/network effects are always beneficial1 in ex-
pectation when the products are ordered by the performance ranking that maximises
the purchases greedily at each step. This result was obtained using the generalised
Multinomial Logit model proposed by [Krumme et al., 2012] to reproduce the Musi-
cLab experiments. This thesis seeks to expand our understanding of network effects
in consumer choice, and explores the role of the social signal in conjunction with
product visibilities and prices. The starting point is the generalised Multinomial
Logit model of [Krumme et al., 2012], which we extend to vary the strength of the
social signal. More precisely, we start considering a Trial-Offer market where the
probability of purchasing product i at time t is given by

πi(φ
t) =

vσi qi f (φt
i )

∑n
j=1 vσj qj f (φt

j)
(1.1)

where σ is a bijection from n products to n positions (representing a ranking), vk ∈ R

is the visibility of position k, qi ∈ R is the inherent quality of product i, φt
i is the

market share of product i at time t, and f : R → R is a positive continuous increas-
ing function that represents the strength of the network effects. We notice that if in
Equation (1.1) we consider f (x) = K, with K a constant, then we recover a version
of standard Multinomial Logit model (e.g., see McFadden et al. [1973]), since in that
case, πi does not change over time. In this thesis we will explore different settings
where we first fix the function f , as f (x) = x, and we vary the rankings induced by
σ, making more emphasis on the effects of position biases into a consumer choice
model. We then fix σ, and modify f , to be f (x) = xr, r > 0, r 6= 1 providing a
family of functions indexed by r, where we will study the effect on the consump-
tion behaviour related to different values of r, what we will call the strength of the
social signal. Finally in a related model, deduced from a variation of a multinomial
logit model where network effects are incorporated, the parameters of visibilities are
absorbed, and f (x) = xr, 0 < r < 1, we include the prices of each product into the
model, so we can study how the sellers strategies change depending on the consumer
choice model, and the strength of the social signals.

The theoretical results will be complemented with some agent-based simulations,
where we will explore the performance of the suggested market designs. The numer-
ical examples also will help to clarify when it is beneficial to include different ranking
policies and social signals.

1.3 Related work

1.3.1 The Wisdom-of-the-Crowd and the Rich-Get-Richer Effect

In the absence of prior information about the alternatives, people tend to rely in what
previous consumers have said or done, observed through an aggregate information
given for example by past consumption or a rating/review system. As Lorenz et al.

1increase the expected number of purchases
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[2011] estates, the Wisdom of the Crowd effect is not a socio-psychological effect
but a statistical phenomenon, based on the aggregation of estimates over individu-
als, where the opinion of the majority has an impact on the decisions performed by
the individuals. The effect of the Wisdom-of-the-Crowd can be so strong that peo-
ple leaning towards a particular option, seem to change their mind due to what the
majority says. This effect has been studied in many fields, such as psychology, eco-
nomics, marketing, etc., where new users seem to believe that old users had a strong
reason or better information for choosing the options they chose and decide to copy
them. This phenomenon can be observed for instance in stock markets (Surowiecki
[2004]), cryptocurrencies (Gusev [2018]), adoption of software (Fan et al. [2015]), and
many others.

However, this imitation effect, can lead to irrational herding effects, where every-
one copies what the rest is doing, not necessarily choosing the best options along the
way. In order to investigate the effects of social influence is that many researchers
have tested how reliable those systems can be, particularly about the unpredictability
generated by network effects. The experimental evidence from MusicLab suggests
that the relationship between quality and popularity can be significantly distorted
by social influence and position biases (where most popular products were allocated
in the first positions of a ranking). These relationships have also been observed ex-
perimentally by Stoddard [2015], who studied the relationship between the intrinsic
article quality and its popularity in the social news sites Reddit and Hacker news.
The author proposed a Poisson regression model to estimate the demand for an ar-
ticle based on its quality, past views, and age among others. The results obtained
after an estimation of each intrinsic article from these social news site showed that
the most popular articles are typically the articles with the highest quality. Another
study of social influence was carried out by Tucker and Zhang [2011]. The authors
conducted a field experiment which showed that popularity information may bene-
fit products with narrow appeal significantly more than those with a broad appeal.
Along these lines, Sipos et al. [2014] analysed the voting behaviour of users from
Amazon product reviews when answering the question “Was this review helpful to
you?” and how these votes relate to quality. The results showed that votes not only
depend on the inherent quality of reviews, but also on the position where the re-
view was presented in the ranked list. The authors also concluded that the ranking
process converges and that the relative ordering of reviews stabilises during the 4
months data was collected.

One of the most common phenomena observed in online markets is what some re-
searchers call Matthew effect or rich-get-richer effect, where the probability of choosing
a product is proportional to its current level of popularity, hence, the most popular
products get reinforced its popularity with every market interaction. These effects
has been observed in many experimental settings (e.g., Salganik et al. [2006]; Sal-
ganik and Watts [2009, 2008]; Lorenz et al. [2011]; Muchnik et al. [2013]; van de Rijt
et al. [2014]). Where for example in Lorenz et al. [2011] the authors study how the
subjects of an experiment of factual questions, tend to change their mind after being
presented with the average answers of their peers, concluding that social influence
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can undermine the wisdom of the crowd effect. Along the same lines Muchnik et al.
[2013] designed an experiment on a social news aggregation Web site, where they
analysed effects such as, the bias created over individual rating behaviour due to the
ratings given by past users; and how positive and negative social influence (whether
an article was considered good or bad, respectively) created herding effects, for in-
stance, an article that displays a considerable number of down-votes (up-votes) may
lead to upcoming users to also down-vote (up-vote) it, reinforcing the bias towards
that article.

But not everything is negative about social influence, as Duncan Watts (Watts
[2012]) estates that, when social influence is affecting the market, prediction of pop-
ularity can be a nearly impossible problem. However a more hands-on approach
can be taken, what he calls measure and react, explained as in this kind of market,
instead of trying to predict how the users will behave or defining rules to control the
customers’ behaviour, it is preferable to measure directly the market interactions be-
tween users and products and react accordingly. Following this idea some research
(e.g., Abeliuk et al. [2015, 2017]; Van Hentenryck et al. [2016]) has focused on the de-
sign of more appropriate ranking systems (different than the popularity ranking) that
can control the disparities created by social influence, claiming that unpredictability
is not an inherent property of this type of markets, where consumers can observe
what the rest is doing, but its related to how the information is transferred to the
users, and in some ways this can be controlled through a proper design of the mar-
ket.

Abeliuk et al. [2017] shows that the use of the quality ranking that ranks products
in decreasing order of quality, reduces the unpredictability associated to social in-
fluence (in comparison with the popularity ranking). The authors report the results
of an experimental study, where participants were shown a list of ten science stories
displayed in a column and asked them to read one story, and later recommend it if
they found it interesting. The participants were assigned (uniformly at random) into
one of four different experimental conditions that vary depending on how the sto-
ries are ordered and whether social signals are displayed or not. If no social signals
were present (independent condition), then participants saw only story titles and
short abstracts. When social signals were displayed, each participant was provided
with additional information in the form of the number of recommendations that each
story received from prior participants in that experiment, displayed as "popularity
bars".

As it will be presented in Chapters 3 and 4, we will consider a similar idea in our
model, presenting a ranking method that mitigates the disparities between popular-
ity and quality that emerge from social influence and position bias. A key feature
of Trial-Offer markets is its decomposition into two stages, a sampling stage where
participants decide which product to try followed by a buying stage where partici-
pants decide whether to buy or not the product sampled at the previous stage. Our
results rely on the natural assumption that social influence and position biases have a
greater effect on the decisions taken in the sampling stage than on the buying stage.
Thus, popularity as proxy of quality is distorted by the noise of the first stage. Our
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ranking policy uses a proxy for quality based only on the second stage, which can be
interpreted as the posterior probability of buying an item given that it was sampled.

1.3.2 Online Advertising and Negative Externalities

Markets like Google Ads, where the firms compete for positions in the search re-
sults when certain keywords are typed, are an example of online sponsored search
market, where the market-manager selects the set of ads and their order of appear-
ance that will maximise the expected revenue. A very popular method, used both as
a research model and with industry applications is the separated click-through-rates
(CTR) model (see for example Aggarwal et al. [2008]; Lahaie et al. [2007]; Edelman
et al. [2007]), where the firms that own the ads will pay a fixed amount of money
every time someone clicks on their ad, where certain ads can pay very little but their
popularity compensates, providing a considerable expected revenue (Gomes et al.
[2009]). The separability assumption estates that the CTR is just determinate as the
product of a position factor, and a quality factor for each one of the ads, however,
this does not consider the fact that due to a limited attention-span of the audience, at
each stage the chances of one ad being clicked depends upon the performance of the
other ads. In particular, highly attractive ads can undermine the performance of ads
with higher quality, in the literature, this is called negative externalities (Gomes et al.
[2009]; Jeziorski and Segal [2012]).

Ad auction is a well-studied scenario with negative externalities where the alloca-
tion of slots is assigned to ad bidders by an auctioneer (Kempe and Mahdian [2008];
Aggarwal et al. [2008]; Ghosh and Mahdian [2008]; Cavallo and Wilkens [2014]; Hum-
mel and McAfee [2014]). In Ghosh and Mahdian [2008] the authors introduce the
problem of modelling externalities in online advertising, and study the winner de-
termination problem under these models, which in the most general cases turns out
to be computationally hard (even to approximate). They pay special attention to the
lead generation business where the goal is to sell credible leads (such as personal in-
formation of a potential customer) to advertising companies, interested in such leads.
The advertisers then contact the potential customers offering them quotes about their
services. This model of advertising is commonly used for insurances companies, or
telecommunication companies. Where the objective of the firms is, that the leads
are sent to fewer competing entities (being as exclusive as possible). A similar phe-
nomenon is explained in a famous article from 1986 (Katz and Shapiro [1986]), where
the authors discuss about the case of the competing technologies for video recording,
Beta and VHS (mutually incompatible formats), where Beta was considered of supe-
rior quality (since it had better resolution and more stable images), but the recorders
were more expensive, leading to opting for VHS instead, becoming the most popular
option.

A general assumption in many models related to online advertising is that once
an user selects one of the options, he only can consume it or leave the market. Al-
though, more general approaches has been taken, where some researchers has fo-
cussed their work into the creation of interpretative models. Representing in this
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way, more complex behaviours. An example of these models is known as a cas-
cade model (e.g., Kempe and Mahdian [2008]), where users can select an option and
have the extra alternative to move to another one with certain probabilities, and then
repeat the same process. In a recent paper, Gao et al. [2017] studies a monopolis-
tic pricing optimisation, under a general cascade model, where users can select one
product, and then they can decide to buy it, go to the next one, or abandon the market
with certain transition probabilities. They first assume a complete information set-
ting (all the transition probabilities are known) and deduce an optimal price for the
products. In the second half of the paper, the authors study a more realistic setting,
where the transition probabilities are unknown but they can be learnt, proposing two
different approximations algorithms to do that, providing as well some theoretical
performance guarantees for them.

With the appearance of online social networks, recent work in optimal auction for
a single good has also considered positive network externalities, where the utility of
an individual consumer for the good increases with the number of network neigh-
bours using the same good (Hartline et al. [2008]; Haghpanah et al. [2013]; Munagala
and Xu [2014]). Similar cases can be observed in online games (Liu et al. [2015]), soft-
ware and operative systems (Tellis et al. [2009]), where products are more attractive
when more people use them.

1.3.3 Revenue Management and Discrete Choice Models

Capturing the way people make decisions has been a problem of interest across
different disciplines for many decades, having on one hand classic models from Eco-
nomic Theory, and on the other hand data-driven approaches from Machine Learn-
ing, two different perspectives that aim to the same: understand consumer behaviour,
and eventually predict with certain accuracy future outcomes. Many features have
been considered into these models (e.g., type of users, willingness to pay, etc.), try-
ing to establish what is more relevant to the consumers, leading to better structured
markets.

From the Economic Theory perspective, predicting the sales quantities is a key
element in the field of Revenue Management, where sellers have to decide what
products to sell and their best prices that maximise their revenues (among other
decisions). In order to do that, it is required to have at least an estimation of the
consumers’ demands for each one of the products, such a problem has been widely
studied in Economics, where classic models assume that each user obtains certain
utility for buying a particular product (given by a real number), so among all the
available discrete options, consumers try to maximise their utilities. It is important to
notice that this can be as general as possible, where for instance, among the available
options we can consider bundles of products as a single one, or include the no-
purchase option as a fictional product that captures the consumers that do not buy
anything.

An important subclass of discrete choice models are special cases of the Random
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Utility Models (RUM) (Block et al. [1959]). Among the most common Random Utility
Models, we can find the Multinomial Logit (MNL) model, originally introduced by
Luce [1959], widely used in fields such as Psychology, Marketing, Economics, and
Computer Science, where it is often used for operational and managerial decisions
problems such as assortment optimisation (Wang and Wang [2016]), pricing (Besbes
and Sauré [2016]), scheduling (Feldman et al. [2014]), and top K-rankings (Chen et al.
[2018]).

The MNL model has many advantages due to the simplicity on how it is defined,
leading to desirable results like being computational tractable (Assortment optimisa-
tion can be computed in polynomial time [Talluri and Van Ryzin [2004]]), however it
exhibits the property known as independence of irrelevant alternatives (IIA), which
states that the ratio of the probabilities of being chosen between two alternatives,
is independent of the rest of alternatives. In practice, this property is often vio-
lated, particularly when there are more than two similar alternatives. To overcome
this limitation, several extensions have been proposed, among them we can find the
Nested Multinomial Logit (NMNL) model (Williams [1977]), where the alternatives
are grouped in nests, choosing each nest follows a MNL model, and choosing each
alternative within each nest, is also chosen accordingly a MNL. The Mixed Multino-
mial Logit (MMNl) model (Daly and Zachary [1978]) that considers random utilities
and integrates the original MNL model over the distribution of utilities. Some of
the downsides of these more general choice models is the computational complexity
associated to them, while problems like assortment (choosing the subset of products
that maximise the expected revenue) under the MNL model admits a polynomial-
time algorithm (Talluri and Van Ryzin [2004]; Rusmevichientong et al. [2010a]), in
the case when consumers follow either a NMNL or MMNL model, the optimal as-
sortment problem is NP-hard (Davis et al. [2014]; Rusmevichientong et al. [2010b]
respectively]).

In a different class of models we can find the Markov Chain model (Blanchet
et al. [2016]) in which states are products, and the individuals choose product i with
a probability pi or decides to move to product j with a transition probability pij. The
authors prove that the assortment problem under this model can be solved efficiently
in polynomial time. Berbeglia [2016] shows that the Markov Chain Model and more
generally, the discrete choice models based on random walks, are a special case of
the Random Utility Models.

As Berbeglia [2018] states, RUM’s fail to explain several choice phenomena, such
as the decoy effect, where the inclusion of a similar but inferior product into the option
set, can increase the probabilities of being chosen for some of the original products (a
typical example is to include a medium size popcorn with a price close to the large
size option). Hence, more complex consumer behaviour has led to the inclusion of
more general choice models that are not RUM’s such as the Perception-Adjusted
Luce model (PALM) (Echenique et al. [2018]), the General Attraction Model (GAM)
(Gallego et al. [2014]), the General Luce Model (Echenique and Saito [2015]), and the
General Stochastic Preferences Berbeglia [2018]). PALM for example considers a per-
ception effect, where the individuals check sequentially their alternatives according
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a perception priority order, and the probability of choosing an alternative is affected
by the probability of not choosing alternatives with higher priority.

A big part of the problems studied with the use of discrete choice models are
either assortment or pricing problems (or a combination of both), where researchers
weight the trade-off between having a more general model and its computational
complexity. The different types of problem studied under these models has lead
to many extensions. In Besbes and Sauré [2016] for example, the authors present a
model where the demands follow a MNL model, they analyse equilibrium outcomes
when different firms compete and face a display constraint (assortment), each retailer
needs to choose strategically which products to show and what prices in order to
maximise their revenues. The analysis is separated in two parts, the first part is when
the prices are fixed by an external agent and the firms only compete in assortments,
and the second is when they compete on both assortment and pricing, for this last
one the prices are chosen according an assortment maximisation strategy. Li and Huh
[2011] on the other hand, study a case where a Nested Logit model (including MNL
as a special case, when there is only one nest) represents the demands of consumers,
defining what the authors call the market share of the products, the authors find an
optimal price, that maximises the revenue for a monopolist selling multiple products.
A price and quantity competition are also studied under simpler conditions for the
case of an oligopoly.

Some recent research have also incorporated the effect of past purchases (net-
work effects) into a MNL model for consumer choice, for example in Wang and
Wang [2016] and Du et al. [2016], the authors propose a model that focuses in a mo-
nopolistic environment (studying assortment, and pricing optimisation respectively),
defining a consumer utility function affected linearly by network effects. Their mod-
els has led to many related research and extensions (e.g., Cui and Zhu [2016]; Chen
and Chen [2017]). It is worth mentioning that the models presented by Du et al.
[2016] and Cui and Zhu [2016] have among their results, that for the homogeneous
case (identical products), if the network effects are strong enough then the optimal
price assigns the same price to all the products except for one (arbitrary) product,
which gets a lower price. This result differs from the classical MNL model without
network effects, where in such a case, all the products have the same price. In our
model on the other hand, the presence of network effects does not affect that out-
come, obtaining the same price for all products. That price depends on a network
parameter r, and when r → 0 we recover the prices from the MNL without network
effects.

Similarly, Abeliuk et al. [2016] studies an assortment optimisation problem under
a MNL model that presents both, social influence and position biases, proposing a
greedy policy that finds the optimal assortment and positioning in polynomial time,
which holds true even in the case where capacity constrains that limit the number of
visible products, are present.

Most of the previous research that include network effects into their models have
focused on monopolistic markets. Among the exceptions we can find Li and Huh
[2011] and Chen and Chen [2017], where the latter analyses a duopoly where the
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firms compete using the market share as a decision variable (instead of the price),
finding multiple Nash Equilibria depending on the strength of the network effects
and the quality of the products. In contrast to them, as we will see in Chapter 5,
when we study a competition between sellers, our model leads to a unique Nash
Equilibrium.

Also in the competition research literature, we can find a recent paper, Feng
and Hu [2017] where the authors provide a game theoretical approach to a market
where the strategic sellers decide to enter if their expected revenues are positive,
their managerial decision is the investment in the quality of their products. After
the quality game is played, sequential customers enters to the market and base their
purchasing decisions on the qualities and the current sales volume. Unlike the model
presented in Chapter 5, they do not consider a no purchase option, since they assume
the prices are the same for every product and fixed beforehand, their main focus is
on the quality competition game.

In a different stream of literature some researches have focussed on social net-
works and pricing decisions over the services provided (e.g., Sääskilahti [2015]; Chen
et al. [2011]; Candogan et al. [2010]; Crapis et al. [2016] ), due to the nature of this
type of network, most of the research in this area only analyses monopolistic pric-
ing, however some extra complexities have also been included into their models ,
such as incomplete information. For example Crapis et al. [2016] considers a model
where the qualities of the products have a random distortion, and the preferences for
each product follow a known distribution, the author study the monopolist’s pricing
problem where sequential customers arrive and face the decision of buying or taking
an outside option. Under some conditions based on social interactions, the prod-
ucts’ qualities eventually can be learnt, and under this setting two pricing policies
are proposed (static price, and single change price).

1.3.4 Asymptotic Analyses

As early dynamics in a market tend to be very noisy, some research has focused in
the study of asymptotic performance of markets, trying in the first place to detect
some patterns in the consumer behaviour in the long run, and then make strategic
decisions about the design of the market to control inefficiencies.

The Trial-Offer market studied in this thesis generalises the model proposed by
Krumme et al. [2012], exploring various strengths for the social signal as indicated
in Equation 1.1. The case of a linear social signal (r = 1), will be analysed first,
since this has been given significant attention (e.g., Salganik et al. [2006]) . Abeliuk
et al. [2015] proposed the performance ranking which orders the products optimally at
each time t given the appeals, qualities, visibilities, and market shares. They show
that, when the performance ranking (a greedy algorithm that chooses the permutation
of products, that maximises the expected number of purchases) is used, the market
always benefits from social influence in expectation. In Chapter 3 we will study the
quality and performance rankings and we will show that the market converges al-
most surely to a monopoly for the highest-quality product, indicating that the quality
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and performance rankings are both optimal and predictable asymptotically. These
results extend well-known theorems on Polya urns and their generalisations (e.g.,
Mahmound [2008]; Chung et al. [2003]; Renlund [2010]).

[Ceyhan et al., 2011] study a choice probability C J
i (φ

t), where J represents the
strength of the social signal, and prove some general convergence results under some
assumptions. In particular, they use the ODE method Ljung [1977] and a Lyapunov
function (e.g., Kushner and Yin [2003]) to prove that the market converges to an equi-
librium when the Jacobian of C J

i is symmetric (which is not the case when product
visibilities are present). They also study in detail the case where the market follows
a Logit model of the form

C J
i (φ) =

eJφi+qi

∑j eJφj+qj

where J is a constant capturing the strength of the social influence signal. They show
that there exists a parameter J∗ such that the market converges toward a unique equi-
librium when J < J∗ and to a monopoly when J ≥ J∗. No analytical characterisation
of the equilibrium when J < J∗ is presented.

It is interesting to contrast these and our results. Observe first that the proof
technique used in Ceyhan et al. [2011] relies on the fact that the Jacobian of C J

i is
symmetric, which is not the case for Trial-Offer markets with product visibilities.

It is also useful to mention that different, theoretical and experimental, approaches
to the use of social influence are present in the literature. For instance, [Yuan and
Hwarng, 2016] describe a demand-based pricing model under social influence and
capture its behaviour with a dynamical system that evolve to some stable or chaotic
equilibria depending on the strength of the social signal. [Stummer et al., 2015]
introduces an agent-based model for repeated purchase decisions addressing differ-
ent types of innovation diffusion and their perceived attributes; They also used this
methodology to an application concerned with second-generation biofuel.

1.4 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2 we explain the back-
ground of techniques and results that will be used throughout the thesis, making
special emphasis in stochastic approximation algorithms and ordinary differential equa-
tions.

Chapter 3 starts defining a general model for the Trial-Offer market, as well as
some special properties related to Chapter 2, where we show that the market share
can be represented as a Stochastic Approximation Algorithm. We then develop on a
basis of this general model of consumer choice, exploring one of the key managerial
decisions, the rankings. We fixed the network effect function to be f (x) = x, giving a
linear growth to the way previous purchases affect the future consumption patterns,
this is one of the most common social signals used in both literature and industry
applications (MusicLab uses this, for example). We study the long term behaviour
of the market under two regimes: the quality ranking where products are ordered
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decreasingly in terms of their intrinsic quality, and the performance ranking which
greedily optimise the positions of the products for any new consumer. We show that
under certain conditions, in both cases the market converges to a monopoly of the
highest quality product, making the market completely predictable and asymptoti-
cally optimal. We also develop some computational experiments to complement the
theoretical findings, and to give some insights about the general behaviour of the
market.

Chapter 4 on the other hand, considers only static rankings (like the quality rank-
ing) but we add complexity, including a family of social signal functions indexed by
a parameter r > 0, r 6= 1(known as the social signal or network effect parameter),
where the functions are given by f (x) = xr. The main objective is to study whether
we can represent a market evolution to something different than a monopoly for a
particular product, having on the other hand, a better distributed and fairer market.
We prove that with probability 1, when r < 1, the vector of market shares converges
to a distribution, where all the products have a strictly positive chance of being pur-
chased. We analyse the properties of this equilibrium, such as stability and monotony
in terms of the parameters. Many computational experiments are developed, to show
the behaviour of the market equilibrium and its properties in terms of the parameter
r. We also study the case when r > 1 showing that the equilibria of the Trial-Offer
market are given by monopolies for each product and other type of equilibria (e.g, a
market share consisting on a distribution 60%, 40%, 0% for a market with 3 products).
We prove that, when r > 1, the equilibria that are not monopolies are unstable (under
certain conditions). As a result, the market will likely converge to a monopoly for
some product, highly affected by initial conditions and early dynamics.

In Chapter 5 we consider a slightly different model, to study the problem from
the sellers perspective, where we start from a variation of a Multinomial Logit model
with network effects for consumer choice, incorporating the prices of the products
into the model. Naturally we also consider a no purchase option, which represents
the cases where consumers decide not to purchase anything. We analyse two differ-
ent settings that strategic sellers can follows, they can either cooperate or compete
with each other. In the first case the sellers adopt a monopolistic strategy trying to
maximise the overall revenue. We find in this case an optimal static price strategy.
If on the other hand, they decide to compete (so they can maximise their own rev-
enues), a price competition game is induced, we prove that this game has a unique
pure Nash Equilibrium, providing a greedy algorithm to compute it. We also analyse
the behaviour of the prices and revenues in terms of the network effect parameter, as
well as how the expected consumer utilities are compared under both strategies.

Finally Chapter 6 explains the main contributions of this work and establish the
open questions that can lead to some future work.
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Chapter 2

Background

This chapter has the purpose of introducing the necessary background that will be
used throughout the thesis. Section 2.1 explains some key results about Ordinary
Differential Equations and Stability Analysis. In Section 2.2 we review Stochastic
Approximation Algorithms, where we are particularly interested in Robbins-Monro
Algorithms. Section 2.3 presents some of the key results from Benaïm [1999] that will
be used in this thesis.

2.1 Differential Equations and Stability

This section starts with a brief introduction of Ordinary Differential Equations (ODE)
and some stability criteria (e.g., see Hirsch et al. [2012]; Jordan and Smith [1999]).
Consider the following differential equation

dy
dt

= F(y) (2.1)

where F is some vector field. The concept of equilibrium is central in the study of
asymptotic behaviour for this type of equation.

Definition 2.1. A vector y∗ ∈ Rn is an equilibrium for differential equation (2.1) if F(y∗) =
0.

We are interested in equilibria that satisfy (at least) certain stability criteria.

Definition 2.2. An equilibrium y∗ is said to be stable for Equation (2.1) if, given ε > 0, there
exists δ > 0 such that ‖y(t)− y∗‖ < ε for all t > 0 and for all y such that ‖y− y∗‖ < δ.
We say that y∗ is asymptotically stable if it also satisfies

lim
t→∞

y(t) = y∗.

Remark 2.1. When an equilibrium y∗ is not stable, we say that y∗ is unstable.

The asymptotic stability of an equilibrium y∗ can be characterised in terms of the
Jacobian matrix JF(y∗) = ( ∂Fi(y∗)

∂yj
)i,j (i, j ∈ {1, . . . , n}) as estated by the following

Theorem (see, for instance, Jordan and Smith [1999] p. 440). The following two
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theorems will be used in Chapter 4 to show, that under certain circumstances, some
market equilibria are unstable.

Theorem 2.1. Let y∗ be an equilibrium for the differential equation (2.1). If the eigenvalues
of the Jacobian matrix JF(y∗) all have negative real part, then y∗ is asymptotically stable.
If, on the other hand, JF(y∗) has at least one eigenvalue with a positive real part, then y∗ is
unstable.

A well-known result from linear algebra (see, for example, Robinson [2006] p. 296)
establishes the connection between the trace of a square matrix and its eigenvalues.
In the following, we use tr(A) = ∑n

i aii to denote the trace of matrix A where aii are
the diagonal entries of matrix A.

Theorem 2.2. Let A be a n × n matrix, and λ1, ..., λn its eigenvalues. Then tr(A) =

∑n
i=1 λi.

2.1.1 Convergence of sequences

In Chapter 5 we will propose a greedy algorithm to compute some equilibrium price,
the correctness of that algorithm it is based on a classic result about convergence of
subsequences, known as The Bolzano-Weierstrass Theorem, which can be stated as
follows

Theorem 2.3. Every bounded sequence in Rn has a convergent subsequence.

Its proof can be found for example in Burk [2011] (Theorem 2.6).

2.2 Stochastic Approximation Algorithms

The main results of this thesis rely on Stochastic Approximation Algorithms, and the
ODE method. We will use the definitions and results from this section to characterise
the long term behaviour of our market model. We consider now one of the most well
studied Stochastic Approximation Algorithms, a Robbins-Monro Algorithm (RMA)
[Kushner and Yin, 2003; Duflo and Wilson, 1997] which can be defined as follows.

Definition 2.3 (Robbins-Monro Algorithm). A Robbins-Monro Algorithm (RMA) is a
discrete time stochastic process {xk}k≥0 whose general structure is specified by

xk+1 − xk = γk+1[F(xk) + Uk+1], (2.2)

where

• xk takes its values in some Euclidean space (e.g., Rn);

• γk is deterministic and satisfies γk > 0, ∑k≥1 γk = ∞, and limk→∞ γk = 0;

• F : Rn → Rn is a deterministic continuous vector field;
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• E[Uk+1|F k] = 0, where F k is the natural filtration of the entire process.1.

A RMA {xk}k≥0 where xk has n coordinates is said to be n-dimensional.
Robbins-Monro algorithms are particularly interesting because, under certain con-
ditions on xk, γk, and Uk+1, their asymptotic behaviour, i.e., the values of xk when
k → ∞, is closely related to the asymptotic behaviour of the following continuous
dynamic process:

dxt

dt
= F(xt). (2.3)

This idea, called the ODE Method, was introduced by Ljung [1977] and has been
extensively studied (e.g., [Borkar and Meyn, 2000; Duflo and Wilson, 1997; Kushner
and Yin, 2003]). Consider again the RMA {xk}k≥0 defined in (2.2) and the following
hypotheses:

H1: sup
k

E[‖Uk+1‖2] < ∞;

H2: ∑
k
(γk)2 < ∞;

H3: sup
k
‖xk‖ < ∞.

We will now present a theorem establishing the connection between the discrete
stochastic process (2.2) and the continuous process defined by (2.3). This connec-
tion requires the concept of Internally Chain Transitivity (ICT) sets. These ICT sets
include equilibria, periodic orbits of (2.3), and possibly more complicated sets.

To define ICT sets formally for the purpose of this thesis, we use Proposition
5.3 in Benaïm [1999] that proves that the concepts of internally chain recurrent and
internally chain transitive set are equivalent when the set over which F is defined is
connected, which will be the case here.

Definition 2.4 ((ε, T)-Chains Conley [1978]). Consider ε > 0, T > 0, a set A ⊂ Rn, and
two points x, y ∈ A. There is an (ε, T)-chain of length k in A between x and y if there exist
k solutions {y1, ..., yk} of (2.3) and their associated times {t1, ..., tk} with ti > T such that

1. yt
i ∈ A for all t ∈ [0, ti] and for all i ∈ {1, ..., k};

2. ‖yti
i − y0

i+1‖ < ε for all i ∈ {1, ..., k− 1};

3. ‖y0
1 − x‖ < ε and ‖ytk

k − y‖ < ε.

We are now in a position to define ICT sets, which is derived from the definition of
Internally Chain Recurrent sets introduced by Conley [1978].

Definition 2.5 (ICT Sets). A closed set A is said Internally Chain Transitive (ICT) for the
dynamics (2.3) if it is compact, connected, and for all ε > 0, T > 0 and x, y ∈ A, there exists
an (ε, T)-chain in A between x and y.

1F k, the natural filtration, is the σ-field generated by the history {xl : l ≤ k}
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The following theorem, due to Benaïm [1999] and whose proof is in Section 2.3, links
the behaviour of the limit set L{xk}k≥0 of any sample path {xk}k≥0 for Equation (2.2)
and the limit sets of the solution to Equation (2.3).

Theorem 2.4 (Benaïm [1999]). Let {xk}k≥0 be a Robbins-Monro algorithm (2.2) satisfying
hypotheses H1− H3 where F is a bounded locally Lipschitz vector field (e.g., a bounded C1

function). Then, with probability 1, the limit set L{xk}k≥0 is internally chain transitive for
Equation (2.3).

2.3 Key Results from Benaïm [1999]

Consider the set of solutions of the differential equation (2.3), we say that Υ = (Υt)t∈R

is the flow induced by the vector field F, where Υt are the local unique solutions of (2.3)
with x0 = x0 ∈ ∆n−1. Benaïm defines the following useful concept: A continuous
function X : R+ → Rn is an Asymptotic pseudo-trajectory for Υ if for any T > 0

lim
t→∞

sup
0≤h≤T

dist(X(t + h), Υh(X(t))) = 0.

Recall now that the Robbins-Monro Algorithm (2.2) is defined by

xk+1 − xk = γk+1[F(xk) + Uk+1],

Let τk = ∑k
i=1 γi, τ0 = 0 and define the affine interpolated process Z(t):

Z(t) = xk + [t− τk]
xk+1 − xk

γk+1 , τk ≥ t ≥ τk+1. (2.4)

Consider also the map m : R+ →N defined by m(t) = sup{k ≥ 0 : t ≥ τk}.

Proposition 2.1 (Proposition 4.1 in Benaïm [1999]). Let F be a bounded locally Lipschitz
vector field. Assume that

A1.1 For all T > 0,

lim
l→∞

sup{‖
k−1

∑
i=n

γi+1Ui+1‖ : k = n + 1, ..., m(τl + T)} = 0.

A1.2 sup
k
‖xk‖ < ∞.

Then the interpolated process Z(t) is an asymptotic pseudotrajectory of the flow induced by
F.

Proposition 2.2 (Proposition 4.2 in Benaïm [1999]). Let φk be the Robbins-Monro Algo-
rithm (3.7). Suppose that, for some b ≥ 2,

sup
k

E(‖Uk+1‖b) < ∞,
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and
∑

k
[γk]1+b/2 < ∞.

Then assumption A1.1 of Proposition 2.1 holds with probability 1.

Let X : R+ → M be an asymptotic pseudotrajectory of an induced flow Φ, with M
some metric space. The limit set L(X) of X is the set of limits of convergent sequences
X(tk), tk → ∞.

Theorem 2.5 (Theorem 5.7 i. in Benaïm [1999]). Let X be a precompact asymptotic pseu-
dotrajectory of Φ. Then L(X) is Internally Chain Transitive.

The following Theorem is an adaptation of Corollary 10.3 in Chichilnisky [1998]
(p.23), which is itself, a particular case of Theorem 2.4.

Theorem 2.6. Let Eq = {e ∈ Rn : F(e) = 0} be the set of Equilibria for Equation (2.3). If
Eq is composed by asymptotically stable equilibria and every trajectory of (2.3) converges to
one of the equilibrium e ∈ Eq. Then with probability one, a sample path of the process (3.7)
converges to one of these equilibria.

Theorem 2.6 will link the asymptotic behaviour of the RMA that defines our
model (see Chapter 3), with the equilibria of a related continuous dynamic (described
by a ODE). To show that the only possible ICT sets are equilibria, we will solve the
dynamical systems (ODE + initial condition), and we will show that given any initial
condition, the solutions of the ODE must converge to some e ∈ Eq.

2.3.1 Proof of Theorem 2.4

Proof of Theorem 2.4. According to hypotheses H1−H2, Proposition 2.2 holds for b =
2. As a result, we can apply Proposition 2.1 and Z(t) from Equation (2.4) is almost
surely an asymptotic pseudo-trajectory for the flow induced by F. Using H3, then
Z(t) is precompact. Finally, using Theorem 2.5, the limit set L{xt}t≥0 is an ICT for
Equation (2.3).

Throughout the thesis we will use Theorems 2.4 and 2.6 to show that the market
share described in with our model converges with probability 1 to the equilibria of a
related continuous dynamic.
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Chapter 3

Position bias over a model of
consumer choice with social
influence

This chapter is reproduced with changes from

i) Abeliuk, A.; Berbeglia, G.; Maldonado, F.; and Van Hentenryck, P., 2016.
Asymptotic optimality of myopic optimization in trial-offer markets with social
influence. In the 25th International Joint Conference on Artificial Intelligence (IJCAI-
16).

ii) Van Hentenryck, P.; Abeliuk, A.; Berbeglia, F.; Berbeglia, G.; and Maldon-
ado, F., 2016. Aligning popularity and quality in online cultural markets. In the
Proceedings of the International AAAI Conference on Web and Social Media (ICWSM
2016)

And using techniques developed in Maldonado, F.; Van Hentenryck, P.; Berbeglia,
G.; and Berbeglia, F., 2018. Popularity signals in trial-offer markets with social in-
fluence and position bias. European Journal of Operational Research, 266(2), pp. 775-793.
to define a general version of the Trial-Offer market model. Where my main contri-
butions for the papers i) and ii) are in the theoretical section of them, providing a
representation of the market as a Robbins-Monro Algorithm, characterising its pos-
sible equilibria, and finally proving how the market converges (or not) to them.

Motivation In this chapter, we first introduce formally a model for a Trial-Offer
Market, we deduce some general results valid for any ranking policy and social
signal, and then we establish some of the special interesting cases: to study the
effect of position biases in this kind of market, we consider two different ranking
policies, one static and the other one dynamic, most of the theoretical results are
directly applicable for both type of ranking (e.g., Theorem 3.1), however in others,
we need to separate the analysis for each policy (e.g., Theorem 3.3 ). We will be
interested into understanding the long term behaviour of the consumption decisions
under these policies, and to do that we will use Robbins-Monro Algorithms to model

21
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the expected market shares. We finally complement the theoretical results with some
computational experiments, where we compare the different behaviour of the market
depending on the type of ranking that was used.

3.1 Introduction

Social influence is ubiquitous in cultural markets. From book recommendations in
Amazon, to song popularities in iTunes, and article rankings in the online version of
the New York Times or the Reddit and Hacker site, social influence has become a
critical aspect of the customer experience. Social influence may appear through dif-
ferent social signals such as the number of past purchases; consumer ratings; and/or
consumer recommendations, depending on the market and/or platform.

Social influence is often also reinforced by position bias (e.g., Lerman and Hogg
[2014]), as consumer preferences are also affected considerably by the visibility of
the choices. In digital markets, the impact of visibility on consumer behaviour has
been widely observed in internet advertisement where sophisticated mathematical
models have been developed to determine the relative importance of the different
ads positions, in online stores such as Amazon and iTunes, and in online travel agents
such as Expedia and Orbitz among others.

In this chapter, we start defining a model for Trial-Offer markets, where we es-
tablish some general results (that will be used in the upcoming chapters as well). We
then consider some specific settings where the the network effects grow linearly, and
the rankings are of two different types. The first one known as the performance rank-
ing, introduced in Abeliuk et al. [2015]. This ranking is a myopic policy that dynam-
ically maximises the efficiency of the market for each incoming participant, taking
into account the inherent quality of products, position bias, and network effects. The
second ranking is referred to as quality ranking, proposed in Van Hentenryck et al.
[2015], in which product qualities are first recovered (using sampling and/or rein-
forcement learning) and then used to display products in decreasing order of quality:
this policy reinforces the appeal of quality products with position bias.

We investigate the quality and performance rankings both computationally, us-
ing the generative model of the MusicLab proposed in Krumme et al. [2012], and
theoretically by modelling the Trial-Offer market as a discrete choice model based on
a multinomial logit (Luce [1965]) with network effects. We study the asymptotic con-
vergence of the market shares under those two policies. Showing that these myopic
policies are optimal and predictable asymptotically, in addition to being optimal at
each step. From a technical standpoint, our analysis is the first to provide theoretical
guarantees over a dynamic policy in cultural markets. Moreover, computational re-
sults show that the rate of convergence for the performance ranking is considerably
faster than the quality ranking.

Our work is a step toward the understanding and development of expressive com-
putational models for long-term effect of social influence (including unpredictabil-
ity), an open question raised by Kleinberg (2008). Our main contributions for this
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chapter can be summarised as follows:

1. The theoretical results show that the Trial-Offer market is optimal asymptoti-
cally when the quality/performance rankings are used and converges almost
surely to a monopoly for the highest quality product.

2. The computational results show that both, the quality and performance rank-
ings under social influence, significantly improves market efficiency, decreases
unpredictability, and identifies “blockbusters”. It provides significant improve-
ments over the popularity ranking.

Our results provide an interesting contrast with the conclusions of Salganik et al.
[2006]. The quality and performance rankings align quality and popularity, making
the market efficient and predictable. In other words, it is not social influence per se that
makes markets unpredictable: It is the way it is used that may lead to unpredictability and
inefficiency.

The rest of this chapter is organised as follows. Section 3.2 introduces Trial-Offer
markets and Section 3.3 surveys the ranking policies used in this chapter. Section
3.5 describes the computational experiments, which motivate the theoretical study
presented in Section 3.4, including the benefits of position bias.

3.2 Trial-Offer Markets

The chapter builds on the work by Krumme et al. [2012] who propose a framework in
which consumer choices are captured by a Multinomial Logit model whose product
utilities depend on the product appeal, position bias, and a social influence signal
representing past purchases. A marketplace consists of a set of n items that we call
[n]. Each item i ∈ [n] is characterised by two values:

1. its appeal ai > 0 which represents the inherent preference of trying item i;

2. its quality qi > 0 which represents the conditional probability of purchasing
item i given that it was tried.

This thesis assumes that the appeals and the qualities are known. Abeliuk et al. [2015]
have shown that these values can be recovered accurately and quickly, either before
or during the market execution using the approximation suggested by Krumme et
al.:

ai ∼
si

∑j sj
,

and
qi ∼

di

si
,

where si and di are the samplings and purchases of product i at some point in time,
respectively.
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The objective of the firm running this market is to maximise the total expected
number of purchases. To achieve this, one of the key managerial decision of the
firm is what is known as the ranking policy [Abeliuk et al., 2015], which consists in
deciding how to display the products in the market (e.g., where to display a product
on a web page). Here we assume that, at the beginning of the market, the firm
decides upon a ranking for the items, i.e., an assignment of items to positions in
the marketplace. Each position j has a visibility vj which represents the inherent
probability of trying an item in position j. A ranking σ is a permutation of the items
and σi = j means that item i is placed in position j (j ∈ [n]). When a customer
enters the market, she observes all the items and their social signals as a function of
the values of the previous purchases dt = (dt

1, . . . , dt
n).

As it was explained in 1.1 our main goal is to maximise the market efficiency,
represented by the expected number of purchases. Note also that the higher this ob-
jective is, the lower the probability that consumers try a product but then decide not
to purchase it. Hence, if we interpret this last action as an inefficiency, maximising
the expected efficiency of the market also minimises unproductive trials. We also
examine a number of questions about the market including (1) What is the best way
to allocate the products to positions? (2) Is it beneficial to display a social signal, e.g.,
the number of past purchases, to customers? (3) Is the market predictable?

Since we are interested in the long-term effects of social influence, we consider
a multi-period, dynamic market where consumers arrive sequentially, one per time
period. Upon arrival, a consumer is able to observe the aggregate purchase decisions
of her predecessors. Denote by dt =

(
dt

1, . . . , dt
n
)

the total number of consumers who
purchased some product i until the beginning of period t. If item i is purchased at
time t, then the purchase vector becomes

dt+1
j =

{
dt

j + 1 if j = i;
dt

j otherwise.

The probability that the consumer arriving at period t will try product i if items
are displayed using position assignment σ is given by

Pi(σ, dt) =
vσi f (ai + dt

i)

∑n
j=1 vσj f (aj + dt

j)
.

Where f : R+ → R+ is a continuous positive function (e.g., f (x) = xr, with r > 0 or
f (x) = log(x+ 1)). Observe that consumer choice preferences for trying the products
are essentially modelled as a discrete choice model based on a Multinomial Logit
(Luce [1965]) in which product utilities are affected by their position. The market
uses the number of purchases dt

i of product i at time t, as input for the social signal
function f . However, other social signals such as the market share, used in online site
such as iTunes (with the right choice of function f ), can be shown to be equivalent,
as it can be seen in Remmark 3.1 . Let φt =

(
φt

1, . . . , φt
n
)

denote the market shares at
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time t in terms of the total number of purchases dt, i.e.,

φt
i =

dt
i

∑n
j=1 dt

j
,

where φt lives in the n dimensional simplex, this is,

φt ∈ ∆n = {x = (x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1 and
n

∑
i=1

xi = 1}.

The probability of trying product i can be rewritten as a function of φt, yielding,

Pi(σ, φt) =
vσi f (φt

i )

∑n
j=1 vσj f (φt

j)
, (3.1)

where, for simplicity, the vector d0 is initialised with the products appeals, i.e., d0
t = ai

(see Appendix A [Market share versus purchases], for a general version). Both nota-
tions are convenient to stress different results; we use market shares when analysing
the asymptotic behaviour of the market and the number of purchases for analysing
the transient behaviour of the market. Since qi is the conditional probability of pur-
chasing product i given that it was tried and hence, the conditional expected number
of purchases at time t is given by ∑n

i=1 Pi(σ, dt) qi.

Equation (3.1) generalises the multinomial logit model of Krumme et al. [2012]
who defines two sets of probabilities, pSI

i,t and pI
i , that capture the probability of trying

product i with and without social influence. These probabilities are defined as:

pSI
i,t =

vσ(i)(αai + dt
i)

∑n
j=1 vσ(j)(αaj + dt

j)
, pI

i =
vσ(i)ai

∑n
j=1 vσ(j)aj

, (3.2)

where α is a parameter to calibrate the strength of the social signal (e.g., α = 200
for the MusicLab experiments). Equation (3.1) allows us to recover the formulae
(3.2) via some linear transformation of the identity function: f (φi) = βφi + αai, with
β = ∑j dj or β = 0 for each case.

After having tried product i, a customer decides whether to buy the sampled item
and the probability that she purchases item i is given by qi.

Our goal is to study how the market shares evolve over time when social influence
is present. Observe that the probability of trying a product depends on its position in
the list, its appeal, and its number of purchases at time t. Note also that in a dynamic
market when no social signals are displayed, the purchase history plays no role and
hence, the market behaves as a static market. Following Salganik and Watts [2008],
we refer to this setup as the independent condition.
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3.3 Rankings Policies

This section presents the ranking policies studied in this chapter. Without loss of
generality, we assume that the qualities and visibilities are non-increasing, i.e., q1 ≥
q2 ≥ · · · ≥ qn and v1 ≥ v2 ≥ · · · ≥ vn. We also assume that the qualities and
visibilities are known. In practical situations, the product qualities are obviously
unknown but Abeliuk et al. (2015) have shown that they can be recovered accurately
and quickly.

The performance ranking (P-rank), was proposed by Abeliuk et al. (2015) to show
the benefits of social influence in cultural markets. It maximises the expected num-
ber of purchases at each iteration, exploiting all the available information globally,
i.e., the appeal, the visibility, the purchases, and the quality of the products. More
precisely, the performance ranking at step t produces a ranking σ∗t defined as

σ∗t = arg-max
σ∈Sn

n

∑
i=1
Pi(σ, dt) · qi. (3.3)

The performance ranking can be computed in strongly polynomial time and the
resulting policy scales to large markets (Abeliuk et al. [2015]).

The quality ranking (Q-rank), which simply orders the products by quality, as-
signing the product of highest quality to the most visible position and so on. With
the above assumptions of non-increasing qualities and visibilities, the quality ranking
σ satisfies σi = i (1 ≤ i ≤ n) at any given time t.

Our results contrast with the popularity ranking (D-rank), used in Salganik et al.
[2006] to show the unpredictability caused by social influence in cultural markets. At
iteration t, the popularity ranking orders the products by the number of purchases
dt

i , but these purchases do not necessarily reflect the inherent quality of the prod-
ucts, since they depend on how many times the products were tried, which in turn
depends on the position and social signal of the product.

We will also annotate the policies with SI or IN to denote whether they are used
under the social influence or the independent condition. For instance, P-rank(SI)
denotes the policy that uses the performance ranking under the social influence con-
dition, while P-rank(IN) denotes the policy using the performance ranking under
the independent condition. We also use rand-rank to denote the policy that sim-
ply presents a random order at each period. Under the independent condition, the
optimisation problem is the same at each iteration as mentioned earlier. Since the
performance ranking maximises the expected purchases at each iteration, it domi-
nates all other policies in this setting (Abeliuk et al. [2015]).

3.4 Theoretical Analysis

In this section some general theoretical results are presented, those results will be
also used in the next chapters. We will also analyse in detail the simpler case where
the social signal function is the identity, this is f (ai + dt

i) = ai + dt
i , and for that case
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we will study the different rankings previously introduced.

Asymptotic Behaviour of the Market Share We first characterise a general lemma
that defines the probability that the next purchase is product i, which is valid for any
ranking σ (static or dynamic) and social signal function f . Using that characterisa-
tion, we then prove that the market share φt can be defined as a suitable Robbins-
Monro Algorithm (see Definition 2.3), and we characterise for the studied rankings
and social signal f (x) = x, the long term behaviour of the market, showing that in
each case (Q-rank and P-rank) the market converges almost surely to a monopoly
of the highest quality product.

Lemma 3.1. If f : R+ → R is a positive function, then the probability πi(φ) that the next
purchase is the product i given the market share vector φ is given by

πi(φ) =
vσI qi f (φi)

∑n
j=1 vσj qj f (φj)

. (3.4)

Proof. The probability that item i is purchased in the first step is given by

π1st
i (φ) =

vσi f (φi)
n
∑

j=1
vσj f (φj)

qi.

The probability that item i is purchased in the second step and no item was pur-
chased in the first step is given by

π2nd
i (φ) =


n
∑

j=1
vσj f (φj)(1− qj)

n
∑

j=1
vσj f (φj)

 vσi f (φi)
n
∑

j=1
vσj f (φj)

qi.

More generally, the probability that item i is purchased in step m while no item was
purchased in earlier steps is given by

πmth
i (φ) =


n
∑

j=1
vσj f (φj)(1− qj)

n
∑

j=1
vσj f (φj)


m−1

vσi f (φi)
n
∑

j=1
vj f (φj)

qi. (3.5)

Let a = (
n
∑

j=1
vσj f (φj)qj)/(

n
∑

j=1
vσj f (φj)). Observe that, if qmax = maxi∈{1,...,n} qi, then

0 < a ≤ qmax ≤ 1. Equation (3.5) becomes

πmth
i (φ) =

(
1− a

)m−1 vσi f (φi)
n
∑

j=1
vσj f (φj)

qi.
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Hence the probability that the next purchase is item i is given by

πi(φ) =
∞

∑
m=0

(
1− a

)m vσi f (φi)
n
∑

j=1
vσj f (φj)

qi.

Since |1− a| < 1, we use the geometric series

∞

∑
m=0

(
1− a

)m

=
1
a

,

and then, the probability that the next purchase is item i is given by

πi(φ) =
vσi qi f (φi)

n
∑

j=1
vσj qj f (φj)

.

Remark 3.1. We notice an important equivalence which is valid when f (x) = xr,
r > 0: Equation (3.4) remains the same when expressed in terms of the number of
purchases di instead of the market shares. Indeed,

πi(φ) =
vσi qi(φi)

r

∑j vσj qj(φj)r =
vσi qi(

di
∑k dk

)r

∑j vσj qj(
dj

∑k dk
)r

=
vσi qi(di)

r

∑j vσj qj(dj)r . (3.6)

Hence, when the social signal function is f (x) = xr, r > 0, this model can be inter-
preted either using the concept of market share or simply the number of purchases.

The following theorem, establishes that the vector of market shares φk can be
expressed as a Robbins-Monro Algorithm.

Theorem 3.1. The discrete stochastic dynamic process {φk}k≥0 can be modelled as a Robbins-
Monro algorithm, given by

φk+1 = φk + γk+1(π(φ)− φ + Uk+1),

where γk+1 = 1
Dk+1 , and Uk+1 is a martingale difference noise.

Proof. First we notice that φk is not modified if no purchase is made, therefore for the
purpose of studying its evolution we only consider a step k when a customer buys
something. Denote by ek the random unit vector whose jth entry is 1 if item j is the

next purchase and 0 otherwise. Since φk =
Dkφk

Dk , the market share at time k + 1 is
given by

φk+1 =
Dkφk

Dk + 1
+

ek

Dk + 1
,
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where Dk = ∑k
t=0 ∑n

i=1 dt
i = k + k0, and k0 = ∑n

i=1 ai. It follows that

φk+1 =
(Dk + 1)φk

Dk + 1
− φk

Dk + 1
+

ek

Dk + 1

= φk +
1

Dk + 1
(ek − φk)

= φk +
1

Dk + 1
(E[ek|F k]− φk + ek −E[ek|F k])

= φk +
1

Dk + 1
(π(φk)− φk + ek −E[ek|F k]).

This last equality can be reformulated as

φk+1 = φk + γk+1(F(φk) + Uk+1), (3.7)

where γk+1 = 1
Dk+1 , F(φ) = π(φ)− φ, and Uk+1 = ek −E[ek|F k].

The above derivation showed that {φk}k≥0 can be expressed through Equation
(3.7), where it is easy to see that γk > 0, ∑k≥1 γk = ∞, limk→∞ γk = 0, and that
E[Uk+1|F k] is equal to zero.

Remark 3.2. Note that the function F captures the difference between the probabilities
of purchasing the items (given the market shares) and the market shares at each time
step. Recall that φk ∈ ∆n for all k ≥ 0, which is a compact, convex subset of Rn

(and hence connected). We also notice that the only thing we needed to deduce
the previous Theorem was having a probability distribution πk that can be related
to the random vector ek, this can be further generalised for more complex type of
distributions (even when their functional form is unknown), more on this can be
seen in Appendix A [Generalisations].

3.4.1 Linear network effects, f (x) = x.

Now since clearly for the case where f (·) is the identity function, the hypotheses
for Theorem 2.4 hold, then in order to understand the asymptotic behaviour of the
discrete process that describes the market share φk, we have to study the asymptotic
behaviour of the solutions for the system of ODEs given by

φ̇t = π(φt)− φt, φt ∈ ∆n,

to do so, we first study the solutions for the equation π(φt)− φt = 0 (fixed points
for the probability distribution). We will prove that in the case where f (x) = x and
q1 > q2 > · · · > qn, the only solutions are the canonical vector of Rn, ei, i ∈ {1, . . . , n},
where the coordinates (ei)j = 0 if j 6= i, and 1 otherwise. And finally we will prove
that with probability 1, the market share converges to one of these solutions. We
define q̂i := qivσi , and since the case where all the q̂i are the same is trivial (if q̂i = q̂
for all i, then π(φ) = φ at any time), we consider that there exists m ≤ n intervals
given as follows
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q̂1 = · · · = q̂n1 > q̂n1+1 = · · · = q̂n2 > · · · > q̂nm−1+1 = · · · = q̂nm ,

where we define n0 = 1 and we notice that nm = n. The previous case represents
markets where a big list is presented (100 songs for example), and then the last 10
positions have basically the same visibility. Finally for the rest of this chapter, we
consider that the social signal is given by f (x) = x.

Theorem 3.2. The solutions for the Equation π(φ)− φ = 0 have the following structure:

there exists j : 0 ≤ j < m such that for all i : nj + 1 ≤ i ≤ nj+1, φi =
1

nj+1 − nj
, and

φi = 0 otherwise.

Proof.

π(φ)− φ = 0

πi(φ)− φi = 0, ∀i ∈ {1, . . . , n}
q̂iφi

∑n
j=1 q̂jφj

− φi = 0, ∀i ∈ {1, . . . , n}

φi

∑n
j=1 q̂jφj

(
q̂i −

n

∑
j=1

q̂jφj

)
= 0, ∀i ∈ {1, . . . , n}. (3.8)

Let Q := {i ∈ [n] : φi 6= 0}, then for every i ∈ Q, by Equation (3.8) necessarily

q̂i =
n

∑
k=1

q̂kφk = ∑
k∈Q

q̂kφk

thus, for all i, k ∈ Q, q̂i = q̂k. Therefore Q = {i ∈ [n] : q̂i = q̂}, hence there must
exists j : 0 ≤ j < m such that Q = {nj + 1, nj + 2, . . . , nj+1}. Furthermore if i /∈ Q,
then φi = 0. If i ∈ Q, since all the qualities are the same, by symmetry φi = C
a constant value, then ∑k∈Q φk = 1, implies that |nj+1 − (nj + 1) + 1|C = 1, where

φi =
1

nj+1 − nj
.

Corollary 3.1. If q̂1 > q̂2 > · · · > q̂n, then the only solutions for the Equation π(φ)− φ =
0 are the canonical vectors , ei, i ∈ {1, . . . , n}.

Proof. If q̂1 > q̂2 > · · · > q̂n, then m = n and for all 0 ≤ j < m, nj+1 − nj = 1.
Therefore the only possible equilibria are the canonical vectors ei, i ∈ {1, . . . , n}.

In what follows, we will prove some properties for the performance ranking,
P-rank, that will be useful to apply the ODE method for this dynamic case.

Lemma 3.2. Let l∗ be the optimal list induced by the performance ranking for the static
problem (Equation (3.3)), given market share φ and λ∗ be the expected number of purchases
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given l∗ and φ (i.e,λ∗ = ∑n
i=1 Pi(l∗, φt) · ql∗i ). Then

l∗ = arg-max
l

n

∑
i=1

viφli
(
qli − λ∗

)
.

Proof. First observe that

λ∗ =
∑n

i=1 viφl∗i ql∗i

∑n
i=1 viφl∗i

⇔ 0 =
n

∑
i=1

viφl∗i

(
ql∗i − λ∗

)
. (3.9)

Now assume that there exists l̂ such that

n

∑
i=1

viφl̂i

(
ql̂i
− λ∗

)
>

n

∑
i=1

viφl∗i

(
ql∗i − λ∗

)
= 0.

By reordering the terms, it comes that
∑n

i=1 viφl̂i
ql̂i

∑n
i=1 viφl̂i

> λ∗, which contradicts the optimal-

ity of l∗.

Lemma 3.2 through the rearrangement inequality provides an important characteri-
zation of the optimal ranking at time t.

Corollary 3.2. Let λ∗t be the expected number of purchases at time t under the performance
ranking. The performance ranking l∗t satisfies

φl∗1,t
(ql∗1,t
− λ∗t ) ≥ . . . ≥ φl∗n,t

(ql∗n,t
− λ∗t ). (3.10)

This corollary indicates that a product with quality greater or equal to λ∗t is ranked
higher than a product with quality smaller than λ∗t . This property is independent of the
market shares at time t.

The optimal expected number of purchases (Equation (3.3)) can be written as a
function of the market shares:

λ(φ) =
∑n

i=1 viφl∗i ql∗i

∑n
i=1 viφl∗i

.

The continuity of λ(φ) is necessary to apply stochastic approximation methods,
which are key to the derivation of the asymptotic behaviour of the performance
ranking.

Lemma 3.3. λ(φ) is continuous for all φ ∈ ∆n.

Proof. λ(φ) is the maximum of continuous functions, and hence continuous as well.

We now proceed to check the stability of the equilibrium points. In order to use the
ODE Method, we study the asymptotic behaviour of the solutions of ẋ = F(x).
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Theorem 3.3 (Monopoly of Markets). Consider a Trial-Offer market where q̂1 > q̂2 >
· · · > q̂n. Then the market converges almost surely to a monopoly for product 1.

Proof. We will proceed as follow: first, we study the long term behaviour of the
trajectories of the continuous dynamic, proving that they consist only of sample paths
converging to some equilibria (in this case a unique equilibrium that is asymptotically
stable). Finally, using Theorem 2.6 we conclude that the RMA that describes the
discrete dynamic converges almost surely to that equilibrium.

Indeed, we study the asymptotic behaviour of the solutions of φ̇ = F(φ), or
equivalently

φ̇t
i = Fi(φ

t) = φt
i (

q̂i

∑n
j=1 q̂jφ

t
j
− 1), ∀i ∈ {1, ..., n}.

If φt
i 6= 0, ∀i ∈ {1, ..., n}, we can rewrite the previous equation as follows:

1
q̂i

[
φ̇t

i
φt

i
+ 1
]
=

n

∑
j=1

q̂jφ
t
j ,

where the right-hand-side of the equation is the same for every product. Hence,

1
q̂i

[
φ̇t

i
φt

i
+ 1
]
=

1
q̂k

[
φ̇t

k
φk

+ 1
]

, ∀i, k

⇔ 1
q̂i

d
dt
[
log(φt

i ) + t
]
=

1
q̂k

d
dt
[
log(φt

k) + t
]

. (3.11)

Now we separate the analysis depending on the ranking that is being used, we start
with the quality ranking, where in particular we have that q̂i does not change over
time, and therefore we have that Equation (3.11) implies the following

1
q̂i

∫ t

0

d
ds

[log(φs
i ) + s]ds =

1
q̂k

∫ t

0

d
ds

[log(φs
k) + s]ds (3.12)

⇒ 1
q̂i
[log(φt

i ) + t− log(φ0
i )] =

1
q̂k
[log(φt

k) + t− log(φ0
k)]

⇔ 1
q̂i

log(φt
i )−

1
q̂k

log(φt
k) =t[

q̂i − q̂k

q̂k q̂i
] +

1
q̂i

log(φ0
i )−

1
q̂k

log(φ0
k). (3.13)

Now, as the process begins inside of the simplex (i.e., 0 < φ0
i < 1, for all i ∈

{1, . . . , n}), then 1
q̂i

log(φ0
i )−

1
q̂k

log(φ0
k) is bounded. In consequence, the behaviour of

the solutions, φt
i , is given by the asymptotic behaviour of t[q̂i − q̂k] which depends of

the sign of q̂i − q̂k. Since q̂1 > q̂2 > · · · > q̂n, taking i = 1, k ∈ {2, ..., n} in Equation
(3.13) yields t[q̂1 − q̂k] → +∞ as t → +∞. Hence 1

q̂i
log(φt

i )−
1
q̂k

log(φt
k) → +∞ for

all k > 1, and consequently φt
k → 0. Since ∑n

i=1 φt
i = 1, we have that φt

1 → 1, i.e., the
market converges to a monopoly for the highest-quality product.

On the other hand for the performance ranking we have the following variation
of the proof, based on the stability of the equilibria. From any initial condition where
the appeals are non-zero, no product will ever reach a market share of exactly one or
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zero. Hence, we analyse the behaviour of the performance ranking when arbitrarily
close to the equilibrium points. Define fi to be a small perturbation from ei, the i-th
canonical vector, i.e.,

{fi : fii = 1− ε, fij > 0, 1 ≤ j ≤ n, ∑
k 6=i

fik = ε},

where ε is an arbitrarily small positive quantity. The expected number of purchases
for any fi is λ(fi) ≈ qi. For i = 1, any perturbation of the market shares will slightly
decrease the expected number of purchases, i.e., λ(f1) = q1 − δ, δ > 0. Then, q1 −
λ(f1) > 0 and, for any k ≥ 2, qk − λ(f1) ≤ 0. By the condition in Corollary 3.2 and
the fact that all f1k > 0, the best quality product q1 is assigned in the top slot, i.e.,
σ1 = 1. Hence, vσ1 q1 − vσk qk > 0 for any k 6= 1.

Consider the process given by Equation (3.13) with initial condition x0 = f1. The
process begins in the simplex, i.e., 0 < φ0

i < 1, ∀i, and hence 1
q̂i

log(φ0
i )−

1
q̂k

log(φ0
k)

is bounded. Since the ranking does not change, the behaviour of the solutions is
given by the asymptotic behaviour of t[vσi qi − vσk qk] which depends on the sign of
vσi qi − vσk qk. Taking i = 1 and k ∈ {2, ..., n}, we have that vσ1 q1 − vσk qk > 0, and
hence t[vσ1 q1− vσk qk]→ +∞ as t→ +∞. Concluding again that φt converges to e1 (a
monopoly of the highest quality product), which is a stable equilibrium.

Finally, if for i > 1, we consider a perturbation where some product j : qj >
qi has a small increase in its market such that the expected number of purchases
increases very slightly, i.e., λ(fi) = qi + δ, δ > 0. Thus, for small δ, qj − λ(fi) > 0 and
qi − λ(fi) = −δ < 0, which implies that fij(qj − λ(fi)) > fii(qi − λ(fi)). Therefore, by
Corollary 3.2, product j is assigned in a better position than product i, i.e., vσj ≥ vσi

and hence, vσj qj − vσi qi > 0. Consider the process given by Equation (3.13) with
initial conditions φ0 = fi, i > 1. At t = 0, as described above, it holds that vσj qj −
vσi qi > 0 and consequently, at the next period of time t = 1, 1

q̂i
log(φ1

i )−
1
q̂k

log(φ1
j ) >

1
q̂i

log(φ0
i )−

1
q̂k

log(φ0
j ). This implies that φ1

j > φ0
j or φ1

i < φ0
i , which, in either case,

indicates that the new state is farther away from the initial state. Hence, ei is an
unstable equilibrium.

Summarising, using both ranking, we show that the trajectories of the continuous
dynamic converge to a single (asymptotically stable) equilibrium. Therefore, using
Theorem 2.6 we conclude that the discrete process (3.7), that describes the market
share of the model for the case of linear network effects, converges almost surely to
a monopoly of the highest quality product.

This result states that, starting from any initial condition where the appeals are non-
zero, the market eventually reaches the equilibrium that corresponds to a monopoly
for the product of highest quality. This result also implies that the quality and per-
formance rankings are optimal asymptotically, since only the best product is left.

Corollary 3.3. The quality and performance rankings are asymptotically optimal in Trial-
Offer markets, this is, the market converges to a monopoly of the highest quality product.
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Figure 3.1: The visibility vp (y-axis) of position p in the song list (x-axis) where p = 1
is the top position and p = 50 is the bottom position of a single column display.

3.5 Computational Experiments

We now report computational results that illustrate and complement the theoretical
analysis presented in the previous section. The computational results use settings
that model the MusicLab experiments discussed in Salganik et al. [2006]; Krumme
et al. [2012]; Abeliuk et al. [2015]. As mentioned in the introduction, the MusicLab is
a Trial-Offer market where participants can try a song and then decide to download
it. The generative model of the MusicLab defined in Krumme et al. [2012] is the
model of consumer choice with social influence described earlier.

The Experimental Setting The experimental setting uses an agent-based simulation
to emulate the MusicLab. Each simulation consists of K iterations and, at each
iteration t,

1. the simulator randomly selects a song i according to the probabilities πi(σ, d),
where σ is the ranking policy under evaluation and d is the social influence
signal;

2. the simulator randomly determines, with probability qi, whether selected song
i is downloaded; In the case of a download, the simulator increases the social
influence signal for song i, i.e., dt+1

i = dt
i + 1. Otherwise, dt+1

i = dt
i .

Every RR iterations, a new list σ is computed using one of the ranking policies de-
scribed above. For instance, in the social influence condition of the original MusicLab

experiments, the policy ranks the songs by popularity, i.e., the D-rank policy which
ranks the songs in decreasing order of download counts. The parameter RR ≥ 1 is
called the refresh rate. The experimental setting, which aims at being close to the
MusicLab experiments, considers 50 songs and simulations with 20,000 steps. The
songs are displayed in a single column. Figure 3.1 depicts the visibility parameters
used in all computational experiments (the exact values can be found in the Ap-
pendix A [Dataset]). The visibility profile is based on the analysis in Krumme et al.
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Figure 3.2: The quality qi (blue) and appeal Ai (red) of song i in the four settings. In the
first setting (top left), the qualities and appeals were chosen independently according to a
Gaussian distribution. The second setting (top right) explores an extreme case where the
appeal is anti-correlated with the quality used in setting 1. In the third setting (bottom left),
the qualities and appeals were chosen independently according to a uniform distribution.
The fourth setting (bottom right) explores an extreme case where the appeal is anti-correlated

with the quality from setting 3.

[2012], indicating that participants are more likely to try songs higher in the list.
More precisely, the visibility decreases with the list position, except for a slight in-
crease at the bottom positions (notice that this condition breaks the assumption that
the visibilities vσi are non-increasing, however in practical terms, this doesn’t affect
the results, since the only relevant positions are the top of the ranking).

In this section we also use four settings for the quality and appeal of each product,
which are depicted in Figure 4.1. In the first setting (top left), the quality and the
appeal were chosen independently according to a Gaussian distribution normalised
to fit between 0 and 1. The second setting (top right) explores an extreme case
where the appeal is negatively correlated with quality. The quality of each product
is the same as in the first setting but the appeal is chosen such that the sum of
appeal and quality is 1 plus a normally distributed noise. In the third setting (bottom
left), the quality and the appeal were chosen independently according to a uniform
distribution. The fourth setting (bottom right) also explores an extreme case where
the appeal is anti-correlated with quality. The quality of each product is the same as
in the third setting but the appeal is chosen such that the sum of appeal and quality is
exactly 1. The results were obtained by averaging the results of W = 400 simulations.

Recovering the Songs Quality We now show how to recover songs quality in the
MusicLab. The key idea is borrowed from Salganik et al. (2006) who stated that the
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Figure 3.3: Average Squared Difference of Inferred Quality over Time for Different Rankings

for the top 10 quality songs. The figure reports the average squared difference ∑n
i=1

(q̄i,k−qi)
2

n
between the song quality and their predictions for the quality ranking under social influence
and the random ranking in the independent condition. The figure shows the four settings
in clockwise direction from the top-left plot. The quality of each song was initially approxi-

mated with 10 Bernoulli trials.

popularity of a song in the independent condition is a natural measure of its quality and
captures both its intrinsic “value” and the preferences of the participants. Expand-
ing on their idea, the popularity of a song in the independent condition and with
no position bias is a natural measure of its quality. However, under social influence,
popularity may no longer reflect quality and may be strongly influenced by the visibility and
early downloads.

To approximate the quality of a song, it suffices to sample the participants in
an independent world. This can be simulated by using a Bernoulli sampling based
on the real quality of the songs. The predicted quality q̄i of song i is obtained by
running m independent Bernoulli trials with probability qi of success, i.e., q̂i =

k
m ,

where k is the number of successes over the m trials. For a large enough sampling
size, q̄i has a mean of qi and a variance of qi(1− qi). This variance has the desirable
property that the quality of a song with a more ’extreme’ quality (i.e., a good or a bad
song) is recovered faster than those with average quality. In addition, we can merge
information about downloads into the prediction as the market with social influence
proceeds: At step k, the approximate quality of song i is given by q̄i,k =

q̂i,0·m+di,k
m+si,k

,
where m is the initial sample size, di,k and si,k are the number of downloads and
samplings of song i up to step k.

Figure 3.3 presents experimental results about the accuracy of the quality approx-
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Figure 3.4: The number of downloads over time for the various rankings. The x-axis rep-
resents the number of product trials and the y-axis represents the average number of down-
loads over all experiments. On the upper left corner of each graph, the bar plot depicts the
average number of purchases per try for all rankings. The results for the four settings are

shown in clockwise direction starting from the top-left figure.

imation for two rankings, assuming an initial independent sampling set of size 10 per
song. More precisely, the figure reports the average squared difference between the
song qualities and their predictions under the social influence and the independent
conditions. In all cases, the results indicate that song qualities are recovered quickly
and accurately. Note also that the Q-rank only requires an ordinal ordering of the
qualities, not their exact values.

Performance of the Market Figure 3.4 depicts computational results on the ex-
pected number of downloads for the various rankings and settings and reveals two
findings:

1. The quality ranking exhibits a similar performance to the performance ranking
and provides substantial gains in expected downloads compared to the pop-
ularity and random rankings. On settings with negative correlations between
appeal and quality, the quality ranking performs better than the performance
ranking.

2. The benefits of social influence and position bias are complementary and cu-
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Figure 3.5: The Distribution of Downloads Versus Song Qualities (First Setting). The songs
on the x-axis are ranked by increasing quality from left to right. Each dot is the number of

download of a product in one of the 400 experiments.

mulative. Both are significant in terms of the expected performance of the
market.

Predictability of the Market Figures 3.5 and 3.6 depict computational results on
the predictability of the market under various ranking policies. The figures plot the
number of downloads of each song for the 400 experiments. In the plots, the songs
are ranked by increasing quality from left to right on the x-axis. Each dot in the plot
shows the number of downloads of a song in one of the 400 experiments. Figures 3.5
and 3.6 present the result for the first and second settings (for appeals and qualities).

The computational results are compelling. Figure 3.5 shows that the best song
always receives the most downloads in the quality ranking (with social influence)
and that the variance in its number of downloads across the experiments is very
small. The performance ranking (with social influence) also performs well although
the variance in its downloads is larger. The popularity ranking is highly unpre-
dictable, while the random ranking is highly predictable as one would expect. It
is also interesting to note that these observations continue to hold even when the
appeal is negatively correlated with quality, as Figure 3.6 indicates. The contrast be-
tween the popularity ranking used in Salganik et al. [2006] and the quality ranking
is particularly striking.
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Figure 3.6: The Distribution of Download Versus Song Qualities (Second Setting). The songs
on the x-axis are ranked by increasing quality from left to right. Each dot is the number of

downloads of a product in one of the 400 experiments.

Figure 3.7 depicts computational results on the distribution of market shares un-
der various ranking policies (in log scale). Each dot is the market share of a product
in one of the 100 experiments. Figure 3.7 shows that the best product almost al-
ways receives the most purchases in the performance ranking. Quality ranking also
performs well although the variance in its market shares is larger. The popularity
ranking, while it shows the same overall correlation between quality and market
share, exhibits many outliers. In terms of market efficiency, the performance rank-
ing achieves 10% more purchases than the popularity ranking and 8% more than the
quality ranking overall. For a single simulation, the performance ranking can achieve
up to 23% more purchases than the other rankings.

In conclusion, the theoretical and computational results indicate that the perfor-
mance ranking has attractive properties for dynamic Trial-Offer markets. It is optimal
and predictable asymptotically and it optimises market efficiency at each time point.
Computational results also show that it recovers from poor initial conditions much
faster than the quality ranking.
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Figure 3.7: The Distribution of Market Shares. The products on the x-axis are ranked by
decreasing quality from left to right. Each dot is the market share of a product in one of the

100 experiments. Note that the y-axis is in log scale.

Appendix A

Market share versus purchases

The condition d0
i = ai can be relaxed and the results still hold but the notations

become more complicated. Indeed, define the variables µk
i =

ai+dk
i

∑j aj+dk
j
, with d0

i = 0,

consider â = ∑n
j=1 ai the cumulative appeal, and a, dk the vectors of appeals and

purchases respectively. By definition ∑n
j=1 dk

j = k, then we can define the probability
function p(µk) by

pi(µ
k) =

viqi f (µk
i )

∑n
j=1 vjqj f (µk

j )
, i ∈ {1, ..., n}

and recover a recurrence for µ as follows:

µk+1 =
a + dk

â + k + 1
+

ek

â + k + 1

=
a + dk

â + k
â + k

â + k + 1
+

ek

â + k + 1

= µk â + k
â + k + 1

+
ek

â + k + 1

= µk â + k + 1
â + k + 1

− µk

â + k + 1
+

ek

â + k + 1

= µk +
1

â + k + 1
(p(µk)− µk + ek −E[ek|F k])

= µk + γ̂k+1[F̂(µk) + Ûk+1].

In consequence, all the results from this paper can be translated from the φ domain
to the µ domain.



§3.5 Computational Experiments 41

Generalisations

We will use the following result, known as Brouwer Fixed Point Theorem.

Theorem 3.4. Let τ : C → C be a continuous function, with C ⊂ Rn a convex and compact
set, then there exists (at least) one fixed point x∗ ∈ C for f , this is τ(x∗) = x∗.

Then, we apply this previous theorem to our probability function p : ∆n−1 → ∆n,
clearly ∆n is convex and compact, then we can find φ∗ such that p(φ∗) = φ∗, or
equivalently, φ∗ is an equilibrium for the continuous dynamic (2.3). As Equilibria Sets
are ICT sets for Robbins-Monro Algorithms then we could give a characterisation for
the asymptotic behaviour of our discrete dynamic.

Theorem 3.5. Assuming that for all i, there exists a constant Li < 1 such that |pi(φ
1)−

pi(φ
2)| ≤ Li‖φ1 − φ2‖. Then the continuous dynamic (2.3) has only one equilibrium φ∗.

Furthermore, the set {φ∗} is a global attractor and the discrete process (3.7) converge almost
surely to φ∗.

Proof. For proving that {φ∗} is a global attractor we find a strict Lyapunov Function,
i.e. a function V decreasing through the trajectory φt, with V : ∆n−1 → R+, and
V−1({0}) = {φ∗}.

Let us define V(φt) = ||φt−φ∗||∞, clearly V(φt) ∈ R+, and V(φt) = 0⇔ φt = φ∗.
Let φt a solution of (2.3), and j ∈ {1, .., n} the index where the maximum is attained,
i.e. ||φt − φ∗||∞ = |φt

j − φ∗j |, without loss of generality, we can assume that φt
j ≥ φ∗j

(the other case is analogous), then using that pj(φ
∗)− φ∗j = 0 for all j, we have the

following:

dV(φt)

dt
=

d
dt
[φt

j − φ∗j ] =
dφt

j

dt
= pj(φ

t)− φt
j

= pj(φ
t)− pj(φ

∗)− (φt
j − φ∗j )

≤ |pj(φ
t)− pj(φ

∗)| − |φt
j − φ∗j |

≤ ||p(φt)− p(φ∗)||∞ − ||φt − φ∗||∞
≤ (L− 1)||φ− φ∗||∞
= (L− 1)V(φt)

Where L = maxi=1,..,n Li. In conclusion V decreases at exponential rate through the
trajectories of the solutions in the dynamic (2.3), then {φ∗} is a global attractor (in
particular an asymptotic stable equilibrium, since the solutions decay exponentially
to it). Using Theorem 2.6 we have that {φ∗} is the only ICT for (2.3), therefore the
process (3.7) converge almost surely to {φ∗}.
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Example 3.1. The probability distribution p given by pi(φ) =
exp(βφi + αi)

∑n
j=1 exp(βφj + αj)

for all

i ∈ {1, ..., n}, under the condition β < 2, satisfies the conditions of the previous theorem.
Indeed, using the mean value theorem for each ph we have that

|ph(φ
1)− ph(φ

2)| ≤ [ sup
x∈∆n−1;k∈N

∣∣∣∣∂ph(x)
∂xk

∣∣∣∣]‖φ1 − φ2‖

On the other hand, for any h, k ∈ N and x ∈ ∆n we have

∂ph(x)
∂xk

= −β
exp(βφh + αh)

∑n
j=1 exp(βφj + αj)

− β exp(βφh + αh)

(∑n
j=1 exp(βφj + αj))2 [exp(βφk + αk)−∑

j 6=k
exp(βφj + αj)]

= βph(x)[−1− pk(x) + ∑
j 6=k

pj(x)]

= βph(x)[−1− pk(x) + 1− pk(x)]

= −2βph(x)pk(x)

as ph(x)pk(x) ≤ 1
4 , then |∂ph(x)

∂xk
| ≤ 2β 1

4 < 1.

Dataset

Table 3.1 shows the values of the qualities and appeals for the independent setting
(obtained from [Abeliuk et al., 2015]). Table 3.2 shows the values of the visibilities
for each position j ∈ {1, . . . , n}.
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Product Quality Appeal Product Quality Appeal
1 0.8 0.18581654 26 0.278009 0.35136515
2 0.72 0.28594501 27 0.2673 0.78687609
3 0.68 0.52073051 28 0.26083 0.7369193
4 0.65 0.81398644 29 0.2512 0.75227893
5 0.60 0.45868017 30 0.24396 0.32580804
6 0.57 0.15955483 31 0.23941 0.30674759
7 0.55 0.43715743 32 0.23622 0.91103217
8 0.52005 0.38484972 33 0.22629 0.76236248
9 0.52 0.63739211 34 0.2214 0.11459921
10 0.4887 0.78174105 35 0.22013 0.7581713
11 0.48224 0.52983037 36 0.20418 0.76994571
12 0.4586 0.6382574 37 0.20389 0.67408264
13 0.45837 0.80597 38 0.19535 0.41759683
14 0.432 0.2520265 39 0.1947 0.68898008
15 0.43067 0.37266718 40 0.18248 0.82117398
16 0.38623 0.79358615 41 0.17444 0.33890645
17 0.36792 0.19972853 42 0.16867 0.63497574
18 0.35492 0.32368825 43 0.16638 0.16224351
19 0.35374 0.94736709 44 0.15374 0.47778872
20 0.32799 0.50704873 45 0.14542 0.23702317
21 0.32589 0.7105828 46 0.1387 0.49406539
22 0.30411 0.92616787 47 0.12764 0.45956048
23 0.30352 0.64768258 48 0.12217 0.75210134
24 0.29988 0.51815068 49 0.11418 0.66488509
25 0.2905 0.47170285 50 0.08636 0.80257928

Table 3.1: Values of quality and appeal for the products in the independent case.
Recall that the values of the appeal in the anti-correlated setting are given by ai =

1− qi.
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Position Visibility Position Visibility
1 0.83 25 0.16583292
2 0.75 26 0.15370582
3 0.69 27 0.13640378
4 0.62 28 0.13084858
5 0.58 29 0.12666812
6 0.48 30 0.12429217
7 0.44 31 0.12362827
8 0.4 32 0.11847651
9 0.37 33 0.10675012
10 0.35 34 0.1001895
11 0.338 35 0.10377821
12 0.321 36 0.10192779
13 0.317 37 0.10484361
14 0.31063943 38 0.10609265
15 0.2750814 39 0.11420125
16 0.25493054 40 0.1260095
17 0.25148059 41 0.13163135
18 0.23254506 42 0.14843575
19 0.22517471 43 0.15040223
20 0.22429915 44 0.15529018
21 0.21502087 45 0.1699023,
22 0.19038769 46 0.17265442
23 0.18407585 47 0.17825863
24 0.18185429 48 0.18851792
25 0.17013229 50 0.22057129

Table 3.2: Values of the visibilities for each position j ∈ {1, . . . , n}.



Chapter 4

Sublinear social signals over a
model of consumer choice with
position bias

This chapter is reproduced with minor changes from:
Maldonado, F.; Van Hentenryck, P.; Berbeglia, G.; and Berbeglia, F., 2018.

Popularity signals in trial-offer markets with social influence and and position bias.
European Journal of Operational Research, 266(2), pp. 775-793.

Motivation In this chapter we consider only static rankings (like the quality rank-
ing) but we add complexity, including a family of social signal functions indexed by
a parameter r > 0, r 6= 1 (known as the social signal or network effect parameter),
where the functions are given by f (x) = xr. The main objective is to study whether
we can represent a market evolution to something different than a monopoly for a
particular product, having on the other hand, a better distributed and fairer market.
We prove that with probability 1, when r < 1, the vector of market shares converges
to a distribution, where all the products have a strictly positive chance of being pur-
chased. We analyse the properties of this equilibrium, such as stability and monotony
in terms of the parameters. Many computational experiments are developed, to show
the behaviour of the market equilibrium and its properties in terms of the parameter
r.

4.1 Model

In the previous chapter we discussed in detail a model where the social signal is
linear f (x) = x, under two different ranking policies, a static ranking Q-rank, and
a dynamic ranking P-rank. In both cases the expected asymptotic market behaviour
is to reach a monopoly for the highest quality product, having a predictable market.
However a monopoly is not always a desirable outcome. This chapter explores the
use of other social signals that may lead to a fairer distribution of the market, but
remaining predictable.

45
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The primary objective of this chapter is to understand what happens to the Trial-
Offer market when the social signal is given by f (x) = xr, and r > 0, r 6= 1.

The chapter contains both theoretical and simulation results and its contributions
can be summarised as follows:

1. When r < 1 and a static ranking is used, the market converges to a unique equi-
librium, which we characterise analytically. In the equilibrium, the market shares
depend only on the product qualities qi and no monopoly occurs. Moreover,
a product of higher quality receives a larger market share than a product of
lower quality, introducing a notion of fairness in the market and reducing the
inequalities introduced by a linear social signal.

2. When r > 1 and a static ranking is used, the equilibria can be characterised
similarly. However, contrary to the case r < 1, the equilibria that are not mo-
nopolies can be shown to be unstable under certain conditions. As a result,
the market will typically go to a monopoly for some product: Which product
wins the entire market share depends on the initial condition and the early
dynamics.

3. Agent-based simulations show that the market converges quickly towards an
equilibrium when using sublinear social signals (0 < r < 1) and the quality
ranking. They also show that the quality ranking outperforms the popularity
ranking in maximising the efficiency of the market. The popularity ranking is
also shown to have some significant drawbacks in some settings.

These theoretical results indicate that, when the social influence signal is a sublin-
ear function (r < 1) of the market share and a static ranking of the products (e.g.,
the quality ranking) is used, the market is entirely predictable, depends only on the
product quality, and does not lead to a monopoly. This contrasts with the case of
r = 1 where the market is entirely predictable but goes to a monopoly for the prod-
uct of highest quality (assuming the quality ranking); and the case of r > 1 where
the market becomes unpredictable (even with a static ranking). As a result, sublinear
social signals provide a way to balance market efficiency and the inequalities intro-
duced by social influence. In particular, with sublinear social signals and a static
ranking, markets do not exhibit a Matthew effect where the winner takes all, and
remain predictable.

The remaining of this chapter is organised as follows. Section 4.2 derives the
equilibria for the market as a function of the social signal and also presents the
convergence results. Section 4.3 reports the results from the agent-based simulation.
Section 4.4 discusses some additional results on sublinear signals.

4.2 Equilibria of Trial-Offer Markets

In this section we will analyse how the market shares {φt}t>0 evolve over time for
various functions f given a static ranking σ. We are particularly interested in study-
ing the asymptotic behaviour of {φt}t>0 for the cases where f (x) = xr with r > 0.
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For instance, when r = 0.5, the social signal displays the square root of the number
of past purchases. For notational simplicity, we assume that the ranking is fixed and
is the identity function σi = i and omit it from the formulas. We also notice that if
the qualities and visibilities also satisfy q1 ≥ . . . ≥ qn and v1 ≥ . . . ≥ vn, we obtain
the quality ranking proposed in Van Hentenryck et al. [2016], however these results
hold for any static ranking.

We recall from Lemma 3.1 that for the setting presented in this chapter, when the
social signal is given by f (x) = xr, r > 0, r 6= 1, the probability that the next purchase
is product i is given by

πi(φ) =
vσi qi(φi)

r

∑n
j=1 vσj qj(φj)r ,

where, σ : [n] → [n] is an assignment of n products to n positions in the ranking, in
the context of this chapter where we use a static ranking, the visibilities vσi do not
change over time.

This section characterises the equilibria and the asymptotic behaviour of the con-
tinuous dynamics

dφt

dt
= π(φt)− φt, (φt ∈ ∆n), (4.1)

which is associated with the RMA

φk+1 = φk + γk+1(F(φk) + Uk+1), (4.2)

where γk+1 = 1
Dk+1 , F(φ) = π(φ)− φ, and Uk+1 = ek −E[ek|F k].

For simplicity, we remove the visibilities by stating q̂j = vσj qj. We are interested
in the case where f (x) = xr with r > 0, r 6= 1 ( since the case r = 1 has been
settled in the previous chapter). Let Q be the set of positive market shares, this is,
Q = {i ∈ [n] : φi 6= 0}, clearly Q 6= ∅ since ∑n

i=1 φi = 1.

Theorem 4.1. Let r > 0, and r 6= 1. Any equilibria φ for Equation (4.1) has coordinates

φi =
q̂

1
1−r
i

∑j∈Q q̂
1

1−r
j

if i ∈ Q,

and zero otherwise (i.e., if i ∈ [n] \Q).

Proof. An equilibrium to (4.1) must satisfy πi(φ) = φi, i.e.,

q̂i(φi)
r

∑n
j=0 q̂j(φj)r = φi.

For i ∈ Q, we have
q̂i(φi)

r−1 = ∑
j∈Q

q̂j(φj)
r
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and, for all i, k ∈ Q, we also have

q̂i(φi)
r−1 = ∑

j∈Q
q̂j(φj)

r = q̂k(φk)
r−1,

which is equivalent to

q̂i(φi)
r−1 = q̂k(φk)

r−1 ⇔ φi =

(
q̂k

q̂i

) 1
r−1

φk. (4.3)

By summing for all i ∈ Q, we obtain

1 = ∑
i∈Q

φi =
φk

q̂1/(1−r)
k

∑
i∈Q

q̂1/(1−r)
i ,

and hence

φk =
q̂1/(1−r)

k

∑i∈Q q̂1/(1−r)
i

.

It remains to prove φ is indeed an equilibrium, i.e., π(φ) = φ. This is equivalent
to prove that πi(φ) = φi for all i ∈ {1, . . . , n}. The result is obvious if i ∈ [n] \ Q
(φi = 0⇒ πi(φ) = 0). If i ∈ Q, then

πi(φ) =
q̂i(φi)

r

∑j∈Q q̂j(φj)r

=
q̂i(q̂

1/(1−r)
i )r

∑j∈Q q̂j(q̂
1/(1−r)
j )r

∗

(
∑j∈Q q̂1/(1−r)

j

)r

(
∑j∈Q q̂1/(1−r)

j

)r

=
q̂[1+r/(1−r)]

i

∑j∈Q q̂[1+r/(1−r)]
j

=
q̂1/(1−r)

i

∑j∈Q q̂1/(1−r)
j

= φi.

Note that, when |Q| = n, the equilibrium lives in the interior of the simplex int(∆n)
(all its coordinates are strictly positive). We use φ∗ to denote this equilibrium (some-
times we call it the inner equilibrium). When |Q| = 1, then the equilibrium is one
of the vertices of the simplex. Finally, the cases 1 < |Q| < n cover the other possible
equilibria (for example φ = (3/4, 1/4, 0, . . . , 0)).

Observe also that the equilibrium φ∗ ∈ int(∆n) for the case 0 < r < 1 has some
very interesting properties: It is unique, which means that the market is completely
predictable. Moreover, if q̂i ≥ q̂j, then φ∗i ≥ φ∗j , which endows the market with a
basic notion of fairness. Finally, the market is not a monopoly: All the market shares
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are strictly positive for the equilibrium φ∗.
Our next result characterises the ICT of the continuous dynamics. We start with

a useful lemma which indicates that sub-markets can also be modelled as RMAs.

Lemma 4.1. Consider a Trial-Offer market defined by n items and the sub-market obtained
by considering only n− 1 items. Then this sub-market can also be modelled by an RMA.

Proof. Let Φt = [φt
1, φt

2, · · · , φt
n] be the market share for the n-item Trial-Offer market

at stage t. Consider a new process {Ψt}t≥0 consisting of n − 1 products only. We
show that this process can also be modelled as a RMA. The key is to prove that the
probability of purchasing product j in stage t follows Equation (3.4). Consider any
item i ∈ {1, .., n} such that φt

i 6= 1. Without loss of generality, assume that i = n,
define

ψt
i =

φt
i

1− φt
n

, (i < n),

and consider the following events:

• A = {product n is not purchased at stage t}

• B = {product j 6= n is purchased at stage t}.

Since B ⊆ A, Pr[B ∩ A] = Pr[B] =
q̂j(φ

t
j)

r

∑n
i=1 q̂i(φ

t
i )

r . On the other hand

Pr[A] = 1− q̂n(φt
n)

r

∑n
i=1 q̂i(φ

t
i )

r =
∑n−1

j=1 q̂j(φ
t
j)

r

∑n
i=1 q̂i(φ

t
i )

r ,

and therefore

Pr[B|A] =
Pr[B ∩ A]

Pr[A]
=

q̂j(φ
t
j)

r

∑n−1
i=1 q̂i(φ

t
i )

r
· (1− φt

n)
r

(1− φt
n)

r =
q̂j(ψ

t
j)

r

∑n−1
i=1 q̂i(ψ

t
i )

r
.

Since ψt
i ≥ 0 and ∑n−1

i=1 ψt
i = ∑n−1

i=1
φt

i
1−φt

n
= 1

1−φt
n

∑n−1
i=1 φt

i = 1, the ψt
i are well-defined

market shares. Since the evolution of ψt depends on the probability Pr[B|A], one can
obtain a similar formula to (4.2). Indeed, observe that on the event A, we have that

for every i = 1, . . . , n− 1, ψk+1
i =

(Dk+1)ψk
i

Dk+1 − ψk
i

Dk+1 +
êk

i
Dk+1 , with E[êk|F k] = Pr[B|A].

Hence, {ψt}t≥0 can be modelled as an n− 1 dimensional RMA.

We are now in position to prove the main result of this chapter. The theorem con-
siders the case where φ0 ∈ int(∆n), which is the case when the product appeals are
strictly positive. It proves that, under this condition, the ICT set of Equation (4.1)
consists of a single equilibrium φ∗.

Theorem 4.2. Under the social signal f (x) = xr, 0 < r < 1 with φ0 ∈ int(∆n), the RMA
{φt}t>0 converges to φ∗ almost surely.
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Proof. Analogously to what we did in the previous chapter, we will first study the
long term behaviour of the trajectories of the continuous dynamic, proving that they
converge to some equilibria (in this case a unique equilibrium that is asymptotically
stable). Finally, using Theorem 2.6 we will conclude that the RMA (3.7) that describes
the discrete dynamic converges almost surely to that equilibrium.

Indeed, the proof studies the asymptotic behaviour of the solutions of the follow-
ing ODE:

dφt

dt
= π(φt)− φt. (4.4)

Equation (4.4) is equivalent to

dφt
i

dt
=

q̂i(φ
t
i )

r

∑j q̂j(φ
t
j)

r − φt
i , i ∈ {1, · · · , n}; 0 < t < ∞.

Hence, we have the following equivalences:

q̂i(φ
t
i )

r

∑j q̂j(φ
t
j)

r =
dφt

i
dt

+ φt
i ,

1
∑j q̂j(φ

t
j)

r =
1

q̂i(φ
t
i )

r [
dφt

i
dt

+ φt
i ]

1
q̂i(φ

t
i )

r [
dφt

i
dt

+ φt
i ] =

1
q̂j(φ

t
j)

r [
dφt

j

dt
+ φt

j ] ∀i, j ∈ {1, · · · , n},

q̂−1
i (φt

i )
−r[

dφt
i

dt
+ φt

i ] = q̂−1
j (φt

j)
−r[

dφt
j

dt
+ φt

j ],

q̂−1
i [(φt

i )
−r dφt

i
dt

+ (φt
i )

1−r] = q̂−1
j [(φt

j)
−r

dφt
j

dt
+ (φt

j)
1−r],

e(1−r)t(1− r)q̂−1
i [(φt

i )
−r dφt

i
dt

+ (φt
i )

1−r] = e(1−r)t(1− r)q̂−1
j [(φt

j)
−r

dφt
j

dt
+ (φt

j)
1−r],

d
dt

[
e(1−r)tq̂−1

i (φt
i )

1−r
]
=

d
dt

[
e(1−r)tq̂−1

j (φt
j)

1−r
]

,

where the sixth equivalence is obtained by multiplying both sides with µ(t) = (1−
r)e(1−r)t. Notice also that as φ0

i > 0, then for any finite time t > 0, φt
i > 0. Taking the

integral
∫ t

0 dt of the last expression gives

e(1−r)tq̂−1
i (φt

i )
1−r − q̂−1

i (φ0
i )

1−r = e(1−r)tq̂−1
j (φt

j)
1−r − q̂−1

j (φ0
j )

1−r (4.5)

and hence
(φt

i )
1−r

q̂i
−

(φt
j)

1−r

q̂j
= e(r−1)t

[
(φ0

i )
1−r

q̂i
−

(φ0
j )

1−r

q̂j

]
. (4.6)

Consider Equation (4.6):
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• if, for some i 6= j,
(φ0

i )
1−r

q̂i
=

(φ0
j )

1−r

q̂j
, then

(φt
i )

1−r

q̂i
=

(φt
j)

1−r

q̂j
, for all t;

• if
(φ0

i )
1−r

q̂i
6=

(φ0
j )

1−r

q̂j
, then the right-hand side of Equation (4.6) goes to zero as

t→ ∞ (because r < 1) and hence the left-hand side of (4.6) also goes to zero:

lim
t→∞

(φt
i )

1−r

q̂i
−

(φt
j)

1−r

q̂j
= 0. (4.7)

We now prove by induction that the limits for the market shares exist. Consider first
the case of 2 products. Since φt

2 = (1− φt
1), the market is completely characterised

by the value of φt
1 and hence we can use an one-dimensional RMA and, by Theorem

1 in [Renlund, 2010], the RMA converges since F(x) = π(x) − x is a continuous
function and φt

1 is bounded. Assume now that a RMA with k− 1 products converges
and consider a market with k products. By Lemma 4.1, given a k-dimensional RMA
Φt = [φt

1, φt
2, · · · , φt

k], we can create a k− 1 dimensional RMA {Ψt}t≥0 given by ψt
i =

φt
i

1−φt
k

(i < k). By induction hypothesis, ψi = limt→∞ ψt
i exists for all i < k and

therefore Equation (4.6) is equivalent to

(φt
k)

1−r

q̂k(1− φt
k)

1−r −
(ψt

i )
1−r

q̂i
=

e(r−1)t

(1− φt
k)

1−r

[
(φ0

k)
1−r

q̂k
−

(φ0
i )

1−r

q̂i

]
. (4.8)

Observe that, if limt→∞ φt
k = 1, then limt→∞ φt

j = 0 for all j 6= k, and the market
shares converge to one of the possible equilibria (i.e., a monopoly of the product k).

Otherwise, the right-hand side of (4.8) goes to 0 when t→ ∞ and lim
t→∞

(ψt
i )

1−r

q̂i
exists.

Hence lim
t→∞

(φt
k)

1−r

q̂k(1− φt
k)

1−r also exists.

Now denote by φj the limit of φt
j for all j ∈ {1, · · · , n}. Using Equation (4.7), the

following equation holds for all i, j ∈ {1, · · · , n}:

φ1−r
i
q̂i

=
φ1−r

j

q̂j
. (4.9)

Observe that, if there exists l ∈ {1, · · · , n} such that φl = 0, Equation (4.9) implies
that φi = 0 for all i which is impossible since they add up to 1. Hence the limit
process has strictly positive components and Equation (4.9) is equivalent to

φi =
φj

q̂1/(1−r)
j

q̂1/(1−r)
i (4.10)

which is the equation that defines φ∗ in Theorem 4.1 (see Equation (4.3)). As a result,
when φ0 ∈ int(∆n), the only ICT set for the ODE (4.4) is the equilibrium φ∗ and, by



52 Sublinear social signals over a model of consumer choice with position bias

Theorem 2.6, the RMA given by Equation (4.2) converges almost surely to φ∗.

Consider now the case r > 1 for which Theorem 4.1 still characterises the equilibria.
In this case, the dynamic behaviour is completely different due to the strength of the
social signal. It is however possible to prove that the ICT set of the RMA {φt}t>0

consists only of equilibria.

Theorem 4.3. Consider the social signal f (x) = xr with r > 1. The RMA {φt}t≥0 con-
verges almost surely to one of the equilibria φ ∈ ZF := {x ∈ ∆n : π(x)− x = 0}.

Proof. Again, the procedure is same, however in this case, there are many possible
equilibria (a finite set), therefore the conclusion will be that the RMA converges
almost surely to one of them.

The analysis of the ODE is the same as in Theorem 4.2 since the only restriction
in the proof is r 6= 1. However, the interpretation of Equation (4.6) changes when
r > 1.

We define Hi,t0 :=
(φt0

i )
1−r

q̂i
for all 1 ≤ i ≤ n, t0 ≥ 0, and order the products in

decreasing order of Hi,t0 . Let h : {1, .., n} → {1, .., n} be the permutation that defines
this order and denotes by h−1 its inverse function, i.e., h−1(i) = j means that product
j is in the i-th position in permutation h. We have that Hh−1(1),t0

≥ · · · ≥ Hh−1(n),t0
,

which characterises the starting configuration for time t0. Define the following sets:

• Q0(t0) = {i ∈ {1, .., n− 1} : Hh−1(i),t0
= Hh−1(i+1),t0

},

• Q1(t0) = {i ∈ {1, .., n− 1} : Hh−1(i),t0
> Hh−1(i+1),t0

},

and consider the following case analysis:

i) If |Q0| = n− 1, then Hh−1(i),t0
= Hh−1(i+1),t0

for all 1 ≤ i ≤ n− 1. By Equation

(4.6),
(φt

h−1(i))
1−r

q̂h−1(i)
=

(φt
h−1(i+1))

1−r

q̂h−1(i+1)
, for all t > 0 and for all 1 ≤ i ≤ n− 1, which

leads again to the inner equilibrium φ∗.

ii) If 0 < |Q0| < n− 1, select i /∈ Q0. Equation (4.6) implies that

lim
t→∞

(φt
h−1(i))

1−r

q̂h−1(i)
−

(φt
h−1(i+1))

1−r

q̂h−1(i+1)
= ∞,

because r > 1 and hence e(r−1)t → ∞ when t→ ∞. It follows that lim
t→∞

φt
h−1(i) =

0 and the RMA necessarily converges to one of the equilibria that live in the
boundary of the simplex, but they are not monopolies (see Theorem 4.1).

iii) If |Q0| = 0 then |Q1| = n − 1, Using a similar reasoning as in case ii), it
follows that lim

t→∞
φt

h−1(i) = 0 for all 1 ≤ i ≤ n − 1 and, since φt ∈ ∆n for all

t, lim
t→∞

φt
h−1(n) = 1.
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As a result, the only ICT for the differential equation (4.4) are equilibria and, by
Theorem 2.4, the RMA {φt}t≥t0 converges almost surely to one of them, for any finite
t0 starting point. Clearly, any starting configuration can be attained (with positive
probability) for some suitable finite t0 ≥ 0 steps.

It is important to observe that, in the case r > 1, the initial conditions, i.e., the initial
appeals and how the market evolves early on, affect the entire dynamics. This is
in contrast with the case r < 1 for which the long-term behaviour only depends of
the product qualities. This has fundamental consequences for the predictability and
efficiency of the market. We will show now that, when r > 1, the inner equilibrium
φ∗ is always unstable. The result will follow as corollary of the following theorem.

Theorem 4.4. Consider the equilibria given by

φ̂i =
q̂

1
1−r
i

∑j∈Q q̂
1

1−r
j

if i ∈ Q and φ̂i = 0 if i ∈ [n] \Q

with Q = {i ∈ [n] : φi 6= 0}. The trace of the Jacobian matrix, tr(JF(φ̂)), where F(x) =
π(x)− x, is given by

tr(JF(φ̂)) = 2r[|Q| − 1]− n.

Proof. Consider the trace of the Jacobian at φ̂, i.e.,

tr(JF(φ̂)) =
n

∑
i=1

∂Fi(φ̂)

∂φi
.

Observe that, for k 6= i, ∂φ̂k
∂φ̂i

= −1, since ∑j φ̂j = 1 and thus φ̂k = 1−∑j 6=k φ̂j. We have

∂Fi(φ̂)

∂φi
=

∂

∂φi

[
q̂i f (φi)

∑k q̂k f (φk)
− φi

]
(φ̂)

=
q̂i f ′(φ̂i)

∑k q̂k f (φ̂k)
− q̂i f (φ̂i)

∑k q̂k f (φ̂k)︸ ︷︷ ︸
πi(φ̂)

q̂i f ′(φ̂i)−∑k 6=i q̂k f ′(φ̂k)

∑k q̂k f (φ̂k)
− 1

=
1

∑k q̂k f (φ̂k)

[
q̂i f ′(φ̂i) + φ̂i

(
−q̂i f ′(φ̂i) + ∑

k 6=i
q̂k f ′(φ̂k)

)]
− 1

=
1

∑k q̂k f (φ̂k)

[
(1− φ̂i)q̂i f ′(φ̂i) + φ̂i

(
∑
k 6=i

q̂k f ′(φ̂k)

)]
− 1,

where we used that πi(φ̂) = φ̂i (since φ̂ is an equilibrium) to move from the second
to the third equality. Now, when f (x) = xr for r > 1, f ′(x) = rxr−1 and we have

∂Fi(φ̂)

∂φi
=

1
∑k q̂k(φ̂k)r

[
(1− φ̂i)q̂ir(φ̂i)

r−1 + φ̂i

(
∑
k 6=i

q̂kr(φ̂k)
r−1

)]
− 1. (4.11)
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If i ∈ [n] \Q, then φ̂i = 0 and
∂Fi(φ̂)

∂φi
= −1. If i ∈ Q, it follows that

∂Fi(φ̂)

∂φi
=

r

∑k∈Q q̂k

(
q̂

1
1−r
k

∑j∈Q q̂
1

1−r
j

)r

(1− φ̂i)q̂i

 q̂
1

1−r
i

∑j∈Q q̂
1

1−r
j

r−1

+ φ̂i

 ∑
k∈Q\{i}

q̂k

 q̂
1

1−r
k

∑j∈Q q̂
1

1−r
j

r−1

− 1

=
r

∑k∈Q q̂k
q̂

r
1−r
k

∑j∈Q q̂
1

1−r
j

[
(1− φ̂i)q̂i q̂−1

i + φ̂i

(
∑

k∈Q\{i}
q̂k q̂−1

k

)]
− 1.

Since ∑k∈Q q̂k
q̂

r
1−r
k

∑j∈Q q̂
1

1−r
j

= 1, we have
∂Fi(φ̂)

∂φi
= r

[
1− φ̂i + φ̂i(|Q| − 1)

]
− 1 = r[1 +

(|Q| − 2)φ̂i]− 1. As a result, the trace of the Jacobian at φ̂ is given by

tr(JF(φ̂)) =
n

∑
i=1

∂Fi(φ̂)

∂φi
= ∑

i∈Q
(r[1 + (|Q| − 2)φ̂i]− 1) + ∑

i∈N\Q
(−1)

= r[|Q|+ (|Q| − 2) ∑
i∈Q

φ̂i]− |Q| − (|N| − |Q|)

= 2r[|Q| − 1]− n.

Corollary 4.1. Under a social signal f (x) = xr, r > 1, the inner equilibrium φ∗ is unstable.

Proof. By Theorem (4.4), we have that tr(JF(φ∗)) = 2r[|Q| − 1]− n. Since φ∗ has n
non-zero market shares, it follows that tr(JF(φ∗)) = 2r[n− 1]− n = (r− 1)n + r(n−
2) > 0, since r > 1 and n ≥ 2. As a result, by Theorem (2.1) there exists an eigenvalue
λ = λ(φ̂) satisfying Re(λ) > 0. And using Theorem (2.2), φ∗ is unstable.

Remark 4.1. Theorem (4.4) can also be used to show that many other equilibria
are unstable: They simply need to have enough non-zero market shares to satisfy
2r[|Q| − 1] > n. Moreover, the theorem can also be used to show that, for any equi-
librium φ that is not a monopoly, there exists r > 1 that makes φ unstable. It suffices
to choose r > n

2(|Q|−1) . For instance, for n = 4, all the equilibria but the monopolies
are unstable as soon as r > 2.

4.3 Agent-Based Simulation Results

We now report results from an agent-based simulation to highlight and complement
the theoretical analysis. The agent-based simulation uses the setting from [Abeliuk
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Figure 4.1: The quality qi (grey) and appeal ai (red and blue) of song i in the two settings.
The settings only differ in the appeal of songs, and not in the quality of songs. In the first
setting, the quality and the appeal for the songs were chosen independently according to
a Gaussian distribution normalised to fit between 0 and 1. The second setting explores an
extreme case where the appeal is anti-correlated with the quality used in setting 1. In this

second setting, the appeal and quality of each song sum to 1.

et al., 2015], which used a dataset to emulate an environment similar to the Mu-
sicLab. The setting consists of 50 songs with the values of qualities and appeals
specified in Appendix A [Dataset]. As mentioned in the introduction, the MusicLab

is a trial-offer market where participants can try a song and then decide to download
it. The generative model of the MusicLab [Krumme et al., 2012] uses the consumer
choice preferences described in Section 3.2.

From this section and onwards, we assume that, it each period, a new customer
arrives and may or may not buy a product based on the probability (quality) of the
product tried. (Note that, in the earlier sections, each new period began when a
product was purchased). The reason for this change is our interest in quantifying
the expected number of purchases per period, and how it changes depending on
different ranking policies. We use the expected number of purchases per period as
way to measure the market efficiency. This view obviously does not change any result
from the previous sections.

The Simulation Setting The agent-based simulation aims at emulating the Mu-
sicLab: Each simulation consists of L iterations (L simulated users ) and, at each
iteration t : 0 < t < L,

1. the simulator randomly selects a song i according to the probabilities Pi(σ, φ),
where σ is the ranking proposed by the policy under evaluation and φ repre-
sents the market shares;

2. the simulator randomly determines, with probability qi, whether selected song
i is downloaded. In the case of a download, the simulator increases the num-
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ber of downloads of song i, i.e., dt+1
i = dt

i + 1, changing the market shares.
Otherwise, dt+1

i = dt
i .

Every t > 0 iterations, a new list σ may be recomputed if the ranking policy is
dynamic (e.g., the popularity ranking). In this chapter, the simulation setting focuses
mostly on two policies for ranking the songs:

• The quality ranking (Q-rank) that assigns the songs in decreasing order of qual-
ity to the positions in decreasing order of visibility (i.e., the highest quality song
is assigned to the position with the highest visibility and so on);

• The popularity ranking (D-rank) that assigns the songs in decreasing order of
popularity (i.e., dt

i ) to the positions in decreasing order of visibility (i.e., the
most popular song is assigned to the position with the highest visibility and so
on);

Note that the popularity ranking was used in the original MusicLab, while the qual-
ity ranking is a static policy: the ranking remains the same for the entire simulation.
The simulation setting, which aims at being close to the MusicLab experiments, con-
siders 50 songs and simulations with L=105 iterations unless stated otherwise. The
songs are displayed in a single column. The analysis in [Krumme et al., 2012] indi-
cated that participants are more likely to try songs higher in the list. More precisely,
the visibility decreases with the list position, except for a slight increase at the bot-
tom positions. The chapter also uses two settings for the quality and appeal of each
song, which are depicted in Figure 4.1. In the first setting, the quality and the appeal
were chosen independently according to a Gaussian distribution normalised to fit
between 0 and 1. The second setting explores an extreme case where the appeal is
anti-correlated with quality: The quality is the same as in the first setting but the
appeal is chosen such that the sum of appeal and quality is 1.

4.3.1 Convergence

We first illustrate the convergence of the market for various popularity signals (r < 1)
using the quality ranking. In order to visualise the results, we focus on only 5 songs,
where the qualities, appeals, and visibilities are given by

q = [ 0.80, 0.72, 0.68, 0.65, 0.60 ]
a = [ 0.38, 0.35, 0.46, 0.27, 0.62 ]
v = [ 0.80, 0.75, 0.69, 0.62, 0.58 ].

The simulation is run for 105 iterations for the social signals f (x) = xr(r ∈ {0.1, 0.25,
0.5, 0.75}) and Figure 4.2 depicts the simulation results. Observe that the equilibrium
φ∗ (dashed lines) changes because it depends of the value of r. Interestingly, for
social signals with r ≤ 0.5, the convergence of the process seems to occur around 104

time steps (iterations) even when they start with a strong initial distortion due to the
appeals of the songs. The simulations show clear differences in behaviour depending
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Figure 4.2: Evolution of market shares of 5 songs using a social signal f (x) = xr, r ∈
{0.1, 0.25, 0.5, 0.75}. Dashed lines are the values of the equilibrium for each song.

Figure 4.3: Market shares of 6 songs and their qualities, using a social signal f (x) = xr, r ∈
{0.1, 0.25, 0.5, 0.75}.
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Figure 4.4: Distribution of downloads versus the qualities, using social signals f (x) =
xr, r ∈ {0.5, 0.75, 1, 1.25}. The results are for the first setting where the quality and appeal
of each song are chosen independently. The songs are ordered by increasing quality along

the x-axis. The y-axis is the number of downloads.

on r and, when r moves closer to 1, the market tends to exhibit a monopolistic
behaviour for the song with the best quality.

Figure 4.3 shows how the market is distributed in the equilibrium among 6 songs.
The qualities, appeals, and visibilities are given by

q = [0.80, 0.72, 0.65, 0.57, 0.52, 0.49],
a = [0.38, 0.36, 0.27, 0.60, 0.77, 0.78],
v = [0.80, 0.75, 0.62, 0.48, 0.40, 0.35],

and the social signals are of the form f (x) = xr (r ∈ {0.1, 0.25, 0.5, 0.75}). Each
stacked bar represents the proportion of the market for the 6 songs for a given so-
cial signal. Songs with better qualities (i.e., the top 2 songs represented in red and
yellow respectively) have larger market shares and their market shares increase with
r. In contrast, the market shares of the lower-quality songs (i.e., cyan and purple
respectively) decrease when r increases. These results indicate that social influence
has a beneficial effect on the market: it drives customers towards the better products,
while not going to a monopoly as long as r < 1.
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Figure 4.5: Distribution of downloads versus the qualities, using social signals f (x) =
xr, r ∈ {0.5, 0.75, 1, 1.25}. The results are for the first setting where the quality and appeal
of each song are anti-correlated. The songs are ordered by increasing quality along the x-axis.

The y-axis is the number of downloads.

4.3.2 Market Predictability

This section depicts the predictability of the market for various values of r and the
number of downloads per song as a function of its quality. Figures 4.4 and 4.5 depict
the results for the two quality/appeal settings discussed previously. The figures
display the results of 40 experiments for each setting with 1 million arrivals. Each
experiment contributes 50 data points, i.e., the number of downloads for each song,
and all the data points for the 40 experiments are displayed in the figures.

In the plots, the x-axis represents the song qualities and the y-axis the number
of downloads. A dot at location (q, d) indicates that the song with quality q had
d downloads in an experiment. Obviously, there can be several dots at the same
location. For r ∈ {0.5, 0.75, 1}, the market is highly predictable and there is little
variation in the song downloads. For r = 1, the market converges to a monopoly
for the song of highest quality, confirming the results from [Abeliuk et al., 2015;
Van Hentenryck et al., 2016]. Finally, for r = 1.25, the market exhibits significant
unpredictability, as suggested by the theoretical results. In this case, the equilibria
are monopolies for various songs but it is hard to predict which song will dominate
the market.

Note also that the unpredictability of the market increases significantly for r =
1.25 when the appeal and quality of the songs are anti-correlated. This is not the
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case for r ∈ {0.5, 0.75}. To evaluate the statistical significance of these results, we
measure the market unpredictability as suggested by Salganik et al. [2006]. The
unpredictability uni for product i is defined as the average difference in market share
for that product over the 40 experiments:

uni =
1(
40
2

) 40

∑
w=1

40

∑
w∗=w+1

|φi,w − φi,w∗ |,

where φi,w is the final market share of product i in experiment w. We then com-
puted the overall unpredictability for each social signal r ∈ {0.5, 0.75, 1, 1.25}: U =
∑n

j=1 unj

n
.

Figure 4.6 shows the average unpredictability U and the standard deviation for
the different social signals, using the same data as in Figures 4.4 and 4.5 (Figure 4.6 a

and Figure 4.6 b respectively). We also performed Mann-Whitney U tests, comparing
the values of U for pairs of social signals. In all cases, a social signal r < 1 is
significantly more predictable than the signal r = 1.25 (p-value<0.05). Comparisons
between r = 0.5 and r = 0.75 and r = 0.75 and r = 1 also show statistically significant
differences in unpredictability. For instance, for the anti-correlated setting, the p-
values for the various pairwise comparisons (first column is less unpredictable than
second column) are given in Table 4.1

social signal social signal p-value
0.5 0.75 0.0029
0.5 1 8.73e-07
0.5 1.25 4.24e-10
0.75 1 0.0003
0.75 1.25 2.10e-07
1 1.25 0.0022

Table 4.1: p-values of the hypothesis: first column is less predictable than second column.
Case ai, qi anti-correlated.

For the independent setting, Table 4.2 shows the pairwise comparisons that are also
statistically significant in that case:

social signal social signal p-value
0.5 1 0.0414
0.5 1.25 0.0034
0.75 1.25 0.0266

Table 4.2: p-values of the hypothesis: first column is less predictable than second column.
Case ai, qi independent.
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Figure 4.6: Average unpredictability (grey bars), using social signals f (x) = xr, r ∈
{0.5, 0.75, 1, 25}. a) shows the results for the independent setting, and b) for the anti-
correlated setting. Both cases consist of 40 experiments with 1 million iterations each. Blue

lines represent the respective standard deviations.

Figure 4.7 compares the predictability of Q-rank and D-rank for the first setting of
Quality/Appeal. For each ranking, two different social signals were used (r = 0.5
and r = 1) and the figure displays the result of 50 experiments, consisting in 1 million
iterations. Two phenomena can be observed. First, sublinear signals seem to help the
D-rank, making the outcome less chaotic (first column). Second, Q-rank clearly
performs better than D-rank and exhibits much less unpredictability.

4.3.3 Performance of the Market

Figures 4.8 and 4.9 report results about the performance of the markets as a function
of the social influence signals. The figures report the average number of downloads
over time among 50 experiments, for the quality and popularity rankings as a func-
tion of the social signals. There are a few observations that deserve mention.

1. For the quality ranking, the expected number of downloads increases with the
strength of the social signal as r approaches 1. The equilibrium when r = 1
is optimal asymptotically and assigns the entire market share to the song of
highest quality. When r = 2, the situation is more complicated. The figure
shows that the market efficiency can further improve if r = 2. However, when
the simulation is run for more iterations (a result not shown in the figure), the
market efficiency decreases slightly compared to r = 1, which is consistent with
the theory since there is no guarantee that the monopoly for r > 1 is for the
song of highest quality.

2. The popularity ranking is always dominated by the quality ranking and the
benefits of the quality ranking increase as r approaches 1 from below.
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Figure 4.7: Distribution of purchases versus product qualities for 50 experiments with 1
million users. Figures (a) and (b) use a social signal f (x) = x0.5, Figure (a) shows the results
for the popularity ranking and Figure (b) for the quality ranking. Figures (c) and (d) use the
social signal f (x) = x, Figure (c) shows the results for the popularity ranking and Figure (d)

for the quality ranking.

3. The popularity ranking in the second setting when r = 2, obtains nearly a third
of the expected downloads than the quality ranking.

4.4 Additional Observations on Sublinear Social Signals

The Benefits of Social Influence A linear social signal has been shown to be benefi-
cial to the market efficiency, maximising the expected number of downloads. This re-
sult was proved by Abeliuk et al. [2015] for the performance ranking and by Van Hen-
tenryck et al. [2016] for any static ranking such as the quality ranking. Unfortunately,
sublinear social signals are not always beneficial to the market in that sense, as one
can see in Example 4.1. Consider, once again, the quality ranking and assume that
q1 ≥ . . . ≥ qn. When there is no social signal, by following the Multinomial Logit
model of Krumme et al. [2012] who define two sets of probabilities, πSI

i,t and π I
i , that

capture the probability of trying product i with and without social influence.
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Figure 4.8: The Average Number of Downloads over Time for the Quality and Popularity
Rankings for Various Social Signals in the First Setting for Song Appeal and Quality.
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Figure 4.9: The Average Number of Downloads over Time for the Quality and Popularity
Rankings for Various Social Signals in the Second Setting for Song Appeal and Quality.
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These probabilities are defined as:

πSI
i,t =

vσ(i)(αai + dt
i)

∑n
j=1 vσ(j)(αaj + dt

j)
, π I

i =
vσ(i)ai

∑n
j=1 vσ(j)aj

, (4.12)

where α is a parameter to calibrate the strength of the social signal (e.g., α = 200
for the MusicLab experiments). Equation (3.1) allows us to recover the formulae
(4.12) via some linear transformation of the identity function: f (φi) = βφi + αai, with
β = ∑j dj or β = 0 for each case:

π I
i =

viai

∑n
j=1 vjaj

.

In this case, the expected number of purchases per period is

n

∑
i=1

π I
i qi.

On the other hand, with a social signal, the probability of trying product i at time t
is

Pi(φ
t) =

vi f (φt
i )

∑n
j=1 vj f (φt

j)

and the expected number of purchases per period at the equilibrium is given by

n

∑
i=1
Pi(φ

∗)qi =
n

∑
i=1

viqi f (φ∗i )
∑n

j=1 vj f (φ∗j )
.

The following example shows that, under a sublinear social signal, the expected
number of purchases (per period) at equilibrium, i.e., ∑n

i=1 Pi(φ
∗)qi, can be lower

than the expected number of purchases when no social signal is used, i.e., ∑n
i=1 π I

i qi.

Example 4.1. Consider a 2-dimensional Trial-Offer market with social signal f (x) = x0.5,
where the qualities, visibilities, and appeals are given by

• q1 = 1, q2 = 0.4,

• v1 = 1, v2 = 1,

• a1 = 1, a2 = 0.3.

The expected number of purchases at equilibrium for the case with social signal is given by

v1q1(φ
∗
1)

r + v2q2(φ∗2)
r

v1(φ∗1)
r + v2(φ∗2)

r =
v1q1(v1q1)

r/(1−r) + v2q2(v2q2)r/(1−r)

v1(v1q1)r/(1−r) + v2(v2q2)r/(1−r)
=

1 + (0.4)2

1 + 0.4
∼ 0.83,

while, for the case without social signal, it is given by

v1q1a1 + v2q2a2

v1a1 + v2a2
=

1 + 0.3(0.4)
1 + 0.3

∼ 0.86.
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This simple example, in which the qualities and appeals are positively correlated,
shows that if customers follow a sublinear social influence signal (r = 0.5), the market
efficiency gets reduced by around 3 percent (with respect to not showing them the
social signal). In contrast, when r = 1, social influence drives the market towards a
monopoly, which leads to an asymptotically optimal market that assigns the entire
market share to the highest quality product (which may be undesirable in practice).
Note that, once the qualities and appeals have been recovered (using, say, Bernoulli
sampling as suggested in [Abeliuk et al., 2015]), one could potentially decide whether
to use the social influence (in case it is sublinear r < 1): simply compare the expected
number of purchases in both settings, using the equilibrium for the social influence
case and the formula for the case with no social signal.

Another measures could be also implemented whenever is detected that social
influence can harm the firm’s profit. For example in [Hu et al., 2015] the authors
propose among their solutions, an incluencer recruitment, which consist of offering
the product to the correct people so they can drive the initial trends.

Optimality of the Quality Ranking When r = 1, it has been shown that the quality
ranking is optimal asymptotically: it maximises the expected number of purchases
Van Hentenryck et al. [2016]. If another static ordering is used, the market will
converge to the product that has the highest quality when scaled by its visibility.
However, when 0 < r < 1, the quality ranking is no longer guaranteed to be optimal
asymptotically.

Example 4.2. Consider a 3-dimensional Trial-Offer market with a social signal f (x) =
xr, r = 0.3, and the following values for qualities and visibilities:

• q1 = 1, q2 = 0.261, q3 = 0.002,

• v1 = 1, v2 = 0.720, v3 = 0.229,

then, using quality ranking we would end up with an expected number of purchases at equi-
librium, given by

n

∑
i=1
Pi(φ

∗)qi =
v1q1(v1q1)

r/(1−r) + v2q2(v2q2)r/(1−r) + v3q3(v3q3)r/(1−r)

v1(viqi)r/(1−r) + v2(v2q2)r/(1−r) + v3(v3q3)r/(1−r)

=
1 + (0.720 ∗ 0.261)10/7 + (0.229 ∗ 0.002)10/7

1 + 0.720(0.720 ∗ 0.261)3/7 + 0.229(0.229 ∗ 0.002)3/7 ∼ 0.8026,

on the other hand, if we decide to place the third product (quality q3 = 0.002) in the second
position, and the second product (quality q2 = 0.261) in the third position of the ranking, we
get

n

∑
i=1
Pσi(φ

∗)qi =
v1q1(v1q1)

r/(1−r) + v2q3(v2q3)r/(1−r) + v3q2(v3q2)r/(1−r)

v1(viqi)r/(1−r) + v2(v2q3)r/(1−r) + v3(v3q2)r/(1−r)

=
1 + (0.720 ∗ 0.002)10/7 + (0.229 ∗ 0.261)10/7

1 + 0.720(0.720 ∗ 0.002)3/7 + 0.229(0.229 ∗ 0.261)3/7 ∼ 0.9154.
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The intuition behind the previous example is that if there exists a product which
is much better than the rest, the best decision is to exhibit it in the first position
and place, in the second position, the lowest quality product to make the first prod-
uct even more appealing. It is an open problem to determine whether there is a
polynomial-time algorithm to find an optimal ranking.
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Chapter 5

Pricing strategies under a
multinomial logit model with
network effects

This chapter is reproduced from a paper in preparation.

Maldonado, F.; Berbeglia, G.; Van Hentenryck, P., 2019. Compete or collabo-
rate: pricing strategies under a multinomial logit model with network effects.

5.1 Introduction

In this chapter we aim to study seller’s pricing strategies based on a model of con-
sumer choice, where the purchasing decisions are affected by past consumption.
In general terms we assume that the willingness to purchase is influenced by the
(known) intrinsic utility of the products, their prices, and network effects as a func-
tion of consumption history. The consumers can purchase the product i ∈ {1, . . . , n}
that maximises their expected utility or they can choose to leave the market without
making any purchase, what is called choosing the no purchase option.

We also aim to represent how ineffective transactions affect the purchasing de-
cisions, motivated for markets like eBay, where after each transaction the users
can give an evaluation to the seller in the categories of positive, negative and neu-
tral. New consumers can observe how many transactions a seller has made and a
reputation score that penalises the negative feedback, providing extra information
about transactions where the consumers were not satisfied (e.g, Cabral and Hortacsu
[2010]). In order to capture those ineffective transactions with our model, we consider
that the no purchase option also presents network effects. In this way we are able
to keep track of consumers that do not buy anything in the market, or equivalently
they buy similar products somewhere else.

The main contributions of this chapter can be summarised in the following way:

• Non-linear network effects in a consumer choice model: We propose a vari-
ation of the Multinomial Logit Model for consumer choice where we incorpo-
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rate non-linear network effects, representing in this way, market interactions
where consumers only see a score function of the past consumption. Since
the probability of choosing the available products (or the no purchase option)
dynamically changes over time due to the network effects, we apply stochas-
tic approximation techniques to prove that such probability converges almost
surely to an asymptotic stationary distribution, that represents the market share
of each product in the long run.

• Monopolistic and competitive pricing are analysed: For a market with n sell-
ers, we model their expected revenues based on the asymptotic market share
distribution and the displayed prices. First, we study the case where sellers
act collaboratively, adopting a monopolistic pricing strategy to maximise the
overall expected revenue. We show that the market share of the no purchase
option is decreasing in terms of the network parameter r : 0 < r < 1, and that
the overall expected revenue is increasing in that parameter as long as r is large
enough. We then study the case where sellers compete, inducing a price com-
petition game that has a unique pure Nash Equilibrium (we also provide an
algorithm to compute it). We finally compare experimentally and analytically
both cases, incorporating the consumers’ perspective into the analysis.

The rest of the chapter is structured as follows: Section 5.2 details the proposed
consumer choice model. Section 5.3 focuses on the sellers acting collaboratively, in
opposition to Section 5.4 where they compete. Finally, Section 5.5 compares the
strategies defined in the previous two sections, showing how they affect/benefit the
consumers.

Across the whole chapter we include some numerical examples based on syn-
thetic data, complementing the theoretical results and providing some extra insights.
We also include an Appendix where more experiments are shown.

5.2 Model

We consider a market with n sellers, n ≥ 2, where each seller i ∈ {1, ..., n} owns
one indivisible product with infinite supply (e.g., digital goods like e-books). For
notational convenience we also call i to the product of seller i.

Once the sellers have fixed the prices for their products, sequential consumers
arrive and decide to buy one of the n products or not to buy anything. We define
a discrete time k ≥ 1 as the arrival of consumer k to the market. Notice that this
is different to the previous chapters, where the discrete times were defined by new
purchases. We assume that consumers’ decisions are affected by the intrinsic utility
of the products, the prices and some network effects related to the popularity of the
products.

We model this as a variation of a standard MNL model with network effects
(see for example Du et al. [2016, 2018]), where we incorporate a non-linear network
effect, reflecting a score function of the past purchases. This is done mainly for two
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reasons: first, we intend to use some results from previous chapters, having some
assurances over the asymptotic behaviour of the market, and second, we aim to avoid
multiplicity of price equilibria, a phenomenon that can be observed for example in
Du et al. [2016]. Formally our model is defined as follows: the k-th consumer’s utility
obtained from purchasing product i is given by

uk
i := ui(r, gi, dk

i , pi) = gi + r ln(dk
i )− βi pi + ξi, (5.1)

where gi represents the intrinsic utility of product i (a measure of its quality); r
is a constant that represents the strength of the network effect on the consumers
(0 < r < 1); pi is the price of the product and βi is a price sensitivity parameter; dk

i
is its cumulative amount of purchases up to time k, that for notational convenience
we initialised as d0

i = 1 for all i ∈ {1, . . . , n} (this is equivalent to consider ln(dk
i +

1), with d0
i = 0 ). Finally ξi is a random variable representing consumer specific

idiosyncrasies.
We also consider a dummy product, n + 1, representing the no purchase option,

which we characterise with the parameters gn+1 = 0, pn+1 = 0, and d0
n+1 = 1 which

is increased by 1 every time a new consumer does not buy anything, keeping track
of the ineffective exchanges between sellers and consumers. The utility for the no
purchase option is then uk

n+1 = r ln(dk
n+1) + ξn+1. In Dhar [1997] the author shows

several empirical studies where consumers decide for a no choice option, even when
the available products have a good intrinsic utility. With our model we try to capture
that type of phenomenon.

We denote [n + 1] := {1, ..., n} ∪ {n + 1}, the set of products extended by the
no purchase option. Let φk be the vector of market share at time k, this is φk

i =
dk

i
∑j∈[n+1] dk

j
, for all i ∈ [n + 1]. Under the assumption that {ξi}n+1

i=1 are i.i.d random

variables following a Gumbel distribution, and according to standard results for the
Multinomial Logit model (see McFadden et al. [1973] for details), the probability that
the (k + 1)-th consumer purchases product i is given by

πk
i = πi(φ

k, p, q, β) =
(dk

i )
regi−βi pi

∑j∈[n+1](dk
j )

regj−β j pj
=

(φk
i )

regi−βi pi

∑j∈[n+1](φ
k
j )

regi−β j pj
.

Where πk
n+1 + ∑n

i=1 πk
i = 1 for all k ≥ 0. We put πk = (πk

1, . . . , πk
n, πk

n+1).
If we compare this probability distribution with the one from Chapter 4, we can

establish some relations between the parameters that define each model in the fol-
lowing way. Let $i = egi−Γ and υi = eΓ−βi pi , where Γ ≥ 1 is some fixed constant
(for example Γ = maxi∈{1,...,n} gi + 1). We notice that $i : 0 < $i < 1 could represent
the parameter of quality in the model from Chapter 4, while υi could represent the
visibility of position i in that model. We have in this way the relation of higher price
⇔ lower visibility. Furthermore, the expected market shares in both models will
depend on the values of $iυi = egi−Γ+Γ−βi pi = egi−βi pi (see Lemma 5.2).

However there is a big difference between the models. While in the model from
Chapter 4, the visibilities are an intrinsic characteristic of the market (independent
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of the products), here, the prices are chosen by the sellers. In that sense, the pricing
policy that will be developed in Section 5.4 can also be interpreted as an auction for
positions in the market model from Chapter 4. Meanwhile Section 5.3 could be seen
as a market maker choosing an optimal ranking.

In order to use results from previous chapters, the following Lemma establishes
an important property that the market share φk satisfies:

Lemma 5.1. The market share φk, satisfies the following recurrence:

φk+1 = φk + γk+1
[
πk − φk + Uk+1

]
, (5.2)

with γk+1 = O(k−1) and Uk+1 a martingale difference noise term (i.e., E[Uk+1|φt, t ≤ k] =
0).

Proof. Following the idea of Chapter 4, consider that in each time step k (arrival of k-
th consumer) either a product i ∈ {1, ..., n} is purchased, or no product is purchased
(i = n + 1), then, defining Dk := ∑j∈[n+1] dk

j = ∑j∈[n+1] ∑k
t=1 dt

j = k, we have that

φk = Dk φk

Dk ⇒ φk+1 = Dkφk+ek+1

Dk+1 , with ek+1 a random (n + 1- dimensional) variable

with coordinates (ek+1)i = 1 if product i ∈ {1, ..., n} has been purchased at time k+ 1;
(ek+1)j 6=i = 0, and (ek+1)n+1 = 1 if no product is purchased by the consumer k + 1.

Hence, clearly E[ek+1|φt, t ≤ k] = πk, and considering γk+1 :=
1

Dk+1 =
1

k + 1
,

and Uk+1 := ek+1 −E[ek+1|φt, t ≤ k], we get the desired recurrence

φk+1 = φk + γk+1
[
πk − φk + Uk+1

]
.

As it was explained in the previous chapters, the asymptotic behaviour of the
discrete dynamic (5.2) is related to the asymptotic behaviour of the continuous dy-
namic:

φ̇t = π(φt)− φt, φt ∈ ∆n+1. (5.3)

In Chapter 4, Theorem 4.1 shows that a dynamic like Equation (5.3) has only one
equilibrium with all its coordinates strictly positive. Furthermore, Theorem 4.2 shows
that under some conditions over the parameters, the Robbins-Monro algorithm (5.2)
converges almost surely to that equilibrium. Using that result we can establish the
following Lemma.

Lemma 5.2. For any fixed price p = (p1, ..., pn, pn+1) ∈ Rn
+× {0}, fixed parameters βi, gi,

and a network effect parameter r : 0 < r < 1, the market share φk converges almost surely to
the unique equilibrium φ∗ = (φ∗i )i∈[n+1] given by

φ∗i =
(egi−βi pi)1/(1−r)

∑j∈[n+1](e
gj−β j pj)1/(1−r)

. (5.4)
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Furthermore, for every i ∈ [n + 1], πi(φ
∗) = φ∗i (fixed point for the probability function π).

It is important to notice that according to Corollary 4.1 in Chapter 4, when r > 1,
φ∗ is an unstable equilibrium, hence the market converges to other equilibria (for
example, monopolies for some product) with probability 1. Establishing pricing
policies in those cases using the equilibrium φ∗ as a decision variable does not make
sense, therefore we will focus only on the cases where 0 < r < 1. In some related
research (e.g., Cui and Zhu [2016] and Wang and Wang [2016]) the authors do not
consider upper bounds on the network parameters (but the market size is fixed).
However, as Du et al. [2016] points out, higher values of those parameters can lead
to suboptimal results (due to multiplicity of equilibria). In our case we compensate
this limiting behaviour (bounding the network parameter to (0, 1)), allowing the
purchases to grow freely (unbounded market size).

In the case that 0 < r < 1 we notice that the term τi := gi− βi pi affects directly the
expected market share for each product, in particular the product with the highest
value of τi gets the largest market share. In this way, if a high intrinsic utility product
is too expensive, then the chances of being purchased decrease, or equivalently lower
intrinsic utility products could increase their expected sales after a reduction on its
price. Keeping this into consideration, we define the expected revenue for each seller
in terms of the expected market share and the chosen prices.

Definition 5.1. The expected revenue for seller i is given by

wi = wi(r, q, pi, p−i) = piφ
∗
i = pi

(egi−βi pi)1/(1−r)

∑j∈[n+1](e
gj−β j pj)1/(1−r)

.

For notational convenience we assume without loss of generality that the intrinsic
utilities are non-decreasingly ordered, this is, g1 ≥ g2 ≥ · · · ≥ gn > gn+1 = 0,
meaning that seller 1 has the highest intrinsic utility product. In the following two
sections we will analyse two types of strategic decisions, that the sellers can follow
based on their expected revenues wi. In Section 5.3 we analyse the case of a coalition
between the sellers where they adopt a monopolistic pricing strategy to maximise
the overall expected revenue. Whereas in Section 5.4 we study the case where sellers
compete on their prices to maximise their own expected revenues. We will pay
special attention to the behaviour of the price and revenue in terms of the network
parameter r, and when that’s relevant we will make explicit the dependence (e.g.,
pi = pi(r)).

5.3 Monopolistic pricing

We consider in this section a setting where the sellers decide to act collaboratively.
In this context the sellers choose their prices such that they maximise the overall
expected revenue defined by

R(p) =
n

∑
i=1

wi =
n

∑
i=1

piφ
∗
i .
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Thus, we are interested in finding a price vector pM := (pM
1 , . . . , pM

n ), that we call
monopolistic price, that satisfies

pM ∈ arg-max
p∈Rn

+

R(p).

In Theorem 5.1 we will deduce the conditions that pM must satisfy to maximise
R(p), and in the special case of having the same price sensitivities for all the prod-
ucts, βi = β, ∀i ∈ {1, . . . , n}, we will provide a closed expression for this price using
the Lambert W function (see Corless et al. [1996]), where in particular, for any non-
negative x, W(x) is defined as the solution of the equation

WeW = x.

If x > 0, then W(x) is a positive continuous differentiable function, strictly increasing
and concave. The use of the Lambert W function spans a wide range of applications,
and particularly it has been used in Economics for pricing on discrete choice models
(e.g., Li and Huh [2011] and Cui and Zhu [2016] ).

Theorem 5.1. The monopolistic price, pM = (pM
1 , pM

2 , . . . , pM
n ) that maximises R(p) must

satisfy that

pM
i

1− r
− 1

βi
=

pM
k

1− r
− 1

βk
, for every pair i, k ∈ {1, . . . , n}. (5.5)

Furthermore, if the products have the same price sensitivity βi = β, ∀i ∈ {1, . . . , n} then all
the products have the same price pM

i = pM given by

pM =
1− r

β

[
W

(
∑n

i=1 egi/(1−r)

e

)
+ 1

]
, (5.6)

with W() is the Lambert W function.

Before presenting the proof, it is important to notice how pM compares against the
monopolistic price obtained with other models.

Since the probability functions define how the models behave, we proceed to
characterise the two models we will be comparing against (under our notation), using
their probabilities.

Definition 5.2. The probability πC
i of choosing product i ∈ {1, . . . , n} for the classic MNL

model (without network effects) is given by

πC
i =

exp(gi − βi pi)

1 + ∑n
j=1 exp(gj − β j pj)

,

where gi,βi and pi are defined as before. We put πC = (πC
1 , . . . , πC

n+1).

Definition 5.3. For the MNL model with network effects defined in Du et al. [2016], the
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probability πD
i of choosing product i ∈ {1, . . . , n} is given by

πD
i =

exp(gi − βi pi + αiφi)

1 + ∑n
j=1 exp(gj − β j pj + αjφj)

,

where αi is the network sensitivity of product i, and φi its market share. We put πD =
(πD

1 , . . . , πD
n+1).

The following table summarises some of the comparisons we obtain when we
consider the different probability models. The first column of the table contains the
settings where we will be making the comparisons, the second column contains the
conclusions given by our probability distribution π = (π1, . . . , πn+1), where πi =

φr
i exp(gi − βi pi)

∑j∈[n+1] φr
j exp(gj − β j pj)

. The third and fourth columns contain the results when

πC, πD are used, respectively.

Setting π πC πD

βi = β

for all
i ∈ [n]

Unique optimal price
is to assign the same
price to every product
(uniform price).

Uniform price. No explicit form for the
optimal price.

Market shares are in-
creasing on the intrin-
sic utility of the prod-
ucts.

Market shares are
increasing on the in-
trinsic utility of the
products.

Since, in their model,
the following expres-
sion must be constant
2αφi − log(φi) + gi,
then if for some i,
φi > 1

2α , an increment
on its intrinsic utility,
would lead to a decre-
ment of its market
share.

βi = β,
gi = g
for all
i ∈ [n]

Uniform price Uniform price Uniform price if α <
α̂, for some α̂. Other-
wise, uniform price for
n− 1 products, and one
product with a lower
price

Uniform market share Uniform market
share

Uniform market share
if α < α̂, otherwise, the
cheapest product has a
larger market share.

Finally, it is worth mentioning that in our model, even if the price sensitivities are
different, according to Equation (5.5), if r → 0, then for all i, k ∈ {1, ..., n}, pM

i = pM
k .
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However, in that case the highest intrinsic utility product gets a market share close to
1, while the rest of the products have a negligible share (a monopoly for the highest
intrinsic utility product).

The proof for Theorem 5.1 is as follows.

Proof. To find the prices that optimise R(p) we compute the gradient of R, ∇R(p),

with coordinates
∂R(p)

∂pk
given by

∂R(p)
∂pk

=
n

∑
i=1,i 6=k

∂(piφ
∗
i )

∂pk
+

∂(pkφ∗k )

∂pk

=
n

∑
i=1,i 6=k

βk

1− r
piφ
∗
i φ∗k + φ∗k −

βk

1− r
φ∗k pk(1− φ∗k )

= φ∗k

[
βk

1− r

(
n

∑
i=1,i 6=k

piφ
∗
i + pkφ∗k

)
+ 1− βk

1− r
pk

]

= φ∗k

[
βk

1− r
R(p) + 1− βk

1− r
pk

]
.

Imposing the first order conditions over R(p) gives us

∂R(p)
∂pk

= 0⇔ φ∗k = 0∨ R(p)
1− r

=
pk

1− r
− 1

βk
, 1 ≤ k ≤ n,

However φ∗k = 0 ⇔ pk = ∞, we conclude that for all pairs i, k, 1 ≤ i, k ≤ n, the
following equality must hold

pk

1− r
− 1

βk
=

pi

1− r
− 1

βi
,

which is the desired condition (5.5). Now, defining zk =
βk pk

1− r
(that we will call the

normalised price for product k), Equation (5.5) is equivalent to

zk − 1
βk

=
zi − 1

βi
, ∀i, k ∈ [n]. (5.7)

Equation (5.7) defines a pairwise relation. On the other hand the prices must also
satisfy

R(p)
1− r

=
zk − 1

βk
. (5.8)

Now in the special case when βi = β for all the products, Equation (5.7) implies that
all the prices are the same, pi = p for all i ∈ {1, . . . , n}. Replacing this condition into
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Equation (5.8) produces the following equivalences

p
1− r

n

∑
i=1

φ∗i =
z− 1

β

zφ∗n+1 = 1 (5.9)
z

1 + e−z ∑n
i=1 egi/(1−r)

= 1

z− 1 = e−z
n

∑
i=1

egi/(1−r) (5.10)

(z− 1)ez−1 = e−1
n

∑
i=1

egi/(1−r)

⇒ zM = W(e−1
n

∑
i=1

egi/(1−r)) + 1. (5.11)

Finally replacing pM = (1−r)zM

β we have our conclusion.

We can easily notice that each coordinate of pM := (pM, . . . , pM) is increasing on each
value of gi for all i ∈ {1, . . . , n}, this is, higher the intrinsic utility, higher the price.
Theorem 5.2 summarises other properties related to the monopolistic price, and the
monotonic behaviour of the revenue in terms of the network effect parameter r.

Theorem 5.2. Let all the products have the same price sensitivity βi = β, and consider a
network effect parameter r, 0 < r < 1, then the following statements hold true:

1. The market share of the no purchase option, φ∗n+1(p
M(r)), is strictly decreasing in r.

2. The market share of the highest intrinsic utility product, φ∗1(p
M(r)), is strictly increas-

ing in r.

3. There exists r∗, 0 < r∗ < 1 such that, the overall expected revenue R(pM(r)) =

∑n
i=1 pM

i (r)φ∗i (p
M(r)) is strictly increasing in r for all r : r∗ ≤ r < 1.

Proof. Let pM(r) be the monopolistic price for each product, given by Theorem 5.1,
and consider the normalised price zM(r) = βpM(r)

1−r .

1. We know that according to Equation (5.9), the market share for the no purchase
option, φ∗n+1(p

M(r)), must satisfy zM(r)φ∗n+1(p
M(r)) = 1. Clearly since W() is

an increasing function, Equation (5.11) implies that zM(r) is strictly increasing
in terms of r, hence φ∗n+1(p

M)(r) must be strictly decreasing as a function of r.

2. We first compute the derivative of zM(r) with respect to r, indeed we use Equa-
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tion (5.10) to obtain the ∂zM(r)
∂r as follows

∂zM(r)
∂r

= −∂zM(r)
∂r

e−zM(r)
n

∑
i=1

egi/(1−r) + e−zM(r)
n

∑
i=1

giegi/(1−r)

(1− r)2

⇒ ∂zM(r)
∂r

=
1

(1− r)2
∑n

i=1 e−zM(r)egi/(1−r)gi

1 + e−zM(r) ∑n
i=1 egi/(1−r)

=
1

(1− r)2

n

∑
i=1

φ∗i (p
M(r))gi.

Now we consider the market share for the highest intrinsic utility product,
φ∗1(p

M(r)), and we take its first derivative with respect to r:

∂φ∗1(p
M(r))

∂r
=

∂eg1/(1−r)

∂r e−zM(r) + ∂zM(r)
∂r e−zM(r)eg1/(1−r)

1 + e−zM(r) ∑n
i=1 egi/(1−r)

−

e−zM(r)eg1/(1−r)

(1 + e−zM(r) ∑n
i=1 egi/(1−r))2

(
e−zM(r)

n

∑
i=1

∂egi/(1−r)

∂r
− ∂zM(r)

∂r
e−zM(r)

n

∑
i=1

egi/(1−r)

)

=
φ∗1(pM(r))
(1− r)2

[
g1 −

n

∑
j=1

φ∗j (p
M(r))gj + [1−

n

∑
j=1

φ∗j (p
M(r))]

n

∑
j=1

φ∗j (p
M(r))gj

]
,

the only term that can be negative in the last equality is g1 − ∑n
j=1 φ∗j (p

M)gj,
but as ∑j∈[n+1] φ∗j = 1, then g1 = ∑j∈[n+1] φ∗j g1 = ∑n

j=1 φ∗j g1 + φ∗n+1g1, and since
g1 ≥ gj, for all 1 ≤ j ≤ n we have

g1 −
n

∑
j=1

φ∗j (p
M)gj =

n

∑
j=1

(g1 − gj)φ
∗
j (p

M) + φ∗n+1(p
M)g1 > 0.

In conclusion φ∗1(pM), the market share for the highest intrinsic utility product
is strictly increasing in terms of r.

3. We first notice that if pM(r) is increasing in some interval [r∗, r∗∗), then the
conclusion is direct, indeed, since R(pM(r)) = pM(r)(1− φ∗n+1(p

M(r))), taking
the partial derivatives with respect to r gives an expression that it is always
positive for r : r∗ < r < 1. We assume then that pM(r) is decreasing for all 0 <
r < 1, in particular, we have that if for some r1 : 0 < r1 < 1, gi − βpM(r1) > 0,
then for all r2 : r1 < r2 < 1, gi − βpM(r2) > 0.

Now, we know that the monopolistic price pM(r) is characterised by Equation
(5.8) as follows:

R(pM(r)) = pM
i (r)− 1− r

βi
.

and in the special case where all βi are the same, we have

R(pM(r)) =
1− r

β

(
βpM(r)

1− r
− 1
)
=

1− r
β

(zM(r)− 1).

Hence, taking the derivative of R(pM(r)) with respect to r, is the same as com-
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puting the following

∂R(pM(r))
∂r

=
∂ 1−r

β (zM(r)− 1)

∂r

=
1
β
[(1− r)

∂zM(r)
∂r

− (zM(r)− 1)].

But from previous computations we know that ∂zM(r)
∂r =

1
(1− r)2 ∑n

i=1 φ∗i (pM(r))gi.

Therefore, using again that 1−r
β (zM(r)− 1) = R(pM(r)) = ∑n

i=1 φ∗i (p
M(r))pM(r),

we have

∂R(pM(r))
∂r

=
1

β(1− r)

[
n

∑
i=1

φ∗i (p
M(r))gi −

n

∑
i=1

φ∗i (p
M(r))βpM(r)

]

=
1
β

[
n

∑
i=1

φ∗i (p
M(r))

(
gi − βpM(r)

1− r

)]
,

where φ∗i (p
M(r)) =

e
gi−βpM(r)

1−r

1 + ∑n
j=1 e

gj−βpM(r)
1−r

.

For a fixed r we define the following sets:

N−(r) = {i ∈ {1, ..., n} : gi − βpM(r) ≤ 0},
N+(r) = {i ∈ {1, ..., n} : gi − βpM(r) > 0}.

Then we find the following equality

n

∑
i=1

φ∗i (p
M(r))

[
gi − βpM(r)

1− r

]
= ∑

i∈N−(r)

e
gi−βpM(r)

1−r
gi−βpM(r)

1−r

1 + ∑n
j=1 e

gj−βpM(r)
1−r

+ ∑
i∈N+(r)

e
gi−βpM(r)

1−r
gi−βpM(r)

1−r

1 + ∑n
j=1 e

gj−βpM(r)
1−r

.

We notice that if r is close enough to 1, then for all i ∈ N−(r), e
gi−βp

1−r
gi−βpM(r)

1−r is

a small negative number, on the other hand for i ∈ N+(r), e
gi−βpM(r)

1−r
gi−βpM(r)

1−r is
positive and can be arbitrarily large when r ∼ 1. Necessarily there must exists
r∗ such that

1
β

[
n

∑
i=1

φ∗i (p
M(r∗))

(
gi − βpM(r∗)

1− r∗

)]
> 0,

and as pM(r) is assumed to be decreasing, we can ensure that there will not be
another change of monotony. In conclusion, R(pM(r)) is a strictly increasing
function when r∗ < r < 1.



80 Pricing strategies under a multinomial logit model with network effects

The following example shows a small instance where we can see how the prices,
market share and revenue are affected under different values of r.

Example 5.1. Consider network parameters r ∈ (0, 1), a price sensitivity βi = β = 0.1 and
intrinsic utilities given by (g1, g2, g3, g4, g5) = (0.9874, 0.6454, 0.4053, 0.2891, 0.03353).
Figure 5.1 depicts the values of monopolistic price (pM), the market share of the no purchase
option (φ∗n+1(p

M)) and the highest intrinsic utility product (φ∗1(p
M)), and finally the overall

revenue (R(pM)) as a function of r.
Figure 5.2 shows the different expected revenues (the area of the rectangles) for each value
of r, the total demand is defined as the sum of the expected market shares (not including
the no purchase option), and the optimal prices are obtained using Theorem 5.1. As it can
be observed, for lower values of r the prices are higher but the total demands are lower, the
opposite effect is observed when r is close to 1.

Figure 5.1: In the top figure, R(pM(r)) and pM(r) (blue and red respectively) are displayed
for different values of the parameter r : 0 < r < 1. In the bottom figure, the market shares
of the highest intrinsic utility product and the no purchase option are displayed (green and

purple respectively).

In Section 5.4 we will study the case where the strategic sellers decide to compete
to maximise their individual revenues, inducing a price competition game.
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Figure 5.2: In the figure, the X axis represents the total demand (scaled up to 1) for the
available products, while Y axis contains the prices. The area of each rectangle corresponds

to the expected revenue for each value of r.

5.4 Price competition

We consider a complete information price competition game G = ({1, . . . , n}, w, S),
where each player (seller) i ∈ {1, . . . , n} chooses as a strategy a price pi for his
product, in a common strategy space Si = [0, ∞). Let S := ∏n

i=1 Si = [0, ∞)n, and
each element p ∈ S will be called a strategy profile.

The payoff received by player i after the strategy profile p = (pi, p−i) ∈ S is
played, is given by wi(p) = piφ

∗
i (p), where p−i = (p1, . . . , pi−1, pi+1, . . . , pn). We

define the joint payoff as w = (w1, . . . , wn). Each player chooses the best response
to the other sellers’ strategies to maximise their payoff, hence our objective is to find
a maximiser for w. We consider the important notion of Nash Equilibrium in the
following definition.

Definition 5.4. A strategy profile p∗ = (p∗i , . . . , p∗n) ∈ S is a pure Nash Equilibrium (NE)
for the game G if for each player i

wi(p∗i , p∗−i) ≥ wi(pi, p∗−i), ∀pi ∈ Si.

The following Theorem shows that there exists a unique pure NE for the game G,
given in an implicit form using the Lambert W function.
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Theorem 5.3. The price competition game G has a unique (pure) Nash Equilibrium, pC =
(pC

1 , . . . , pC
n ) ∈ [0, ∞)n, with

pC
i =

1− r
βi

W(
egi/(1−r)

e + ∑n
j=1,j 6=i e

gj−βj pC
j

1−r +1

) + 1

 , ∀i : 1 ≤ i ≤ n. (5.12)

We call pC, the competitive price.

Proof. We will proceed as follows: first we will show the conditions that the strategy
profiles must satisfy in order to be critical points for the vector field w = (w1, . . . , wn);
second we will prove that these conditions are also sufficient, meaning that they
describe the best response for each player; third we will show that the system of
equations that define the best responses has a unique solution; and finally we will
conclude.

Indeed, let us consider a vector p ∈ (0, ∞)n and take the first order derivative of
wi = piφ

∗
i (p) with respect to pi for all i ∈ [n + 1], i 6= n + 1 (where we are assuming

a fixed intrinsic utility vector g and parameters βi, r), this is,

∂wi

∂pi
= φ∗i + pi

∂φ∗i
∂pi

= φ∗i +
βi pi

1− r
[
(φ∗i )

2 − φ∗i
]

= φ∗i

[
1− βi pi

1− r
(1− φ∗i )

]
Then ∂wi

∂pi
= 0⇔ pi =

1−r
βi(1−φ∗i )

∨ φ∗i = 0 . Notice that φ∗i = 0⇔ pi = ∞. The system of
equations that define the possible equilibria are given by the conditions

βi pi =
1− r

1− φ∗i
for all 1 ≤ i ≤ n. (5.13)

Calling zi := βi pi
1−r , the normalised price, ci := egi/(1−r) and M(z) := ∑j∈[n+1] cje−zj

(with zn+1 = 0, cn+1 = 1), we notice that M(z) has the same value for all sellers
i ∈ [n + 1], so in this context can be treated as a constant (for every set of values of
prices, M(z) has a fixed value). Equation (5.13) can be rewritten as follows:

zi =
M(z)

∑n
j=0,j 6=i cje−zj

, for all i ∈ [n] (5.14)

⇔ (zi − 1)ezi =
ci

∑n
j=0,j 6=i cje−zj

⇔ (zi − 1)ezi−1 =
ci

∑n
j=0,j 6=i cje−zj+1

⇒ zi − 1 = W(
ci

∑n
j=0,j 6=i cje−zj+1 ), for all i ∈ [n]. (5.15)
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W(·) here is the Lambert W function. We have obtained a set of conditions that the
critical points of w must satisfy. Moreover, zi satisfying Equation (5.13) maximises
the profit wi(z), indeed, we consider the second order condition for each function wi

∂2wi(z)
∂p2

i
=

∂

∂pi
(φ∗i

[
1− βi pi

1− r
(1− φ∗i )

]
) = φ∗i (φ

∗
i − 1)

[
zi − z2

i + 2z2
i φ∗i +

βi

1− r

]
(5.16)

and if zi satisfies Equation (5.13), then φ∗i = zi−1
zi

, and replacing this into (5.16) we
have

∂2wi(z)
∂p2

i
= − zi − 1

z2
i

[
z2

i − zi +
βi

1− r

]
< 0, ∀i ∈ {1, . . . , n}.

Then if p∗ = (p∗1 , . . . , p∗n) is given by Equation (5.13) necessarily, w(p∗) ≥ w(pi, p∗−i)
for all pi ∈ Si for all i ∈ N, this is, p∗ is a pure NE.
Now, we claim that there is only one solution to the system of equations (5.14) (for
each set of parameters g, β, r), defining a unique Nash Equilibrium for the price
competition game G.
Clearly the left hand side of (5.14) is increasing in zi, and the right hand side of (5.14),
yi(z) := M(z)

∑n
j=0,j 6=i cje

−zj
∈ [1, ∞) is decreasing for every zi, 0 < i ≤ n. Indeed, the denom-

inator of yi(z) is constant in terms of zi, and the numerator M(z) = ∑j∈[n+1] cje−zj

is decreasing in zi hence there exists a unique intersection of both curves, defining
a vector solution z∗ = (z∗1 , ..., z∗n, z∗n+1) = (z∗1 , ..., z∗n, 0) ∈ (1, ∞)n × {0}. Finally using

that z∗i =
βi p∗i
1−r into Equation (5.15), we find that the unique NE, pC = (pC

1 , . . . , pC
n ) is

given by

pC
i =

1− r
βi

W(
egi/(1−r)

e + ∑n
j=1,j 6=i e

gi−βj pC
j

1−r +1

) + 1

 , ∀i : 1 ≤ i ≤ n.

Remark 5.1. pC
i is clearly increasing in terms of its associated intrinsic utility gi (since

W() is increasing), and decreasing in terms of the others products’ intrinsic utilities
gj, j 6= i. Also for all i, pC

i > 1−r
βi

.

Generally the competitive price for product i, pC
i , depends on the coordinates of the

other prices, thus there is no closed expression for each case. To overcome this issue,
we propose the greedy Algorithm 1, to compute the value of the pC for any set of
parameters g, β, and r. We first consider the following definition: given a vector
x = (φ1, ..., φn, φn+1), we consider the transformation Φ : Rn+1 ×R× {1, ..., n} →
Rn+1 that changes the i-th coordinate of x by a given real value a, this is, Φi,x(a) :=
Φ(x, a, i) = (φ1, ..., φi−1, a, φi+1, ..., φn, φn+1)

In Lemma 5.3 we will show that Algorithm 1 always terminates. We will prove
it, by exploiting the fixed point structure on how the normalised prices are defined.
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Algorithm 1 Find equilibrium zC given by Equation (5.15).

Require: Parameters: r, ci = egi/(1−r), 1 ≤ i ≤ n, ε > 0; Initial starting point: z0 ∈
Rn

+ × {0};
Ensure: A normalised equilibrium price z ∈ Rn

+ × {0}.
1: z← z0

2: repeat
3: for 1 ≤ i ≤ n do
4: z← Φi,z(W( ci

∑n
j=0,j 6=i cje

−zj+1 ) + 1)

5: end for
6: until

√
∑n

i=1 |zi − (W( ci

∑n
j=0,j 6=i cje

−zj+1 ) + 1)|2 < ε

Lemma 5.3. Algorithm 1 is guaranteed to terminate, and its output is the normalised equi-
librium price zC.

Proof. We consider the sequence (zk)k∈N ∈ Rn+1 created by each time the algorithm
reaches the step 4, its coordinates are defined by the recurrence:

zk+1
i = W(

ci

∑n
j=0,j 6=i cje

−zk
j +1

) + 1 for all 1 ≤ i ≤ n, and k ∈N. (5.17)

(zk)k∈N is clearly bounded, hence the Bolzano-Weierstrass Theorem (Theorem 2.3)
implies that zk has a convergent subsequence zkl with l ∈ N. Let zC be the limit
of zkl . As W(·) is a continuous function, we apply the limit when l → ∞ in both
sides of Equation (5.17). Necessarily zC must satisfy that for any i : 1 ≤ i ≤ n, zC

i =
W( ci

∑n
j=0,j 6=i cje

−zC
j +1

) + 1, hence Algorithm 1 terminates when it finds the Equilibrium

zC.

The following Theorem shows the monotonic behaviour of the competitive price pC

in terms of the network effect parameter r : 0 < r < 1.

Theorem 5.4. The competitive price pC(r) = (pC
1 (r), . . . , pC

n (r)) ∈ [0, ∞)n given by Equa-
tion (5.12) is decreasing as a function of the network effect parameter r : 0 < r < 1.

Proof. Imposing the first order conditions over each expected revenue function wi(pC(r)),
gives us Equation (5.13), which is defined in the following way:

βi pC
i (r) =

1− r
1− φ∗i (p

C(r))
for all 1 ≤ i ≤ n,
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or equivalently:

1− r
βi pC

i (r)
= 1− φ∗i (p

C(r)) for all 1 ≤ i ≤ n

⇒ (1− r)
n

∑
i=1

1
βi pC

i (r)
= n− 1 + φ∗n+1(p

C(r)). (5.18)

Notice that as 0 < φ∗n+1(p
C(r)) < 1, then Equation (5.18) implies that

n− 1
1− r

<
n

∑
i=1

1
βi pC

i (r)
<

n
1− r

.

Clearly n−1
1−r and n

1−r are increasing in terms of r (and independent of the intrinsic
utility parameters), necessarily ∑n

i=1
1

βi pi
is increasing, which implies that there ex-

ists a product k ∈ {1, . . . , n} such that pC
k (r) is decreasing, but by definition of the

competitive price, we have

pC
k (r) =

1− r
βi

W(
egk/(1−r)

e + ∑n
j=1,j 6=k e

gj−βj pC
j (r)

1−r +1

) + 1

 , ∀k : 1 ≤ k ≤ n.

Hence if any pC
k (r) decreases, in order to preserve the equilibrium, all the other

coordinates must decrease as well, which proves the result.

The following example shows the competitive prices for the case of 3 products with
fixed intrinsic utilities, a fixed value of price sensitivities and 4 different values of
network parameters, r.

Example 5.2. Consider a set of network parameters given by r ∈ {0.2, 0.4, 0.6, 0.8}, and in-
trinsic utilities given by (g1, g2, g3) = (0.993, 0.480, 0.159), the competitive price equilibria
pC = (pC

1 , pC
2 , pC

3 ) are given in the following table.

r pC
1 pC

2 pC
3

0.2 9.298 9.912 11.461
0.4 6.900 7.509 9.269
0.6 4.498 5.082 7.243
0.8 2.121 2.581 5.612

5.4.1 Homogeneous case

In this section we study a simplification of the general case where every product
presents the same intrinsic utility. This case will allow us to study, from a theoretical
point of view, the behaviour of the prices as a function of the network parameter r.
We assume in this section that the values gi = g for all i : 1 ≤ i ≤ n, and we define for
notational convenience ĉ = eg/(1−r) . The following corollary is a direct consequence
of Theorem 5.3 for the case where all products have the same intrinsic utility.
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Corollary 5.1. If all the products have the same intrinsic utility, gi = g for all i ∈ N, then
the competitive price for the homogeneous case, pCH = (pCH

1 , . . . , pCH
n ) is the unique pure

NE for the game G , and its coordinates are given by

pCH
i =

1− r
βi

W(
ĉ

e + ĉ(n− 1)e1−
βi pCH

i
1−r

) + 1

 , ∀1 ≤ i ≤ n. (5.19)

Proof. Thanks to Theorem 5.3, we know that the coordinates of the unique NE for
the price competition are given by Equation (5.12). Now in the particular case where
all the products have the same intrinsic utility, Equation (5.15) gets reduced to

zi − 1 = W(
ĉ

e + ĉ ∑j=1,j 6=i e−zj+1 ), ∀i : 1 ≤ i ≤ n,

which is completely symmetric for each zi, therefore for all 1 ≤ i ≤ n, it must hold
zi = z for some z > 1. Consequently the previous Equation is equivalent to

z− 1 = W(
ĉ

e + ĉ(n− 1)e−z+1 ) (5.20)

⇒ pi =
1− r

βi

[
W(

ĉ

e + ĉ(n− 1)e1− βi pi
1−r

) + 1

]
.

Remark 5.2. Even when the solution for zi is given by a fixed value zi = z for all
1 ≤ i ≤ n, the prices pi can be different, due to the sensitivity parameter βi. This
phenomenon has also been studied in Ezra et al. [2017] where the authors analyse the
problem of pricing identical items, that eventually leads to different prices depending
on consumption patterns.

The following Theorem states similar properties to Theorem 5.2 but now for the
case of the competitive price. We are able to prove some monotonic behaviour of
the normalised price, the products’ market share, and the market share of the no
purchase option when the competitive homogeneous price is used. However, similar
properties seem to hold also for the general case (see Example 5.3).

Theorem 5.5. Under the assumption of homogeneity in the intrinsic utilities (i.e. gi = g for
all i ∈ {1, ..., n}) , if we consider a network effect parameter r, 0 < r < 1, then the following
statements hold true:

1. The normalised competition price zCH is increasing in terms of r.

2. Every product has the same market share φ∗i (pCH) = φ∗(pCH) which is increasing in
r.

3. The market share for the no purchase option, φ∗n+1(pCH), is decreasing as a function of
r.
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Proof. 1. We prove first that our normalised price z is decreasing in terms of r.
Indeed, we notice that by definition of Lambert W function, Equation (5.20) is
equivalent to

(zCH − 1)ezCH
+ zCH ĉ(n− 1) = nĉ.

Taking the derivative with respect to r in both sides of the Equation, we find
the following:

zCH ∂zCH

∂r
ezCH

+
∂zCH

∂r
ĉ(n− 1) + zCH(n− 1)

∂ĉ
∂r

= n
∂ĉ
∂r

∂zCH

∂r
[zCHezCH

+ (n− 1)ĉ] =
ĉg[n− (n− 1)zCH ]

(1− r)2 . (5.21)

On the other hand, according to Equation (5.20) we see that

z− 1 =
ĉ

ez + ĉ(n− 1)
<

ĉ
ĉ(n− 1)

=
1

n− 1
,

and then z <
n

n− 1
. Using this into Equation (5.21) we obtain that

∂z
∂r

> 0,

where z is a increasing function of r.

2. We notice that each market share in the equilibrium is given by φ∗i (pCH) =

ĉe−zCH
i

1 + ĉne−zCH
i

=
ĉ

ezCH + ĉn
:= φ∗(pCH) which is independent of i, since all the

normalised prices zi are the same. Taking the derivative of x with respect to r
give us the following equalities:

∂φ∗(pCH)

∂r
=

∂

∂r

[
ĉ

ezCH + nĉ

]
=

ĉφ∗(pCH)

(1− r)2

[
zCHe2zCH

+ (zCH(n− 1)− 1)ĉezCH

(zCHezCH + (n− 1)ĉ)(ezCH + nĉ)

]
> 0.

Hence all the market share in the equilibrium are increasing in terms of the
network parameter r.

3. Since φ∗n+1(pCH) = 1− ∑n
i=1 φ∗i (pCH) = 1− nφ∗(pCH), and φ∗(·) is increasing

in r, necessarily φ∗n+1(pCH) must be decreasing.

Remark 5.3. Numerical simulations have shown us that similar conclusions from The-
orem 5.5 in the points 1. and 3. (normalised price increasing and market share for no
purchase option decreasing) seem to hold for the general competition case. However,
we only have been able to observe it empirically (see for example Figures 5.3 to 5.6
in the Appendix).
The following example shows that Theorem 5.5 part 2. does not necessarily hold
when the intrinsic utilities are different, where there are some products whose market
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shares decrease in terms of r. We also can observe that the market share for the
highest intrinsic utility products seems to be increasing.

Example 5.3. Consider a set of network parameters given byr ∈ {0.2, 0.4, 0.6, 0.8}, intrinsic
utilities given by (g1, g2, g3) = (0.993, 0.480, 0.159), and a price sensitivity βi = β = 0.1,
the market share for each product and their respective expected revenue for each r are given in
the following table.

r φ1(p) φ2(p) φ3(p) w1(p) w2(p) w3(p)
0.2 0.302 0.193 0.134 3.461 1.912 1.298
0.4 0.352 0.201 0.130 3.269 1.509 0.900
0.6 0.448 0.213 0.111 3.243 1.082 0.498
0.8 0.644 0.225 0.057 3.613 0.581 0.121

As we can observe from Examples 5.2 and 5.3, the highest intrinsic utility product
i = 1 has in general a decreasing price, and increasing market share, which eventu-
ally leads to have a higher revenue when r = 0.8. In the following section we will
compare the two different pricing strategies, including also the consumer’s perspec-
tive.

5.5 Monopolistic vs Competitive

In this section we will compare the different pricing schemes where network effects
are present, in absolute terms (which prices are higher) and in relative terms from
the consumer’s perspective. We assume from now on, that the products have the
same price sensitivities βi = β for all 1 ≤ i ≤ n. The following theorem recovers the
intuitive result that the monopolistic price is higher than the competitive one.

Theorem 5.6. For any set of parameters gi, i ∈ {1, . . . , n}, 0 ≤ r < 1 and β > 0, the
monopolistic price pM is higher than the competitive price, pC

i for all i ∈ {1, . . . , n}.

Proof. We know that according to Equations 5.6, and 5.12, pM and pC
i are given re-

spectively by

pM =
1− r

β

[
W

(
∑n

i=1 egi/(1−r)

e

)
+ 1

]
,

pC
i =

1− r
β

W

 egi/(1−r)

e + ∑n
j 6=i e1+

gj−βpC
j

1−r

+ 1

 .

Their respective vector forms are given by: pM = (pM, . . . , pM) and pC = (pC
1 , . . . , pC

n ).
Comparing both expressions we have that for any set of parameters gi, i ∈ {1, . . . , n},
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0 ≤ r < 1 and β > 0 and for any product i ∈ {1, . . . , n}

pM ≥ pC
i ⇔

1
e

 n

∑
i=1

egi/(1−r) − egi/(1−r)

1 + ∑n
j 6=i e

gj−βpC
j

1−r

 ≥ 0,

But, n

∑
i=1

egi/(1−r) − egi/(1−r)

1 + ∑n
j 6=i e

gj−βpC
j

1−r

 = egi/(1−r)

1− 1

1 + ∑n
j 6=i e

gj−βpC
j

1−r


︸ ︷︷ ︸

:=A

+
n

∑
j 6=i

egj/(1−r)

︸ ︷︷ ︸
:=B

.

Clearly B > 0 and since ex > 0 for any value of x, then for all i ∈ {1, . . . , n} , A > 0.
Consequently pM ≥ pC

i as desired.

The following theorem shows that for any product, the consumer’s expected utility
obtained from purchasing it, is higher when the competitive price is used instead of
the monopolistic price. This result is trivial when there is no network effects (r = 0)
since the utility is a decreasing function of the price, however if we include the non-
linear effect of past purchases the result is not necessarily obvious.

Theorem 5.7. For any product i ∈ {1, . . . , n}, in the long run, the expected utility perceived
by a customer after purchasing product i when the competitive price is used, is higher than
the case when the monopolistic price is used.

Proof. We want to prove that asymptotically uk
i (p

C)− uk
i (p

M) is strictly positive, with

uk
i (p) given by Equation (5.1). We know that by to Lemma 5.2, dk

i (p)
k −→

a.s.
φ∗i (p), then

uk
i (p

C)− uk
i (p

M) −→
a.s.

r[log(φ∗i (p
C))− log(φ∗i (p

M))]− β(pC
i − pM)

= r log

[
φ∗i (p

C)

φ∗i (p
M)

]
+ β(pM − pC

i ).

According to Theorem 5.6, we know that β(pM− pC
i ) > 0, on the other hand φ∗i (p) =

egi/(1−r)

e
βpi
1−r + ∑j egj/(1−r)e

β(pi−pj)
1−r

, which is clearly decreasing in terms of pi, then as pM > pC
i

for all i ∈ {1, .., n}, necessarily r log
[

φ∗i (p
C)

φ∗i (p
M)

]
> 0 for all i, meaning that r log

[
φ∗i (p

C)

φ∗i (p
M)

]
+

β(pM − pC
i ) > 0 as desired.

The structure of the market share in the equilibrium (Equation(5.4)) implies that
the highest market share would be assigned to the product with highest value of
gi − βi pi

1− r
which at least for the competitive price, pC is a increasing function of r,
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meaning that in general, the consumer’s utility associated to the product with highest
intrinsic utility (i = 1), increases as r approaches to 1. The following example depicts
this effect.

Example 5.4. Consider a large enough amount of customers such that for any product

i ∈ {1, . . . , n}, dk
i

k+1 = φ∗i (p), where φ∗i (p) is the market share in the equilibrium (see
Equation(5.4)) under a price p (competitive Nash Equilibrium and/or monopolistic price).
Customer k + 1 will then choose strategically a product j = j(q, r, β, p, ξ) that maximises his
expected utility of purchasing any product (or he will choose the no purchase option), this is,
using formula (5.1), we have

j ∈ arg-max
0≤i≤n

E[gi + r ln(dk
i )− βpi + ξi].

Where ξi, i ∈ {1, . . . , n, n + 1} were chosen to be i.i.d random variables following a Gumbel
distribution, in particular we have that E[ξi − ξ j] = 0 for all pairs i, j ∈ {1, . . . , n, n +
1}. Let vj(p) := uj(p) − ξ j and consider the following parameters: βi = β = 0.1, k =
10M, and intrinsic utilities given by (g1, g2, g3) = (0.993, 0.480, 0.159) The following table
summarises how the expected utilities, E[vj], behave under different values of r. The second
and third columns show which product, j is the one that maximises the expected utility,
under the competitive and monopolistic pricing ( jC and jM respectively). The fourth and fifth
column show the respective competitive and monopolistic prices for those products. Finally,
the last two columns show the expected values of vjC and vjM respectively.

r jC jM pC
jC pM E[vjC(pC)] E[vjM(pM)]

0.2 1 1 11.461 15.498 2.831 2.395
0.4 1 1 9.269 12.523 6.097 5.721
0.6 1 1 7.243 9.798 9.458 9.167
0.8 1 1 5.613 7.934 12.974 12.791

Appendix

We present here some extra experimental results depicting the different behaviour
of both pricing schemes (competitive price against monopolistic price). We use the
following parameters: g = (g1, ...., g5) = (0.850, 0.733, 0.416, 0.256, 0.139), βi = β =
0.1.
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Figure 5.3: Comparison of prices, competition versus monopoly respect to the products’
intrinsic utility (X axis). The red triangles are the competitive prices (NE) for each product,

and the blue dotted line is the monopolistic price
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Figure 5.4: Comparison of total revenue perceived by the sellers: competition versus
monopoly

Figure 5.5: Comparison of total market shares assigned in the equilibrium for different val-
ues of r, and the respective market share for the no purchase option, when the monopolistic

price is used.
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Figure 5.6: Comparison of total market shares assigned in the equilibrium for different
values of r, and the respective market share for the no purchase option, when the competitive

price is used.
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Chapter 6

Conclusion

In this thesis we studied models for consumer choice based on a version of the Multi-
nomial Logit model, where we incorporate effects of social influence and position
biases. We also studied pricing strategies under these models.

In Chapters 3 and 4 we studied Trial-Offer cultural markets, which are ubiquitous
in our societies and involve products such as books, songs, videos, clothes, and
even newspaper articles. In these markets, participants are presented with products
in a certain ranking. They can then try the products before deciding whether to
purchase them or not. Social influence signals are widely used in such settings and
help promote popular products to maximise market efficiency. However, it has been
argued that social influence makes these markets unpredictable Salganik et al. [2006].
As a result, social influence is often presented in a negative light.

In this thesis, we have reconsidered this conventional wisdom. We have shown
that, when products are presented to participants in a way that reflects their true
quality, the market is both efficient and predictable. In particular, in Chapter 3 both,
quality and performance rankings make the market to converge to a monopoly for
the highest quality product, making the market both optimal and predictable asymp-
totically.

With the objective of remaining predictable, but with a better distributed market
(different than a monopoly for a particular product) Chapter 4 studied how choice be-
haviour is affected under a family of social signals, when the products are presented
using a static ranking (such as the quality ranking). The main result of that Chapter is
to show that trial-offer markets, when the ranking of the products is fixed, converge
to a unique equilibrium for sublinear social signals of the form φr

i , 0 < r < 1, where
φi represents the cumulative market share of product i. Of particular interest is the
fact that the equilibrium does not depend on the initial conditions, e.g., the product
appeals, but only depends on the product qualities. Moreover, when the products
are ranked by quality, i.e., the best products are assigned the highest visibilities, the
equilibrium is such that the better products receive the largest market shares, which
increase as r increases for the best products (as long as r < 1). The equilibrium for a
sublinear social signal contrasts with the case with r = 1, where the market goes to a
monopoly for the highest quality product. In the sublinear case (0 < r < 1), the mar-
ket shares reflect product quality but no product becomes a monopoly. The chapter
also shows that, when r > 1, the market becomes more unpredictable. In particular,
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the inner equilibrium, which assigns a strictly positive market share to all products,
is unstable and the market is likely to converge to a monopoly for some product.
However, which product becomes the monopoly depends on the initial conditions,
and early market interactions.

Simulation results on a setting close to the original MusicLab complemented the
theoretical results. They show that the market converges quickly to the equilibrium
for a sublinear social signal and that the convergence speed depends on the social
signal strength. The simulation results also illustrate how the market shares of the
highest (resp. lowest) quality products increase (resp. decrease) with r. As expected,
when r ≤ 1, the market is shown to be highly predictable, while it exhibits a lot
of randomness when r > 1. The simulation results also show the benefits of social
influence for market efficiency, and demonstrate that the quality ranking once again
outperforms the popularity ranking.

Overall, these results shed a new light on the role of social influence in trial-
offer markets and provide a comprehensive overview of the choices and trade-offs
available to firms interested in optimising their markets with social influence. In
particular, they show that social influence does not necessarily make markets unpre-
dictable and is typically beneficial when the social signal is not too strong. Moreover,
ranking the products by quality appears to be a much more effective policy than
ranking products by popularity which may induce unpredictability and market inef-
ficiency. The results also show that sublinear social signals give decision makers the
ability to trade market efficiency for more balanced market shares.

Perhaps, the main contribution of this two chapters is to show that markets under
social influence are very sensitive to various design choices. The findings in Salganik
et al. [2006] used the popularity ranking, which significantly affected their conclu-
sions about market unpredictability and efficiency. The theoretical and simulation
results exposed here, show that the market is highly predictable when using any
static ranking and r ≤ 1. Moreover, the quality ranking is optimal asymptotically
when r = 1 and dominates the popularity ranking in all our simulations which were
modelled after the MusicLab. This does not diminish the value of the results by
Salganik et al. [Salganik et al., 2006] who isolated potential pathologies linked to
social influence. But this chapter shows that these pathologies are not inherent to
the market but are a consequence of specific design choices in the experiment: the
strength of the social signal and the ranking policy. Interestingly, it is only for a linear
social signal that social influence can be shown to be always beneficial in expectation.
Fortunately, for sublinear social signals, we can determine a priori if social influence
is beneficial, given the analytic form of the equilibrium.

A key quantity in the model presented here is the value of r, which drives different
dynamics and market behaviour. The original approach of this thesis was that the
value of r could be decided by the market maker, displaying for example the square
root of the downloads as a social signal. However, an equivalent approach would be
to study for a particular market (with social signals), how the purchases evolve over
time and find the best r that could represent this evolution. We could proceed as
follows: set up a time frame (e.g., a month), for each new arrival collect the following
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data
[time, ranking, cumulative-download, product-clicked, purchased? yes/no, ],

And based on a number of observations we could estimate the best curve that fits the
evolution of the purchases (linear, sublinear growth,...). Using for this purpose tools
such as (max) log-likelihood.

Finally in Chapter 5 we have designed a model for consumer choice, based on a
MNL model with non-linear network effects. We studied a multi-seller pricing prob-
lem where sellers can collaborate or compete, finding in each case a unique equilib-
rium price (monopolistic price and Nash Equilibrium respectively). We also studied
the monotonic behaviour of the market shares, prices and revenues in terms of the
network parameter r (both theoretically and numerically). We finally compared both
pricing strategies from the consumer’s perspective, recovering for our model some
well known results from the traditional MNL, such as that the monopolistic price
is higher than the competitive one, and that the utility perceived by the consumers
is higher when the competitive price is used. We also analysed numerically how
increasing the network parameter r generates higher utilities for the consumer.

Some interesting questions remain open, for example, the revenue for the highest
intrinsic utility product, w1, in the competitive case seems to increase with the value
of r, as long as r is large enough, however we still do not have a formal proof or char-
acterisation of this phenomenon. It would be also interesting to study the optimal
pricing decisions when r ≥ 1. Answering those questions would help to find the best
value of r such that both consumers and sellers are benefited from network effects.
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