
Semantic Scene Segmentation with
Minimal Labeling Effort

Fatemehsadat Saleh

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

February 2020



c© Fatemehsadat Saleh 2019



I hereby declare that this thesis is my original work which has been done in
collaboration with other researchers. This document has not been submitted to obtain
a degree or award in any other university or educational institution. Parts of this
thesis have been published in collaboration with other researchers in international
conferences and journals as listed in the Publications section.

Fatemehsadat Saleh
18 February 2020





To my loving husband and my beloved parents





Acknowledgments

"Be grateful for whoever comes, because each has been sent as a guide from beyond
. . . " –Rumi

There are a number of people without whom this thesis might not have been
written, and to whom I am greatly indebted.

First and foremost, I would like to express my sincere gratitude to my supervi-
sors, Dr. Lars Petersson, Dr. Mathieu Salzmann and Dr. Jose Alvarez for the generous
support throughout my Ph.D. study, for their guidance, patience, motivation, and en-
couragements. I would like to thank Dr. Lars Petersson for his continuous support
which were not only in the technical parts of my research but also in other situations
such as funding for travel, preparing any kind of resource and hardware, or getting
different kinds of access to do my research. While being professional in research, he
has always been so nice and friendly so that the research environment was always
enjoyable. He was always the best person to share my concerns with and then I was
sure that I can trust his advice. Thank you for teaching me so much and helping me
grow during my study.

I would like to express my very great appreciation to Dr. Mathieu Salzamnn who
was not here, in Australia, during my Ph.D. but I have never felt this distance. During
the past three years, he attended all of the remote weekly meetings from Switzerland
even very early in the morning because of the time difference. His approach, vision,
hard work and guidance in research enabled me to learn a lot. I will never forget his
last revisions of my papers which was really precise and elegant. And I learned a lot
in writing skills from him. He was one of the reasons why I decided to go to pursue
a career in research. His enthusiasm and dedication for research are contagious.

I am very grateful to Dr. Jose Alvarez for his support during these years especially
in the practical aspects of my research. He was the one that suggested me working
on this topic, encouraged me to work on Deep Learning and introduced me the
appropriate frameworks at the beginning of my study. I was really happy with this
research direction during my study and I am really thankful for his suggestion. He
was really dedicated and even when he moved to the US, he attended all of the
weekly meetings even very late at night.

I want to thank Dr. Stephen Gould who gave detailed insightful comments about
my Ph.D. research work during the first year of my Ph.D. His comments have helped
me greatly in preparing my first paper which was a good starting point for my Ph.D.
research.

I am also grateful to NICTA/Data61 and the Australian National University for
providing my Ph.D. scholarship and enriching my academic experience by providing
conference travel funding.

vii



I thank all the present members of the Data61’s Smart Vision System’s Group
especially Lars Andersson and Lachlan Tychsen-Smith for helping with answering
questions about engineering aspects of my research especially when dealing with
GPU programming, working with servers and in general making things work.

I would like to thank Sarah who is a wonderful and generous friend and will re-
main my best friend forever. I remember first meeting Sarah when I and my husband
just arrived in Australia and she came for picking up at the airport. From the first
minutes, she shared her experiences about living in Australia, working environment
and the university with us. We managed to keep in touch during the year that she
was studying Ph.D. in the same Lab and now we are still in touch after more than
three years. I will never forget the many wonderful dinners and fun activities we
have done together. Thanks so much for organizing the best surprise birthday for
me. I was really lucky to have Sarah as a kind, supportive and caring friend. To my
other friends, thank you for listening, offering me advice, and supporting me through
this entire process. Special thanks to Mohammad E., Masoumeh, Alireza, Hajar, Mo-
hammad N., Fatima, Alireza, and Salim. The debates, dinners, game nights, rides to
the airport, and general help and friendship were all greatly appreciated.

I would like to express my gratitude to my parents-in-law for their unfailing
emotional support.

A very special word of thanks goes for my inspiring parents, who have been great
over the years. Your love, support and encouragement was worth more than I can
express on paper. This accomplishment would not have been possible without your
support. Thanks to my dear sisters Tayebe, Fahime, and Salime for their emotional
support, endless love and care.

Finally, I would like to thank a very special person, my dear husband, my best
friend and my amazing colleague, Sadegh for his continued and unfailing love, sup-
port and understanding during my study. I greatly value your contribution, support
and suggestions to my research and deeply appreciate your belief in me. You were
always around at times when I was frustrated, you celebrated with me when even
the littlest things went right. I consider myself the luckiest in the world to have
such a lovely and caring person, standing beside me with his love and unconditional
support.



Abstract

Semantic scene segmentation – the process of assigning a semantic label to every
pixel in an input image – is an important task in computer vision where an au-
tonomous system or a robot needs to differentiate between different parts of the
scene/objects and recognize the class of each one for adequate physical interactions.
The most successful methods that try to solve this problem are fully-supervised ap-
proaches based on Convolutional Neural Networks (CNNs). Unfortunately, these
methods require large amounts of training images with pixel-level annotations, which
are expensive and time-consuming to obtain. In this thesis, we aim to alleviate the
manual effort of annotating real images by designing either weakly-supervised learn-
ing strategies that can leverage image-level annotations, such as image tags, which
are cheaper to obtain, or effective ways to exploit synthetic data which can be labeled
automatically.

In particular, we make several contributions to the literature of semantic scene
segmentation with minimal labeling effort. Firstly, we introduce a novel weakly-
supervised semantic segmentation technique to address the problem of semantic
scene segmentation with one of the minimal level of human supervision, image-level
tags, which simply determines present and absent classes within an image. The pro-
posed method is able to extract markedly accurate foreground/background masks
from the pre-trained network itself, forgoing external objectness modules or using
pixel-level/bounding box annotations, and use them as priors in an appropriate loss
function. Secondly, we improve the performance of this framework by extracting
class-specific foreground masks instead of a single generic foreground mask, with
virtually no additional annotation cost. Thirdly, we found that a general limitation
of existing tag-based semantic segmentation techniques is the assumption of having
just one background class in the scene, which, by relying on the object recognition
pre-trained networks or objectness modules, restricts the applicability of these meth-
ods to segmenting foreground objects only. However, in practical applications, such
as autonomous navigation, it is often crucial to reason about multiple background
classes. Thus, in this thesis, we introduce a weakly-supervised video semantic seg-
mentation method in which there are multiple foreground and multiple background
classes in the scene. To this end, we propose an approach to doing so by making
use of classifier heatmaps. Then, we develop a two-stream deep architecture that
can jointly leverage appearance and motion, and we design a new loss based on the
heatmaps to train this network. In the last contribution of this thesis, we propose
a novel technique for using synthetic data which lets us perform semantic segmen-
tation without having any manual annotation, not even image-level tags. Although
there exist approaches that utilize synthetic data, we use a drastically different way
to handle synthetic images that does not require seeing any real images during train-
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ing time. This approach builds on the observation that foreground and background
classes are not affected in the same manner by the domain shift, and thus should be
treated differently.

All the methods introduced in this thesis are evaluated on standard semantic seg-
mentation datasets consisting of single background and multiple background scenes.
The experiments at the end of each chapter provide compelling evidence that all of
our approaches are more efficient than the contemporary baselines.

All in all, semantic scene segmentation methods with minimal labeling effort,
such as those in this thesis, are crucial for having less expensive annotation processes
in terms of time and money. Moreover, this will make large-scale semantic segmen-
tation much more practical than the current models relying on full supervision, as
well as lead to solutions that generalize much better than existing ones, thanks to the
use of images depicting a great diversity of scenes.
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Chapter 1

Introduction

Semantic scene segmentation is one of the key challenges in computer vision. In
a broader view, semantic segmentation is one of the high-level tasks which makes
complete scene understanding possible. The goal of scene understanding is to make
machines see like humans, to have a complete understanding of visual scenes. In
this context, the goal of semantic scene segmentation is to annotate each pixel of an
image with a class label describing what this pixel represents. This task is also called
dense prediction as the label of every pixel in the image is predicted in this process.
Semantic segmentation models are useful for a variety of applications , such as au-
tonomous driving, human-computer interaction and virtual reality (See Figure 1.1).
In particular, in autonomous driving, semantic segmentation aims to equip the vehi-
cles with the necessary perception that allows it to evolve in a constantly-changing
environment. Semantic scene segmentation can provide information about free space
on the road, lane markings and traffic signs, and differentiates between background
classes such as road, side-walk, and grass.

1.1 Motivation

As for many other computer vision tasks, fully-supervised approaches based on
Convolutional Neural Networks (CNNs) have recently achieved impressive results
for semantic scene segmentation [Farabet et al., 2013; Long et al., 2015; Chen et al.,
2014; Noh et al., 2015; Zheng et al., 2015; Zhang et al., 2018; Wang et al., 2018a; Lin
et al., 2018]. This progress can also be seen in video semantic segmentation [Kundu
et al., 2016; Tran et al., 2016; Shelhamer et al., 2016; Tripathi et al., 2015; Jin et al.,
2016; Li et al., 2018; Jampani et al., 2017]. Unfortunately, these methods require large
amounts of training images/videos with pixel-level annotations, which are expensive
and time-consuming to obtain. For instance, pixel labeling of one Cityscapes image
takes 90 minutes on average [Cordts et al., 2016]. Moreover, deploying a pre-trained
semantic segmentation model to an unseen domain such as a new city whose images
are not presented in the training set would not achieve satisfactory performance due
to dataset biases [Chen et al., 2017b].

While semi-supervised semantic segmentation methods [Papandreou et al., 2015;
Jain and Grauman, 2014a; Tsai et al., 2016a; Shankar Nagaraja et al., 2015] miti-

1
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Figure 1.1: Semantic scene segmentation has many applications, such as in indoor
scenes for human-robot interaction or in outdoor scenes for autonomous navigation.

gate this issue by leveraging partial annotations, they still require some pixel-level
ground-truth.

Weakly-supervised semantic segmentation techniques have therefore emerged as
a solution to address this limitation [Pourian et al., 2015; Xu et al., 2014; Vezhnevets
et al., 2011; Xu et al., 2015; Bearman et al., 2016; Papandreou et al., 2015; Pathak
et al., 2015b; Qi et al., 2015; Wei et al., 2016a,b; Kolesnikov and Lampert, 2016]. These
techniques rely on a weaker form of training annotations, such as, from weaker to
stronger levels of supervision, image tags [Pathak et al., 2015b; Bearman et al., 2016;
Pinheiro and Collobert, 2015; Pathak et al., 2015a; Wei et al., 2016a,b; Kolesnikov
and Lampert, 2016], information about object sizes [Pathak et al., 2015a], labeled
points or squiggles [Bearman et al., 2016] and labeled bounding boxes [Papandreou
et al., 2015; Dai et al., 2015; Khoreva et al., 2016], see Figure 1.2. In the current Deep
Learning era, existing weakly-supervised methods typically start from a network pre-
trained on an object recognition dataset (e.g., ImageNet [Russakovsky et al., 2015])
and fine-tune it using segmentation losses defined according to the weak annotations
at hand [Pinheiro and Collobert, 2015; Pathak et al., 2015a; Papandreou et al., 2015;
Bearman et al., 2016; Pathak et al., 2015b].
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Figure 1.2: Different types of weak annotations employed for weakly supervised
semantic segmentation [Hong et al., 2017a].

Among different types of weak annotations, using only image tags which are
rather inexpensive attributes to annotate and thus more common in practice (e.g.,
Flickr [Mark J. Huiskes and Lew, 2010]) has gained increasing attention. Image tags
simply determine which classes are present in the image without specifying any
other information, such as the location of the objects. When working with still im-
ages [Saleh et al., 2016, 2018b; Kolesnikov and Lampert, 2016; Pathak et al., 2015a;
Wei et al., 2016b; Bearman et al., 2016; Papandreou et al., 2015], tags are typically
assumed to be available in each image, whereas for video-based segmentation [Hart-
mann et al., 2012; Liu et al., 2014; Zhang et al., 2015b; Tang et al., 2013; Wang et al.,
2016; Drayer and Brox, 2016; Fragkiadaki et al., 2015; Papazoglou and Ferrari, 2013;
Saleh et al., 2017], tags correspond to entire videos or video snippets. In this ex-
treme setting, a naive weakly-supervised segmentation algorithm will typically yield
poor localization accuracy. Therefore, recent works [Pinheiro and Collobert, 2015;
Bearman et al., 2016; Wei et al., 2016a] have proposed to make use of objectness pri-
ors [Alexe et al., 2012; Cheng et al., 2014; Arbeláez et al., 2014; Carreira and Sminchis-
escu, 2010], which provide each pixel with a probability of being an object. In par-
ticular, these methods have exploited existing objectness algorithms, such as [Alexe
et al., 2012; Cheng et al., 2014; Arbeláez et al., 2014], with the drawback of introduc-
ing external sources of potential error. Furthermore, [Alexe et al., 2012] typically only
yields a rough foreground/background estimate, and [Cheng et al., 2014; Arbeláez
et al., 2014] rely on additional training data with pixel-level annotations.

As a first contribution, in this thesis, we introduce a deep learning approach to
weakly-supervised semantic segmentation where the localization information is di-
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rectly extracted from networks pre-trained for the task of object recognition. Our
approach relies on the following intuition: One can expect that a network trained to
recognize objects in images extracts features that focus on the objects themselves,
and thus has hidden layers with units firing up on foreground objects, but not
on background regions. A similar intuition was also explored for object detec-
tion [Zhou et al., 2015] and localization [Oquab et al., 2015a], which inspired the
weakly-supervised semantic segmentation work of [Kolesnikov and Lampert, 2016],
which is contemporary to ours. In this thesis, we propose to exploit this intuition
to generate (i) a foreground/background mask; and (ii) a multi-class mask which is
proposed in our second contribution. We then show how these two types of masks
can be incorporated in a weakly-supervised loss to train a deep network for the
task of semantic segmentation using only image tags as ground-truth annotations.
Ultimately, since our masks are directly extracted from pre-trained networks, our ap-
proach can be thought of as a weakly-supervised segmentation network with built-in
foreground/background, or multi-class priors.

While recent years have seen great progress in weakly-supervised semantic seg-
mentation, most existing methods, whether image- or video-based, have a major
drawback: they focus on foreground object classes and treat the background as
one single entity. However, having detailed information about different background
classes is crucial in many practical scenarios, such as autonomous driving, where
one needs to differentiate the road from a grass field. As a third contribution, in this
thesis, we therefore introduce an approach to weakly-supervised video semantic seg-
mentation that treats all classes, foreground and background, equally. To this end,
we propose to rely on class-dependent heatmaps obtained from classifiers trained
for image-level recognition, i.e., requiring no pixel-level annotations. These classifier
heatmaps provide us with valuable information about the location of instances/re-
gions of each class. We therefore introduce a weakly-supervised loss function that
lets us exploit them in a deep architecture.

Recently, there has also been a significant effort in the community to rely on
the advances of computer graphics to generate synthetic datasets [Ros et al., 2016;
Richter et al., 2016, 2017; Dosovitskiy et al., 2017]. With the advance of computer
graphics, generating fully-annotated synthetic data has become an attractive alterna-
tive to weakly-supervised learning. Unfortunately, despite the increasing realism of
such synthetic data, there remain significant perceptual differences between synthetic
and real images. Therefore, the performance of a state-of-the-art semantic segmenta-
tion network, such as [Chen et al., 2014; Long et al., 2015; Zhao et al., 2017; Noh et al.,
2015], trained on synthetic data and tested on real images remains disappointingly
low. While domain adaptation methods [Chen et al., 2017a; Hoffman et al., 2017,
2016; Zhang et al., 2017; Murez et al., 2017; Chen et al., 2017b] can improve such per-
formance by explicitly accounting for the domain shift between real and synthetic
data, they require having access to a large set of real images, albeit unsupervised,
during training. As such, one cannot simply deploy a model trained off-line on syn-
thetic data in a new, real-world environment. As a fourth contribution, in this thesis,
we introduce a drastically different approach to addressing the mismatch between
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real and synthetic data, based on the observation that not all classes suffer from the
same type and degree of perceptual differences and thus should be treated differ-
ently. In particular, for the foreground classes, synthetic domain represents more
accurately the shape of such classes than their texture. Thus, the foreground classes
should be handled in a detection-based manner which relies more strongly on the
object shape rather than on texture. Based on this observation we therefore develop a
simple, yet effective semantic segmentation framework that better leverages synthetic
data during training.

1.2 Contributions

The major contributions of this thesis are as follows:

1.2.1 Incorporating Network Built-in Foreground/Background Priors in
Weakly-Supervised Semantic Segmentation

We propose a novel method to extract accurate foreground/background masks from
the pre-trained network itself, forgoing external objectness modules. This approach
relies on the following intuition: One can expect that a network trained for the task
of object recognition extracts features that focus on the objects themselves, and thus
has hidden layers with units firing up on foreground objects, but not on background
regions. In particular, the proposed method focuses on the fourth and fifth convolu-
tion layers of the VGG16 pre-trained network, which provide higher-level informa-
tion than the first three layers, such as highlighting complete objects or object parts.
Then, by making use of a fully-connected Conditional Random Field (CRF), this in-
formation is smoothed out and a binary foreground/background mask is generated.
Finally, the semantic segmentation results are obtained by incorporating the resulting
masks as priors in the network via a weakly-supervised loss function [Saleh et al.,
2016]. This approach is presented in Chapter 3.

1.2.2 Incorporating Network Built-in Multi-Class Priors in Weakly-Supervised
Semantic Segmentation

We improve our previous contribution by introducing a novel method to make use
of a pre-trained localization network, which specifically provides information about
the location of different object classes in combination with the previous idea of using
intermediate convolution layers, to obtain class-wise pixel probabilities. The final
masks are obtained by making use of a fully-connected Conditional Random Field
(CRF) with higher-order terms to smooth the initial pixelwise probabilities. In par-
ticular, we propose the use of the crisp boundary detection method of [Isola et al.,
2014] to generate higher-order terms. We then incorporate these multi-class masks in
a weakly-supervised loss function to train a Deep Network for the task of semantic
segmentation using only image tags as ground-truth annotations [Saleh et al., 2018b].
This approach is presented in Chapter 3.
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1.2.3 Making All Classes of Foreground and Background Equal in Weakly-
supervised Video Semantic Segmentation

Most of the existing methods including our previous ones are designed to handle
multiple foreground classes and a single background class. Here, we propose a
novel weakly-supervised video semantic segmentation method that treats all classes,
foreground and background ones, equally. To this end, we propose a method to rely
on class-dependent heatmaps obtained from classifiers trained for image-level recog-
nition, i.e., requiring no pixel-level annotations. These classifier heatmaps provide
valuable information about the location of instances/regions of each class. There-
fore, we introduce a weakly-supervised loss function that can exploit them in a deep
architecture. In particular, we develop a two-stream deep network that jointly lever-
ages appearance and motion. The network fuses these two complementary sources
of information in two different ways: A trainable early fusion, which puts in cor-
respondence the spatial and temporal information, and learns to combine it into a
spatio-temporal stream, and a late fusion further leveraging the valuable semantic
information of the spatial stream to merge it with the spatio-temporal one for final
prediction [Saleh et al., 2017]. This approach is presented in Chapter 4.

1.2.4 Effective Use of Synthetic Data for Urban Scene Semantic Segmen-
tation

Recently, automatically labeled synthetic data has been introduced for different com-
puter vision tasks including semantic segmentation. Although these synthetic data
are photo-realistic, applying a model trained on these data on a real domain will
fail because of the domain shift. Here, we use synthetic data in a different way
to handle this problem. Our approach builds on the observation that foreground
and background classes are not affected in the same manner by the domain shift,
and thus should be treated differently. In particular, the former should be handled
in a detection-based manner to better account for the fact that, while their texture
in synthetic images is not photo-realistic, their shape looks natural. Motivated by
this fact, we propose a simple, yet effective semantic segmentation framework that
better leverages synthetic data during training. In essence, the model combines the
foreground masks produced by Mask R-CNN [He et al., 2017] with the pixel-wise
predictions of the DeepLab semantic segmentation network [Chen et al., 2014].

Furthermore, as another contribution, we create a virtual environment in the
Unity3D framework, called VEIS (Virtual Environment for Instance Segmentation).
This was motivated by the fact that existing synthetic datasets [Richter et al., 2017,
2016; Ros et al., 2016] do not provide instance-level segmentation annotations for all
the foreground classes of standard real datasets, such as Cityscapes. VEIS automat-
ically annotates synthetic images with instance-level segmentation for foreground
classes. It captures urban scenes using a virtual camera mounted on a virtual car.
While not highly realistic, when used with a detector-based approach, this data al-
lows us to boost semantic segmentation performance, despite it being of only little
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use in a standard semantic segmentation framework [Saleh et al., 2018a]. This ap-
proach and the VEIS dataset are presented in Chapter 5.

1.3 Thesis Outline

This thesis comprises six chapters. In Chapter 2, we introduce the technical back-
ground of the methods we used in this thesis. This background material consists of
some concepts and theories that are common to many of the approaches proposed in
later chapters, including the convolutional neural network architectures, fully convo-
lutional neural networks, multiple instance learning, and conditional random fields.
The next three chapters propose our novel techniques for semantic scene segmenta-
tion with minimal labeling effort. In Chapter 3, we introduce our novel techniques for
incorporating network built-in priors for weakly-supervised semantic segmentation.
In Chapter 4, we introduce a novel approach for weakly-supervised video semantic
segmentation which, in contrast to existing weakly-supervised techniques including
our previous one that focus on foreground object classes and treat the background
as one single entity, treats all classes, foreground and background ones, equally. In
Chapter 5, we introduce a drastically different way to handle synthetic images with
automatically annotated data that does not require seeing any real images at training
time. Finally, in Chapter 6, we summarise the main contributions of the thesis and
discuss ongoing and future work stemming from this research.
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Chapter 2

Technical Background

In this chapter we introduce the background theory, architectures and models that
have been used in this thesis. In this thesis, we use Convolutional Neural Networks
(CNNs) widely as the learning approach. We employ the main concept of Multiple
Instance Learning (MIL) to leverage weak annotations during training. In almost all
of the models, we use Conditional Random Fields (CRFs) during training and also as
a post-processing step in order to refine the segmentation results. Below, we review
the fundamentals of CNNs, MIL, and CRFs to help the reader better understand the
following chapters.

2.1 Convolutional Neural Networks

The convolutional neural networks (CNNs or ConvNets) have been established as a
powerful and effective class of models to solve many problems in machine learning
and computer vision, giving state-of-the-art results on image recognition [Simonyan
and Zisserman, 2014; He et al., 2016], semantic segmentation [Long et al., 2015; Chen
et al., 2014; Noh et al., 2015], and object detection [Girshick et al., 2014; Girshick,
2015; Ren et al., 2015]. CNNs where introduced for the first time in 1998 [LeCun et al.,
1998] and the first Convolutional Neural Network was called LeNet-5 which was able
to classify handwritten digits from images. CNNs are typically made of different
types of layers, including convolutional, pooling, and fully-connected layers. By
stacking many of these layers, CNNs can automatically learn feature representations
using trainable filters and local neighborhood pooling operations which are applied
to the raw input images and to the sub-sequent feature maps. This is in contrast to
the traditional pattern recognition models, where a hand-designed feature extractor
gathers relevant information from the input and eliminates irrelevant variabilities
and then a trainable classifier categorizes the resulting feature vectors into classes.

In this section, we explain the fundamentals of CNNs including operations, learn-
ing procedure, and some important models which are mainly used in this thesis.

9
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Figure 2.1: Comparison between a regular 3-layer Neural Network (left) and a CNN
(right). The CNN arranges its neurons in three dimensions (width, height, and depth)
and every layer of a CNN transforms the 3D input volume into a 3D output volume
of neuron activations. In this example, the red input layer holds the image, so its
width and height would be the dimensions of the image, and the depth would be 3

(Red, Green, Blue channels). [CNN, 2018]

2.1.1 Architecture Overview

Convolutional Neural Networks are a special kind of multi-layer neural networks.
Like almost every other neural network, they are comprised of neurons that have
learnable weights and biases, and trained with a version of the back-propagation
algorithm [Rumelhart et al., 1988]. However, they have a different architecture than
regular neural networks, i.e., multi-layer perceptrons.

Regular Neural Networks transform an input by putting it through a series of
hidden layers which consist of a set of neurons. For regular neural networks, the
most common layer type is the fully-connected layer in which neurons between two
adjacent layers are fully pairwise connected. However, neurons in a single layer act
completely independently and do not share any connections. Finally, there is a last
fully-connected layer which is called the "output layer" and represents the class scores
in a classification setting.

By contrast, convolutional neural networks take advantage of the fact that the
input is an image and they constrain the architecture in a more sensible way. In par-
ticular, unlike a regular neural network, the layers of a CNN have neurons arranged
in 3 dimensions: width, height, and depth. Moreover, the neurons in a layer will only
be connected to a small region of the previous layer, instead of all of the neurons in
a fully-connected manner. Furthermore, the final output layer will be reduced into
a single vector of class scores, arranged along the depth dimension [CNN, 2018].
Figure 2.1 is a visualization of a regular neural network and a convolutional neural
network.

2.1.2 Layers and Operations

A complete CNN architecture is formed by stacking different layers, with every layer
transforming the activation volumes output by the previous one using a differen-
tiable function. Figure 2.2 shows one of the classic CNN networks, AlexNet [Krizhevsky
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Figure 2.2: AlexNet architecture

et al., 2012] as an example of CNN architecture. Below, we discuss the most impor-
tant layers and their corresponding operations.

Convolutional Layer The convolutional layer is the core building block of a CNN
that does most of the computations by applying a convolution operation to the input
and passing the result to the next layer. In the continuous case, the convolution of
two functions f and g is defined as:

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t− τ)dτ =

∫ ∞

−∞
f (t− τ)g(τ)dτ (2.1)

In the discrete case, the integral is replaced by a sum and if discrete g has support
on {−M, ..., M}:

( f ∗ g)(n) =
M

∑
m=−M

f (n−m)g(m) (2.2)

In this case, g is called a kernel function. All these definitions can be naturally
extended to the multi-dimensional case. CNNs usually perform 2D convolution on
images:

( f ∗ g)(x, y) =
M

∑
m=−M

N

∑
n=−N

f (x− n, y−m)g(n, m) (2.3)

The convolutional layer’s parameters consist of a set of learnable filters. Every
filter is small spatially (along the width and height), but extends through the full
depth of the input volume. During the forward pass, each filter is convolved across
the width and height of the input volume which amounts to computing dot products
between the entries of the filter and the input at any position. In fact, instead of
connecting neurons to all neurons in the previous volume, each convolutional neuron
will be connected to only a local region of the input volume and processes data
only for its receptive field (equivalently this is the filter size). As a consequence,
the network learns filters that activate when they see some certain types of visual
features such as an edge in some orientation or simple color at the shallower layers,
or eventually partial or entire specific patterns at higher layers of the network. Now,
we have an entire set of filters in each convolutional layer, and each of them produces
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Figure 2.3: Computing feature maps. There are two kernels with size 5x5x3 which
slide over the input and as a result two different feature map will be produced.

a separate 2-dimensional feature map. We then stack these feature maps along the
depth dimension and produce the output volume. Figure 2.3 indicates how two
feature maps are stacked along the depth dimension. The convolution operation for
each filter is performed independently and the resulting feature maps are disjoint.

Parameter sharing is also an important concept which is used in convolutional
layers to reduce the number of parameters in the whole system and makes the com-
putation more efficient. Parameter sharing corresponds to the fact that all neurons in
a particular feature map use the same filter weights. So, to obtain a particular feature
map, the convolution operation is performed by sliding the filter over the input. At
every location, we do an element-wise matrix multiplication and sum the result. This
sum goes into the feature map.

Dilated Convolutions Dilated convolutional layers were introduced recently by [Yu
and Koltun, 2015a] and rely on one more hyperparameter than the convolutional
layer called the dilation. Applying this layer has demonstrated significant improve-
ment especially for semantic segmentation [Chen et al., 2014]. Dilated convolutions
support exponential expansion of the receptive field without loss of resolution or
coverage and also without increasing the number of parameters or the amount of
computation. Figure 2.4 illustrates the dilated convolution operation.

Pooling Layer Pooling is another important concept of CNNs which is a form of
non-linear down-sampling and is inserted periodically in-between successive convo-
lutional layers. Its function is to progressively reduce the spatial size of the represen-
tation. In case of Max Pooling, a spatial neighborhood (for example, a 2× 2 window)
is defined and the largest element from the rectified feature map within that window
is taken. Instead of taking the largest element one could also take the average (Aver-
age Pooling) or sum of all elements in that window. In practice, Max Pooling is often
preferred. In particular, pooling

• makes the input representations (spatial dimension) smaller and more manage-
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Figure 2.4: Illustration of the dilated convolutional operation which supports expo-
nential expansion of the receptive field without loss of resolution or coverage. (a) F1
has a receptive field of 3× 3. (b) F2 is produced from F1 by a 2-dilated convolution;
each element in F2 has a receptive field of 7× 7. (c) F3 is produced from F2 by a 4-
dilated convolution; each element in F3 has a receptive field of 15× 15. The number

of parameters associated with each layer is identical [Yu and Koltun, 2015a].

able

• reduces the number of parameters and computations in the network, therefore,
controlling overfitting

• makes the network invariant to small transformations, distortions and trans-
lations in the input image as a small distortion in the input will not change
the output of pooling since we take the maximum/average value in a local
neighborhood

• helps to have an almost scale invariant representation of the image

ReLU Activation ReLU stands for Rectified Linear Unit and is a non-linear and
element-wise operation. Its output is given by:

f (x) = max(0, x) (2.4)

For any kind of neural network to be expressive, it needs to contain non-linearity.
The purpose of ReLU is to introduce non-linearities in the CNNs [Glorot et al., 2011],
since most of the real-world data a CNNs should learn would be non-linear. There-
fore, the result of the convolution operation is passed through a ReLU activation
function. Other non-linear functions, such as tanh or sigmoid, can also be used
instead of ReLU, but ReLU has been found to perform better in most situations.

Fully Connected Layer In fully connected layers, neurons are connected to all acti-
vations in the previous layer which in principle is the same as the traditional regular
neural network. In a CNN, a number of fully connected layers are added to complete
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the architecture. In fact, the output from the convolutional and pooling layers repre-
sent high-level features of the input and the purpose of the fully connected layer is to
use these features for classifying the input into various classes based on the training
dataset. Moreover, adding a fully-connected layer is a way of learning non-linear
combinations of these features. A fully connected layer expects a 1D real-valued
vector as input. Therefore, the output of the final pooling layer, is a 3D volume, flat-
tened to a vector. This vector becomes the input to the fully connected layer which
produces non-spatial outputs. A Softmax function is usually used as the activation
function in the output layer of the fully connected layer which takes a vector of ar-
bitrary real-valued scores and converts it to a vector of values between zero and one
that sum to one, i.e, in the form of a probability.

2.1.3 Learning

As we discussed in the previous sections, a CNN is basically a combination of two
components: the feature extraction part and the classification part. The convolution
and pooling layers perform feature extraction, and the fully connected layers then
act as a classifier on top of these features and assign a vector of scores to each input.
In this way, CNNs transform the original input (image) layer by layer from the orig-
inal pixel values to the final class scores. Note that some layers contain parameters
and others do not. In particular, the convolutional and fully connected layers perform
transformations that are a function of activations in the input volume and the param-
eters (the weights and biases of the neurons). On the other hand, the ReLU/Pooling
layers implement a non-parametric function.

The network parameters in the convolutional and fully connected layers are trained
using the back-propagation [Rumelhart et al., 1988] as in the case of the regular neu-
ral networks. Back-propagation, short for "backward propagation of errors," is an
algorithm for supervised learning of neural networks using gradient descent. Given
a neural network and an error function (loss function), the method calculates the
gradient of the error function with respect to the neural network’s parameters.

Consider a dataset consisting of input-output pairs (xi, yi) where xi is the input
and yi is its corresponding desired output of the network or label. Let us denote by
X = {(x1, y1), ..., (xN , yN)}, the set of pairs of size N. The parameters of a neural net-
work are denoted as θ which contains, for each node i weights wi and bias bi. There
is also, an objective function f (X, θ) (sometimes referred to as the cost function or
loss function) which calculates the difference between the network output ŷi and its
expected output yi for a set of input-output pairs (xi, yi) ∈ X and a particular value
of θ. Training a neural network using gradient descent requires the calculation of the
gradient of the objective function f (X, θ) with respect to the weights and biases (col-
lectively denoted θ). Then, according to the learning rate α, which is the weight of the
negative gradient, each iteration of gradient descent updates the network parameters
according to:

θt+1 = θt − α
∂ f (X, θt)

∂θ
(2.5)
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where θt denotes the parameters of the neural network at iteration t of the gradient
descent.

The standard gradient descent algorithm may be infeasible when the training
data size is huge. However, Stochastic Gradient Descent (SGD), also known as incre-
mental gradient descent, is an iterative method for optimizing a differentiable loss
function [Robbins and Monro, 1985] which has received a considerable amount of
attention just recently in the context of large-scale learning. When training deep
learning models, the objective function is often considered as a sum of a finite num-
ber of functions:

f (X) =
1
N

n

∑
i=1

fi(X) (2.6)

where fi(x) is a loss function based on the training data instance indexed by i. There-
fore, for a standard gradient descent approach, the computational cost in each iter-
ation scales linearly with the training data set size N. Stochastic gradient descent
offers an efficient solution. At each iteration, rather than computing the gradient
∇ f (x), SGD randomly samples i uniformly and computes ∇ fi(x) instead. In other
words, SGD uses ∇ fi(x) as an unbiased estimator of ∇ f (x) since:

Ei∇ fi(x) =
1
N

N

∑
i=1
∇ fi(x) = ∇ f (x) (2.7)

In a generalized case, at each iteration a mini-batch that consists of indices for
training data instances may be sampled uniformly with replacement. In fact, stochas-
tic gradient descent typically reaches convergence much faster than standard gradi-
ent descent since it updates weight more frequently. In this thesis, SGD is used as
the optimization method during the CNN training.

2.1.4 Fully Convolutional Neural Network (FCN)

In order to have a CNN architecture for semantic segmentation, one approach is to
adapt classifier networks for dense prediction. Typical recognition networks such as
VGG [Simonyan and Zisserman, 2014], ResNet [He et al., 2016], AlexNet [Krizhevsky
et al., 2012], take fixed-sized inputs and produce non-spatial outputs. As mentioned
before, the fully connected layers of these networks have fixed dimensions and throw
away spatial coordinates. However, these fully connected layers can also be viewed
as convolutions with kernels that cover their entire input regions and convert these
networks to "Fully Convolutional Networks".

The basic idea behind a fully convolutional network is that it is "fully convo-
lutional", that is, all of its layers are convolutional layers. FCNs do not have any
fully-connected layers at the end, which are typically used for classification. Instead,
they use convolutional layers which aim to learn representations and make decisions
based on local spatial input. The only difference needed in the architecture of a clas-
sifier network to be changed is to convert fully connected layers into convolutional
layers with the right filter size [Long et al., 2015]. This transformation is illustrated
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Figure 2.5: Transforming fully connected layers into convolution layers enables a
classification network to output a heatmap. Adding layers and a spatial loss produces

an efficient machine for end-to-end dense learning [Long et al., 2015].

in Figure 2.5.
To obtain a segmentation map (output), segmentation networks usually have 2

parts: A downsampling path, which is used to capture semantic/contextual informa-
tion, and an upsampling path, which is used to recover spatial information. In order
to fully recover the fine-grained spatial information lost in the pooling or downsam-
pling layers, there are different approaches. The authors of [Long et al., 2015] use
bilinear interpolation which computes each output yij from the nearest four inputs
by a linear map that depends only on the relative positions of the input and output
cells. In a sense, upsampling with a factor of f is a convolution with a fractional
input stride of 1/ f . So long as f is integral, a natural way to upsample is therefore
backwards convolution (sometimes called deconvolution) with an output stride of f .
Thus upsampling is performed in-network for end-to-end learning by backpropaga-
tion from the pixelwise loss. Note that the deconvolution filter in such a layer need
not be fixed (e.g., to bilinear upsampling), but can be learned. A stack of deconvo-
lution layers and activation functions can even learn a nonlinear upsampling. The
authors of [Chen et al., 2014] skip subsampling after the last two max-pooling layers
in the VGG network architecture and modify the convolutional filters in the layers
that follow them by introducing zeros to increase their length. This allows them
to compute dense CNN feature maps at any target subsampling rate without intro-
ducing any approximations. The module introduced in [Yu and Koltun, 2015a] uses
dilated convolutions to systematically aggregate multi-scale contextual information
without losing resolution.

2.2 Multiple Instance Learning

One of the drawbacks of the supervised learning model is that it is not always possi-
ble for a teacher to provide labeled examples for training. Multiple-instance learning
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(MIL), which is a form of weakly-supervised learning, provides a new way of mod-
eling the teacher’s weaknesses. Instead of receiving a set of instances which are
labeled positive or negative, the learner receives a set of bags that are labeled posi-
tive or negative. Each bag contains many instances. A bag is labeled negative if all
the instances in it are negative. On the other hand, a bag is labeled positive if there
is at least one instance in it which is positive. From a collection of labeled bags, the
model tries to learn how to label individual instances correctly. This problem is even
harder than noisy supervised learning since the ratio of negative to positive instances
in a positively-labeled bag can be arbitrarily high [Maron and Lozano-Pérez, 1998;
Carbonneau et al., 2018].

2.2.1 MIL For Semantic Segmentation

[Pathak et al., 2015b] proposed an effective MIL formulation of multi-class semantic
segmentation learning using a fully convolutional network. This model and the
proposed loss function is an important baseline used in Chapters 3 and 4 of this
thesis. In this method, a model is trained for a semantic segmentation from just
image tags. The model is a fully convolutional network which accepts inputs of any
size and produces a pixel-wise score map for each class. The proposed multi-class
MIL loss further exploits the supervision given by images with multiple labels. To
learn the segmentation model from image tags, each image is considered as a bag of
pixel-level-instances with a pixel-wise, multi-class form of MIL loss.

A multi-class MIL loss is defined as the multi-class logistic loss computed at
maximum predictions, as discussed below. For an image of any size, the FCN outputs
a heatmap for each class (including the background) of the corresponding size. The
max scoring pixel is identified in the coarse heatmaps of the classes present in the
image and the background. The loss is then only computed on these coarse points,
and is back propagated through the network. The background class is similar to the
negative instances and competes against the positive object classes. Let the input
image be I, its label set be L (including the background label) and p̂l(x, y) be the
output heatmap for the lth label at location (x, y). The loss is defined as:

(xl , yl) = argmaxx,y p̂l(x, y) ∀l ∈ LI (2.8)

Loss =
−1
|LI | ∑

l∈LI

logp̂l(xl , yl) (2.9)

During inference, the MIL-FCN takes the top class prediction at every point in
the coarse prediction and by using bilinear interpolation produces a pixel-wise seg-
mentation of the input image resolution.
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2.3 Conditional Random Fields

Conditional Random Fields (CRFs) [Lafferty et al., 2001], a type of discriminative
probabilistic graphical model, are generally used to segment and label sequence
data. In this section, we provide a brief overview of CRFs for pixel-wise labeling
which is the main topic in this thesis. A CRF, used in the context of pixel-wise la-
bel prediction, models pixel labels as random variables that form a Markov Random
Field (MRF) when conditioned upon a global observation. The global observation
is usually taken to be the image. Let Xi be the random variable associated to pixel
i, which represents the label assigned to pixel i and can take any value from a pre-
defined set of labels L = {l1, l2, ..., lL}. Let X be the vector formed by the random
variables X1, X2, ..., XN , where N is the number of pixels in the image. Given a graph
G = (V, E), where V = {X1, X2, ..., XN}, and a global observation (image) I, the pair
(I, X) can be modelled as a CRF characterized by a Gibbs distribution of the form
P(X = x|I) = 1

Z(I) exp(−E(x|I)). Here, E(x) is called the energy of the configuration
x ∈ LN and Z(I) is the partition function. [Krähenbühl and Koltun, 2011] intro-
duced a specific type of CRF, which has been named fully connected pairwise CRF
or dense CRF. This model is defined on the complete set of pixels in an image. The
resulting graphs have billions of edges, making traditional inference algorithms im-
practical. However, in dense CRF an efficient approximation inference algorithm is
proposed in which the pairwise edge potentials are defined by a linear combination
of Gaussian kernels. The energy of a label assignment x is given by:

E(x) = ∑
i

ψu(xi) + ∑
i<j

ψp(xi, xj) (2.10)

where the unary energy components ψu(xi) measure the inverse likelihood (the cost)
of pixel i taking label xi, and the pairwise energy components ψp(xi, xj) measure
the cost of assigning labels xi, xj to pixels i, j simultaneously. The pairwise energies
provide an image data-dependant smoothing term that encourages assigning similar
labels to pixels with similar properties. The pairwise potentials are modelled as
weighted Gaussians:

ψp(xi, xj) = µ(xi, xj)
M

∑
m=1

w(m)k(m)
G ( fi, f j) (2.11)

where each k(m)
G , for m = 1, ..., M, is a Gaussian kernel applied to the feature vectors.

The feature vector of pixel i, denoted by fi, is derived from image features such as
spatial location and RGB values. The function µ(., .) called the label compatibility
function, captures the compatibility between different pairs of labels as the name
implies.

Minimizing the above CRF energy E(x) yields the most probable label assign-
ment x for the given image. Since this exact minimization is intractable, a mean-field
approximation to the CRF distribution is used for approximate maximum posterior
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marginal inference. It consists of approximating the CRF distribution P(X) by a sim-
pler distribution Q(X), which can be written as the product of independent marginal
distributions, i.e, Q(X) = ∏i Qi(Xi). Each iteration of the iterative algorithm for ap-
proximate mean-field inference performs a message passing step, a compatibility
transform, and a local update. Both the compatibility transform and the local update
run in linear time and are highly efficient. The computational bottleneck is mes-
sage passing. For each variable, this step requires evaluating a sum over all other
variables. A naive implementation thus has quadratic complexity in the number of
variables N. However, [Krähenbühl and Koltun, 2011] performed the message pass-
ing using Gaussian filtering in feature space. This enables utilizing highly efficient
approximations for high-dimensional filtering, which reduce the complexity of mes-
sage passing from quadratic to linear.

2.4 Summary

In summary, in this chapter, we have covered the technical backgrounds that have
been used in the following chapters. In particular, we presented the building blocks
of a CNN architecture which has been widely used as the learning approach in this
thesis. We also reviewed the main concepts in MIL for weakly-supervised learning.
Moreover, we briefly presented the concept of CRFs which have been used as a post-
processing step as well as in learning in the approaches proposed in this thesis.
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Chapter 3

Incorporating Network Built-in
Priors in Weakly-Supervised
Semantic Segmentation

Semantic scene segmentation, i.e., assigning a class label to every pixel in an in-
put image, has received growing attention in the computer vision community, with
accuracy greatly increasing over the years. Despite the success of fully-supervised
approaches, these methods require large amounts of training images with pixel-level
annotations, which are expensive and time-consuming to obtain. Weakly-supervised
techniques, which rely on a weaker form of training annotations, have therefore
emerged as a solution to address this limitation. In particular, weak supervision us-
ing only image tags has gained much attention due to its cheaper annotation cost.
To this end, CNN-based methods have been proposed to fine-tune pre-trained net-
works using image tags. However, without additional information, this leads to poor
localization accuracy. This problem, however, was alleviated by making use of object-
ness priors to generate foreground/background masks. Unfortunately, these priors
require pixel-level annotations/bounding boxes, or will still yield inaccurate object
boundaries. In this chapter, we propose a novel method to extract accurate masks
from networks pre-trained for the task of object recognition, thus forgoing external
objectness modules. We first show how foreground/background masks can be ob-
tained from the activations of higher-level convolutional layers of a network. We
then show how to obtain multi-class masks by the fusion of foreground/background
masks with information extracted from a weakly-supervised localization network.
Our experiments evidence that exploiting these masks in conjunction with a weakly-
supervised training loss yields state-of-the-art tag-based weakly-supervised semantic
segmentation results.

3.1 Introduction

In this chapter, we are particularly interested in exploiting one of the weakest levels
of supervision, i.e., image tags, which has gained much attention in recent years. In

21
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Figure 3.1: Overview of our weakly-supervised network with built-in fore-
ground/background prior.

contrast to most of the existing methods which use additional objectness or localiza-
tion information to gain better segmentation results [Pinheiro and Collobert, 2015;
Bearman et al., 2016; Wei et al., 2016a], we are interested in obtaining the object-
ness cues from the network itself without using additional annotations for training a
localization or objectness module.

More specifically, starting from a fully-convolutional network, pre-trained on Im-
ageNet, we propose to extract a foreground/background mask by directly exploit-
ing the unit activations of some of the hidden layers in the network. In particular,
as illustrated in Figure 3.1, we focus on the fourth and fifth convolution layers of
the VGG-16 pre-trained network [Simonyan and Zisserman, 2014], which provide
higher-level information than the first three layers, such as highlighting complete ob-
jects or object parts. Note that the resulting masks can also be thought of as a form
of objectness measure. While several CNN-based approaches have proposed to learn
objectness, or saliency measures from annotations Ghodrati et al. [2015]; Kuo et al.
[2015]; Zou and Komodakis [2015], to the best of our knowledge, our approach is the
first to extract this information directly from the hidden layer activations of a seg-
mentation network, and employ the resulting masks as localization cues for weakly-
supervised semantic segmentation. Furthermore, we extend our framework to incor-
porate some additional, yet cheap, supervision, taking the form of asking the user to
select the best foreground/background mask among several automatically generated
candidates. Our experiments reveal that this additional supervision only costs the
user roughly 2-3 seconds per image and yields another significant accuracy boost
over our tags-only results. While effective, this approach only reasons about fore-
ground/background, without explicitly considering the different foreground classes.
To address this, we propose to make use of a pre-trained localization network, which
specifically provides information about the location of different object classes. We
then show how this information can be combined with the previous fusion-based
strategy, as illustrated in Figure 3.2, to obtain class-wise pixel probabilities. In both
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Figure 3.2: Overview of our weakly-supervised network with multi-class masks.

the foreground/background and multi-class cases, the final masks are obtained by
making use of a fully-connected Conditional Random Fields (CRF) with higher-order
terms to smooth the initial pixel-wise probabilities. In particular, we propose to make
use of the crisp boundary detection method of [Isola et al., 2014] to generate our
higher-order terms.

We then show how these two types of masks can be incorporated in a weakly-
supervised loss to train a Deep Network for the task of semantic segmentation using
only image tags as ground-truth annotations. Ultimately, since our masks are directly
extracted from pre-trained networks, our approach can be thought of as a weakly-
supervised segmentation network with built-in foreground/background, or multi-
class prior.

We demonstrate the benefits of our approach on Pascal VOC 2012 [Everingham
et al., 2015], which is the most popular dataset for weakly-supervised semantic seg-
mentation. Our experiments show that our approach outperforms the state-of-the-art
methods that use image tags only, and even some methods that leverage additional
supervision, such as object size information [Pathak et al., 2015a] and point supervi-
sion [Bearman et al., 2016]. To demonstrate the generality of our approach, we also
report results on two other challenging datasets: YouTube Objects [Prest et al., 2012]
and Microsoft COCO [Lin et al., 2014]. To the best of our knowledge, this repre-
sents the first attempt at performing weakly-supervised semantic segmentation on
MS-COCO.

In this chapter, first we focus on foreground/background masks and then we
introduce an approach to generating class-specific masks and employing them for
weakly-supervised semantic segmentation. Furthermore, we introduce new higher-
order terms in our CRF by exploiting the crisp boundary detection framework [Isola
et al., 2014]. Finally, in addition to producing state-of-the-art results, our experiments
provide a thorough evaluation of the different components of our model.
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3.2 Related Work

Weakly-supervised semantic segmentation has attracted a lot of attention, because it
alleviates the painstaking process of manually generating pixel-level training anno-
tations. Over the years, great progress has been made [Xu et al., 2014; Vezhnevets
et al., 2011; Xu et al., 2015; Bearman et al., 2016; Papandreou et al., 2015; Pathak
et al., 2015b; Pinheiro and Collobert, 2015; Pathak et al., 2015a; Dai et al., 2015; Vezh-
nevets et al., 2012; Wei et al., 2016a,b; Kolesnikov and Lampert, 2016; Qi et al., 2016;
Shimoda and Yanai, 2016]. In particular, recently, Convolutional Neural Networks
(CNNs) have been applied to the task of weakly-supervised segmentation with great
success. In this section, we discuss these CNN-based approaches, which are the ones
most related to our work.

The work of [Pathak et al., 2015b] constitutes the first method to consider fine-
tuning a CNN pre-trained for object recognition, using image tags only, within a
weakly-supervised segmentation context. This approach relies on a Multiple Instance
Learning (MIL) loss to account for image tags during training. While this loss im-
proves segmentation accuracy over a naive baseline, this accuracy remains relatively
low, due to the fact that no other prior than image tags is employed. By contrast, [Pa-
pandreou et al., 2015] incorporates an additional prior in the MIL framework in the
form of an adaptive foreground/background bias. This bias significantly increases
accuracy, which [Papandreou et al., 2015] shows can be further improved by intro-
ducing stronger supervision, such as labeled bounding boxes. Importantly, however,
this bias is data-dependent and not trivial to re-compute for a new dataset. Further-
more, the results remain inaccurate in terms of object localization. In [Pathak et al.,
2015a], weakly-supervised segmentation is formulated as a constrained optimization
problem, and an additional prior modeling the size of objects is introduced. This
prior relies on thresholds determining the percentage of the image area that certain
classes of objects can occupy, which again is problem-dependent. More importantly,
and as in [Papandreou et al., 2015], the resulting method does not exploit any infor-
mation about the location of objects, and thus yields poor localization accuracy.

To overcome this weakness, some approaches [Pinheiro and Collobert, 2015; Bear-
man et al., 2016; Wei et al., 2016a; Qi et al., 2016] have proposed to exploit the no-
tion of objectness. In particular, [Pinheiro and Collobert, 2015] makes use of a post-
processing step that smoothes initial segmentation results using the object proposals
obtained by BING [Cheng et al., 2014] or MCG [Arbeláez et al., 2014]. While it im-
proves localization, being a post-processing step, this procedure is unable to recover
from some mistakes made by the initial segmentation. By contrast, [Bearman et al.,
2016; Wei et al., 2016a] directly incorporate an objectness score [Alexe et al., 2012;
Arbeláez et al., 2014] in their loss function. [Qi et al., 2016] also uses these objectness
methods to generate segmentation masks and train the semantic segmentation net-
work iteratively. While accounting for objectness when training the network indeed
improves segmentation accuracy, the whole framework depends on the success of the
external objectness module, which, in practice, only produces a coarse heatmap and
does not accurately determine the location and shape of the objects (as evidenced by
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our experiments). Note that BING and MCG have been trained from PASCAL train
images with full pixel-level annotations or bounding boxes, and thus [Pinheiro and
Collobert, 2015; Wei et al., 2016a; Qi et al., 2016] inherently make use of stronger su-
pervision than our approach. Instead of objectness, the method in [Wei et al., 2016b]
relies on DRIF saliency maps [Jiang et al., 2013]. These saliency maps are employed
to train a simple network from Flickr images, whose output then serves to train two
other networks using more complicated Pascal VOC images. Note that, again, the
DRIF method requires bounding boxes in its training stage, thus inherently making
use of additional supervision. [Shimoda and Yanai, 2016] tried to produce class-
specific saliency maps based on the derivatives of the class scores w.r.t. the input
image that provides some localization cues for segmentation. The method of [Tok-
makov et al., 2016] also uses motion cues of weakly annotated videos to segment
images with a subset of the PASCAL VOC classes. Here, instead of relying on an
external objectness or saliency method, we leverage the intuition that, within its hid-
den layers, a network pre-trained for object recognition should already have learned
to focus on the objects themselves. This lets us generate a foreground/background
mask directly from the information built into the network, which we empirically
show provides a more accurate object localization prior.

Beyond foreground/background masks, the method of the contemporary work
[Kolesnikov and Lampert, 2016] exploits the output of the same localization net-
work [Zhou et al., 2016] as us, but directly in a new composite loss function for
weakly-supervised semantic segmentation. While effective, the method suffers from
the fact that localization of some classes is inaccurate. By contrast, here, we com-
bine our built-in foreground/background mask with information from the localiza-
tion network, thus obtaining more accurate multi-class masks. As evidenced by our
experiments, these more robust masks yield more accurate semantic segmentation
results.

There are also some very recent approaches that use image tags for semantic
segmentation. Most of these approaches try to expand the object regions from dis-
criminative parts to non-discriminative parts to cover the whole objects and then use
these dense localization maps for semantic segmentation. [Wei et al., 2018] uses a
classification network equipped with convolutional blocks of different dilated rates
which can enlarge the receptive fields of convolutional kernels and transfer the sur-
rounding discriminative information to non-discriminative object regions and utilize
these regions in the object localization maps which would be beneficial for weakly-
supervised semantic segmentation. [Wei et al., 2017] is another method which uses
adversarial erasing to iteratively train multiple classification networks for expanding
discriminative regions. [Huang et al., 2018] proposes a semantic segmentation net-
work starting from the discriminative regions and progressively increase the pixel-
level supervision using seeded region growing. [Wang et al., 2018b] uses an iterative
bottom-up and top-down framework which, starting from coarse but discriminative
object seeds, mine common object features from them to expand object regions and
then uses a saliency-guided refinement method to supplement non-discriminative
parts. Then, in the top-down step, these regions are used as supervision to train
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Image 1stConv. 2nd Conv. 3rd Conv. 4thConv. 5thConv. Fusion Our mask Our mask G.T
+higher order.

Figure 3.3: Built-in foreground/background mask. From left to right, we show the
input image, the activations of the first, second, third, fourth, and fifth convolutional
layers, the results of our fusion strategy, and the final mask after CRF smoothing
without and with higher order term followed by the ground-truth mask. Note that
"Fusion" constitutes the unary potential of the dense CRF used to obtain "Our mask".

the segmentation network and predict segmentation masks. Another promising way
to improve the segmentation performance is to utilize additional weakly supervised
images, such as web images, to train CNNs [Jin et al., 2017]. There are also some
methods which use saliency models with additional supervision such as bounding
boxes. As an example [Oh et al., 2017] employs saliency which is trained from bound-
ing box annotations as additional information and hereby exploit prior knowledge
on the object extent and image statistics for object segmentation from image tags.

3.3 Our Method

In this section, we introduce our weakly-supervised semantic segmentation frame-
work. First, we present our approach to extracting masks, either foreground/back-
ground or multi-class, directly from a network pre-trained for object recognition. We
then introduce our weakly-supervised learning algorithms that leverage these fore-
ground/background and multi-class masks.

3.3.1 Built-in Prior Models

Given an image, our goal is to automatically extract a mask that indicates which
regions correspond to either foreground/background or specific classes. The central
idea of our approach is to rely on networks that have been pre-trained for object
recognition. Intuitively, we expect that such networks have learned to focus on the
objects themselves, and their parts, rather than on background regions. Below, we
show how we can exploit this intuition to extract foreground/background masks, as
well as multi-class ones.
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3.3.1.1 Foreground/Background Masks

Let us first consider the case of foreground/background masks. In practice, as dis-
cussed in more detail in Section 3.4.2.1, we make use of an architecture based on
the VGG-16 network [Simonyan and Zisserman, 2014], whose weights were trained
on ImageNet [Russakovsky et al., 2015] for the task of object recognition, converted
into a fully-convolutional network. If, to recognize objects, the network has learned
to focus on the objects themselves, it should produce high activation values on the
objects and on their parts. To evaluate this, we studied the activations of the different
hidden layers of our initial network.

More specifically, we passed each image forward through the network and visu-
alized each activation by computing the mean over the channels after resizing the
activation map to the input image size. Perhaps unsurprisingly, this lead to the fol-
lowing observations, illustrated in Figure 3.3. The first two convolutional layers of
the VGG network extract image edges. As we move deeper in the network, the con-
volutional layers extract higher-level features. In particular, the third convolutional
layer fires up on prototypical object shapes. The fourth and fifth layers indicate the
location of complete objects and of their most discriminative parts. Note that a sim-
ilar study was performed in the different context of edge detection [Bertasius et al.,
2014], with similar conclusions.

Based on these observations, we propose to make use of the fourth and fifth
layers to produce an initial foreground/background mask estimate. To this end,
we first convert these two layers from 3D tensors (512 ×W × H) to 2D matrices
(W × H) via an average pooling operation over the 512 channels. We then fuse the
two resulting matrices by simple elementwise summation, and scale the resulting
values between 0 and 1. The resulting W × H map can be thought of as a pixel-
wise foreground probability, which we denote by Pf in the remainder of the chapter.
Figure 3.3 illustrates the results of this method on a few images from PASCAL VOC
2012. Note that, while the resulting scores indeed accurately indicate the location
of the foreground objects, this initial mask remains noisy. This will be addressed in
Section 3.3.1.3 by encouraging smoothness via a CRF.

Our foreground/background masks can be thought of as a form of objectness
measure. While objectness has been used previously for weakly-supervised seman-
tic segmentation (MCG and BING in [Pinheiro and Collobert, 2015; Qi et al., 2016;
Wei et al., 2016a], and the generic objectness [Alexe et al., 2012] in [Bearman et al.,
2016]), the benefits of our approach are twofold. First, we extract this information
directly from the same network that will be used for semantic segmentation, which
prevents us from having to rely on an external method. Second, as opposed to BING
and MCG, we require neither object bounding boxes, nor object segments to train
our method. Finally, as shown in our experiments, our method yields much more
accurate object localization than the techniques in [Alexe et al., 2012] and [Arbeláez
et al., 2014], which typically only provide a rough outline of the objects.

However, the masks obtained with the proposed approach are not always perfect.
This is due to the fact that the information obtained by fusing the activations of the
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(a) (b)

Figure 3.4: (a) Mask candidates generated with our approach. From left to right, we
show the input image, the 1st, 5th, 10th, 15th, 20th, 25th and 30th solutions. (b) Our
new level of supervision: The annotator selects a mask which he/she thinks contains

all foreground object(s) and the minimum amount of background.

fourth and fifth layers is noisy, and thus the solution found by inference in the CRF is
not always the desired one. As a matter of fact, many other solutions also have a low
energy (Equation 3.6). Rather than relying on a single mask prediction, we propose
to generate multiple such predictions, and provide them to a user who decides which
one is the best one.

The problem of generating several predictions in a given CRF is known as the
M-best problem. Here, in particular, we are interested in generating solutions that
all have low energy, but are diverse, and thus follow the approach of [Batra et al.,
2012]. In essence, this approach iteratively generates solutions, and, at each iteration,
modifies the energy of Equation 3.6 to encourage the next solution to be different
from the ones generated previously. In practice, we make use of the Hamming dis-
tance as a diversity measure. This diversity measure can be encoded as an additional
unary potential in Equation 3.6, and thus comes at virtually no additional cost in the
inference procedure. For more details about the diverse M-best strategy, we refer the
reader to [Batra et al., 2012].

Ultimately, we generate several masks with this procedure, and ask the user to
click on the one that best matches the input image. Such a selection can be achieved
very quickly. In practice, we found that a user takes roughly 2-3 seconds per image
to select the best mask. As a consequence, this new source of weak supervision
remains very cheap, while, as evidenced by our experiments, allows us to achieve a
significant improvement over our tags-only formulation (Figure 3.4).

3.3.1.2 Multi-class Masks

The main drawback of the foreground/background masks discussed above is that
they are not class-specific. The network we used to extract these masks has not been
fine-tuned with the desired classes, and thus the activations only provide information
about the location of generic foreground objects. Here, we address this limitation by
making use of a class-specific localization network [Zhou et al., 2016] in conjunction
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with our foreground/background masks.
The main idea behind the localization network of [Zhou et al., 2016] is to generate

a Class Activation Map (CAM) for each specific object category, or, in other words,
a heatmap indicating the location of the regions that are useful for the network to
recognize a specific category. This is achieved by making use of the global average
pooling strategy of [Lin et al., 2013], and importantly, without using any bounding
box, or pixel-level annotations.

In our case, as discussed in section 3.4.2.2, our starting point is a fully-convolutional
version of the VGG-16 network. Just before the final output layer (the cross en-
tropy loss layer for multi class categorization), we perform global average pool-
ing on the convolutional feature maps and use the resulting features as input to
a fully-connected layer that produces class scores. Specifically, let fk(x, y) denote
the activation of unit k at spatial location (x, y) in the last convolutional layer, and
Fk = ∑x,y fk(x, y) the result of global average pooling for unit k. Then, the predicted
score for a given class c can be written as Sc = ∑k wc

kFk, where wc
k is the weight cor-

responding to class c for unit k. In essence, wc
k indicates the importance of unit k for

class c.
To generate a CAM, one can thus rely on these weights. In particular, these

weights are used in a linear combination of the activations of the units in the last
convolutional layer. This lets us express a CAM for class c as

Mc(x, y) = ∑
k

wc
k fk(x, y) . (3.1)

Ultimately, Mc(x, y) directly indicates how important the observations at spatial grid
(x, y) are to classify the input image as belonging to class c.

As can be seen in Figure 3.5, the resulting CAMs suffer from two main draw-
backs. First, they only roughly match the shape of the object, yielding inaccurate
localization of the object’s boundary. Second, they typically only focus on the dis-
criminative parts of the objects, which is sufficient for object recognition, but not for
segmentation. To overcome these limitations, we propose to combine these CAMs
with our foreground/background masks, to obtain more accurate and more com-
plete multi-class masks.

To this end, and as suggested in [Zhou et al., 2016], we first generate binary masks
from each Mc by setting to 1 the values that are above 20% of the maximum value
in each Mc, and to 0 the other ones. Let us denote by Bc the resulting binary mask
for class c. From these binary masks and the foreground/background probabilities
Pf obtained by fusing the activations of the fourth and fifth convolutional layers, we
form a new multi-class mask, which, for each class c, is defined as a map

Qc = Pf � Bc , (3.2)

where we think of each map as a matrix, and where � indicates the Hadamard
(elementwise) product. This, in essence, can be thought of as a class-specific trun-
cated version of Pf , where the truncation masks are obtained from the Mcs, with a
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Figure 3.5: CAM for each class obtained by the localization network.

permissive threshold of 20% to avoid cutting out too many regions.
To obtain our final multi-class masks, we combine these class-specific truncated

fusion maps with the original CAMs. To this end, we make use of a linear combina-
tion, which yields, for each class c, the final map

Pc = α ·Qc + (1− α) ·Mc , (3.3)

where, in practice, we set α = 0.5, and which is normalized to obtain a probability.
The resulting probabilities are compared to the fusion-based ones and to the CAMs
in Figure 3.6. Note that the final maps preserve the more accurate boundary infor-
mation and the better object coverage of the fusion-based ones, while removing their
noise, thanks to the CAMs.

At this point, we have probability maps for each foreground class c, but not
for the background class. To generate such a background map, we simply use the
probabilities of the locations that have not been considered as foreground classes in
Mc. To this end, we define

M0 = 1− 1
C ∑

c
Mc , (3.4)

which, in turn, lets us define the background map as

P0 = α · (1− Pf ) + (1− α) ·M0. (3.5)

While better than both our foreground/background masks and the CAMs, our
multi-class masks remain noisy. To address this, in the next section, we propose to
make use of a fully-connected CRF with higher-order terms.



§3.3 Our Method 31
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Figure 3.6: Effect of adding localization information to our Fusion map (Qc).

3.3.1.3 Smoothing the Masks with a Dense CRF

To smooth out initial noisy masks, we make use of a fully-connected CRF with
higher-order terms. Note that, while we consider the general, multi-class case, the
formalism discussed below applies to both our foreground/background masks and
to our multi-class masks.

Specifically, let x = {xi}W·H
i=1 be the set of random variables, where xi encodes the

label of pixel i, i.e., either one of the foreground classes or background. We encode
the joint distribution over all pixels with a Gibbs energy of the form

E(x = X) = −∑
i

θi(xi = Xi) + ∑
i

∑
j>i

θij(xi = Xi, xj = Xj) + ∑
xs∈R

θs(xs = Xs) , (3.6)

where θi is a unary potential defining the cost of assigning label Xi to pixel i, and
the second and third terms encode pairwise and higher-order potentials, respectively,
with R a set of regions.

The unary potential is obtained directly from the probability maps introduced in
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either Section 3.3.1.1 or 3.3.1.2 as

θi(xi = Xi) = − log

(
exp (P(xi = Xi))

∑C
l=1 exp (P(xi = l))

)
, (3.7)

where P can be either Pf or Pc.
The pairwise potential θij encodes the compatibility of a joint label assignment

for two pixels. Following [Krähenbühl and Koltun, 2011], we define this pairwise
term as a contrast-sensitive Potts model using two Gaussian kernels encoding color
similarity and spatial smoothness. Such a model penalizes two pixels at relatively
close spatial locations and with similar appearance to be assigned different labels.

For the higher-order terms, we make use of a Pn-Potts model encouraging all the
pixels in one region to be assigned the same label. To define the regions, we propose
to make use of the crisp boundary detection algorithm of [Isola et al., 2014]. This
algorithm aims at detecting the boundaries between semantically different objects
visible in the scene. It is based on a simple underlying principle: pixels belonging
to the same object exhibit higher statistical dependencies than pixels belonging to
different objects. This method is unsupervised and can adapt to each input image
independently. As illustrated in Figure 3.7, the resulting crisp boundaries can be
thought of as defining semantically coherent regions, which are thus very well-suited
to our goal. For each region xs, we then define the cost of the higher-order term as

θs(xs = l) = − log
(

∑xi∈xs
P(xi = l)
Ns

)
, (3.8)

if all the pixels are assigned the same label l, and a maximum cost otherwise. Here,
Ns indicates the number of pixels in region s.

By using Gaussian pairwise potentials and Pn-Potts higher-order ones, we can
make use of the inference strategy of [Vineet et al., 2014], which relies on the filtering-
based mean-field method of [Krähenbühl and Koltun, 2011]. In Figs. 3.3–3.7, we show
the effect of CRF smoothing on our masks with and without higher-order terms.

3.3.2 Weakly-Supervised Learning

We now introduce our learning algorithm for weakly-supervised semantic segmen-
tation. We first introduce a simple loss based on image tags only, and then show how
we can incorporate our two different types of masks in this framework.

Intuitively, given image tags, one would like to encourage the image pixels to be
labeled as one of the classes that are observed in the image, while preventing them to
be assigned to unobserved classes. Note that this assumes that the tags cover all the
classes depicted in the image. This assumption, however, is commonly employed in
weakly-supervised semantic segmentation [Bearman et al., 2016; Pathak et al., 2015b;
Pinheiro and Collobert, 2015]. Formally, given an input image I, let L be the set of
classes that are present in the image (including background) and L̄ the set of classes
that are absent. Furthermore, let us denote by sk

i,j(θ) the score produced by our
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Figure 3.7: Effect of using higher-order potentials using regions obtained by the crisp
boundary detection method of [Isola et al., 2014].

network with parameters θ for the pixel at location (i, j) and for class k, 0 ≤ k < N.
Note that, in general, we will omit the explicit dependency of the variables on the
network parameters. Finally, let Sk

i,j be the probability of class k obtained after a
softmax layer, i.e.,

Sk
i,j =

exp(sk
i,j)

∑N
c=1 exp(sc

i,j)
. (3.9)

Encoding the above-mentioned intuition can then simply be achieved by design-
ing a loss of the form

Lweak = −
1
|L| ∑

k∈L
log Sk − 1

|L̄| ∑
k∈L̄

log(1− Sk) , (3.10)

where Sk represents a candidate score for each class in the image. In short, the first
term in Equation 3.10 expresses the fact that the present classes should be in the
image, while the second term penalizes the pixels that have high probabilities for
the absent classes. In practice, instead of computing Sk as the maximum probability
(as previously used in [Pathak et al., 2015b; Bearman et al., 2016]) for class k over all
pixels in the image, we make use of the convex Log-Sum-Exp (LSE) approximation
of the maximum (as previously used in [Pinheiro and Collobert, 2015]), which can
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be written as

Sk =
1
r

log

[
1
|I| ∑

i,j∈I
exp(rSk

i,j)

]
, (3.11)

where |I| denotes the total number of pixels in the image and r is a parameter al-
lowing this function to behave in a range between the maximum and the average. In
practice, following [Pinheiro and Collobert, 2015], we set r to 5.

The loss in Equation 3.10 does not rely on any notion of foreground and back-
ground. As a consequence, minimizing it will typically yield poor object localization
accuracy. To overcome this issue, we propose to make use of our built-in priors
introduced in Sections 3.3.1.1 and 3.3.1.2. Below, we start with the foreground/back-
ground case, and then turn to the multi-class scenario.

3.3.2.1 Incorporating Foreground/Background Masks

When only a foreground/background probability is available, we cannot directly
reason at the level of specific classes. Instead, we rely on this mask to encourage all
pixels labeled as one of the object tags to lie within a foreground region, while the
other pixels should belong to the background.

To this end, let Mi,j denote the mask value at pixel (i, j), i.e., Mi,j = 1 if pixel (i, j)
belongs to the foreground and 0 otherwise. We can then re-write our loss as

Lmask = −
1

|L| − 1 ∑
k∈L,k 6=0

log(Sk)− log(S0)− 1
|L̄| · |I| ∑

i,j∈I, k∈L̄
log(1− Sk

i,j) ,

where

Sk =
1
r

log

 1
|M| ∑

i,j|Mi,j=1
exp(rSk

i,j)

 , (3.12)

and

S0 =
1
r

log

 1
|M̄| ∑

i,j|Mi,j=0
exp(rS0

i,j)

 , (3.13)

with |M| and |M̄| the number of foreground and background pixels, respectively. Sk

computes an approximate maximum probability for the present class k over all pixels
in the foreground mask. Similarly, S0 denotes an approximate maximum probability
for the background class over all pixels outside the foreground mask. In short, the
loss of Equation 3.12 favors present classes to appear in the foreground mask, while
pixels predicted as background should be assigned to the background class and no
pixels should take on an absent label.

To learn the parameters of our network, we follow a standard back-propagation
strategy to search for the parameters θ that minimize the loss in Equation 3.12. In
particular, the network is fine-tuned using stochastic gradient descent (SGD) with
momentum to update the weights by a linear combination of the negative gradient
and the previous weight update. At inference time, given the test image, the network
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performs a dense prediction. We optionally apply a fully-connected CRF with higher-
order terms similar to the one discussed above to smooth the segmentation. To this
end, we used the default CRF parameter values as in the original paper [Krähenbühl
and Koltun, 2011].

3.3.2.2 Incorporating Multi-class Masks

In the presence of multi-class masks, we can then reason about the specific classes
that are observed in the input image. In this scenario, we would like to encourage
the pixels set to 1 in one particular class mask corresponding to one input tag to
be assigned the label of this class. Enforcing this strongly, e.g., by considering the
maximum score over all pixels in a mask, would unfortunately be sensitive to noise
in the mask, as further discussed in our experiments. Instead, here, we propose to
again make use of the LSE to have a softer penalty.

Specifically, let Mk be the mask corresponding to the image tag, i.e., class label, k.
We propose to take into account our multi-class masks by re-writing our loss function
as

Lweak = −
1
|L| ∑

k∈L
log(Sk)− 1

|L̄| · |I| ∑
i,j∈I, k∈L̄

log(1− Sk
i,j) , (3.14)

where

Sk =
1
r

log

 1
|Mk| ∑

i,j|Mk=1
exp(rSk

i,j)

 . (3.15)

In other words, this loss encourages, for each present class k, including the back-
ground class, the pixels belonging to the corresponding mask to be assigned label
k, while penalizing the pixels that take on an absent label. We use the same learn-
ing strategy as in the foreground/background case to minimize this. Furthermore,
as before, during inference, the network provides a dense labeling for an input test
image, without requiring any tag, and this labeling can optionally be smoothed via
CRF inference.

3.4 Experiments

In this section, we first describe the datasets used for our experiments, and then
provide details about our learning and inference procedures. We then compare our
method with foreground/background masks and with multi-class ones to the state-
of-the-art weakly supervised semantic segmentation algorithms. Finally, we provide
a thorough evaluation of the effect of the different components of our approach.

3.4.1 Datasets

PASCAL VOC 2012. In our experiments, we made use of the standard Pascal VOC
2012 dataset [Everingham et al., 2015], which serves as a benchmark in most weakly-
supervised semantic segmentation papers [Bearman et al., 2016; Papandreou et al.,
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2015; Pathak et al., 2015b; Pinheiro and Collobert, 2015; Pathak et al., 2015a]. This
dataset contains 21 classes, and 10,582 training images (the VOC 2012 training set and
the additional data annotated by [Hariharan et al., 2011]), 1,449 validation images
and 1,456 test images. The image tags were obtained from the pixel-level annotations
by simply listing the classes observed in each image. As in [Bearman et al., 2016;
Papandreou et al., 2015; Pinheiro and Collobert, 2015; Pathak et al., 2015a], we report
results on both the validation and the test set.

YouTube Objects. This dataset (YTO) [Prest et al., 2012] contains videos collected
from YouTube by querying for the names of 10 object classes of the PASCAL VOC
dataset. It contains between 9 and 24 videos per class. For our experiments, we
uniformly extracted around 2200 frames per class to obtain a total of 22k frames out
of 700k available in the dataset. For evaluation we use the subset of images with
pixel-level annotations provided by [Jain and Grauman, 2014b]. Note that there is no
overlap between this subset and the shots from which we extracted the training data.

Microsoft COCO. For MS-COCO [Lin et al., 2014], we made use of 80k training
samples with only image tags to train our network and 40k validation samples to
evaluate the performance of our method. The MS-COCO annotations were designed
for instance level labeling. As such, some pixels in the images can be assigned mul-
tiple labels. For example, a pixel can belong to both Fork and Dining Table. To
evaluate our results for semantic segmentation, we obtained a unique ground-truth
label per pixel by using the label of the smallest object, that is, fork in the example
above.

Note that Sections 3.4.3.1 and 3.4.3.2 focus on the PASCAL VOC dataset, which
is the one commonly used for weakly-supervised semantic segmentation. The re-
sults for YTO and MS-COCO, which demonstrate the generality of our method, are
provided in Section 3.4.3.3.

3.4.2 Implementation Details

3.4.2.1 Semantic Segmentation Networks

As most recent weakly-supervised semantic segmentation algorithms [Bearman et al.,
2016; Papandreou et al., 2015; Pathak et al., 2015b; Pinheiro and Collobert, 2015;
Pathak et al., 2015a; Kolesnikov and Lampert, 2016], our architecture is based on the
VGG-16 network [Simonyan and Zisserman, 2014], whose weights were trained on
ImageNet for the task of object recognition. Following the fully-convolutional ap-
proach [Long et al., 2015], all fully-connected layers are converted to convolutional
layers, and the final classifier replaced with a 1× 1 convolution layer with N chan-
nels, where N represents the number of classes of the problem. We use two differ-
ent versions of this fully-convolutional network. When utilizing foreground/back-
ground masks, inspired by [Chen et al., 2014], we used a stride of 8 and a relatively
small receptive field of 128 pixels, which has proven effective in practice for weakly-
supervised semantic segmentation [Papandreou et al., 2015]. By contrast, when using
multi-class masks, inspired by [Chen et al., 2014] again, we found that using a larger
field of view improves the results. We therefore employed a kernel size of 3× 3 in
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the convolutional layer corresponding to the first fully connected layer of VGG-16
and an input stride of 12, resulting in a receptive field size of 224. We also reduced
the number of filters from 4096 to 1024 to allow for faster training [Chen et al., 2014].
With both types of masks, at the end of the network, we added a deconvolution layer
to up-sample the output of the network to the size of the input image. In short, the
network takes an image of size W × H as input and generates an N ×W × H output
encoding a score for each pixel and for each class.

For both types of masks, the parameters of the network were found using stochas-
tic gradient descent with a learning rate of 10−4 for the first 40k iterations and 10−5

for the next 20k iterations, a momentum of 0.9, a weight decay of 0.0005, and mini-
batches of size 1. Similarly to recent weakly-supervised segmentation methods [Pin-
heiro and Collobert, 2015; Pathak et al., 2015a,b; Bearman et al., 2016; Papandreou
et al., 2015], the network weights were initialized with those of a network pre-trained
for a 1000-way classification task on the ILSVRC 2012 dataset [Russakovsky et al.,
2015]. Hence, for the last convolutional layer, we used the weights corresponding
to the 20 classes shared by Pascal VOC and ILSVRC. For the background class, we
initialized the weights with zero-mean Gaussian noise with a standard deviation of
0.1.

At inference time, given the test image, but no tags, the network generates a dense
prediction as a complete semantic segmentation map. We used C++ and Python
(Caffe framework [Jia et al., 2014]) for our implementation. As other methods [Pathak
et al., 2015a; Papandreou et al., 2015; Kolesnikov and Lampert, 2016], we further
optionally apply a dense CRF to refine this initial segmentation. As mentioned in
Section 3.3.1.3, we added higher-order potentials to the dense pairwise CRF.

3.4.2.2 Localization Network

For the localization network, we followed the approach introduced in [Zhou et al.,
2016]. Specifically, the architecture of the network was again derived from the VGG-
16 architecture [Simonyan and Zisserman, 2014], pre-trained for the task of object
recognition on ImageNet. We then substituted the last two fully-connected layers,
fc6 and fc7, with randomly initialized convolutional layers. The output of the last
convolutional layer acts as input to a global average pooling layer followed by a
fully-connected prediction layer corresponding to the number of foreground classes
of interest (20 for PASCAL VOC). The network was fine-tuned for object recognition
on the training set of the PASCAL VOC 2012 dataset with a cross entropy loss. To
this end, we used images of size of 224× 224 as input, and mini-batches of size 15.
The other optimization parameters were set to the same values as for the semantic
segmentation network.

Note that we could in principle also fine-tune the VGG-16 network used to gen-
erate our foreground/background masks for object recognition on the target dataset
(e.g., PASCAL VOC). In practice, however, we observed that this did not improve the
quality of our masks.
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Table 3.3: Mean IOU on the PASCAL VOC validation and test sets for other methods
trained with higher level of supervision or additional training data. Note that, while
our approach requires no additional supervision or training data, its accuracy is

comparable to or higher than that of other methods.
Methods mIoU(val) mIOU(test)
[Pinheiro and Collobert, 2015]: MIL(Tag) w/ILP+bbox 37.8 37.0
[Pinheiro and Collobert, 2015]: MIL(Tag) w/ILP+seg 42.0 40.6
[Wei et al., 2016a]: SN-B+MCG seg 41.9 43.2
[Bearman et al., 2016]: 1Point 35.1 -
[Bearman et al., 2016]: Objectness+1Point 42.7 -
[Bearman et al., 2016]: Objectness+1Point(GT) 46.1 -
[Bearman et al., 2016]: Objectness+AllPoints (weighted) 43.4 -
[Bearman et al., 2016]: Objectness+1 squiggle per class 49.1 -
[Pathak et al., 2015a]: Random Crops+CRF 36.4 -
[Pathak et al., 2015a]: Size Info.+CRF 42.4 45.1
[Wei et al., 2016b]: STC + CRF + additional train data 49.8 51.2
[Wei et al., 2016a] SN-B+MCG seg 41.9 43.2
[Qi et al., 2016]: Augmented feedback+MCG+CRF 54.3 55.5
CheckMask procedure+CRF 51.5 52.9
Ours (fg/bg masks)+CRF(H.O) 48.0 49.6
Ours (multi-class masks)+CRF(H.O) 50.9 52.6

Image baseline fg/bg mask fg/bg mask+HO multi-class mask multi-class mask multi-class mask GT
Loc Loc+Fusion Loc+Fusion+HO

Figure 3.8: Qualitative results from the Pascal VOC validation set.
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3.4.3 Experimental Results

Below, we first compare our approach with state-of-the-art baselines on PASCAL
VOC. Then, we evaluate the different components of our method on the validation set
of the PASCAL VOC dataset. Finally, we provide results of our complete framework
on two more datasets to show the generality of our approach.

3.4.3.1 Comparison to State-of-the-art

We first compare our approach with state-of-the-art baselines on PASCAL VOC. To
this end, we report the Intersection over Union (IOU), which is the most commonly
used metric for semantic segmentation. In the following, we refer to our approach
with foreground/background masks as Ours fg/bg masks and with multi-class masks
as Ours multi-class masks.

We report the results of our approach and the state-of-the-art methods relying
on tags only in Table 3.1 and Table 3.2 for the Pascal VOC 2012 validation and test
images, respectively. Note that our approach, with either type of masks, outper-
forms most of the baselines by a large margin. The only exception is the contem-
porary SEC algorithm of [Kolesnikov and Lampert, 2016], which outperforms the
foreground/background version of our method. Note that SEC also relies on the
multi-class results of the localization network. We believe that the fact that our multi-
class-based approach performs slightly better than SEC, particularly on the test im-
ages, indicates the effectiveness of our combination of the localization network with
our fusion-based built-in prior. Importantly, the results also show that we outper-
form the methods based on an objectness prior [Bearman et al., 2016; Pinheiro and
Collobert, 2015], which evidences the benefits of using our built-in foreground/back-
ground masks instead of external objectness algorithms. Note that our results with
foreground/background masks has been reported with and without higher-order
potentials.

We then compare our approach, which uses only image tags, with other meth-
ods that rely on additional training data or additional supervision. In particular,
these include the point supervision of [Bearman et al., 2016], the random crops
of [Papandreou et al., 2015], the size information of [Pathak et al., 2015a], the MCG
segments of [Pinheiro and Collobert, 2015; Wei et al., 2016a; Qi et al., 2016], addi-
tional training data of [Wei et al., 2016b], and the proposed CheckMask procedure
on foreground/background masks. The results of this comparison are provided in
Table 3.3. Note that, with the exception of our own CheckMask procedure and the
method of [Qi et al., 2016], which uses MCG segments, our approach with multi-
class masks outperforms all the baselines, and with foreground/background masks
most of them, despite the fact that we do not require any supervision other than
tags. It is worth mentioning that other approaches have proposed to rely on labeled
bounding boxes, which require a user to provide a bounding box for each individual
foreground object in an image and to associate a label to each such bounding box.
While this procedure is clearly costly, we achieve accuracies close to these baselines
(52.5% for [Papandreou et al., 2015] when using labeled bounding boxes and 54.1%
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Figure 3.9: Failure cases from the Pascal VOC validation set.

for [Papandreou et al., 2015] when using labeled bounding boxes in an EM process vs
50.9% for our approach with image tags only). We believe that this further evidences
the benefits of our approach.

In Figs. 3.8 and 3.9, we show some successful segmentations and failure cases of
our approach, respectively. In some cases (e.g., first row of Figure 3.9), these failures
are due to the output scores of the network, which are used in Eqs. 3.12 and 3.14.
Other failures are due to errors in our predicted masks. For example, the second
row of Figure 3.9 indicates that errors appear after using the localization network to
generate multi-class masks. The most common type of failure occurs in the presence
of complex scenes, in which the network is unable to segment small objects. The last
two rows of Figure 3.9 show some of these cases.

3.4.3.2 Ablation Study

We now study the effect of the different components of our approach on our re-
sults. In particular, we first evaluate our predicted masks, and then discuss semantic
segmentation results.

Mask Evaluation: Foreground/background To evaluate our foreground/background
masks, we made use of 10% of randomly chosen training images from the Pascal
VOC dataset. We then generated foreground/background masks for these images
using our approach, which relies on the activations of the fourth and fifth layers
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Table 3.4: Comparison of our foreground/background masks with those obtained
using the objectness methods of [Alexe et al., 2012] and [Arbeláez et al., 2014].

Mean IoU
Masks obtained using [Alexe et al., 2012] 52.34%
Masks obtained using [Arbeláez et al., 2014] 50.20%
Our masks 60.08%

of the segmentation network pre-trained on ImageNet (i.e., before fine-tuning it for
semantic segmentation). These masks can then be compared to ground-truth fore-
ground/background masks obtained directly from the pixel level annotations.

We compare our masks with the objectness criteria of [Alexe et al., 2012] and [Ar-
beláez et al., 2014], which were employed for the purpose of weakly-supervised se-
mantic segmentation by [Bearman et al., 2016] and [Pinheiro and Collobert, 2015; Wei
et al., 2016a; Qi et al., 2016], respectively.

Note that some objectness methods, such as [Cheng et al., 2014; Arbeláez et al.,
2014], that have been used for weakly-supervised semantic segmentation [Pinheiro
and Collobert, 2015; Dai et al., 2015; Wei et al., 2016a; Qi et al., 2016], require training
data with pixel-level or bounding box annotations, and thus are not really compa-
rable to our approach. Note also that a complete evaluation of objectness methods
goes beyond the scope of this chapter, which focuses on weakly-supervised semantic
segmentation.

The objectness methods of [Alexe et al., 2012] and [Arbeláez et al., 2014] produce
a per-pixel foreground probability map. For our comparison to be fair, we further
refined these maps using the same dense CRF as in our approach. In Table 3.4, we
provide the results of these experiments in terms of mean Intersection Over Union
(mIOU) with respect to the ground-truth masks. Note that our masks are more ac-
curate than those of [Alexe et al., 2012; Arbeláez et al., 2014]. In particular, we have
found that our masks yield a much better object localization accuracy. In Figure 3.10,
we show some qualitative results of these three approaches. Note that this further ev-
idences the benefits of our foreground/background masks. In particular, our masks
yield a much better object localization accuracy.

Mask Evaluation: Multi-class As discussed before, our multi-class masks rely, in
part, on the localization network. Although the localization map provides useful
information about the location of the objects, it is not sufficient on its own to generate
accurate masks. In addition to its lack of accuracy at the object’s boundary and the
incompleteness of its segmentation, as illustrated earlier in Figure 3.5, the accuracy
of the localization network varies greatly for different classes. We illustrate this in
Figure 3.11 for the successful case of the monitor class and for the failure case of
potted plants. In the case of monitor, which, most of the time, is located in the center
of the image (see Average on GT in 3.11), the network is able to localize it reasonably
well. By contrast, potted plants are scattered in all locations in the dataset (see
Average on GT), and the network therefore fails to localize it accordingly. As a matter
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Image Pf usion Alexe et al. [2012] Arbeláez et al. [2014] Our Mask Alexe et al. [2012] Arbeláez et al. [2014]

Figure 3.10: Qualitative comparison of our masks with those of Objectness Map
of Alexe et al. [2012] and MCG Map of Arbeláez et al. [2014]. Note that our approach

yields much better localization accuracy.

Image Ground-Truth Localization map Average on GT
Success for monitor

Failure for potted plant

Figure 3.11: Success and failure cases of the localization network.

of fact, when training our method with masks obtained from the localization network
only, the IOU of potted plants is 0. This IOU increases to 32.3 when combining the
localization network with our fusion-based masks, as discussed in Section 3.3.1.2.

Since our method generates multi-class masks, one could think of directly using
these masks to obtain the final semantic segmentation of an input image, that is,
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Table 3.5: Accuracy of the multi-class masks when directly used for segmentation
(without any network), assuming known tags at test time.

Methods Mean IoU
multi-class masks using localization 43.0
multi-class masks using localization+fusion 46.6

Figure 3.12: Pixel classification accuracy as a function of the bandwidth around the
object boundaries on the Pascal VOC validation set. Note that using our fusion-based

masks helps improving the accuracy at the boundary of the objects.

without training a network at all. We evaluated how well this naive approach per-
forms on the Pascal VOC validation data. To further help this baseline, we made
use of the ground-truth tags to filter out the absent classes from the masks’ predic-
tions. The results of this experiment are reported in Table 3.5 for the localization
masks only and for our multi-class masks. Note that these results, despite relying on
ground-truth tags at test time, are lower than that of our approach, which does not
use this information. This confirms the importance of training a network based on
our masks, rather than directly using the masks for prediction.

To evaluate the accuracy of the different types of masks at the boundary of the
objects, we further made use of the Trimap accuracy [Kohli et al., 2009], which fo-
cuses on the segmentation error within a region around the true boundaries. Specifi-
cally, we evaluate the quality of a segmentation by counting the number of pixels
misclassified in the region surrounding the actual object boundary and not over
the entire image. The error is computed for different widths of the evaluation re-
gion. In Figure 3.12, we report the Trimap accuracy as a function of the width
of the region around the boundary for the results obtained with our fusion-based
foreground/background masks, the localization network masks, and our multi-class
masks (fusion+localization).

In addition to this, we also report the error of a simple baseline consisting of not
using any mask, but only the tags, i.e., using Equation 3.10 as training loss. Note
that using masks clearly improves boundary accuracy, particularly when using our
fusion-based masks, with or without the additional localization ones. Recall, how-
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Table 3.6: Mean IOU on PASCAL VOC val. set for different setups of our method.
Methods mIOU
Tag-only Baseline (no mask) 31.0
Foreground/Background Priors 47.3
Foreground/Background Priors + CheckMask procedure 51.5
Foreground/Background Priors + Higher Order 48.0
Localization Priors 45.9
Localization Priors+Higher Order 46.6
Localization+Fusion Priors 49.2
Localization+Fusion Priors+Higher Order (small FOV) 49.3
Localization+Fusion Priors+Higher Order (large FOV) 50.9

ever, that the combination of fusion+localization gave higher accuracy than fusion
only in terms of IOU. This shows the benefits of our complete multi-class masks.

Effect of the Different Components In Table 3.6, we evaluate the influence of sev-
eral components of our approach. In particular, we report the results of the simple
baseline mentioned above that only uses tags, but no mask. We also report the re-
sults obtained with different types of masks, with and without using the higher-order
terms in our CRF smoothing procedure, and, in the multi-class case, with different
network fields-of-view. The importance of our mask is clearly evidenced by the fact
that mask-based results outperform the mask-free baseline by up to 17.0 mIOU points
when using foreground/background masks and up to 19.9 when using multi-class
masks. These results also show that using higher-order terms brings some improve-
ment over the pairwise CRF, albeit of much lesser magnitude than the masks them-
selves. Similarly, the network field-of-view has some influence on accuracy. We also
evaluate our approach with our additional CheckMask weak supervision procedure
which yields an improvement of 4.9 and 3.5 mIOU point over our tag-only fg/bg
mask approaches. However, our tag-only multi-class mask approach result are re-
ally close to the CheckMask supervision which shows the effectiveness of multi-class
masks.

Computation time. For each validation image of PASCAL VOC, the network
forward time is of 0.06 sec. on an NVIDIA TESLA P100 GPU. The running time of
crisp boundary detection for a single image takes 4.1 seconds when using the speedy
version of the public Matlab implementation [Isola et al., 2014] on a single core of an
Intel Core i5 processor. For the Dense CRF, inference takes 2.8 and 2.1 seconds with
and without higher-order term, respectively, using the public C++ code [Vineet et al.,
2014] on a single core of an Intel Core i7 processor. The bottleneck of our approach
at test time therefore is the crisp boundary detection. Note, however, that this step
is only used to determine the regions for the higher-order potentials, without which,
as shown in Table 3.6, our approach still yields competitive results.
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Table 3.7: Per class IOU on Youtube Objects using image tags during training.

Method bg ae
ro

bi
rd

bo
at

ca
r

ca
t

co
w

do
g

ho
rs

e

m
bi

ke

tr
ai

n

mIOU

[Papazoglou and Ferrari, 2013] - 67.4 62.5 37.8 67.0 43.5 32.7 48.9 31.3 33.1 43.4 46.8
[Tang et al., 2013] - 17.8 19.8 22.5 38.3 23.6 26.8 23.7 14.0 12.5 40.4 23.9
[Ochs et al., 2014] - 13.7 12.2 10.8 23.7 18.6 16.3 18.0 11.5 10.6 19.6 15.5

SEC [Kolesnikov and Lampert, 2016] 84.4 51.9 59.3 37.5 64.4 30.5 38.2 50.1 51.1 49.7 17.3 48.6
Ours (multi-class masks) 88.5 72.7 60.1 44.2 53.5 33.3 42.4 50.3 49.6 56.6 16.6 51.6

3.4.3.3 Evaluation on YTO and MS-COCO

To further demonstrate the generality of our method, we conducted a set of experi-
ments on YTO and MS-COCO. While a few weakly-supervised methods have been
applied to YTO, to the best of our knowledge, no weakly supervised results have
been published on MS-COCO. We therefore also computed the results of the con-
temporary SEC method [Kolesnikov and Lampert, 2016] on these two datasets using
the publicly available code.

Evaluation on YTO In Table 3.7 we report the per class mean IOU of our approach
and several baselines on YTO. Note that our method outperforms all the baselines,
including [Kolesnikov and Lampert, 2016], on this dataset.

Evaluation on MS-COCO MS-COCO is a large-scale dataset containing 80 classes
of different categories. Unlike in PASCAL VOC and YTO, in MS-COCO, the major-
ity of samples were collected from non-iconic images in a complex natural context.
Moreover, a large number of the classes, e.g., spoon and knife, are small in terms
of both size and the number of instances/samples in the datasets. Additionally, the
classes of similar categories, e.g., Furniture and Indoor categories, appear together
in an image, resulting in images depicting more than 10 classes. These properties
make MS-COCO very challenging for weakly-supervised segmentation, and, to the
best of our knowledge, we are the first to report results on this dataset in the weakly-
supervised setting.

We provide the per-class IoU of our approach and SEC [Kolesnikov and Lam-
pert, 2016] in Table 3.8. While, on average, SEC obtains slightly better results, the
behavior of both methods is similar: They yield reasonable accuracy on large classes,
such as Animals, but perform poorly on small ones, such as Indoor and Kitchen-
ware. Interestingly, by analyzing the confusion matrix depicted in Figure 3.13, we
noticed that our approach is more confused between classes from the same broad
category. For instance, there are large confusions between the classes of the ’Food
and Kitchenware’ category. Furthermore, many of the classes from accessories and
sport are confused with Person as in most samples they appear together with Person.

Altogether, we believe that, while promising, these results on MS-COCO evidence
that there is much space for progress in weakly-supervised semantic segmentation,
and, in particular, that developing solutions that improve intra-category discrimina-
tion could be an interesting direction for future research.
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Table 3.8: Per class IOU on MS-COCO using image tags during training.
Cat. Class SEC Ours Cat. Class SEC Ours
BG background 74.3 68.8

K
it

ch
en

w
ar

e

wine glass 22.3 17.5
P person 43.6 27.5 cup 17.9 5.6

Ve
hi

cl
e

bicycle 24.2 18.2 fork 1.8 0.5
car 15.9 7.2 knife 1.4 1.0
motorcycle 52.1 40.5 spoon 0.6 0.6
airplane 36.6 32.0 bowl 12.5 13.3
bus 37.7 39.2

Fo
od

banana 43.6 44.9
train 30.1 26.5 apple 23.6 18.9
truck 24.1 17.5 sandwich 22.8 21.4
boat 17.3 16.5 orange 44.3 35.0

O
ut

do
or

traffic light 16.7 3.9 broccoli 36.8 27.0
fire hydrant 55.9 33.1 carrot 6.7 16.0
stop sign 48.4 28.4 hot dog 31.2 22.5
parking meter 25.2 25.5 pizza 50.9 57.8
bench 16.4 12.4 donut 32.8 36.2

A
ni

m
al

bird 34.7 31.1 cake 12.0 17.0
cat 57.2 52.8

Fu
rn

it
ur

e
chair 7.8 8.2

dog 45.2 44.1 couch 5.6 13.9
horse 34.4 34.2 potted plant 6.2 7.4
sheep 40.3 38.0 bed 23.4 29.8
cow 41.4 42.1 dining table 0.0 2.0
elephant 62.9 65.2 toilet 38.5 30.1
bear 59.1 57.0

El
ec

tr
on

ic
s

tv 19.2 14.8
zebra 59.8 65.0 laptop 20.1 19.9
giraffe 48.8 55.6 mouse 3.5 0.4

A
cc

es
so

ry

backpack 0.3 3.2 remote 17.5 9.9
umbrella 26.0 28.1 keyboard 12.5 19.9
handbag 0.5 1.1 cell phone 32.1 26.1
tie 6.5 5.5

A
pp

lia
nc

e microwave 8.2 9.8
suitcase 16.7 21.3 oven 13.7 16.4

Sp
or

t

frisbee 12.3 5.6 toaster 0.0 0.0
skis 1.6 1.0 sink 10.8 9.5
snowboard 5.3 2.8 refrigerator 4.0 13.2
sports ball 7.9 1.9

In
do

or

book 0.4 7.5
kite 9.1 10.3 clock 17.8 16.5
baseball bat 1.0 1.7 vase 18.4 13.4
baseball glove 0.6 0.5 scissors 16.5 12.2
skateboard 7.1 6.6 teddy bear 47.0 41.0
surfboard 7.7 3.3 hair dryer 0.0 0.0
tennis racket 9.1 5.5 toothbrush 2.8 2.0
bottle 13.2 9.6 mean IOU 22.4 20.4

3.5 Conclusion

We have introduced a Deep Learning approach to weakly-supervised semantic seg-
mentation that leverages masks directly extracted from networks pre-trained for
the task of object recognition. In particular, we have shown how to extract fore-
ground/background masks by fusing the activations of convolutional layers, as well
as multi-class ones by combining this fusion-based prior with a localization one. Our
experiments have shown the benefits of our masks, and in particular of the multi-
class ones, which yield state-of-the-art segmentation accuracy on PASCAL VOC. A
general limitation of existing tag-based semantic segmentation techniques, including
ours in this chapter, is that they assume having just one background class in the scene
and by relying on the object recognition pre-trained networks and objectness mod-
ules they can only segment foreground objects in the scene. However, for some real
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Figure 3.13: Confusion matrix of our method on the MS-COCO validation set. The
classes are shown in the same order as in Table 3.8. Note that the main sources
of confusion are with the background or with classes coming from the same broad

category or appearing in the same context.

world applications such as autonomous navigation it is crucial to also differentiate
different background classes such as road and side-walk. This is what we address in
the next chapter.
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Chapter 4

Making All Classes Equal in
Weakly-Supervised Video Semantic
Segmentation

As discussed in the previous chapter, weak supervision using only image tags could
have a significant impact on semantic segmentation. Recent years have seen great
progress in weakly-supervised semantic segmentation, whether from a single image
or from videos. However, most existing methods are designed to handle a single
background class. In practical applications, such as autonomous navigation, it is
often crucial to reason about multiple background classes. In this chapter, we in-
troduce an approach to doing so by making use of classifier heatmaps. We develop
a two-stream deep architecture that jointly leverages appearance and motion, and
design a loss based on our heatmaps to train it. Our experiments demonstrate the
benefits of our classifier heatmaps and of our two-stream architecture on challeng-
ing urban scene datasets and on the YouTube-Objects benchmark, where we obtain
state-of-the-art results.

4.1 Introduction

Video semantic segmentation, i.e., the task of assigning a semantic label to every
pixel in video frames, is crucial for the success of many computer vision applica-
tions, such as video summarization and autonomous navigation. In this context,
fully-supervised methods [Kundu et al., 2016; Tran et al., 2016; Shelhamer et al., 2016;
Tripathi et al., 2015; Jin et al., 2016; Li et al., 2018; Jampani et al., 2017], have made
great progress, particularly with the advent of deep learning. These methods, how-
ever, as we also mentioned before, inherently rely on having access to large amounts
of training videos with pixel-level ground-truth annotations in every frame.

While recent years have seen great progress in weakly-supervised semantic seg-
mentation, most existing methods, whether image- or video-based, have a major
drawback: They focus on foreground object classes and treat the background as one
single entity. However, having detailed information about the different background

51
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Figure 4.1: Overview of our framework. Given only video-level tags, our
weakly-supervised video semantic segmentation network jointly leverages classifier
heatmaps and motion information to model both multiple foreground classes and
multiple background classes. This is in contrast with most methods that focus on
foreground classes only, thus being inapplicable to scenarios where differentiating

background classes is crucial, such as in autonomous driving.

classes is crucial in many practical scenarios, such as autonomous driving, where
one, e.g., needs to differentiate the road from a grass field.

In this chapter, we introduce an approach to weakly-supervised video semantic
segmentation that treats all classes, foreground and background ones, equally (see
Fig 5.5). To this end, we propose to rely on class-dependent heatmaps obtained
from classifiers trained for image-level recognition, i.e., requiring no pixel-level an-
notations. These classifier heatmaps provide us with valuable information about
the location of instances/regions of each class. We therefore introduce a weakly-
supervised loss function that let us exploit them in a deep architecture.

In particular, we develop a two-stream deep network that jointly leverages ap-
pearance and motion. Our network fuses these two complementary sources of
information in two different ways: A trainable early fusion, which puts in corre-
spondence the spatial and temporal information and learns to combine it into a
spatio-temporal stream, and a late fusion further leveraging the valuable semantic
information of the spatial stream to merge it with the spatio-temporal one for final
prediction. Altogether, our approach constitutes the first end-to-end framework for
weakly-supervised semantic segmentation to handle both multiple foreground and
background classes.

To the best of our knowledge, only two weakly-supervised video semantic seg-
mentation approaches [Liu et al., 2014; Zhong12 et al.] can potentially handle mul-
tiple background classes. However, [Liu et al., 2014] relies on a simple similarity
measure between handcrafted features, and thus does not translate well to complex
scenes where multiple instances of the same class have significantly different ap-
pearances. While [Zhong12 et al.] relies on more robust, pre-trained deep learning
features, it exploits additional, pixel-wise annotations to train a fully-convolutional
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network for scene/object classification. Furthermore, none of these two methods of-
fer an end-to-end learning approach, which has proven key to the success of many
other computer vision tasks.

Our experiments demonstrate the benefits of our approach in several scenarios.
First, it yields accurate segmentations on challenging outdoor scenes, such as those
depicted by the CamVid [Brostow et al., 2009a] and Cityscapes [Cordts et al., 2016]
datasets, for which methods modeling foreground classes only do not apply. Further-
more, it outperforms the state-of-the-art methods that, as us, rely only on video-level
tags on the standard YouTube Object [Prest et al., 2012] dataset.

4.2 Related Work

Over the years, many approaches have tackled the problem of video semantic seg-
mentation. In particular, much research has been done in the context of fully-
supervised semantic segmentation, including methods based on CNNs [Shelhamer
et al., 2016; Tran et al., 2016; Jin et al., 2016; Jampani et al., 2017; Li et al., 2018] and on
graphical models [Kundu et al., 2016; Liu and He, 2015; Tripathi et al., 2015]. Here,
however, we focus the discussion on the methods that do not require fully-annotated
training data, which is typically expensive to obtain.

In this context, semi-supervised approaches have been investigated. In particu-
lar, [Tsai et al., 2016a; Jain and Grauman, 2014a] proposed to propagate pixel-level
annotations provided in the first frame of the sequence throughout the entire video.
While this still requires complete annotations in one frame per video, [Shankar Na-
garaja et al., 2015] relied on user scribbles to define foreground and background re-
gions. None of these methods, however, consider background classes. Furthermore,
they all still make use of some pixel-level annotations.

By contrast, weakly-supervised semantic segmentation methods tackle the chal-
lenging scenario where only weak annotations, e.g., tags, are given as labels. Much
research in this context has been done for still images [Zhang et al., 2015a; Xu et al.,
2014; Pourian et al., 2015; Vezhnevets et al., 2011; Pathak et al., 2015b; Vezhnevets
et al., 2012; Papandreou et al., 2015; Saleh et al., 2016, 2018b; Pathak et al., 2015a;
Kolesnikov and Lampert, 2016; Wei et al., 2016b,a; Shimoda and Yanai, 2016; Pin-
heiro and Collobert, 2015; Oh et al., 2017]. In particular, most recent methods build
on deep networks by making use of objectness criteria [Bearman et al., 2016], object
proposals [Pinheiro and Collobert, 2015; Wei et al., 2016a; Qi et al., 2016], saliency
maps [Shimoda and Yanai, 2016; Wei et al., 2016b; Wang et al., 2018b; Oh et al.,
2017], localization cues [Mostajabi et al., 2016; Kolesnikov and Lampert, 2016], con-
volutional activations as discussed in Chapter 3, motion cues [Tokmakov et al., 2016]
and constraints related to the objects [Pathak et al., 2015a; Papandreou et al., 2015].
Since the basic networks have been pre-trained for object recognition, and thus focus
on foreground classes, these methods are inherently unable to differentiate multiple
background classes.

Similarly, most weakly-supervised video semantic segmentation techniques also
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focus on modeling a single background class. In this context [Hartmann et al., 2012;
Tang et al., 2013] work in the even more constrained scenario, where only two classes
are considered: foreground vs. background. By contrast, to differentiate multiple
foreground classes, but still assuming a single background, [Papazoglou and Ferrari,
2013] relied on motion cues and [Hong et al., 2017b] made use of a huge amount of
web-crawled data (4606 videos with 960,517 frames).

In the same setting of multiple foreground vs. single background, several meth-
ods have proposed to rely on additional supervision. For instance, [Zhang et al.,
2015b] relied on the CPMC [Carreira and Sminchisescu, 2010] region detector, which
has been trained from pixel-level annotations, to segment foreground from back-
ground. In [Wang et al., 2016] and [Fragkiadaki et al., 2015], object proposal methods
trained from pixel-level and bounding box annotations, respectively, were employed.
Similarly, [Drayer and Brox, 2016] relied on an object detector trained from bounding
boxes. The method of [Tsai et al., 2016b] utilized the FCN trained on PASCAL VOC
in a fully-supervised manner to generate initial object segments.

All the weakly-supervised approaches discussed above assume to observe a sin-
gle background class. In many cases, such as autonomous navigation, however, it
is crucial to differentiate between multiple background classes. To the best of our
knowledge, only two methods are able to handle this scenario. In [Liu et al., 2014],
a nearest-neighbor-based label transfer technique was introduced, which relies on a
simple distance between handcrafted features. While this strategy would work well
for classes such as grass or sky in which appearance variations are limited, it trans-
lates poorly to more challenging and complex scenes, such as urban ones, where
individual classes can depict a large range of appearances. As a consequence, this
method was only demonstrated on simple scenes containing at most one or two in-
stances of a few classes. In [Zhong12 et al.], more advanced, deep learning features
were exploited. However, this method makes use of pixel-level supervision to train
an FCN to label pixels as either scene vs. object, or multiple scene classes vs. object.

By contrast, we introduce a method that handles multiple foreground and back-
ground classes, but only relies on video-level tags. To this end, we introduce a loss
function based on classifier heatmaps, and exploit it to train a two-stream network
jointly leveraging complementary spatial and temporal information in an end-to-end
manner.

4.3 Our Method

In this section, we introduce our approach to weakly-supervised video semantic seg-
mentation. First, we introduce the classifier heatmaps that allow us to model both
multiple foreground and background classes. We then introduce our two-stream ar-
chitecture, which jointly leverages motion and appearance, and discuss our learning
scheme, including our loss based on the classifier heatmaps.



§4.3 Our Method 55

4.3.1 Classifier Heatmaps

One of the main challenges when working with tags only for weakly-supervised se-
mantic segmentation is that the annotations do not provide any information about
the location of the different classes. While mitigated in the presence of only a few
foreground classes and a single background one, this problem becomes highly promi-
nent when dealing with complex urban scenes containing many instances of each
foreground class and several background classes, such as road, grass, buildings.
Existing weakly-supervised methods are dedicated to handle multiple foreground
objects, but cannot handle multiple background ones, typically because they inher-
ently rely on object recognition networks, which only tackle foreground classes. To
address this, we propose to extract class-specific heatmaps that localize the different
classes. Our goal here is to achieve this for both foreground and background classes,
and without requiring any pixel-level or bounding box annotations.

Prior work has shown that ConvNets trained with a classification loss can yield
remarkable localization results [Oquab et al., 2015b; Zhou et al., 2016]. Hence, sim-
ilarly, for foreground classes, we make use of the VGG-16 network [Simonyan and
Zisserman, 2014] trained on the standard 1000 ImageNet classes. Specifically, we
transform the VGG-16 model into a fully-convolutional network by converting its
fully-connected layers into convolutional ones, while keeping the trained weights.
In other words, the output of the last layer of the transformed model becomes a
W×H× 1000 tensor, and passing an image through the network yields a map show-
ing the activation of each class at each pixel in a low-resolution version of the input
image. In practice, we can then access the activations of the foreground classes of
interest by only considering a subset of the 1000 ImageNet classes.

The standard 1000 ImageNet classes, however, do not include background. To this
end, we collected iconic background images by crawling the background classes on
the ImageNet website [Deng et al., 2009]. We then trained one-vs-all VGG-16 models
(pre-trained on the standard 1000 ImageNet classes) for these background classes
and followed the same strategy as for the foreground ones to obtain heatmaps. More
details are provided in section 4.4.1.

In Figure 4.2, we show the heatmaps for some of the foreground and background
classes of the Cityscapes [Cordts et al., 2016] dataset. Note that, while sometimes
a bit coarse, the heatmaps still provide valuable information about the location of
these classes. In the next section, we introduce our two-stream network that jointly
leverages appearance and motion, and show how our heatmaps can be used to train
it.

4.3.2 Weakly-supervised Two-stream Network

Videos have two intrinsic features: Appearance and Motion. To leverage these two
sources of information, inspired by the approach of [Feichtenhofer et al., 2016] for
action recognition, we develop the two-stream network depicted in Figure 4.3. One
stream takes an RGB image as input, and the other optical flow. Compared to taking
a series of images as input, explicitly using optical flow to represent motion, has the
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Figure 4.2: Classifier heatmaps for some of the foreground and background classes
of the Cityscapes dataset. Note that these heatmaps give a good indication of the

location of foreground instances and background regions.

Figure 4.3: Proposed Network Structure. Our two-stream semantic segmentation
network leverages both image and optical flow to extract the features. These features
are fused in two stages. An early, trainable fusion that puts in correspondence the
spatial and temporal information, and a late fusion that merges the resulting spatio-

temporal stream with the appearance one for final prediction.

advantage of relieving the network from having to estimate motion implicitly. Below,
we discuss how we encode optical flow and describe our fusion strategy. We then
introduce our weakly-supervised learning framework.

Encoding Optical Flow. Dense optical flow [Brox et al., 2004] can be represented
as a displacement vector field between a pair of frames at time t and t + 1. The
horizontal and vertical components of the displacement vector field can be thought
of as image channels, which makes them well suited to act as input to a convolutional
network, such as the one shown in the upper stream of the model in Figure 4.3. To
represent the motion across a video clip, we stack the flow channels corresponding
to both directions (vertical and horizontal) of L consecutive frames, in range (t −
b L

2 c, t + b L
2 c], to form a total of 2L input channels.
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Fusing Appearance and Motion. As can be seen in Figure 4.3, the appearance and
motion streams both consist of a series of convolutional layers, following the VGG-16
architecture [Simonyan and Zisserman, 2014]. The outputs of these streams are then
fused at two different levels. In particular, fusion occurs after the fifth convolutional
layer (Conv5-3) of each stream, which has been shown to contain a rich semantic
representation of the input [Bertasius et al., 2014; Saleh et al., 2016, 2018b]. The first,
early fusion puts in correspondence the activations of both streams corresponding to
the same pixel location. As [Feichtenhofer et al., 2016], instead of performing sum- or
max-fusion, we rely on a convolutional fusion strategy. This gives more flexibility to
the network and allows it to learn which channels from the motion and appearance
streams should be combined together. The second, late fusion of our network merges
the spatio-temporal stream resulting from early fusion with the appearance stream.
This fusion is achieved at the point where each stream predicts class scores. The
rationale behind this is that the appearance stream provides valuable semantic infor-
mation on its own, and should thus be propagated to the end of the network. The
resulting scores are then passed through a deconvolution layer to obtain the final,
full-resolution, semantic map.

4.3.2.1 Weakly-Supervised Learning

We now introduce our learning algorithm for weakly-supervised semantic segmen-
tation. We first introduce a simple loss based on image tags only, and then show how
we can incorporate the localization information of our classifier heatmaps to the loss
function.

Intuitively, given image tags, one would like to encourage the image pixels to be
labeled as one of the classes that are observed in the image, while preventing them
to be assigned to unobserved classes. Note that this assumes that the full set of tags
available cover all the classes depicted in the image, which is a common assumption
in weakly-supervised semantic segmentation [Pathak et al., 2015a; Papandreou et al.,
2015; Pathak et al., 2015b; Bearman et al., 2016; Kolesnikov and Lampert, 2016; Saleh
et al., 2016, 2018b].

Formally, given an input video V, let L be the set of tags associated to V and L̄
the class labels that are not among the tags. Furthermore, let us denote by sk

i,j(θ) the
score produced by our network with parameters θ for the pixel at location (i, j) and
for class k, 0 ≤ k < N, in the current input video frame I. Note that, in general,
we will omit the explicit dependency of the variables on the network parameters.
Finally, let Sk

i,j be the probability of class k obtained after a softmax layer, i.e.,

Sk
i,j =

exp(sk
i,j)

∑N
c=1 exp(sc

i,j)
. (4.1)

Encoding the above-mentioned intuition can then simply be achieved by design-
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ing a loss of the form

Ltag = − 1
|L| ∑

k∈L
log Sk − 1

|L̄| ∑
k∈L̄

log(1− Sk) , (4.2)

where Sk represents a candidate score for each class in the input frame. In short, the
first term in Equation 4.2 expresses the fact that the present classes should be in the
input frame, while the second term penalizes the pixels that have high probabilities
for the absent classes. In practice, instead of computing Sk as the maximum prob-
ability (as previously used in [Pathak et al., 2015b; Bearman et al., 2016]) for class
k over all pixels in the input frame, we make use of the convex Log-Sum-Exp (LSE)
approximation of the maximum (as previously used in [Pinheiro and Collobert, 2015]
and in Chapter 3), which can be written as

S̃k =
1
r

log

[
1
|I| ∑

i,j∈I
exp(rSk

i,j)

]
, (4.3)

where |I| denotes the total number of pixels in the input frame and r is a parameter
allowing this function to behave in a range between the maximum and the average.
In practice, following our setting in Chapter 3 and [Pinheiro and Collobert, 2015], we
set r to 5.

The loss of Equation 4.2 does not rely on any localization cues. As a consequence,
minimizing it will typically yield poor object localization accuracy. To overcome this
issue, we propose to make use of the classifier heatmaps introduced in section 4.3.1.
To this end, we first generate binary masks Bk for each class k. These binary masks
are obtained by setting to 1 the values that are above 20% of the maximum value in
the heatmap of class k, and to 0 the other ones.

Our goal then is to encourage the model to have, for each class, high probability
at pixels inside the corresponding binary mask. To this end, we introduce the loss
function

Lheatmap = − 1
|L| ∑

k∈L

1
|Bk| ∑

i,j∈Bk

log Sk
i,j , (4.4)

which we use in conjunction with the loss of Equation 4.2.
While this heatmap-based loss significantly helps localizing the different classes,

the heatmaps typically only roughly match the class boundaries. To overcome this,
we follow the CRF-based strategy of [Kolesnikov and Lampert, 2016]. Specifically, we
construct a fully-connected CRF, with unary potentials corresponding to the proba-
bility scores predicted by our segmentation network, and image-dependent Gaussian
pairwise potentials [Krähenbühl and Koltun, 2011].

Inspired by [Kolesnikov and Lampert, 2016], we then add another term to the
loss function, corresponding to the mean KL-divergence between the outputs of the
network and the outputs of the fully connected CRF. Specifically, we construct a
fully-connected CRF, Q(I, f (I; θ)), with unary potentials corresponding to the prob-
ability scores predicted by our segmentation network f (I; θ), and image-dependent
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Table 4.1: Background classes used to train our classifiers (Section 4.3.1) for the
Cityscapes and CamVid datasets.

Class
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#Samples 126 306 670 176 190 180

Gaussian pairwise potentials [Krähenbühl and Koltun, 2011]. Note that the image I
is downscaled, so that it matches the resolution of the segmentation mask, produced
by the network.

Lcr f =
1
n

n

∑
u=1

∑
k∈L

Qu,k(I, f (I; θ)) log
Qu,k(I, f (I; θ))

fu,k(I; θ)
(4.5)

where u ∈ 1, 2, ..., n is all the locations in the downscaled image and k is the classes
of interest. This term encourages the network prediction to coincide with the CRF
output, which produces segmentations that better respect the image boundaries.

Altogether, our network can handle multiple foreground and background classes,
and, as discussed in more detail in Section 4.4.2, can be trained in an end-to-end
fashion.

4.4 Experiments

In this section, we first describe the datasets used in our experiments and provide de-
tails about our learning and inference procedures. We then present the results of our
model and compare it to state-of-the-art weakly-supervised semantic segmentation
methods.

4.4.1 Datasets

To demonstrate the effectiveness of our approach, and evaluate the different com-
ponents of our model, we use the challenging Cityscapes [Cordts et al., 2016] and
CamVid [Brostow et al., 2009a] road scene datasets. Furthermore, to compare to
the state-of-the-art, we make use of YouTube-Objects [Prest et al., 2012], which most
weakly-supervised video semantic segmentation methods report on. Note that, al-
though different annotation types are provided in each of these datasets, we only
make use of tags, indicating which classes are present in each video clip.

Cityscapes: Cityscapes [Cordts et al., 2016] is a large-scale dataset, containing
high quality pixel-level annotations for 5000 images collected in street scenes from
50 different cities. The images of Cityscapes have resolution 2048×1024, making it
a challenge to train very deep networks with limited GPU memory. We therefore
downsampled the images by a factor of 2.

The annotations correspond to the 20th frame of 30-frame video snippets. We
then extracted optical flow from 10 consecutive frames, from the 16th to the 25th, and
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used the RGB frames and image tags in conjunction with these optical flows to train
our model.

We made use of the standard training/validation/test partitions, containing 2975,
500, and 1525 images, respectively. Following the standard evaluation protocol [Cordts
et al., 2016], we used 19 semantic labels (belonging to 7 super categories: ground,
construction, object, nature, sky, human, and vehicle) for evaluation (the void label is
not considered for evaluation).

CamVid: The CamVid dataset consists of over 10 minutes of high quality 30 Hz
footage. The videos are captured at 960 × 720 resolution with a camera mounted
inside a car. Three of the four sequences were shot in daylight, and the fourth one
was captured at dusk. This dataset contains 32 categories. In our experiments, fol-
lowing [Brostow et al., 2009b; Kundu et al., 2016; Badrinarayanan et al., 2015], we
used a subset of 11 classes. The dataset is split into 367 training, 101 validation and
233 test images. As for Cityscapes, ground-truth labels are provided every 30 frames.
We extracted optical flow in 10 frames around the labeled ones, and used them with
the RGB frames for training.

Iconic Data: The background classes and number of samples per class, extracted
from the background images of the ImageNet website, as mentioned in Section 4.3.1,
and used to train our background classifiers for Cityscapes and CamVid are given
in Table 4.1. Note that, in the standard 1000 classes of ImageNet, there is no general
person class, which appears in both datasets. To handle this class, we therefore pro-
ceeded in a similar manner as for the background classes, but making use of a small
subset of the samples (1300 samples) from [Dalal and Triggs, 2005; Overett et al.,
2008].

YouTube-Objects: The YouTube-Objects dataset is composed of videos collected
from YouTube by querying for the names of 10 object classes of the PASCAL VOC
Challenge. It contains between 9 and 24 videos per class. The duration of each video
ranges from 30 seconds to 3 minutes. The videos are weakly annotated, with each
video containing at least one object of the corresponding queried class. In the dataset,
the videos are separated into shots.

For our experiments, we randomly extracted 6-8 frames from each shot to obtain
a total of 13800 frames out of 700,000 available in the dataset. We again made use of
snippets of 10 frames to encode optical flow.

For evaluation, we used the subset of images with pixel-level annotations pro-
vided by [Jain and Grauman, 2014b]. Note that there is no overlap between this
subset and the shots from which we extracted the training data.

4.4.2 Implementation Details

To train our two-stream network, introduced in Section 4.3.2, we relied on stochastic
gradient descent with a learning rate starting at 10−5 with a decrease factor of 10
every 10k iterations, a momentum of 0.9, a weight decay of 0.0005, and mini-batches
of size 1. Similarly to recent weakly-supervised segmentation methods [Saleh et al.,
2016; Bearman et al., 2016; Pathak et al., 2015b; Papandreou et al., 2015; Kolesnikov
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and Lampert, 2016], the weights of our two-stream network were initialized with
those of the 16-layer VGG classifier [Simonyan and Zisserman, 2014] pre-trained for
1000-way classification on the ILSVRC 2012 [Russakovsky et al., 2015]. Hence, for
the last convolutional layer, we used the weights corresponding to the classes shared
by the datasets used here and in ILSVRC. For the background classes, we initialized
the weights with zero-mean Gaussian noise with a standard deviation of 0.1. At
inference time, given only the test image and optical flow, the network generates a
dense prediction as a complete semantic segmentation map.

For both CamVid and Cityscapes, we used the GPU implementation of [Brox
et al., 2004] to generate the stack of optical flow for each snippet of length 10. For
YouTube-Objects, we used the optical flow information pre-computed by [Brox and
Malik, 2011]. Note that neither of these methods relies on any learning strategy, and
thus they can be directly applied to our input images. We used C++ and Python
(the Caffe framework [Jia et al., 2014]) for our implementation. As other meth-
ods [Kolesnikov and Lampert, 2016; Papandreou et al., 2015; Saleh et al., 2016, 2018b;
Pathak et al., 2015a; Wei et al., 2016b], we further applied a dense CRF [Krähenbühl
and Koltun, 2011] to refine this initial segmentation. To this end, we used the default
CRF parameter values as in the original paper [Krähenbühl and Koltun, 2011].

4.4.3 Experimental Results

Below, we first evaluate the different components of our method on the validation set
of the two challenging road scene datasets. We then provide results of our complete
framework on their respective test sets. Finally, we compare our approach to state-
of-the-art weakly-supervised segmentation methods on YouTube-Objects.

4.4.3.1 Ablation Study

To evaluate the influence of the different components of our approach, we designed
the following baselines. No-Heatmap corresponds to a single-stream model exploiting
the RGB image only, without exploiting our heatmap-based loss of Equation 4.4,
i.e., using the loss of Equation 4.2 and the CRF loss. Foreground-Heatmap consists
of a similar single stream network, additionally using the loss of Equation 4.4, but
only for the foreground classes extracted from the VGG-16 network pre-trained on
ILSVRC. Our-Heatmap corresponds to using all our heatmaps, i.e., for foreground
and background classes, with a single-stream network. Finally, Ours corresponds to
our two-stream network with all the loss terms.

We report the results of these different models in Table 4.2 for Cityscapes and
in Table 4.3 for CamVid. In particular, we report the mean Intersection over Union
(mIoU), the average per-class accuracy and global accuracy. The general behavior is
the same for both datasets: Exploiting heatmaps for foreground class improves over
not using heatmaps at all. However, also relying on heatmaps for background classes
gives a significant boost in performance. Finally, jointly leveraging appearance and
motion in our two-stream network further improves segmentation accuracy. As can
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Table 4.2: Influence of our heatmaps and of optical flow. These results were obtained
using the Cityscapes validation set.

Setup Mean IOU Mean Class Acc. Global Acc.

No-Heatmap 8.4% 18.8% 20.9%
ImageNet-Heatmap 11.4% 33.2% 22.0%
Our-Heatmap 20.6% 40.6% 54.0%
Our Two-Stream 23.6% 40.3% 63.9%

Table 4.3: Influence of our heatmaps and of optical flow. These results were obtained
using the CamVid validation set.

Setup Mean IOU Mean Class Acc. Global Acc.

No-Heatmap 10.2% 24.9% 19.5%
ImageNet-Heatmap 11.0% 25.8% 28.9%
Our-Heatmap 29.5% 49.7% 62.6%
Our Two-Stream 31.1% 50.2% 67.4%

Table 4.4: Influence of our heatmaps and of optical flow. Per-class IoU for the CamVid
validation set.
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No-HeatMap 37.0 33.0 0.0 28.6 7.8 4.6 0.0 0.1 0.7 0.4 0
ImageNet-HeatMap 29.8 0.0 0.1 14.1 7.5 53.4 4.9 4.9 0.2 0.0 6.2
Our-HeatMap 54.1 76.1 86.3 19.4 6.6 56.3 9.0 0.9 0.5 6.0 9.0
Our Two-Stream 63.4 72.2 84.2 19.3 8.9 60.6 14.3 0.0 0.0 4.1 15.2

Table 4.5: Comparison to fully-supervised semantic segmentation methods on the
CamVid test set. While we use the weakest level of supervision, the difference to
fully supervised methods, especially in background classes (sky, building, road and

tree) is remarkably low.
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mIOU

SegNet pixel level 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4
[Liu and He, 2015] pixel level 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 47.2

Ours image tags 58.9 46.4 83.8 26.5 12.0 64.4 8.0 11.3 3.1 1.1 11.0 29.7

be observed in Table 4.4, which provides the per-class intersection over union for
CamVid, our heatmaps and our two-stream network add significant improvement to
the baselines for most of the classes, especially in background classes, e.g., sky and
road.

Furthermore, we evaluated the influence of the CRF on our results. On Cityscapes,
our two-stream network without the CRF loss achieves 20.3% mIOU vs 23.6% with
the CRF, thus showing that the CRF helps, but is not the key to our results.

Regarding runtimes, the average inference time of our method per image on
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Table 4.6: Comparison to fully-supervised semantic segmentation methods on the
Cityscapes test set. As on CamVid, while we use the weakest level of supervision, the
gap with fully supervised methods is quite low, particularly on background classes.
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Deeplab pixel-level 97.3 77.6 87.7 43.6 40.4 29.7 44.5 55.4 89.4 67.0 92.7 71.2 49.4 91.4 48.7 56.7 49.1 47.9 58.6 63.1 81.2
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Ours image tags 78.5 2.7 45.0 6.6 9.8 5.4 0.7 2.1 63.3 22.0 71.5 17.6 8.0 43.6 16.0 15.5 33.0 17.9 13.6 24.9 47.2

Table 4.7: Comparison to the state-of-the-art on the YouTube-Objects dataset. We
report the per-class and mean IoU. Note that our two-stream network significantly

outperforms the state-of-the-art baselines.
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[Papazoglou and Ferrari, 2013] 67.4 62.5 37.8 67.0 43.5 32.7 48.9 31.3 33.1 43.4 46.8
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Ours 67.6 72.3 58.1 60.1 59.8 42.6 60.1 46.3 53.6 12.4 53.3

Cityscapes given optical flow is 0.56s without CRF inference as post-processing and
3.6s with CRF inference. This matches the runtimes reported in other papers that
worked on Cityscapes, although in the fully-supervised setting, such as [Long et al.,
2015] (0.5s without CRF) and [Chen et al., 2014] (4s with CRF).

4.4.3.2 Results on Test Sets

We then evaluated our complete approach on the test sets of CamVid and Cityscapes.
In Table 4.5 and Table 4.6, we compare the results of our weakly-supervised approach
to those of fully-supervised methods. Note that, while these methods make use of
much stronger supervision during training, thus making the comparison unfair to
us, the gap in accuracy with our method, especially for background classes (sky,
building, road and tree) is remarkably low. This further illustrates the strength of
our approach, which, despite using only tags, yields good segmentation accuracy.

Qualitative results of our two-stream network on samples from Cityscapes and
CamVid are also depicted in Figure 4.4.

4.4.3.3 Comparison to the State-of-the-art

To further show the effectiveness of our method, we compare it with other weakly-
supervised video semantic segmentation baselines on the standard YouTube-Objects
dataset. Note that, here, all the classes correspond to foreground objects, with a
single background class, which makes this dataset a less attractive candidate for
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our method. This comparison, however, lets us evaluate the performance of our
two-stream network with respect to the state-of-the-art in weakly-supervised video
semantic segmentation. As shown in Table 4.7, our results significantly outperform
the state-of-the-art on this dataset, thus again showing the benefits of our approach
(see Figure 4.4 for qualitative results).

Note that other approaches that make use of additional supervision, such as ob-
ject detectors trained from pixel-level [Zhang et al., 2015b] or bounding box [Drayer
and Brox, 2016] annotations, have also reported results on this dataset. While we
only exploit tags, our approach yields results comparable to those of these methods
(53.3% for our method versus 54.1% for [Zhang et al., 2015b] and 55.8% for [Drayer
and Brox, 2016]).

4.5 Conclusion

In this chapter, we have proposed the first weakly-supervised video semantic seg-
mentation approach that considers both multiple foreground and background classes.
To this end, we have introduced a two-stream network that leverages both optical-
flow and RGB images, trained using a loss based on classifier heatmaps. Our exper-
iments demonstrated the benefits of using such heatmaps and of exploiting optical
flow on challenging urban datasets. Furthermore, our two-stream network has also
outperformed the state-of-the-art weakly-supervised video semantic segmentation
methods on the standard YouTube-Object benchmark. Although moving one step to-
wards weakly-supervised semantic segmentation in the scenarios where we need to
segment multiple background classes is valuable, the performance gap (especially in
the foreground classes) compared to the fully-supervised setting is considerable. Re-
cently, using synthetic data with automatically obtained annotations has also gained
a lot of attention. In the next chapter, we focus on using synthetic data in an effec-
tive way so as to decrease the effort of manual labeling to its minimum level, while,
increasing the performance of urban scene semantic segmentation considerably.
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Cityscapes Dataset

CamVid Dataset

YouTube-Objects Dataset

Figure 4.4: Qualitative results on Cityscapes, CamVid, and YouTube-Objects. Note
that for each dataset, from top to bottom, there is the RGB frame, Ground-truth and

the prediction of our two-stream network.
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Chapter 5

Effective Use of Synthetic Data for
Urban Scene Semantic
Segmentation

As discussed in the previous chapters, training a deep network to perform semantic
segmentation in a fully-supervised setting requires large amounts of labeled data. To
alleviate the manual effort of annotating real images, researchers have investigated
the use of synthetic data, which can be labeled automatically. Unfortunately, a net-
work trained on synthetic data performs relatively poorly on real images. While this
can be addressed by domain adaptation, existing methods all require having access
to real images during training. In this chapter, we introduce a drastically different
way to handle synthetic images that does not require seeing any real images at train-
ing time. Our approach builds on the observation that foreground and background
classes are not affected in the same manner by the domain shift, and thus should
be treated differently. In particular, foreground classes which their shape looks more
natural that their texture in synthetic domain, should be handled in a detection-based
manner. Our experiments evidence the effectiveness of our approach on Cityscapes
and CamVid with models trained on synthetic data only.

5.1 Introduction

With the growing advance in computer graphics, using synthetic data with automat-
ically annotated data for different computer vision tasks and in particular, semantic
scene segmentation, has obtained lots of interest in recent years. However, despite the
increasing realism of synthetic data, there remain significant perceptual differences
between synthetic and real images. Therefore, the performance of a state-of-the-art
semantic segmentation network, such as [Chen et al., 2014; Long et al., 2015; Zhao
et al., 2017; Noh et al., 2015], trained on synthetic data and tested on real images
remains disappointingly low. While domain adaptation methods [Chen et al., 2017a;
Hoffman et al., 2017, 2016; Zhang et al., 2017; Murez et al., 2017; Chen et al., 2017b]
can improve such performance by explicitly accounting for the domain shift between

67
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Methods
Traffic
light

Traffic
sign

Person Rider Car Truck Bus Train
Motor-
cycle

Bicycle

Segmentation 22.3 23.8 48.7 13.3 75.1 14.3 21.2 2.1 24.2 7.3
Detection-based 26.7 42.5 52.2 28.5 76.2 19.6 31.6 6.9 18.1 9.8

Figure 5.1: Visual comparison of different classes in real Cityscapes images (Top) and
synthetic GTA5 ones (Middle). Background classes (first 4 columns) are much less
affected by the domain shift than foreground ones (last 3 columns), which present
clearly noticeable differences in texture, but whose shape remain realistic. (Bot-
tom) We compare the accuracy of a semantic segmentation network (DeepLab) and
of a detection-based model (Mask R-CNN), both trained on synthetic data only, on
the foreground classes of Cityscapes. Note that the detection-based approach, by

leveraging shape, yields significantly better results than the segmentation one.

real and synthetic data, they require having access to a large set of real images, albeit
unsupervised, during training. As such, one cannot simply deploy a model trained
off-line on synthetic data in a new, real-world environment.

In this chapter, we introduce a drastically different approach to addressing the
mismatch between real and synthetic data, based on the following observation: Not
all classes suffer from the same type and degree of perceptual differences. In particu-
lar, as can be seen in Figure 5.1, the texture of background classes in synthetic images
looks more realistic than that of foreground classes1. Nevertheless, the shape of fore-
ground objects in synthetic images looks very natural. We therefore argue that these
two different kinds of classes should be treated differently. Specifically, we argue
that semantic segmentation networks are well-suited to handle background classes
because of their texture realism. By contrast, we expect object detectors to be more
appropriate for foreground classes, particularly considering that modern detectors
rely on generic object proposals. Indeed, when dealing with all possible texture vari-
ations of all foreground object classes, the main source of information to discriminate
a foreground object from the background is shape.

1We distinguish foreground classes from background ones primarily based on whether they have a
well-defined shape and come in instances, or they are shapeless and identified by texture or material
property. In essence, this corresponds to the distinction between things and stuff in [Heitz and Koller,
2008]. See Figure 5.1 for examples.
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Figure 5.2: Aerial views of our synthetic VEIS environment.

To empirically sustain our claim that detectors are better-suited for foreground
classes, we trained separately a state-of-the-art DeepLab [Chen et al., 2014] semantic
segmentation network and a Mask R-CNN [He et al., 2017], which performs object
detection followed by binary segmentation and class prediction, on synthetic data.
At the bottom of Figure 5.1, we compare the mean Intersection over Union (mIoU)
of these two models on the foreground classes of Cityscapes. Note that, except for
motorcycle, the detector-based approach outperforms the semantic segmentation net-
work on all classes.

Motivated by this observation, we therefore develop a simple, yet effective se-
mantic segmentation framework that better leverages synthetic data during train-
ing. In essence, our model combines the foreground masks produced by Mask R-
CNN with the pixel-wise predictions of the DeepLab semantic segmentation net-
work. Our experiments on Cityscapes [Cordts et al., 2016] and CamVid [Brostow
et al., 2009a] demonstrate that this yields significantly higher segmentation accura-
cies on real data than if only training a semantic segmentation network on synthetic
data. Furthermore, our approach outperforms the state-of-the-art domain adaptation
techniques [Chen et al., 2017a; Hoffman et al., 2017, 2016; Zhang et al., 2017] without
having seen any real images during training, and can be further improved by making
use of unsupervised real images.

Furthermore, as a secondary contribution, we introduce a virtual environment
created in the Unity3D framework, called VEIS (Virtual Environment for Instance
Segmentation). This was motivated by the fact that existing synthetic datasets [Ros
et al., 2016; Richter et al., 2016, 2017] do not provide instance-level segmentation an-
notations for all the foreground classes of standard real datasets, such as Cityscapes.
VEIS automatically annotates synthetic images with instance-level segmentation for
foreground classes. It captures urban scenes, such as those in Figure 5.2 shown from
an aerial view, using a virtual camera mounted on a virtual car, yielding images such
as those in Figure 5.6.

While not highly realistic, we show that, when used with a detector-based ap-
proach, this data allows us to boost semantic segmentation performance, despite it
being of only little use in a standard semantic segmentation framework. The VEIS
dataset is available at https://github.com/fatemehSLH/VEIS.
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5.2 Related Work

Semantic segmentation, that is, understanding an image at pixel-level, has been
widely studied by the computer vision community [Shotton et al., 2006; Tighe and
Lazebnik, 2010; Gould et al., 2008; Mottaghi et al., 2014; Farabet et al., 2013; Pinheiro
and Collobert, 2014; Sharma et al., 2015; Long et al., 2015; Noh et al., 2015; Chen
et al., 2014; Zheng et al., 2015; Zhao et al., 2017]. As for many other tasks, the most
recent techniques rely on deep networks [Chen et al., 2014; Long et al., 2015; Zhao
et al., 2017; Noh et al., 2015]. Unfortunately, in contrast to image recognition prob-
lems, obtaining fully-supervised data for semantic segmentation, with pixel-level
annotations, is very expensive and time-consuming. Two trends have therefore been
investigated to overcome this limitation: Weakly-supervised methods and the use of
synthetic data.

As also discussed in previous chapters, weakly-supervised semantic segmenta-
tion aims to leverage a weaker form of annotation which are cheaper to obtain. While
great progress has been made in this area, most existing methods focus only on fore-
ground object classes and treat the background as one single entity. However, having
detailed information about the different background classes is crucial in many prac-
tical scenarios, such as automated driving, where one needs to differentiate, e.g., the
road from a grass field. To the best of our knowledge, our contribution in Chapter
4 [Saleh et al., 2017] constitutes the only method that considers multiple background
classes for weakly-supervised semantic segmentation. This is achieved by leverag-
ing both appearance and motion via a two-stream architecture trained using a loss
based on classifier heatmaps. While this method is reasonably effective at segmenting
background classes, there is still a huge gap compared to fully-supervised methods,
especially in the foreground classes.

With the advance of computer graphics, generating fully-supervised synthetic
data has become an attractive alternative to weakly-supervised learning. This has
led to several datasets, such as SYNTHIA [Ros et al., 2016], GTA5 [Richter et al.,
2016] and VIPER [Richter et al., 2017], as well as virtual environments to generate
data [Dosovitskiy et al., 2017]. Unfortunately, despite the growing realism of such
synthetic data, simply training a deep network on synthetic images to apply it to
real ones still yields disappointing results. This problem is due to the domain shift
between real and synthetic data, and has thus been tackled by domain adaptation
methods [Chen et al., 2017a; Hoffman et al., 2017, 2016; Zhang et al., 2017; Murez
et al., 2017; Chen et al., 2017b], which, in essence, aim to reduce the gap between the
feature distributions of the two domains. In [Hoffman et al., 2016], this is achieved
by a domain adversarial training strategy inspired by the method of [Ganin and
Lempitsky, 2015; Ganin et al., 2016]. This is further extended in [Chen et al., 2017b]
to align not only global, but also class-specific statistics. Domain adversarial training
is combined in [Chen et al., 2017a] with a feature regularizer based on the notion of
distillation [Hinton et al., 2015]. In [Zhang et al., 2017], a curriculum style learning is
introduced to align the label distribution over both entire images and superpixels. By
contrast, [Hoffman et al., 2017] and [Murez et al., 2017] rely on a generative approach
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with cycle consistency to adapt the pixel-level and feature-level representations.
While these methods outperform simply training a network on the synthetic data,

without any form of adaptation, they all rely on having access to real images, without
supervision, during training. As such, they cannot be directly deployed in a new
environment without undergoing a new training phase.

Here, we follow an orthogonal approach to leverage synthetic data, based on the
observation that foreground and background classes are subject to different percep-
tual mismatches between synthetic and real images. We therefore propose to rely
on a standard semantic segmentation network for background classes, whose tex-
tures look quite realistic, and on a detection-based strategy for foreground objects
because, while their textures look less natural, their shapes are realistic. Our exper-
iments evidence that this outperforms state-of-the-art domain adaptation strategies.
However, being orthogonal to domain adaptation, our method could also be used
in conjunction with domain adaptation techniques. As a matter of fact, [Sun and
Saenko, 2014], which also argues that modern detectors rely on shape and discard
the background texture, introduces a domain adaptation approach for the task of
object detection, which could potentially be leveraged to deal with the foreground
classes in our approach. This, however, goes beyond the scope of this work.

5.3 Our Method

In this section, we introduce our approach to effectively use synthetic data for se-
mantic segmentation in real driving scenarios. Note that, while we focus on driving
scenarios, our approach generalizes to other semantic segmentation problems. How-
ever, synthetic data is typically easier to generate for urban scenes. Below, we first
consider the case where we do not have access to any real images during training.
We then introduce a simple strategy to leverage the availability of unsupervised real
images.

5.3.1 Detection-based Semantic Segmentation

As discussed above, and illustrated by Figure 5.1, the perceptual differences of fore-
ground and background classes in synthetic and real images are different. In fact,
background classes in synthetic images look quite realistic, presenting very natural
textures, whereas the texture of foreground classes does look synthetic, but their
shape is realistic. We therefore propose to handle the background classes with a se-
mantic segmentation network, but rather make use of a detection-based technique
for the foreground classes. Below, we describe this in more detail, and then discuss
how we perform semantic segmentation on a real image.

5.3.1.1 Dealing with Background Classes

To handle the background classes, we make use of the VGG16-based DeepLab model,
depicted in Figure 5.3. Specifically, we use DeepLab with a large field of view and
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Figure 5.3: Dealing with background classes. We make use of the DeepLab semantic
segmentation framework trained on synthetic GTA5 [Richter et al., 2016] frames with

corresponding per-pixel annotations.

Figure 5.4: Dealing with foreground classes. We rely on the detection-based Mask
R-CNN framework trained on our synthetic VEIS data with instance-level annota-

tions. Note that these annotations were obtained automatically.

dilated convolution layers [Chen et al., 2014]. We train this model on the GTA5
dataset [Richter et al., 2016] in which the background classes look photo-realistic.
The choice of this dataset above others was also motivated by the fact that it contains
all the classes of the commonly used real datasets, such as Cityscapes and CamVid.
To train our model, we use the cross-entropy loss between the network’s predictions
and the ground-truth pixel-wise annotations of the synthetic images. Note that the
network is trained on all classes, both foreground and background, but, as explained
later, the foreground predictions are mostly discarded by our approach.

5.3.1.2 Dealing with Foreground Classes

For foreground classes, our goal is to make use of a detection-based approach, which,
as argued in Section 5.1, relies more strongly on object shape than on texture, thus
making texture realism of the synthetic data less crucial. Since our final goal is to
produce a pixel-wise segmentation of the objects, we propose to rely on a detection-
based instance-level semantic segmentation technique. Note that, once an object
has been detected, segmenting it from the background within its bounding box is a
comparatively easier task than semantic segmentation of an entire image. Therefore,
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Figure 5.5: Fusing foreground and background predictions. Our approach com-
bines the detection-based foreground predictions with the results of the semantic
segmentation approach. Note that we do not require seeing any real images during

training.

texture realism is also not crucial here. To address this task, we make use of Mask R-
CNN [He et al., 2017], which satisfies our criteria: As illustrated in Figure 5.4, it relies
on an initial object detection stage, followed by a binary mask extraction together
with object classification. Since existing synthetic datasets do not provide instance-
level segmentations for all foreground classes of standard real datasets, we train
Mask R-CNN using our own synthetic data, discussed in Section 5.4. We make use
of the standard architecture described in [He et al., 2017], as well as of the standard
loss, which combines detection, segmentation, classification and regression terms.

5.3.1.3 Prediction on Real Images

The two networks described above are trained using synthetic data only. At test time,
we can then feed a real image to each network to obtain predictions. However, our
goal is to obtain a single, pixel-wise semantic segmentation, not two separate kinds
of outputs. To achieve this, as illustrated in Figure 5.5, we fuse the two kinds of
predictions, starting from the Mask R-CNN ones.

Specifically, given the Mask R-CNN predictions, we follow a strategy inspired
by the panoptic segmentation procedure of [Kirillov et al., 2018], which constitutes
an NMS-like approach to combine instance segments. More precisely, we first sort
the predicted segments according to their confidence scores, and then iterate over
this sorted list, starting from the most confident segment. If the current segment
candidate overlaps with a previous segment, we remove the pixels in the overlap-
ping region. The original procedure of [Kirillov et al., 2018] relies on two different
thresholds: One to discard the low-scoring segments and the other to discard non-
overlapping yet too small segment regions. The values of these thresholds were
obtained by grid search on real images. Since we do not have access to the ground-
truth annotations of the real images, and in fact not even access to the real images
during training, we ignore these two heuristics to discard segments, and thus con-
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sider all segments and all non-overlapping segment regions when combining the
Mask R-CNN predictions.

Combining the Mask R-CNN predictions yield a semantic segmentation map that
only contains foreground classes and has a large number of holes, where no fore-
ground objects were found. To obtain our final semantic segmentation map, we fill
these holes with the predictions obtained by the DeepLab network. That is, every
pixel that is not already assigned to a foreground class takes the label with the high-
est probability at that pixel location in the DeepLab result.

5.3.2 Leveraging Unsupervised Real Images

The method described in Section 5.3.1 uses only synthetic images during training.
In some scenarios, however, it is possible to have access to unlabeled real images at
training time. This is in fact the assumption made by domain adaptation techniques.
To extend our approach to this scenario, we propose to treat the predictions obtained
by the method of Section 5.3.1 as pseudo ground-truth labels for the real images.
To be precise, we make a small change to these predictions: In the holes left after
combining the Mask R-CNN predictions, we assign the pixels that are predicted as
foreground classes by the DeepLab model to an ignore label, so that they are not used
for training. This is motivated by the fact that, as discussed above, the predictions
of foreground classes by a standard semantic segmentation network are not reliable.
We then use the resulting pseudo-labels as ground-truth to train a DeepLab semantic
segmentation network from real images. As will be shown in our results, thanks
to the good quality of our initial predictions, this helps further boost segmentation
accuracy.

5.4 The VEIS Environment and Dataset

In this section, we introduce our Virtual Environment for Instance Segmentation
(VEIS) and the resulting dataset used in our experiments. While there are already a
number of synthetic datasets for the task of semantic segmentation in urban scenes [Ros
et al., 2016; Richter et al., 2016, 2017], they each suffer from some drawbacks. In par-
ticular, GTA5 [Richter et al., 2016] does not have instance-level annotations, and is
thus not suitable for our purpose. By contrast, SYNTHIA [Ros et al., 2016] and
VIPER [Richter et al., 2017] do have instance-level annotations, but not for all fore-
ground classes of commonly-used real datasets, such as Cityscapes. For instance,
train, truck, traffic light and traffic sign are missing in SYNTHIA, and rider, traffic sign,
train and bicycle in VIPER. Furthermore, [Richter et al., 2016, 2017] were acquired
using the commercial game engine Grand Theft Auto V (GTAV), which only pro-
vides limited freedom for customization and control over the scenes and objects to
be captured, thus making it difficult to obtain a large diversity and a good balance
of classes. Obtaining ground-truth instance-level annotations in the GTAV game also
involves a rather complicated procedure [Richter et al., 2017].
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Figure 5.6: Example images and corresponding instance-level annotations, obtained
automatically, from our synthetic VEIS dataset.

5.4.1 Environment

To alleviate these difficulties, we used the Unity3D [Unity3D] game engine, in which
one can manually design scenes with common urban structures and add freely-
available 3D objects, representing foreground classes, to the scene. Example 3D
scenes are shown in Figure 5.2. Having access to the source code and manually
constructing the scenes both facilitate generating annotations such as instance-level
pixel-wise labels automatically. Specifically, before starting to generate the frames,
our framework counts the number of instances of each class, and then assigns a
unique ID to each instance. These unique IDs then automatically create unique tex-
tures and shaders for their corresponding instances. When data generation starts,
both the original textures and shaders and the automatically created ones are ren-
dered, thus allowing us to capture the synthetic image and the instance-level seman-
tic segmentation map at the same time and in real time. Creating VEIS took 1 day for
1 person. This is very little effort, considering that VEIS allows us to have access to a
virtually unlimited number of annotated images with the object classes of standard
real urban scene datasets, such as CamVid and Cityscapes.

As can be seen from the samples shown in Figure 5.6, the images generated by
VEIS look less photo-realistic than those of [Richter et al., 2016, 2017]. Therefore, as
evidenced by our experiments, using them to train a semantic segmentation network
does not significantly help improve accuracy on real images compared to using exist-
ing synthetic datasets. However, using these images within our proposed detection-
based framework allows us to significantly improve semantic segmentation quality.
This is due to the fact that, while not realistic in texture, the foreground objects gen-
erated by VEIS are realistic in shape, and our environment allowed us to cover a
wide range of shape and pose variations.

Note that, in principle, we could have used other open source frameworks to
generate our data, such as CARLA [Dosovitskiy et al., 2017], implemented as an
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open-source layer of the Unreal Engine 4 (UE4) [Epic-Games]. However, CARLA is
somewhat too advanced for the purpose of our investigation. It targets the com-
plete autonomous driving pipeline, with three different approaches covering a stan-
dard modular pipeline, an end-to-end approach based on imitation learning, and an
end-to-end approach based on reinforcement learning. Since our goal was only to
generate synthetic images covering a large diversity of foreground objects, we found
Unity3D to be sufficient and easier to deploy.

5.4.2 The VEIS Dataset

Using our VEIS environment, we generated images from two different types of
scenes: 1) A multi-class, complex scene, where a city-like environment was synthe-
sized with various objects of different classes. 2) A single-class, simple scene, where
one or multiple objects of a single class were placed in a single road with background
items (e.g., road, sidewalk, building, tree, sky), and images from multiple views were
captured. Our VEIS dataset then contains 30180 frames from the multi-class scene
and 31125 frames from the single-class scene, amounting to a total of 61305 frames
with corresponding instance-level semantic segmentation. Note that the instance-
level annotations were obtained with no human intervention. Some statistics of this
dataset are shown in Table 5.1. In particular, we used a small amount of unique 3D
objects for most of the classes and just repeated them in the scenes but with varying
pose and articulation where applicable.

5.5 Experiments

In this section, we first describe the datasets used in our experiments and provide de-
tails about our learning and inference procedures. We then present the results of our
model and compare it to state-of-the-art weakly-supervised semantic segmentation
and domain adaptation methods.

5.5.1 Datasets

To train our model and the baseline, we make use of the synthetic GTA5 dataset [Richter
et al., 2016] and of our new VEIS dataset introduced in Section 5.4. Furthermore,
we also provide results of fully-supervised models trained on the synthetic SYN-
THIA [Ros et al., 2016] and VIPER [Richter et al., 2017] datasets. At test time, we
evaluate the models on the real images of the Cityscapes [Cordts et al., 2016] and
CamVid [Brostow et al., 2009a] road scene datasets. Below, we briefly discuss the
characteristics of these datasets.

GTA5 [Richter et al., 2016] was captured using the Grand Theft Auto V video
game and contains 24966 photo-realistic images with corresponding pixel-level an-
notations. The resolution of the images is 1920× 1080 and the class definitions of the
semantic categories are compatible with those in the Cityscapes dataset.
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Table 5.1: Some statistics of our synthetic data
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VIPER [Richter et al., 2017] is a slightly more recent dataset than GTA5, also
acquired using the Grand Theft Auto V video game, but covering a wider range of
weather conditions. It contains more than 250K high-resolution (1920×1080) video
frames, all annotated with ground-truth labels for both low-level and high-level vi-
sion tasks, including optical flow, semantic instance segmentation, object detection
and tracking, object-level 3D scene layout, and visual odometry. In our experiments,
the model exploiting VIPER was trained using the training and validation sets of this
dataset (over 180K frames). While VIPER is larger than GTA5, its labels are not really
compatible with Cityscapes. For example, the classes rider and wall are missing; the
class pole has been incorporated into infrastructure; the windows of the cars are not
labeled as car unlike in Cityscapes. This explains why most of our experiments rather
rely on the GTA5 dataset.

SYNTHIA [Ros et al., 2016] is another dataset of synthetic images, with a subset
called SYNTHIA-RAND-CITYSCAPES meant to be compatible with Cityscapes. This
subset contains 9,400 images with pixel-level semantic annotations. However, some
classes, such as train, truck and terrain, have no annotations. As for VIPER, we show
the performance of a fully-supervised method trained on SYNTHIA. This is for the
sake of completeness, even though we favor GTA5 since it contains all the classes of
Cityscapes.

Cityscapes [Cordts et al., 2016] is a large-scale dataset of real images, containing
high-quality pixel-level annotations for 5000 images collected in street scenes from
50 different cities. There is also another set of images with coarse level annotations.
We report the results of all models on the 500 validation images. Furthermore, the
methods that rely on unsupervised real images during training, including our ap-
proach of Section 5.3.2, were trained using the 22971 train/train-extra RGB frames of
this dataset.

CamVid [Brostow et al., 2009a] consists of over 10 minutes of high quality 30 Hz
footage. The videos were captured at 960× 720 resolution with a camera mounted
inside a car. Three of the four sequences were shot in daylight, and the fourth one
was captured at dusk. This dataset contains 32 categories. In our experiments, fol-
lowing [Brostow et al., 2009a], we used a subset of 11 classes. The dataset is split
into 367 training, 101 validation and 233 test images. Note that, as for the Cityscapes
dataset, we evaluate on the test set and, when training on unsupervised data, used
the RGB frames of training+validation without any type of annotation.
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5.5.2 Implementation Details

As discussed in Section 5.3, our approach makes use of two types of networks:
DeepLab [Chen et al., 2014] for semantic segmentation and Mask R-CNN [He et al.,
2017] for instance-level segmentation. Below, we briefly discuss these models.

5.5.2.1 DeepLab

To train our semantic segmentation networks, using either the synthetic datasets or
real images with pseudo ground truth, we used a DeepLab model with a large field
of view and dilated convolution layers. We relied on stochastic gradient descent with
a learning rate starting at 25× 10−5, with a decrease factor of 10 every 40k iterations,
a momentum of 0.9, a weight decay of 0.0005, and mini-batches of size 1. Similarly
to recent semantic segmentation methods [Saleh et al., 2017; Chen et al., 2014; Long
et al., 2015; Zhao et al., 2017], the weights of our semantic segmentation network were
initialized with those of the 16-layer VGG classifier [Simonyan and Zisserman, 2014]
pre-trained on ImageNet [Russakovsky et al., 2015]. Note that, because of limited
GPU memory, we down-sampled the high resolution images of Cityscapes, GTA5,
VIPER, and SYNTHIA by a factor 2 when using them for training.

5.5.2.2 Mask R-CNN

To train a Mask R-CNN network, we make use of the implementation provided by
the “Detectron" framework [Girshick et al., 2018]. We train an end-to-end Mask R-
CNN model with a 64 × 4d ResNeXt-101-FPN backbone, pre-trained on ImageNet,
on our synthetic VEIS dataset. We use mini-batches of size 1 and train the model for
200k iterations, starting with a learning rate of 0.001 and reducing it to 0.0001 after
100k iterations.

5.5.3 Evaluated Methods

In our experiments, we report the results of the following methods:

• GTA5 [Chen et al., 2017a]: This baseline denotes a DeepLab model trained on
GTA5 by the authors of [Chen et al., 2017a]. We directly report the numbers as
provided in [Chen et al., 2017a].

• GTA5: This corresponds to our replication of the baseline above. We found our
implementation to yield an average accuracy 9.4% higher than the one reported
in [Chen et al., 2017a]. As such, this constitutes our true baseline.

• SYNTHIA: This refers to a DeepLab model trained on the SYNTHIA [Ros et al.,
2016] dataset instead of GTA5.

• VIPER: This baseline denotes a DeepLab model trained on the larger VIPER
dataset.
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• VEIS: This corresponds to training a DeepLab model on our new dataset. Note
that here we considered all the classes, both foreground and background ones,
for semantic segmentation, ignoring the notion of instances.

• GTA5+VEIS: This denotes a DeepLab model trained jointly on GTA5 and our
new dataset for semantic segmentation.

• GTA5+VEIS and Pseudo-GT: For this baseline, we used the results of the
GTA5+VEIS baseline to generate pseudo-labels on the real images. We then
trained another DeepLab network using these pseudo-labels as ground-truth.
In essence, this corresponds to the approach discussed in Section 5.3.2, but
without handling the foreground classes in a detection-based manner.

• Ours: This corresponds to our method in Section 5.3.1, which relies on the
GTA5 synthetic data and makes use of a detection-based model for foreground
classes combined with a DeepLab semantic segmentation network for the back-
ground ones.

• Ours and Pseudo-GT: This consists of using the method above (Ours) to gener-
ate pseudo-labels on the real images, and training a DeepLab model from these
pseudo-labels, as introduced in Section 5.3.2.

5.5.4 Experimental Results

We now compare the results of the different methods discussed above on the real
images of Cityscapes and CamVid. Furthermore, we also compare our approach to
the state-of-the-art weakly supervised semantic segmentation and domain adaptation
methods on Cityscapes.

In Table 5.2, we provide the results of the methods described above on Cityscapes.
The foreground classes are highlighted. In essence, we can see that GTA5 performs
better than training DeepLab on the datasets {SYNTHIA,VIPER,VEIS} alone, because
these datasets either do not contain all the Cityscapes classes {SYNTHIA,VIPER}, or
because they are less realistic {VEIS}. Complementing GTA5 with VEIS {GTA5+VEIS}
improves the results by only a small margin, again because of the non-photo-realistic
VEIS images. By contrast, using GTA5 and VEIS jointly within our approach (Ours)
yields a significant improvement. This is because our detection-based way of deal-
ing with foreground classes is less sensitive to photo-realism, but focuses on shape,
which does look natural in our VEIS data. As a matter of fact, our improvement is
particularly marked for foreground classes. Finally, while using pseudo-labels from
the {GTA5+VEIS} baseline only yields a minor improvement, their use within our
framework gives a significant accuracy boost. Some qualitative results are shown in
Figure 5.7.

In Table 5.3, we compare our approach with the state-of-the-are weakly-supervised
method of [Saleh et al., 2017] and with state-of-the-art domain adaptation methods.
The results for these methods were directly taken from their respective papers. Note
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Table 5.2: Comparison of models trained on synthetic data. All the results are
reported on the Cityscapes validation set. Note that (pseudo-GT) indicates the use of
unlabeled real images during training. The classes we considered as foreground are

denoted by gray rows.
GTA5 GTA5 SYNTHIA VIPER VEIS GTA5 GTA5+VEIS Ours Ours

[Chen

et al.,

2017a]

+ VEIS pseudo-GT pseudo-GT

Road 29.8 80.5 36.7 36.9 70.8 66.2 77.6 71.9 79.8
Sidewalk 16.0 26.0 22.7 19.0 9.5 21.6 26.8 23.8 29.3
Building 56.6 74.7 51.0 74.7 50.9 72.3 75.5 75.5 77.8
Wall 9.2 23.0 0.3 0.0 0.0 15.7 19.4 23.4 24.2
Fence 17.3 9.8 0.1 5.3 0.0 18.3 19.5 14.9 21.6
Pole 13.5 9.1 16.6 7.1 0.3 12.3 4.8 9.3 6.9
Traffic light 13.6 13.4 0.1 10.0 15.6 22.3 18.7 26.7 23.5
Traffic sign 9.8 7.3 9.5 10.1 26.8 23.8 19.8 42.5 44.2
Vegetation 74.9 79.4 72.5 78.7 66.8 78.4 79.5 80.1 80.5
Terrain 6.7 28.6 0.0 13.6 12.7 11.3 21.7 34.0 38.0
Sky 54.3 72.1 78.4 69.6 52.3 74.6 78.9 76.3 76.2
Person 41.9 40.4 47.5 43.0 44.0 48.7 47.3 52.2 52.7
Rider 2.9 5.1 5.6 0.0 14.2 13.3 8.7 28.5 22.2
Car 45.0 77.8 61.4 41.2 60.6 75.1 77.6 76.2 83.0
Truck 3.3 23.0 0.0 20.8 10.2 14.3 23.1 19.6 32.3
Bus 13.1 18.6 13.0 13.9 8.2 21.2 16.1 31.6 41.3
Train 1.3 1.2 0.0 0.0 3.2 2.1 2.2 6.9 27.0
Motorbike 6.0 5.3 3.2 9.1 5.5 24.2 15.6 18.1 19.3
Bicycle 0.0 0.0 3.1 0.0 11.8 7.3 0.0 9.8 27.7
Mean IoU 21.9 31.3 22.1 23.9 24.4 32.8 33.3 38.0 42.5

that, even without seeing the Cityscapes images at all, our approach (Ours) outper-
forms all these baselines. Using unsupervised Cityscapes images (Ours+pseudo-GT)
helps to further improve over the baselines.

The results on CamVid in Table 5.4, where we compare our method to fully-
supervised techniques that make use of CamVid images and annotations to train a
model, GTA5-based baselines, and the state-of-the-art weakly-supervised method,
show a similar trend. Our approach clearly outperforms the weakly-supervised
method of [Saleh et al., 2017] and a DeepLab semantic segmentation network trained
on synthetic data. In fact, on this dataset, it even outperforms some of the fully
supervised methods that rely on annotated CamVid images for training.

5.6 Conclusion

We have introduced an approach to effectively leveraging synthetic training data for
semantic segmentation in urban scenes. To this end, we have proposed to handle
foreground classes in a detection-based manner, to better account for the fact that
existing synthetic datasets represent more accurately the shape of such classes than
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Table 5.3: Comparison to domain adaptation and weakly-supervised methods. All
methods were trained on GTA5, except for [Saleh et al., 2017] which does not use
synthetic images. The domain adaptation methods and Ours+Pseudo-GT make use
of unlabeled real images during training. The results are reported on the Cityscapes
validation set. Note that all the models below use the same backbone architecture as
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Weakly-Sup. [Saleh et al., 2017] 75.9 1.5 41.7 14.1 15.3 6.3 4.4 7.7 58.4 12.6 56.2 16.2 6.1 41.2 22.7 16.6 20.4 15.7 14.9 23.6

[Hoffman et al., 2016] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

[Zhang et al., 2017] 74.8 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9
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[Hoffman et al., 2017] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

Ours 71.9 23.8 75.5 23.4 14.9 9.3 26.7 42.5 80.1 34.0 76.3 52.2 28.5 76.2 19.6 31.6 6.9 18.1 9.8 38.0

Ours+Pseudo-GT 79.8 29.3 77.8 , 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5

Table 5.4: Comparison of our approach with fully- and weakly-supervised methods
on the CamVid test set.
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SegNet 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4
[Liu and He, 2015] 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.5 47.2

FCN-8 n/a 52.0
DeepLab-LargeFOV 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6
Dilation8 [Yu and Koltun, 2015b] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Weakly Sup. [Saleh et al., 2017] 58.9 46.4 83.8 26.5 12.0 64.4 8.0 11.3 3.1 1.1 11.0 29.7
GTA5 66.6 53.9 61.4 70.4 32.8 80.9 28.2 24.4 14.6 57.1 0.0 44.6
GTA5+VEIS 73.6 54.2 77.9 66.2 33.6 77.3 26.1 16.0 3.3 48.4 11.9 44.4
Ours 66.3 55.0 61.9 73.4 37.4 82.7 41.4 23.9 9.2 57.7 14.9 47.6
Ours+Pseudo-GT 72.3 55.2 72.6 73.1 37.4 83.9 39.9 33.2 1.2 55.5 12.8 48.8

their texture. Our experiments have demonstrated that our approach outperforms
training a standard semantic segmentation network from synthetic data and state-of-
the-art domain adaptation techniques. Nevertheless, our approach is orthogonal to
domain adaptation. As such, investigating how domain adaptation can be incorpo-
rated into our framework could be an interesting avenue for future research.
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Image Ground-truth GTA5+VEIS Ours Ours
Pseudo-GT

Figure 5.7: Qualitative results on Cityscapes.



Chapter 6

Conclusion

In this thesis, we have tackled the problem of semantic scene segmentation with
minimal labeling effort. We have started from one of the weakest level of supervi-
sion, image tags, as the only annotation of the training data, and have applied our
novel methods on various datasets with their different properties. Although most
of the research in this field considers datasets with multiple foreground classes and
only one background class in the scene, we have also investigated weakly super-
vised video semantic segmentation on more challenging datasets such as those with
multiple foreground and multiple background classes in the scene. Then, we have
investigated using synthetic data where the data is annotated automatically. In this
case, we have reached the minimum level of supervision, without requiring to see
real images during training.

The major contributions of this thesis are outlined below:

i) We have introduced a novel method to extract accurate foreground/background
masks from a pre-trained network, forgoing external objectness modules. The
intuition is that a network trained for the task of object recognition extracts fea-
tures that focus on the objects themselves, and thus has hidden layers with units
firing up on foreground objects, but not on background regions. In particular,
the proposed method focuses on the fourth and fifth convolution layers of the
VGG16 pre-trained network, which provide higher-level information than the
first three layers, such as highlighting complete objects or object parts. Then, by
making use of a fully-connected Conditional Random Fields (CRF), this informa-
tion is smoothed out and a binary foreground/background mask is generated
which can be incorporated as prior in the network via a weakly-supervised loss
function. This work was published in ECCV 2016, Amsterdam.

ii) We have improved our previous contribution to obtain multi-class masks instead
of foreground/background ones by introducing a novel method to make use of a
pre-trained localization network, which specifically provides information about
the location of different object classes in combination with the previous idea of
using intermediate convolution layers. The final masks are obtained by making
use of a fully-connected Conditional Random Fields (CRF) with higher-order
terms, using crisp boundary detection, to smooth the initial pixel-wise proba-
bilities. Then, we incorporated these multi-class masks in a weakly-supervised

83
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loss function to train a Deep Network for the task of semantic segmentation us-
ing only image tags as ground-truth annotations. This work was published in
TPAMI 2018.

iii) Most of the existing methods, including ours in the previous contributions, are
designed to handle multiple foreground classes and a single background class.
We have then introduced a novel weakly-supervised video semantic segmenta-
tion method that treats all classes, foreground and background ones, equally.
To this end, we have proposed a method to rely on class-dependent heatmaps
obtained from classifiers trained for image-level recognition, i.e., requiring no
pixel-level annotations which provide valuable information about the location
of instances/regions of each class. Therefore, we have introduced a weakly-
supervised loss function that can exploit them in a two-stream deep architecture
which jointly leverages appearance and motion. This work was published in
ICCV 2017, Venice.

iv) The use of automatically labeled synthetic data has recently become increasingly
popular for semantic scene segmentation. Although these synthetic images are
photo-realistic, applying a model trained on these data on a real domain fails be-
cause of the domain shift. We have therefore proposed to use synthetic data in
a different way to handle this problem. Our approach builds on the observation
that foreground and background classes are not affected in the same manner
by the domain shift, and thus should be treated differently. Specifically, we
use the semantic segmentation network to handle background classes because
of their texture realism. By contrast, we utilize the object detection network for
the foreground classes due to the fact that their shape looks more natural than
their texture in the synthetic domain. Motivated by this fact, we have proposed
a simple, yet effective semantic segmentation framework that better leverages
synthetic data during training. In essence, the model combines the foreground
masks produced by a detector-based instance segmentation network with the
pixel-wise predictions of a semantic segmentation network. Furthermore, we
have created a virtual environment in the Unity3D framework, called VEIS
(Virtual Environment for Instance Segmentation) which automatically annotates
synthetic images with instance-level segmentation for foreground classes. It cap-
tures urban scenes using a virtual camera mounted on a virtual car. While not
highly realistic, when used with a detector-based approach, this data allows us
to boost semantic segmentation performance, despite it being of only little use
in a standard semantic segmentation framework. This work was published in
ECCV 2018, Munich.

6.1 Future Work

In this thesis, we have focused on using weak supervision and synthetic data for
semantic scene segmentation. Although there has been a great progress in recent
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years using weak annotations and synthetic data for semantic segmentation, there
is still a large gap between the performance of the resulting techniques and that
working in the fully-supervised setting. This gap becomes even more considerable
for complex datasets such as urban scenes. Below, we list some potential future
directions based on our research, which expect will help bridge this gap.

i) Incorporating domain adaptation techniques: Our last contribution, i.e., effec-
tive use of synthetic data, is orthogonal to domain adaptation. It therefore seems
natural to extend our approach to incorporating domain adaptation techniques.
Instead of training a network (Mask-RCNN or Deeplab) in the synthetic domain,
we can use domain adaptation techniques to first make the distributions of the
two domains close to each other and then apply our method of dealing with
foreground classes in a detection-based network and dealing with background
classes in a semantic segmentation network. Although, in this case, we need to
have access to the real domain during training, the approach remains unsuper-
vised and should decrease the gap with fully-supervised techniques.

ii) Generating photo-realistic images: Another potential direction in order to use
synthetic data with automatically generated annotation is using style transfer.
In fact, one can train a conditional generative adversarial network (GAN) to
translate a synthetic image to a photo-realistic one. Then, given the translated
image and the corresponding ground-truth one can train a semantic segmenta-
tion network in a fully-supervised manner.

iii) Representation learning: In unsupervised learning, it is important to have a
model that learns a representation of the data itself which generalizes to data
from any domain. For example, when there is no supervision in a driving sce-
nario, it is important to have a model that can learn some common characteristics
such as the specific spatial context of the scene. We therefore believe that rep-
resentation learning can be used as a pre-training step for the final task, i.e.,
semantic segmentation, or can be used directly during training via an appropri-
ate loss function.

In summary, with the advances in designing weakly-supervised or unsupervised
learning methods, in the future, one will be able to utilize large amounts of images
and videos, albeit with weak or no annotations to train a more generalized, domain-
independent semantic segmentation network. This will make large-scale semantic
segmentation much more practical and cost-effective than the current models relying
on full supervision, as well as lead to solutions that generalize much better than
existing ones, thanks to the use of images depicting a great diversity of scenes.
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