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S U M M A R Y
The variation of temperature in the crust is difficult to quantify due to the sparsity of surface
heat flow observations and lack of measurements on the thermal properties of rocks at depth.
We examine the degree to which the thermal structure of the crust can be constrained from
the Curie depth and surface heat flow data in Southeastern Australia. We cast the inverse
problem of heat conduction within a Bayesian framework and derive its adjoint so that we
can efficiently find the optimal model that best reproduces the data and prior information
on the thermal properties of the crust. Efficiency gains obtained from the adjoint method
facilitate a detailed exploration of thermal structure in SE Australia, where we predict high
temperatures within Precambrian rocks of 650 ◦C due to relatively high rates of heat production
(0.9–1.4 μW m−3). In contrast, temperatures within dominantly Phanerozoic crust reach only
520 ◦C at the Moho due to the low rates of heat production in Cambrian mafic volcanics. A
combination of the Curie depth and heat flow data is required to constrain the uncertainty of
lower crustal temperatures to ±73 ◦C. We also show that parts of the crust are unconstrained
if either data set is omitted from the inversion.

Key words: Composition and structure of the continental crust; Heat flow; Australia; Inverse
theory; Joint inversion; Numerical modelling; Heat generation and transport; Rheology: crust
and lithosphere.

1 I N T RO D U C T I O N

Understanding the variation of temperature in the Earth’s crust is
fundamental in evaluating the geothermal potential of a region and
its mechanical stability. However, sparse heat flow data and limited
measurements of the thermal properties of rocks confound attempts
to model the thermal structure of the crust. Crustal geotherms are
controlled by thermal conductivity and rates of heat production. In
many cases, heterogeneity in these physical properties may be rep-
resented by the values typical of their lithology and treated as prior
geological information. Their values remain inherently uncertain
and small deviations from the reference values can result in signif-
icantly altered temperature profiles. Fortunately, there are multiple
direct and indirect observations on the temperature field that can
restrict the range of acceptable models.

Multiple geophysical methods have been proposed to resolve the
thermal structure of the lithosphere with varying degrees of preci-
sion. Geotherms may be constructed from xenolith data (O’Reilly
& Griffin 1985; Cull et al. 1991), but the spatial coverage of xeno-
liths are often limited. Seismic velocity has proven effective to infer
upper-mantle temperature (e.g. Goes et al. 2005), but its application
relies on building a compositional model suitable for the geological
context and estimating attenuation from grain size and water content

(Cammarano et al. 2003; Karato 2003; Faul & Jackson 2005). In
this paper we incorporate two independent observations: the Curie
depth, which is interpreted to be the 580 ◦C isotherm, and surface
heat flow, which records integrated information on the Earth’s heat
flow budget. We formally constrain the variation of thermal struc-
ture by adopting a Bayesian approach that jointly assimilates these
data and a priori information on the spatial variation of thermal
conductivity and heat production.

A common obstacle in the Bayesian inversion is the large number
of simulations required to adequately sample the posterior density
function. For models of thermal structure, this involves solving tem-
perature with prescribed boundary conditions across a mesh popu-
lated with constitutive properties, such as thermal conductivity and
heat production. There is an inherent trade-off in computational
cost between the number of models in an ensemble and their com-
plexity/resolution, which can be a significant disadvantage for any
Monte-Carlo-based inversion when the forward model is irreducibly
expensive to compute. By contrast, gradient-based optimization re-
quires substantially fewer evaluations than Monte Carlo techniques
to arrive at an optimal solution.

We formulate the gradient analytically for the inverse problem
of heat conduction so we can efficiently estimate temperature dis-
tributions in the crust, subject to a trade-off between data and prior
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Figure 1. Major structures and sedimentary basins in Southeast Australia. A to A
′

indicates the 2-D cross-section we use as a case study for the adjoint solver.
Heat flow observations along the cross-section plane are indicated by circles with their values adjacent in mW m-2.

information, without sacrificing resolution. Our mathematical for-
mulation of the gradient is general: it does not depend on the number
of dimensions and it can be applied to any study area. We specifi-
cally apply it to invert the thermal structure of Southeastern Aus-
tralia where well-constrained prior geological information already
exists, there is a high density of heat flow estimates, and maps of
the Curie depth are readily available.

1.1 Geological structure

We use geological maps to provide prior estimates of the thermal
conductivity and heat production within our model domain. Geo-
logical information preserves sharp geological boundaries that are
known to exist and simplifies the number of variables to invert.
In this case, values of thermal conductivity and heat production
are mapped to discreet regions of the crust defined as a ‘lithol-
ogy’, where the number of unknowns corresponds to the number of
lithologies within the study area. Fewer inversion variables are com-
putationally easier to invert and avoid non-unique solutions in the
alternative case where no prior geological information exists. In SE
Australia, the spatial variation of geological layers is well-resolved
by structural information, seismic reflections, magnetic and gravity
data that have been integrated within a geological model of the re-
gion (Rawling et al. 2011). The geological model resolves a sharp

boundary from dominantly Proterozoic to Phanerozoic crust, de-
lineated by the Moyston Fault (Fig. 1), and divides the Delamerian
and Lachlan heat flow provinces (Mather et al. 2017). Assuming a
mechanically stable crust that is in thermal steady state, the inverse
methodology we formulate estimates the optimal configuration of
lithology-dependent thermal conductivity and heat production that
best reproduce these data. From here we estimate the uncertainty
and covariance relationships within the parameter space and the
degree to which subsurface temperatures can vary.

2 T H E I N V E R S E P RO B L E M O F H E AT
C O N D U C T I O N

In a Bayesian framework, information on input parameters is rep-
resented in probabilistic terms (e.g. Mosegaard & Tarantola 1995).
The solution is given by a posteriori probability, P(m|d), which
describes the probability of a particular model, m, given the data,
d,

P(m|d) ∝ P(d|m) · P(m), (1)

where the likelihood function, P(d|m), is the probability of repro-
ducing the data given a particular model, and the a priori probabil-
ity, P(m), is what we know about the model before assimilating the
data. For a wide class of probability density functions, the posterior
probability can be evaluated through an objective function, S(m),
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1650 B. Mather, L. Moresi and P. Rayner

which jointly compares the misfit of the model to data and prior
information, mp ,

P(m|d) = A exp(−S(m)), (2)

where A is a constant. We seek the maximum a posteriori (MAP)
estimate, which may be obtained by minimizing the nonlinear least-
squares objective function for Gaussian distributions, after Taran-
tola (2005),

S(m) = 1

2

[
(g(m) − d)TC−1

d (g(m) − d)

+(m − mp)TC−1
p (m − mp)

]
, (3)

where Cd and Cp are the data and prior covariance matrices, respec-
tively. Eq. (3) simplifies to the �2-norm objective function if data
and prior information are uncorrelated,

S(m) = 1

2

∑
i

|gi (m) − di |2
(σ i

d )2
+ 1

2

∑
j

|m j − m j
p|2

(σ j
p )2

, (4)

where m is the model and g(m) is the forward operator, which is
the prediction of observations from the model. For our exploration
of thermal structure, g(m) describes the mapping of thermal con-
ductivity and heat production to a mesh over which the steady-state
heat equation is solved with prescribed boundary conditions. The
calculation of surface heat flux and extraction of the Curie isotherm
from the temperature simulation establishes an explicit link to data,
d. The second term in eq. (4) compares m with a priori information
on thermal conductivity, k, and heat production, H, obtained from
measurements on rock samples from different lithologies.

2.1 Forward model

The input vector m in our forward problem comprises values
of thermal conductivity (k) and heat production (H) for each
lithology, described by our prior geological model, and a uni-
form lower flux boundary condition, q0. The input vector is thus
m : [k1, k2, . . . , kn, H1, H2, . . . , Hn, q0] where n is the number of
lithologies.

First, we map the lithology-dependent parameters (k and H) to
a regularly spaced Cartesian mesh, f : m(Li ) → �, where f is the
function that maps the thermal properties to a region of the mesh
� occupied by a given lithology Li. We solve the steady-state heat
equation,

∇(k∇T) = −H (5)

with insulated side boundary conditions, a Neumann lower bound-
ary condition (q0), and a Dirichlet upper boundary condition
corresponding to mean annual surface temperature. We imple-
ment a temperature-dependent conductivity term, k(T), using the
parametrization of Hofmeister (1999),

k(T) = k0

(
298

T

)a

, 0 ≤ a ≤ 1 (6)

where k0 is the conductivity measured at room temperature, and a
controls the dependence of conductivity on temperature. A temper-
ature solution can be obtained from the solution of linear equations,

AT = b, (7)

where A is a banded square matrix containing second-order finite
difference equations, and b is a vector that contains the heat source

and boundary condition parameters. Since k depends on tempera-
ture, eq. (5) is nonlinear and we must iteratively solve for tempera-
ture using successive updates to A until the difference in solutions
approach zero (we accept a solution when |Tn − Tn−1| < 1 × 10−8).
The nonlinearity in k decreases as a → 0 and k(T) → k0.

The temperature solution is compared to our Curie depth and heat
flow data in the objective function. Expanding eq. (3) we obtain,

2S(k, H, q0) = (zT580 (k, H, q0) − zT580 )

× Cz−1
T580

(zT580 (k, H, q0) − zT580 )

+ (qs(k, H, q0) − qs)2

σ 2
qs

+ (k − kp)2

σ 2
k

+ (H − Hp)2

σ 2
H

+ (q0 − q0p )2

σ 2
q0

, (8)

where zT580 is the depth to the 580 ◦C isotherm, and qs is the heat
flux at the surface of the model. The �2-norm is used for qs, because
heat flow data are all uncorrelated observations of the thermal field,
and the nonlinear least-squares objective function is used for the
Curie depth.

2.2 Gradient methods

The cost of finding the MAP estimate from exhaustive evaluations
of the forward model is prohibitive. Instead, gradient-based inver-
sion techniques use the derivative of the forward model ∇S(m) to
efficiently find the minimum of S(m). The gradient-descent method
for finding successively better approximations to a minimum of a
function, S(m), is given as

mi+1 = mi − μ∇S(mi ), (9)

where ∇S(mi ) = J(mi )T g(mi ) describes the relationship with the
Jacobian J(m), and μ is a line search parameter to control step size.
Evaluating ∇S(m) analytically is key to the most efficient gradient-
based optimization and motivates the use of an adjoint formulation.

2.3 Adjoint model

The first step in any adjoint approach is to backward-propagate
derivatives of the objective function with respect to the forward
operator g(m) and model parameters m through the forward model.
This leads to the following expression:

dg(m) + dm = C−1
d (g(m) − d) + C−1

p (m − mp), (10)

relating the data and prior terms in eq. (3), respectively. The next
steps require the differentiation of the forward operator with respect
to model parameters in order to find the gradient, dm. We have
already obtained the derivative of the objective function with respect
to a priori information, from the second term in eq. (10), which is
summed at the end.

The derivatives of the temperature solution with respect to matrix
A and vector b are

dT = A−1db + dA−1b, (11)

A and b are already obtained from the forward model, and their
derivatives with respect to model parameters are found by apply-
ing the chain rule. Vector b represents heat sources, H, and the
lower Neumann boundary condition, q0. The adjoint is found by
evaluating,

db = (A−1)T dT (12)
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Inverting the geotherm across SE Australia 1651

Figure 2. Simplified cross-section between A and A
′
. Each major lithology is indicated by a distinct colour. The distribution of surface heat flow observations

along the plane is shown above with error bars indicating one standard deviation.

Figure 3. Normalized data covariance matrix, Cd , with uncorrelated un-
certainties for σqs and a Gaussian covariance function for σzT580

, where the
correlation length is related to the window size. The matrix is normalized
by σ 2 for illustrative purposes.

Table 1. Priors for lithology-dependent thermal properties (k, H) based on
aggregated measurements from rock samples. All prior probabilities are
normally distributed with σ p equal to one standard deviation. Units for k, H
and q0 are W m−1K−1, μW m-3 and mW m-2, respectively.

Priors (mp , σ p)

Lithology k σ k H σH

Moralana Supergroup 3.11 0.45 2.41 1.05
Nargoon Group 3.50 0.26 1.46 1.06
Castlemaine Group 3.50 1.00 2.39 0.63
St Arnaud Group 3.66 0.60 2.28 0.42
Costerfield Siltstone 3.36 0.90 2.26 0.56
Adminaby Group 3.36 0.90 2.26 0.56
Ordovician Shale 3.40 0.60 2.63 0.10
Cobbannah Group 3.40 0.60 2.63 0.10
Stavely Volcanics 3.34 0.44 0.70 0.11
Magdala Volcanics 2.89 0.28 0.07 0.01
Delamerian Proterozoic 3.62 0.76 2.23 1.10
Selwyn Block 3.64 0.59 1.85 0.93
Lower flux boundary q0 = 30.00 σq0 = 5.00

after which, dH, dq0, are unpacked from the vector db.
To extract dk, we require the derivatives of A−1 from eq. (11),

which we cannot evaluate directly. However, while A is differen-
tiable and non-singular, we can use the relationship

dA−1

dk
= −A−1 dA

dk
A−1, (13)

which is described in the Appendix. Applying this to eq. (11) and
rearranging terms gives,

dT = A−1db − A−1dA · A−1b, (14)

dT can be evaluated from the solution of two systems of equations,
�1 and �2,

A�1 = db (15)

A�2 = X, (16)

where X = −A−1dA · A−1b and dT is simply the sum,

dT = �1 + �2. (17)

Matrix A contains all the linear conductivity terms where each
element of the matrix is made up of second order finite difference
terms with respect to k. The derivative of A with respect to each
element, i, in k is found using the chain rule,

dA = dA

dki
dki . (18)

Substituting eq. (18) for dA in eq. (17) forms an expression where
the change in temperature with respect to k is the derivative of
matrix A with respect to each element, ki,

dT = dki · X = dki ·
(

−A−1 dA

dki
A−1b

)
, (19)

where X = −A−1dA/dki A−1b is a vector that does not change with
T.

Now that we have obtained an expression linking dT to dki, we
can obtain the adjoint, which is the sensitivity of k with respect to the
objective function for each element, i. The adjoint for dT = dki · X
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1652 B. Mather, L. Moresi and P. Rayner

Figure 4. Lithology-dependent prior estimates of k and H mapped from Table 1 to the mesh. Errors are normally distributed where σ k and σH are one equal
to standard deviation from the mean.

is,

dki = dT · X = dT ·
(

−A−1 dA

dki
A−1b

)
. (20)

At this point two computational savings are apparent: we have al-
ready stored T from evaluating the forward model, and we are
interested only in the derivatives of k with respect to each lithology,
dkL (i.e. a region of the mesh that corresponds to a lithology L).
Eq. (20) simplifies to

dkL = dT · −A−1 dA

dkL
T. (21)

Now the number of linear solves correspond to the number of
lithologies, n, where dA/dkL is a constant matrix that can be stored
for multiple adjoint evaluations since the geometry of each lithol-
ogy is fixed. The field variable, dk, can be found by summing the
contribution from each lithology,

dk =
n∑

L=1

dkL . (22)

Lastly, the field variables dk and dH (collected from eq. 12) are
summed over each lithology, L,

d f :
L∑

i=1

�i → dm, (23)

where dm is equivalent to the input vector m used at the start of the
forward model, except that it contains the gradient components of
each parameter, dm : [dk1, dk2, . . . , dkn, dH1, dH2, . . . , dHn, dq0].
It is this vector, also written as ∇S(m), that we use to find the model
of minimum misfit.

More sophisticated algorithms than the steepest-descent ap-
proach (eq. 9) evaluate the second derivative (Hessian) to find
the curvature of S(m), which improves rates of convergence for
nonlinear problems. Newton’s method stores the full Hessian ma-
trix, which is very expensive to compute, whereas quasi-Newton
methods replace the exact Hessian with an approximation found
by successive evaluations of ∇S(m). We use a truncated Newton
method for optimization constrained within parameter limits (Nash
1984, 2000), which stores an implicit approximation of the Hes-
sian with only a few vectors. Convergence is reached when either
|mn − mn−1| < 1 × 10−12 or |S(mn) − S(mn−1)| < 1 × 10−12.
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Inverting the geotherm across SE Australia 1653

Figure 5. Model of minimum misfit given a priori information in Table 1 and constrained by the Curie depth and surface heat flow data (z(T580) and qs). The
top pane shows the temperature distribution with the modelled surface heat flow (q∗

s ) compared against the data (qs). The purple lines indicate the Curie depth
(dashed: simulated; solid: data). Effective thermal conductivity, k(T), and heat production of the crust are visualized in the bottom two panes.

Figure 6. Inversions were initiated at different starting points, m0, related
to their priors in Table 1. All inversions converge to an identical model of
minimum misfit in approximately the same number of iterations.

2.4 Non-uniqueness

While the MAP estimate can be found very efficiently using the
adjoint, there may be a number of models that fit the Curie depth
and heat flow data for many combinations of model parameters.
From eq. (4), any nonlinearity in g causes the posterior probability
distribution to depart from the simple Gaussian form assumed in
measurement errors and introduces the possibility of multiple min-
ima in S(m). The steady-state thermal diffusion problem becomes

Figure 7. Normalized sensitivity of the objective function to different in-
version variables (k, H, a, and q0). The total sensitivity for each parameter
has been divided into two components that constrain the misfit g(m) − d in
the objective function—heat flow and the Curie depth.

nonlinear due to the dependence of thermal conductivity on temper-
ature (eq. 6). Gradient methods are local optimization techniques
and can become trapped by a local minimum. This can be avoided if
the gradient search can be initiated as close to the MAP estimate as
possible, or if multiple inversions are initiated from different starting
positions. We couple gradient methods with Monte Carlo sampling
to address the problem of identifying multiple minima in the pa-
rameter space and identify parameters which are non-unique. This
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1654 B. Mather, L. Moresi and P. Rayner

Figure 8. Model of minimum misfit assimilating (a) heat flow data only (qs), (b) the Curie depth only (zT580 ) and (c) heat flow and the Curie depth (qs and
zT580 ). The purple line is the Curie isotherm (dashed: simulated; solid: data). Priors are identical between all three simulations (Table 1).

strategy produces an approximation to the posterior by randomly
perturbing prior information within their probability distribution to
build an ensemble of inversions, from which we estimate uncertainty
and covariance information.

3 M O D E L L AYO U T O F S O U T H E A S T E R N
AU S T R A L I A

Southeastern Australia is an ideal study area to apply the inversion
framework presented above due to the dense sampling of different
geophysical data, and a well resolved geological model (Fig. 1).
We implement a 2-D solver to demonstrate the adjoint we have
formulated in the previous section. The dominant structural grain is
oriented N–S in SE Australia, thus we choose an E–W cross-section
through A to A

′
(Fig. 2) that intersects most of the major lithologies

and follows a seismic transect that has previously been interpreted
(Cayley et al. 2011).

The crust in Southeast Australia is composed of Precambrian
lower crustal rocks, Cambrian mafic volcanics and Ordovician–
Silurian metasediments in the upper crust. The east-dipping Moys-
ton fault offsets the Delamerian Orogen and the Lachlan Orogen
which have distinct thermal regimes (Mather et al. 2017). We invert
the values of k and H for 11 lithologies present in the cross-section,
and the lower flux boundary condition, q0 to characterize the ther-
mal structure in Southeast Australia. This equates to a total of 23

variables (i.e. the size of vector m is 23) that are constrained by
surface heat flow data and the depth to Curie temperature.

3.1 Curie depth and heat flow data

Two independent data types related to temperature are assimilated:
surface heat flow and depth to the Curie temperature. The Curie
temperature is the point at which magnetic sources lose their per-
manent magnetic properties. The dominant magnetic mineral in the
crust is magnetite, which has a Curie temperature of 580 ◦C, and
the depth to the Curie temperature is often interpreted to be the
depth to 580 ◦C isotherm. This presents a useful isotherm to con-
strain the lower crust, however there is some uncertainty as other
magnetic minerals may be present that have different Curie tem-
peratures. Furthermore, methods to determine the Curie depth are
highly sensitive to the window size of the magnetic anomaly cho-
sen by the interpreter. We incorporate the Australian compilation
of Curie depth determinations from Chopping & Kennett (2015),
where a 400 × 400 km moving window of the magnetic anomaly
was used to compute the Curie depth with a centroid spacing of
60 km. These Curie depth determinations are therefore correlated
within this 400 km wavelength and we accordingly choose a Gaus-
sian function to parametrize the covariance matrix,

C(x, x′) = σ 2 exp

(
−‖x − x′‖2

2h2

)
, (24)
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Inverting the geotherm across SE Australia 1655

Figure 9. Correlation coefficient matrix for lithology-related variables (k, H, a) in Southeastern Australia.

Figure 10. Posterior uncertainty reduction compared to the prior uncertainty
due to constraints in the cost function.

where ‖x − x′‖ is Euclidean distance between each point, and h is
the correlation length scale. Alternatively, each surface heat flow

data point is an independent observation of the thermal field and
are thus uncorrelated. 13 qs data points within 10 km of the cross-
section are incorporated in our inversions from the compilation of
Mather et al. (2017). Their probabilities are normally distributed
with uncertainties attributed to fluid flow in aquifers, imprecise
thermal conductivity measurements on core samples, or the method
used to calculate surface heat flow, amongst others. Our data covari-
ance matrix Cd is sparse for heat flow data (the same non-zeros as
an identity matrix) and significantly denser for the Curie depth (Fig.
3). The inverse covariance matrix C−1

d is never explicitly evaluated,
rather we solve as a system of equations every time the objective
function is computed: Cd � = g(m) − d, where Cd is a constant
matrix that can be stored for all evaluations.

3.2 A priori thermal properties

The thermal conductivity and heat production of various litholo-
gies have been constrained from measurements on core samples
and rock outcrops. These form the prior information for our in-
versions (Table 1) which are mapped to the Cartesian domain, �
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1656 B. Mather, L. Moresi and P. Rayner

Figure 11. Mean temperature distribution from an ensemble of model realizations (upper pane); standard deviation, σ T of the ensemble (lower pane).

(Fig. 4). Uncertainty was calculated by the propagation of errors
from laboratory measurements and the amount of variation within
a single lithology. Lithologies with the lowest uncertainty is the
Cambrian mafic volcanics followed by the andesitic Stavely Vol-
canics. The Selwyn Block and Proterozoic crust of Delamerian
origin are most uncertain because they are comprised of multiple
smaller rock formations of varying compositions. The uncertainty
of these lithology-dependent priors are uncorrelated, which means
the �2-norm objective function may be used.

4 R E S U LT S A N D D I S C U S S I O N

The MAP estimate combining both qs and zT580 was obtained in 67
adjoint evaluations, which is at least one order of magnitude less
than a Markov-Chain Monte Carlo (MCMC) simulation would gen-
erally require of the forward model. The simulated temperature field
suggests that the distribution of temperature in Southeast Australia
is systematically hotter within Precambrian crust, and cooler in the
Cambrian mafic volcanics (Fig. 5). Proterozoic crust of Delamerian
origin contains high rates of heat production, which raises temper-
atures in the lower crust. It is unusual for the lower crust to be so
highly enriched in heat-producing elements: values of ∼0.5 μW m-3

are considered normal for the lower crust because melt extraction
and tectonism are believed to rework radiogenic elements into the
upper crust, irreversibly stabilising the continental lithosphere (San-
diford & McLaren 2002). The Tasman Orocline closed in the Early
Devonian (Moresi et al. 2014), which does not preclude its stability,
but may facilitate the incorporation of a radiogenic lower crust in
this dominantly Phanerozoic crustal composition.

4.1 Parameter sensitivity

We initiated inversions at three different starting positions, m0, re-
lated to the prior information, and all converge to the MAP estimate
in approximately the same number of iterations (Fig. 6). The sen-
sitivity of the objective function to the inversion variables is deter-
mined by examining the structure of the Jacobian matrix J(m). As

the Jacobian is related to the gradient by ∇S(mi ) = J(mi )Tg(mi ),
we can find the sensitivity of the objective function with respect
to each parameter from the gradient vector at the model of min-
imum misfit, S(mn). We separately examine the sensitivity of the
Curie depth and heat flow data to the inversion variables to enable
a comparison of the constraints each data set brings to the thermal
structure of the crust (Fig. 7). For inversions that assimilate only
surface heat flow, the objective function is relatively insensitive to k
compared to H and q0. This is expected because q0 is by far the most
spatially pervasive variable that we invert. Alternatively, for a model
constrained only by the Curie depth, the strongest sensitivities to
k come from surface lithologies that intersect qs and lithologies
that cross the Curie isotherm. A combination of these two data sets
are required to resolve the model parameters: heat flow data con-
strain the integrated heat flux beneath each point of measurement
(Fig. 8a), and the Curie depth provides an important constraint to
lower crustal temperatures (Fig. 8b). Omission of either data set
results in a problem that is ill-posed.

5 P O S T E R I O R A NA LY S I S

Gradient-based inversion returns the MAP estimate for a configu-
ration of a priori information on model parameters and data con-
straints. However, quantifying the posterior uncertainty and covari-
ance relationships can be accomplished by perturbing priors within
their probability density functions, using Monte Carlo sampling, to
build an ensemble of model realizations. After many simulations,
we assemble a posterior distribution that samples the posterior prob-
ability density function (Fisher 2003; Chevallier et al. 2007).

5.1 Parameter covariance

Vertically stacked lithologies are negatively correlated since a de-
crease in heat production of one layer will be compensated in the
other match surface heat flow. The strongest negative covariance is
observed between the rates of heat production within the Selwyn
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Block and Costerfield Siltstone, and also between the Stavely Vol-
canics and Moralana Supergroup (Fig. 9). These covariances reflect
the thermal budget in 1-D, qs = ∫

zH + q0, where mantle heat flow
and heat sources integrate to qs. Positive covariances are observed
between the Selwyn Block and Delamerian Proterozoic crust as a
result of the spatial covariance relationship within the Curie depth
data set. We observe positive covariance between lithologies that
intersect this 580◦C isotherm because the uncertainties of zT580 are
smeared across the lower crust from Cd .

The amount of precision gained by the posterior relative to the
prior is denoted δσ ,

δσ = 1 − σposterior

σprior
(25)

where 0 ≤ δσ < 1. Here, the posterior uncertainty reduction is
most significant in rates of heat production (Fig. 10), which shows
that Curie depth and heat flow data have greatly improved the pre-
cision of these variables. In particular, the reduction in σ H of the
Selywn Block is 80 per cent relative to the prior. Some improvement
is also notable in the thermal conductivity of lithologies that inter-
sect heat flow observations and the Curie isotherm. The posterior
probability for q0 remains unchanged from its prior distribution de-
spite the strong sensitivity of the objective function to this variable.
Negative covariance was observed between q0 with rates of heat
production in overlying layers and suggests the sensitivity of the
objective function to q0 is confounded by similar sensitivities to H
for overlying lithologies so that strong posterior relationships are
established among these variable, but individual uncertainties are
hardly reduced.

The uncertainty reduction for each parameter translates to more
precise estimates of temperature at depth. The mean and standard
deviation of all temperature solutions in the ensemble is presented
in Fig. 11 (The mean of the ensemble is identical to the MAP
estimate we found in Fig. 5.) Uncertainty increases with depth
until a maximum of σ T = 75◦C is reached beneath Delamerian
Proterzoic crust. This is primarily controlled by the rate of heat
production within this lithology, which has a posterior uncertainty
of σ H = 0.3 μW m−3. This is reduced from its a priori uncertainty of
1.1 μW m−3, due to its strong control on lower crustal temperatures
in this region of the model domain. Temperature variation above the
Moho is well constrained with uncertainties not exceeding 50 ◦C and
illustrates that, for a fixed geometry, precise models of temperature
variation in the crust are obtained by assimilating Curie depth and
surface heat flow data.

6 R E L A X I N G G E O L O G I C A L
C O N S T R A I N T S

Up to this point we have inverted thermal properties assigned to
a rigid geological / lithological model of the crust. In this sec-
tion we relax the geological restriction imposed on this model by
introducing new inversion variables that accommodate geological
uncertainty. Our inverse problem remains identical to those formu-
lated in Section 2, except we invert thermal conductivity and rates
of heat production for each node in the mesh. Our mesh size is
800 × 248, which corresponds to 396 800 inversion variables. An
inverse problem of this size is only possible because of the efficiency
of the adjoint method at minimizing high dimensional functionals.
The solution is, however, strongly dependent on the choice of start-
ing model because a large combination of parameters can satisfy
our thermal constraints. We introduce a prior covariance matrix to
mitigate this problem.

Figure 12. Normalized prior covariance matrix, Cp , for whole-mesh in-
versions. Note that the mesh has been down-sampled from 800 × 248 to
80 × 24 and normalized by σ 2

p for visual clarity.

6.1 Prior covariance

The continuity of thermal properties beyond boundaries imposed by
a geological model is a physical possibility that we explore. From a
geological standpoint, the rheology of one point in a rock package is
relatively similar to the points surrounding it, which we parametrize
using a prior covariance matrix, Cp (Fig. 12). This is a banded
diagonal matrix with a correlation length scale, h, related to the
distance between adjacent nodes on the mesh, and uncertainties set
to those in Table 1 (visualized in Fig. 4). As h increases, so does the
number of off-diagonal elements in Cp . Increasing the correlation
length produces a similar effect to a Gaussian smoothing filter,
where the influence of each inversion variable is smeared across the
mesh at increasing radii. We initiate the inversion using h = 1 km.
This drastically reduces the prevalence of solutions that locally alter
a value of thermal conductivity or heat production at each data point
to lower the misfit.

6.2 MAP estimate

We initiated the inversion at the previous MAP estimate (Fig. 13)
until convergence was reached after 2167 evaluation of the adjoint
model. This is close to a linear increase with the number of inversion
variables and compares with MCMC methods where the number
of iterations to find the MAP scales exponentially with unknown
variables.

The simulation fits Curie depth and heat flow data better than
the geometrically constrained version because thermal conductivity
and rates of heat production at each node in the mesh are sepa-
rate inversion variables (Fig. 13). The Moho in our model has been
shifted upwards by 2 km to match the Curie depth on the western
half of the domain. Rates of heat production are predicted to be
slightly higher in the new model within the Cambrian mafic vol-
canics and decreased in the Selwyn Block to complement the long
wavelength variation in Curie depth. The fit to surface heat flow
data has remained unchanged largely because the correlation length
prohibits spurious values from arising locally. It is not immediately
intuitive that Curie depth should appear to be weighted more than
heat flow data within the inversion framework. However, in order
to match all heat flow data, the local alteration to the heat produc-
tion field results in high misfit, which is compounded by the spatial
correlation in neighbouring nodes on the mesh. In comparison, a
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Figure 13. Model of minimum misfit constrained by the Curie depth and surface heat flow data (zT580 and qs) without a priori geological restriction. Variation
in the k(T) and H occur at long wavelengths due to spatially correlated uncertainties in Cp .

better fit to Curie depth can be achieved with a minor adjustment of
thermal conductivity and heat production at the Moho albeit with a
relatively small change in misfit.

If prior uncertainties are uncorrelated (as h → 0) then values of
heat production and thermal conductivity are altered at the node
immediately adjacent to a heat flow data point. The smoothness we
have imposed on the variation of thermal properties, as a conse-
quence of the prior covariance matrix, may be undesirable because
lithologies are generally separated by sharp discontinuities. How-
ever, the approach we have taken here is useful to refine an existing
geological model to better fit the data.

7 L I M I TAT I O N S A N D F U T U R E
D I R E C T I O N S

The above sections demonstrate the role of jointly assimilating Curie
depth and heat flow data on the thermal structure of the crust. For a
prescribed geological model, populated with correlated and uncor-
related prior information on rates of heat production and thermal
conductivity, we found the MAP estimate of temperature subject to
the data we assimilated (Figs 5 and 13). However, Curie depth has
high intrinsic uncertainty related to the choice of fractal parameter
and size of the window used to discretize maps of the magnetic
anomaly (Audet & Gosselin 2019; Mather & Fullea 2019), and heat
flow data are occasionally perturbed by hydrothermal circulation
and suffer from low spatial coverage (Mather et al. 2017). These
data loosely constrain the 580 ◦C isotherm and the integrated heat
production in sparsely distributed localities for Curie depth and
heat flow data, respectively. Additional constraints from seismic

velocity could further reduce the uncertainty of subsurface temper-
ature models. In addition, the geological model may be refined as
a consequence of assimilating new data sets to introduce additional
lithologies that are unresolved by the current data.

Despite these shortcomings of the constraining data, our gradient-
based method to solve the inverse problem of heat conduction is
highly applicable to many geological contexts where multiple data
types sensitive to temperature are available. Due to the steady-state
limitation of our solver, stable tectonic locations are particularly
well suited where secondary processes such as hydrothermal ad-
vection do not impart a significant role on the thermal regime. The
high convergence rate and low computation time of this method
to find the optimal temperature model, subject to data and prior
information, renders it suitable to real-time analysis of subsurface
thermal structure for a modest set of inversion variables. Note that,
as with all inverse problems, the convergence rate will decrease with
the number of variables. If, for example, we introduce a variable heat
flux boundary condition at the base of our model, which may be
required in certain terranes, then the computation time will increase
due to a higher number of variables. Likewise, mapping constant
thermal properties to discreet lithologies on the mesh dramatically
decreases the inversion variables and computation time required to
invert the thermal regime.

8 C O N C LU S I O N S

Using a geological model of SE Australia, we estimate the optimal
configuration of thermal conductivity and rates of heat production

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/219/3/1648/5548777 by R

.G
. M

enzies Library, Building #2, Australian N
ational U

niversity user on 24 O
ctober 2019



Inverting the geotherm across SE Australia 1659

that best reproduce Curie depth and surface heat flow data. We de-
termine that temperatures are highest beneath Precambrian litholo-
gies in our model, with Moho temperatures exceeding 650 ◦C due to
high rates of heat production (0.9–1.4 μW m−3). In comparison, the
dominantly Phanerozoic portion of the crust reaches only 520 ◦C
in Cambrian mafic volcanics, which highlights the division within
this accretionary terrane. Quantifying these results with a sensitiv-
ity analysis, we observed strong negative covariances between the
lower flux boundary condition, q0, and rates of heat production in
vertically stacked lithologies beneath heat flow data points. This
stems from balancing the heat flow budget among various litholo-
gies to reduce the misfit with surface heat flow data. The maximum
uncertainty from our ensemble of temperature solutions is 73 ◦C,
which demonstrates that Curie depth and heat flow data provide
precise constraints on the thermal structure of the crust. Omitting
either data set results in parts of the model that are unconstrained. A
better fit to these data is obtained by relaxing geological boundaries
through the use of a prior covariance matrix; however, this comes
at the expense of more iterations to locate the MAP estimate.
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A P P E N D I X : D E R I VAT I V E O F A N
I N V E R S E M AT R I X

The derivative of the inverse of a square matrix, A, can be ac-
complished without evaluating the inverse matrix directly. To prove
eq. (13), suppose aij(k) are component functions for A, and ajh(k)
are component functions for A−1(k), then for each k we have

n∑
j=1

ai, j (k)a j,h(k) = δh
i ,

where n is the order of A and δh
i is the Kronecker delta symbol;

hence,

n∑
j=1

dai j

dk
a jh + ai, j

da jh

dk
= 0.

Evaluating the sum of these components and rearranging the inverse
terms give eq. (13). Another way to test this is to derive the equation
of the identity matrix, I, with respect to its elements, k,

I = AA−1

d

dk
I = d

dk

(
AA−1

)

0 = dA

dk
A−1 + A

dA−1

dk

dA−1

dk
= −A−1 dA

dk
A−1

The derivative of the identity matrix is zero, and we evaluate the
derivative of A and A−1 using the product rule. Rearranging for
dA−1/dk returns the expression in eq. (13).
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