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Homologous recombination DNA repair defects in PALB2-
associated breast cancers
Anqi Li 1,2, Felipe C. Geyer1, Pedro Blecua3, Ju Youn Lee1, Pier Selenica1, David N. Brown1, Fresia Pareja1, Simon S. K. Lee1,
Rahul Kumar 1, Barbara Rivera 4,5, Rui Bi1,2, Salvatore Piscuoglio 1,6, Hannah Y. Wen1, John R. Lozada 1, Rodrigo Gularte-
Mérida 1, Luca Cavallone4,5, kConFab Investigators, Zoulikha Rezoug7, Tu Nguyen-Dumont8,9, Paolo Peterlongo 10, Carlo Tondini11,
Thorkild Terkelsen12, Karina Rønlund13, Susanne E. Boonen14, Arto Mannerma15, Robert Winqvist16, Marketa Janatova17,
Pathmanathan Rajadurai18, Bing Xia19, Larry Norton20, Mark E. Robson 20, Pei-Sze Ng21, Lai-Meng Looi 22, Melissa C. Southey8,
Britta Weigelt1, Teo Soo-Hwang21,23, Marc Tischkowitz24, William D. Foulkes 5,7,25 and Jorge S. Reis-Filho1

Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast
cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define
the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-
allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic
PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n= 16) or targeted capture massively parallel
sequencing (410 cancer genes, n= 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-
scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the
genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic
mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n= 11) or second somatic
mutations (n= 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation
sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was
significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-
associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast
majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.
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INTRODUCTION
The Partner And Localizer of BRCA2 (PALB2) is a key protein that
interacts with BRCA1 and BRCA2 and plays pivotal roles in
homologous recombination (HR) DNA repair.1 Bi-allelic PALB2
germline mutations (i.e., affecting both parental alleles of PALB2)
cause Fanconi anemia,2 whereas mono-allelic PALB2 germline
mutations result in increased risk of breast, pancreatic and ovarian
cancer.3–5 The frequency of PALB2 germline mutations in familial
breast cancer ranges from 0.6% to 2.7%,4 and the average

cumulative breast cancer risk in PALB2 germline mutation carriers
by the age of 70 years is ~35%,4 similar to that conferred by BRCA2
germline mutations.6 Akin to sporadic and BRCA2 breast cancers,
PALB2-associated breast cancers are heterogeneous in terms of
their clinicopathologic features, being predominantly estrogen
receptor (ER)-positive.4 As compared to non-PALB2 mutation
carriers, patients with PALB2 germline mutations have been
reported to display a shorter 10-year survival.7 Consistent with
the role of PALB2 in HR DNA repair, PALB2-deficient cells have
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been shown to be sensitive to platinum-based chemotherapy and
poly (ADP-ribose) polymerase (PARP) inhibitors;8,9 hence, therapies
targeting HR deficiency (HRD) may benefit breast cancer patients
with PALB2 germline mutations.10

Although PALB2 constitutes a tumor suppressor gene, there is
controversy as to whether it follows the Knudson two-hit
model.11,12 A recent study revealed that ten of 15 PALB2-
associated breast cancers harbored bi-allelic PALB2 inactivation
through somatic loss of heterozygosity (LOH) of the PALB2 wild-
type allele (n= 6) or somatic PALB2 mutations (n= 4).12 PALB2
promoter hypermethylation has been reported in tumors from
sporadic and BRCA1/2 mutation-negative familial breast and
ovarian cancers,13 however, it appears to be vanishingly rare in
tumors from PALB2 germline mutation carriers.12,14 Germane to
the understanding of the biology of PALB2-associated breast
cancers and to the identification of optimal therapeutic
approaches for patients with PALB2 germline mutations is to
ascertain the mechanisms that contribute to bi-allelic PALB2
inactivation, and to define whether PALB2-associated breast
cancers without bi-allelic inactivation lack genomic features
consistent with HRD (e.g., large-scale state transitions (LSTs) and
mutational signatures). Importantly, Lee et al.,12 based on a
targeted capture sequencing analysis of 487 genes, reported that,
with one exception, PALB2-associated breast cancers that retained
the PALB2 wild-type allele displayed HRD scores consistent with
those of tumors harboring PALB2 bi-allelic inactivation.
Here we sought to characterize the repertoire of somatic

genetic alterations of breast cancers from pathogenic PALB2
germline mutation carriers using a combination of whole-exome
and targeted massively parallel sequencing to define whether bi-
allelic PALB2 inactivation is present in these tumors. Based on
whole-exome sequencing (WES) results, we employed validated
approaches to determine whether the genomic hallmark features
of HRD15 are present in PALB2-associated breast cancers
irrespective of the presence of a second hit affecting PALB2.
Moreover, as an exploratory, hypothesis-generating analysis, we
compared the genomic landscape of breast cancers from
pathogenic PALB2 germline mutation carriers to that of breast
cancers arising in BRCA1 or BRCA2 germline mutation carriers, and
non-BRCA1/2/PALB2-associated breast cancers.

RESULTS
Clinicopathologic features of PALB2-associated breast cancers
Twenty-four invasive breast cancers from carriers of fourteen
distinct pathogenic PALB2 germline mutations4,9,16–18 were
included in this study. Fourteen cases were subjected to WES
and WES sequencing data from two cases were retrieved from
TCGA19 (n= 16; median depth of tumor 112 × (range 33 ×−289 ×)
and normal 129 × (range 46 ×−247 ×) samples). In addition, 8
cases were analyzed by targeted capture massively parallel
sequencing using the Memorial Sloan Kettering-Integrated Muta-
tion Profiling of Actionable Cancer Targets (MSK-IMPACT) sequen-
cing assay20 (median depth of tumor 232 × (range 73 ×−904 ×),
and normal 545 × (range 172 ×−1452 ×) samples; Table 1,
Supplementary Table 1). All samples included in this study were
derived from formalin-fixed paraffin-embedded (FFPE) material.
Sample quality was evaluated and was found to be appropriate for
the analyses conducted (Supplementary Table 2). All but one
PALB2 germline mutations were bona fide loss-of-function (frame-
shift or truncating) mutations; one case carried a missense
substitution (L35P), which we have previously demonstrated to
be pathogenic.9

The median age at breast cancer diagnosis was 49 years (range
29–82 years), and the median tumor size was 1.6 cm (range
0.15–6 cm; Table 1). All PALB2-associated breast cancers were
invasive ductal carcinomas of no special type, and one, 12, and

eleven cases were of histologic grades 1, 2, and 3, respectively
(Table 1). Eighteen cases (75%) were ER-positive/HER2-negative
(ER+/HER2−), five (21%) were ER-negative/HER2-negative
(ER−/HER2−), and one (4%) was ER-positive/HER2-positive
(ER+/HER2+; Table 1). Whilst the distribution of PALB2-associated
breast cancers into ER/HER2 clinical subgroups was found to be
comparable to that of sporadic and BRCA2 breast cancers,19,21 it
differed from that of BRCA1 breast cancers, which are preferen-
tially of triple-negative phenotype (approximately 70%–85%).21–23

Repertoire of somatic genetic alterations in PALB2-associated
breast cancers
Somatic mutation analysis of the WES data of 16 PALB2-associated
breast cancers revealed a median of 113.5 (range 59–269) somatic
mutations per case, of which 82.5 (range 37–195) were non-
synonymous. The eight PALB2-associated breast cancers analyzed
by MSK-IMPACT displayed a median of 3 (range 0–5) somatic
mutations per case, of which 2 (range 0–4) were non-synonymous
(Table 1, Supplementary Table 3). Selected somatic mutations (n=
17) were validated by Sanger sequencing (Supplementary Fig. 1).
Of the 410 cancer genes included in MSK-IMPACT, recurrently

mutated genes found in the 24 PALB2-associated breast cancers
included PIK3CA (n= 7, 29%), PALB2 (n= 5, 21%), TP53 (n= 5,
21%), NOTCH3 (n= 4, 17%), KMT2A (n= 3, 17%) and ARID1A (n=
3, 17%; Fig. 1, Supplementary Table 3). Six PIK3CA missense
mutations affected hotspot residues, including H1047R (n= 3),
E545K (n= 1), N345K (n= 1) and C420R (n= 1), and four were
predicted to be clonal (Supplementary Fig. 2, Supplementary
Table 3). All but one somatic TP53 mutation, all coupled with loss
of heterozygosity (LOH) of the TP53 wild-type allele, were
predicted to be clonal (Supplementary Fig. 2, Supplementary
Table 3). Additional recurrently mutated genes detected in the 16
PALB2-associated breast cancers profiled by WES included
CTNNA2, TMPRSS13, KRTAP4–11, LAMA5, KALRN, and COLL22A1
(all, n= 3; Supplementary Fig. 3, Supplementary Table 3).
Copy number (CN) analysis revealed recurrent gains of 1q, 8q,

16p, 17q, and 20q, and losses of 1p, 4p, 8p, 11p, and 17p in the 24
PALB2-associated breast cancers analyzed (Fig. 2). Although the
majority (n= 18) of cases were ER+/HER2−, concurrent 1q gains
and 16q losses, the hallmark features of luminal breast cancers,19

were only found in four cases. Loci recurrently amplified included
those mapping to 8q21.3 (encompassing the locus of NBN, n= 5)
and 8q24.21 (encompassing the locus of MYC, n= 5; Fig. 2).

Bi-allelic PALB2 inactivation
Bi-allelic PALB2 inactivation was found in 16 of the 24 PALB2-
associated breast cancers (67%; Table 1, Fig. 1). In eleven cases,
the second hit was in the form of LOH of the PALB2 wild-type
allele, whereas in five tumors, it was in the form of an inactivating
(i.e., truncating or frameshift) somatic PALB2 mutation. Fifteen of
the 16 somatic genetic events leading to bi-allelic inactivation of
the PALB2 wild-type allele were predicted to be clonal (Fig. 1,
Supplementary Table 3), suggesting that bi-allelic PALB2 inactiva-
tion and subsequent complete loss-of-function of PALB2 may
constitute an early somatic event in the development of a subset
of PALB2-associated breast cancers.

PALB2-associated breast cancers with bi-allelic inactivation display
genomic features consistent with HRD
We15 and others24 have demonstrated that bi-allelic inactivation
but not mono-allelic alterations of HR-related genes are associated
with genomic features consistent with HRD. Hence, we sought to
define whether LST scores and dominant mutational signature 3
would be associated with bi-allelic PALB2 inactivation. LST scores
and mutational signatures were inferred in the 16 PALB2-
associated breast cancers analyzed by WES, of which 13 cases
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were found to display high LST scores (LSThigh), and nine cases
(eight LSThigh and one LSTlow) were found to have a dominant
mutational signature 3 associated with HRD (i.e., BRCA1/2 signa-
ture; Table 1, Figs. 1 and 3a). No significant association between

PALB2 germline mutation types and HRD-related genomic features
was observed (P > 0.05; Table 1).
Bi-allelic PALB2 inactivation was significantly associated with

LSThigh (1/4 vs. 12/12, P= 0.0071, Fisher’s exact test; P= 0.009,
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Mann–Whitney U test; Fig. 3b), in agreement with the findings that
bi-allelic inactivation rather than mono-allelic alterations of HR-
related genes is associated with HRD-related genomic fea-
tures.15,24 All but one (IDC37) cases displaying mutational
signature 3 and all but one case (IDC46) displaying high LST
scores were found to harbor bi-allelic PALB2 inactivation (Table 1,
Fig. 1 and Fig. 3b). Notably, we did not identify pathogenic
germline mutations, bi-allelic or mono-allelic somatic mutations or
homozygous deletions affecting other HRD-related genes15 in
IDC37 or IDC46. Alternative mechanisms of inactivation of the
wild-type allele of PALB2, such as complex PALB2 rearrangements
or, less likely PALB2 promoter hypermethylation,12 which are not
detectable by WES, or other mechanisms that result in HRD may
be operative in IDC37 and IDC46. Four of the 12 PALB2-breast
cancers with bi-allelic PALB2 inactivation subjected to WES lacked
a dominant signature 3, despite displaying high LST scores (Fig. 1).
One could hypothesize that these cases could correspond to
sporadic breast cancers arising in PALB2 germline mutation
carriers, in which the second PALB2 allele was inactivated later
in tumor evolution. Two of the 12 PALB2-associated breast cancers
analyzed by WES lacked both evidence of bi-allelic PALB2
inactivation and genomic features of HRD (Table 1, Fig. 1). One
could posit that these invasive breast cancers may constitute non-
PALB2-related cancers arising in the context of a PALB2 germline
mutation.
As an exploratory, hypothesis-generating analysis, we compared

the genomic profiles of invasive breast cancers developing in the
context of pathogenic PALB2 germline mutations with or without
loss of the PALB2 wild-type allele. Among the 16 PALB2-associated
breast cancers analyzed by WES, the 12 cases with bi-allelic PALB2
inactivation harbored a numerically higher somatic mutation rate
(median 139.5, range 63–269) than the four cases without bi-allelic
inactivation (median 103, range 59–109; P= 0.09). Moreover, in
PALB2-associated breast cancers analyzed by WES and harboring
indels (n= 14), the average deletion length was significantly
longer in cases with bi-allelic PALB2 inactivation (n= 11) as
compared to those with mono-allelic alterations (n= 3; 7 bp vs.
2.3 bp; P= 0.041; Fig. 3c), a feature associated with HRD.25 We
further found a significantly higher number of copy number
alterations (CNAs) in the tumors with bi-allelic PALB2 inactivation
(n= 12) than in those without (n= 4; P= 0.004; Fig. 3d). These
results suggest that PALB2-associated breast cancers with bi-allelic
inactivation, display higher levels of genetic instability, which may
potentially be associated with the early onset of HRD in their
development.
Lastly, upon combining the PALB2-associated breast cancers

reported by Lee et al.12 with the cases analyzed here, we observed
that 67% (26/39) of PALB2-associated breast cancers harbored bi-
allelic PALB2 inactivation (Supplementary Table 4). Consistently, bi-
allelic PALB2 inactivation was significantly associated with a high
LST score, whilst no significant association was observed between
bi-allelic PALB2 inactivation and clinicopathologic characteristics
(P > 0.05; Supplementary Table 4).

PALB2-associated breast cancers with bi-allelic inactivation display
higher mutation burden and HRD-associated features more
frequently than sporadic breast cancers
As an exploratory, hypothesis-generating analysis we investigated
whether PALB2-associated breast cancers would differ from non-
BRCA1/2/PALB2-associated breast cancers from TCGA.19 Given that
none of the PALB2-associated breast cancers included here was of
ER-/HER2+ phenotype, ER-/HER2+ non-BRCA1/2/PALB2-associated
breast cancers from TCGA were excluded, and the remaining 683
ER−/HER2− and ER+ (including ER+/HER2+and ER+/HER2−)
breast cancers were employed for the analyses. The 16 PALB2-
associated breast cancers analyzed by WES were found to harbor a
higher number of somatic mutations (median 113.5, range
59–269) than the 683 ER−/HER2− and ER+non-BRCA1/2/PALB2-
associated breast cancers (median 51, range 2–6666; P < 0.002,
Mann–Whitney U test), difference that remained significant upon
1:3 bootstrap resampling (P= 0.002, see Methods). Given that the
majority of the PALB2-associated breast cancers were ER+/HER2−,
we restricted the comparison of mutation burden to the 12
ER+/HER2− PALB2-associated breast cancers sequenced by WES
(median of somatic mutations 125, range 63–269) and the 441
ER+/HER2− non-BRCA1/2/PALB2-associated breast cancers (med-
ian somatic mutations 42, range 2–6666), and the difference
remained significant (P < 0.0001, Mann–Whitney U test; P=
0.0002, bootstrapping-corrected). As expected, the 12 PALB2-
associated breast cancers with bi-allelic PALB2 inactivation
analyzed by WES (ten ER+/HER2− and two ER−/HER2−) harbored
a significantly higher number of somatic mutations (median 139.5,
range 63–269) than the 568 ER+/HER2− and ER−/HER2− (median
somatic mutations 50, range 2–6666; P= 0.0001, Mann–Whitney U
test; P= 0.005, bootstrapping-corrected). It should be noted that
no significant differences in the number of somatic mutations
were found between the four PALB2-associated breast cancers
analyzed by WES lacking bi-allelic PALB2 inactivation (one ER
−/HER2− and three ER+; median 103, range 59–109) and the 683
ER−/HER2− and ER+ non-BRCA1/2/PALB2-associated breast can-
cers (median 51, range 2–6666; P > 0.05, Mann–Whitney U test and
bootstrapping-corrected).
A comparison of the frequencies of somatic mutations affecting

the 410 cancer genes between PALB2 and non-BRCA1/2/PALB2-
associated breast cancers revealed that PALB2, NOTCH3, KMT2A,
BRIP1, DNMT3A, FGFR4, GNAQ, and CD79A (all P < 0.05; Fisher’s
exact test) were more frequently mutated in the 24 PALB2-
associated breast cancers than in the 683 ER−/HER2− and ER+
non-BRCA1/2/PALB2-associated breast cancers (Fig. 4a), however
only PALB2 and NOTCH3 remained significantly differently
mutated between the two groups after bootstrap resampling
(P < 0.01; Supplementary Table 5). No significant differences in the
frequency of PIK3CA and TP53 mutations, the two genes most
frequently mutated in breast cancer,19 were detected between the
24 PALB2 and the 683 ER−/HER2− and ER+non-BRCA1/2/PALB2-
associated breast cancers (Fig. 4a). Upon restriction of the
comparison to the 18 ER+ /HER2− PALB2-associated breast
cancers and the 441 ER+/HER2− non-BRCA1/2/PALB2-associated

Fig. 1 Non-synonymous somatic mutations in PALB2-associated breast cancers. Heatmap depicting the somatic genetic alterations identified
in the 24 PALB2-associated breast cancers analyzed by whole-exome (n= 16) or targeted MSK-IMPACT (n= 8) massively parallel sequencing.
Somatic mutations affecting the 410 cancer genes present in MSK-IMPACT, in decreasing overall mutational frequency observed in PALB2-
associated breast cancers are plotted. Cases are shown in columns, and genes in rows. Estrogen receptor (ER) and HER2 status, PALB2 germline
mutation type, presence of a second somatic PALB2 mutation or loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state
transition (LST) score, dominant mutational signature and sequencing platform are indicated in the phenobar (top), color-coded according to
the legend. Note that mutational signatures and LST scores could not be assessed in tumors subjected to MSK-IMPACT sequencing due to the
limited number of mutations present. Clonal somatic PALB2 mutations or clonal LOH of the PALB2 wild-type allele are indicated by yellow
boxes. Somatic mutations are color-coded according to the legend, and LOH of the wild-type allele of mutated genes other than PALB2 is
represented by a diagonal bar. Indel small insertion/deletion; LOH loss of heterozygosity, LST large-scale state transition, N/A not assessable,
SNV single nucleotide variant, WES whole-exome sequencing
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breast cancers, PALB2, NOTCH3, ARID1A, DNMT3A, BRIP1, FGFR4,
CD79A, and GNAQ (all P < 0.05; Fisher’s exact test) were
significantly more frequently mutated in the PALB2-associated
breast cancers (Fig. 4b), but similarly only PALB2 and NOTCH3
remained significantly different after bootstrapping resampling
(P < 0.01, Fisher’s exact test and bootstrapping-corrected; Supple-
mentary Table 5).
Differences in the patterns of CNAs were observed between

PALB2-associated breast cancers and non-BRCA1/2/PALB2-asso-
ciated breast cancers. The 24 PALB2-associated breast cancers
harbored gains of 16p and losses of 13p and 16q less frequently
than the 683 ER−/HER2− and ER+ non-BRCA1/2/PALB2-associated
breast cancers (P < 0.05, Fisher’s exact test and bootstrapping-
corrected; Supplementary Fig. 4a). When restricting the compar-
ison to the 18 ER+/HER2− PALB2-associated breast cancers and
the 441 ER+/HER2− non-BRCA1/2/PALB2-associated breast can-
cers, the differences were less overt, with more frequent 16p gains
and 16q losses in the non-BRCA1/2/PALB2-associated breast
cancers (P < 0.05, Fisher’s exact test and bootstrapping-corrected;
Supplementary Fig. 4b). Fewer differences were detected in the
comparisons between the eight PALB2-associated breast cancers
with mono-allelic inactivation (two ER−/HER2− and four ER+) and
the 683 ER−/HER2− and ER+non-BRCA1/2/PALB2-associated
breast cancers (Supplementary Fig. 4c). No significant difference
in the frequency of amplifications and homozygous deletions was
observed in any of the comparisons when the bootstrap

resampling analysis was performed (P > 0.05; Supplementary Fig.
4d–f).
As part of the exploratory analysis, we investigated whether

PALB2-associated breast cancers would differ from non-BRCA1/2/
PALB2-associated breast cancers in regard to the frequencies of
genomic features indicative of HRD. The 12 PALB2-associated
breast cancers with bi-allelic inactivation (two ER−/HER2− and ten
ER+/HER2− analyzed by WES) were found to display significantly
higher LST scores than the 526 ER−/HER2− and ER+/HER2− non-
BRCA1/2/PALB2-associated breast cancers for which LST scores
could be determined (P < 0.0001, Mann–Whitney U test; P=
0.0001, bootstrapping-corrected; Fig. 4c). By contrast, the four
PALB2-associated breast cancers with mono-allelic inactivation
(one ER−/HER2− and three ER+, sequenced by WES) displayed
comparable LST scores to the 634 ER−/HER2− and ER+ non-
BRCA1/2/PALB2-associated breast cancers for which LST scores
could be defined (P > 0.05, Mann–Whitney U test and boot-
strapping-corrected; Fig. 4c). Likewise, the proportion of cases
displaying a mutational signature 3 was significantly higher in the
12 PALB2-associated breast cancers with bi-allelic inactivation
sequenced by WES than in the 491 ER−/HER2− and ER+/HER2−
non-BRCA1/2/PALB2-associated breast cancers for which muta-
tional signatures could be inferred (67% vs. 17%; P= 0.0002,
Fisher’s exact test; P= 0.02, bootstrapping-corrected; Fig. 4c).
These results suggest that PALB2-associated breast cancers with
bi-allelic inactivation are more often HR-deficient than non-BRCA1/
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2/PALB2-associated breast cancers despite displaying a similar
prevalence of ER-positive luminal breast cancers, and that PALB2-
associated breast cancers without bi-allelic inactivation appear to
resemble non-BRCA1/2/PALB2-associated breast cancers.

PALB2-associated breast cancers with bi-allelic inactivation display
similarities with BRCA1-associated and BRCA2-associated breast
cancers with bi-allelic inactivation of BRCA1/2
Finally, we sought to define whether PALB2-associated breast
cancers with bi-allelic PALB2 inactivation would differ from breast
cancers arising in BRCA1 and BRCA2 pathogenic germline
mutation carriers with bi-allelic inactivation of BRCA1 and BRCA2,
respectively. The 12 PALB2-associated breast cancers analyzed by

WES were found to harbor a number of somatic mutations
(median 139.5, range 63–269) comparable to that of 17 BRCA1-
associated breast cancers with bi-allelic inactivation from TCGA
(median 143, range 54–1223; P > 0.05, Mann–Whitney U test), and
higher than that of the 16 BRCA2-associated breast cancers with
bi-allelic inactivation from TCGA (median 74.5, range 38–209; P=
0.006, Mann–Whitney U test). In regards to the repertoire of
somatic mutations, PALB2 mutations were significantly more
frequent in the 16 PALB2-associated breast cancers with bi-allelic
inactivation (n= 5, 31%) than in the 17 BRCA1− (n= 0) and 16
BRCA2-associated (n= 0) breast cancers with bi-allelic inactivation
from TCGA (P= 0.02 and P= 0.04, respectively, Mann–Whitney U
test; Fig. 5a, b, Supplementary Table 5). In addition, a higher
frequency of TP53 mutations was found in the 17 BRCA1-
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associated breast cancers (n= 15, 88%) than in the 16 PALB2-
associated breast cancers with bi-allelic inactivation (n= 3, 19%;
P < 0.0001, Fisher’s exact test; Fig. 5a).
CN analysis revealed that the 17 BRCA1-associated breast

cancers with bi-allelic inactivation had higher frequencies of
gains of 3q and 6p and losses of 17q, among other differences
(P < 0.05, Fisher’s exact test; Supplementary Fig. 5a), as
compared to the 16 PALB2-associated breast cancers with bi-
allelic inactivation. In contrast, the CN profiles of the 16 BRCA2
breast cancers with bi-allelic inactivation were more similar to
those of the PALB2-associated breast cancers, albeit more
frequently harboring losses of 13q and 22q, among other
differences (P < 0.05; Supplementary Fig. 5b). No significant
difference in the frequency of amplifications and homozygous
deletions was found between the 16 PALB2-associated breast
cancers and the 17 BRCA1-associated and 16 BRCA2-associated
breast cancers with bi-allelic inactivation of the respective wild-
type allele (Supplementary Fig. 5c, d).
The LST scores of the 12 breast cancers with bi-allelic PALB2

inactivation analyzed by WES were comparable to those of the
breast cancers with bi-allelic BRCA1 inactivation (n= 17) and bi-
allelic BRCA2 inactivation from TCGA (n= 16; P > 0.05,
Mann–Whitney U test; Fig. 5c), whereas the proportion of the
PALB2-associated breast cancers with bi-allelic inactivation
displaying signature 3 (67%, 8/12) was not statistically sig-
nificantly different from that of the BRCA1-associated breast
cancers with bi-allelic inactivation (82%, 14/17; P= 0.4, Fisher’s
exact test) and BRCA2-associated breast cancers with bi-allelic
inactivation from TCGA (63%, 10/16; P= 1, Fisher’s exact test;
Fig. 5c). Consistent with these findings, LST score, NtAI score,26

which assesses telomeric allelic imbalance, and the Myriad
score,26 which is the unweighted sum of LOH, telomeric allelic
imbalance and LSTs, were higher in breast cancers with PALB2
(n= 12) and BRCA1/2 (n= 33) biallelic inactivation, compared to
those with PALB2 (n= 4) and BRCA1/2 (n= 8) monoallelic
inactivation, respectively (Supplementary Figs. 6a–6c). More-
over, LST score, mutational signature 3, NtAI score and Myriad
score detected bi-allelic inactivation of PALB2 and of BRCA1/
BRCA2 in PALB2-associated breast cancers and in BRCA1/2-
associated breast cancers, respectively, with comparable accu-
racy (Supplementary Figs. 6d–6g). Taken together, our results
suggest that PALB2-associated breast cancers with bi-allelic
inactivation are similar to breast cancers with BRCA1 and BRCA2−
bi-allelic inactivation in terms of genetic instability and genomic
features indicative of HRD.

DISCUSSION
Here we demonstrate that PALB2-associated breast cancers
constitute a heterogeneous group of tumors at the genetic level
and can be stratified according to the bi-allelic inactivation of the
PALB2 wild-type allele. PALB2-associated breast cancers display a
high mutation burden and a limited number of genes recurrently
affected by pathogenic somatic mutations, including PIK3CA, TP53,
NOTCH3, and PALB2 itself. Loss of the PALB2 wild-type allele in
PALB2-associated breast cancers occurred in the form of PALB2
pathogenic somatic mutations in five (21%) cases, whereas LOH of
the wild-type allele of PALB2 was detected in 11 (46%) cases.
Second somatic mutations in BRCA1/2 have been reported as the
underlying cause of bi-allelic inactivation in tumors from BRCA1/2
germline mutations carriers.27 It should be noted, however, that
somatic mutations resulting in the inactivation of the wild-type
allele of BRCA1 or BRCA2 in BRCA1− or BRCA2-associated breast
cancers, respectively,15,24,28 appear to be less frequent than
somatic PALB2 mutations in the context of PALB2-associated
breast cancers. In the study by Maxwell et al.28 bi-allelic BRCA1
inactivation was due to a BRCA1 somatic mutation in only one
case (1.1%) out of 93 BRCA1-associated breast and ovarian tumors.
Similarly, out of 67 BRCA2-associated tumors with bi-allelic BRCA2
inactivation, in only one case this was due to a BRCA2 somatic
mutation (1.5%). In contrast, PALB2 somatic mutations as a
mechanism of bi-allelic inactivation were significantly more
frequent in the PALB2-associated breast cancers from this series
(31%; 5/16; P= 0.00006, Fisher’s exact test).
Consistent with the findings of Lee et al.,12 our study

demonstrates that PALB2 follows the Knudson two-hit model,
given that in a large proportion of PALB2-associated breast
cancers, a second hit in the form of a somatic PALB2 mutation or
LOH of the wild-type allele of PALB2 was detected. Contrary to that
study,12 in which PALB2-associated breast cancers with either
mono-allelic or bi-allelic PALB2 alterations were found to display
genomic features of HRD, based on targeted massively parallel
sequencing of 487 genes, our WES analysis of 16 PALB2-associated
breast cancers revealed that tumors with PALB2 bi-allelic altera-
tions displayed significantly higher LST scores and average
deletion lengths than PALB2-associated breast cancers with
mono-allelic PALB2 alterations. In addition, only one out of the
four PALB2-associated breast cancers with mono-allelic PALB2
alterations displayed a dominant mutational signature 3, whereas
eight out of 12 PALB2-associated breast cancers with bi-allelic
PALB2 inactivation harbored a dominant mutational signature 3.
Our WES findings are consistent with the pan-cancer WES analysis
performed by Riaz et al.,15 whereby HR-related genes with bi-
allelic inactivation but not those with mono-allelic alterations were

Fig. 3 HRD genomic features in breast cancers with and without bi-allelic PALB2 inactivation. a Mutational signatures of all somatic SNVs in
the 16 PALB2-associated breast cancers sequenced by whole-exome sequencing (left) as inferred by deconstructSigs41 based on the
30 signatures represented in COSMIC, and a bar plot indicating the proportion of the major mutational signatures identified in each case
(right), in decreasing proportion of each signature. The dominant mutational signatures were assigned according to Alexandrov et al.,40

following the consensus of at least two of three approaches (deconstructSigs based on 30 signatures from COSMIC, based on the
12 signatures known to occur in breast cancer, and NMF method42 based on 30 signatures from COSMIC) where signature 1 relates to aging
and signature 3 to defective homologous recombination DNA repair, and are shown for cases with bi-allelic PALB2 alterations (top) and mono-
allelic PALB2 alterations (bottom). The number of SNVs is shown in parentheses. Sig signature, SNV single nucleotide variant. b Large-scale
state transition (LST) scores of the four PALB2-associated breast cancers with mono-allelic PALB2 alterations and the 12 PALB2-associated breast
cancers with bi-allelic PALB2 alterations. The median LST scores, and the 75th and 25th percentiles are displayed at the top and bottom of the
boxes, respectively. Each dot corresponds to the LST score and the mutational signature of a given case. Dominant mutational signatures are
color-coded according to the legend. Comparisons of LST scores between groups were performed using the Mann–Whitney U test. c Average
deletion length (nucleotides) in PALB2-associated breast cancers with mono-allelic PALB2 alterations (n= 3) and with bi-allelic PALB2 alterations
(n= 11). Only PALB2-associated breast cancers harboring small insertions and deletions were included in the analysis. The median value of
deletion length, and the 75th and 25th percentiles are displayed at the top and bottom of the boxes, respectively. Comparisons of deletion
lengths between groups were performed using the Mann–Whitney U test. d Number of genes affected by copy number alterations (CNAs) of
the four PALB2-associated breast cancers with mono-allelic PALB2 alterations and the 12 PALB2-associated breast cancers with bi-allelic PALB2
alterations. The median value of the number of genes with CNAs, and the 75th and 25th percentiles are displayed at the top and bottom of
the boxes, respectively. Comparisons were performed using Fisher’s exact test
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found to display genomic features of HRD, and the analyses
performed by Polak et al.,24 where bi-allelic, but not mono-allelic,
alterations affecting BRCA1, BRCA2, and PALB2 were found to be
associated with HRD in breast cancers. Conversely, 8/24 PALB2-
associated breast cancers included in this study lacked bi-allelic
PALB2 inactivation and 2/16 PALB2-associated breast cancers

sequenced by WES lacked both bi-allelic PALB2 inactivation and
genomic features of HRD. In this context, one could posit that this
subset of PALB2-associated breast cancers may retain competent
HR repair of DNA double-strand breaks and would unlikely benefit
from HRD-directed therapies. Interestingly, the proportion of
PALB2-associated breast cancers displaying mono-allelic PALB2
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inactivation was comparable to the one of BRCA1-associated and
BRCA2-associated breast cancers from TCGA harboring BRCA1 or
BRCA2 mono-allelic inactivation, respectively. Although PALB2
mono-allelic inactivation is not associated with genomic features
of HRD, its role in tumorigenesis is yet to be determined.
In agreement with previous studies showing that most breast

cancers with HRD features are underpinned by bi-allelic inactiva-
tion of HR-related genes,15,29 we identified the genetic basis of
HRD in 12 out of 14 (86%) PALB2-associated breast cancers with
genomic features of HRD. It should be noted that of the PALB2-
associated breast cancers with mono-allelic PALB2 alterations
studied here, one displayed a high LST score and another one
harbored a dominant mutational signature 3. This observation
suggests that other mechanisms of HRD may be operative in these
tumors. First, no bi-allelic inactivation of another DNA repair
related gene was detected in these cancers. Second, albeit PALB2
gene promoter methylation was reported in two of eight inherited
breast cancers and four of 60 sporadic breast cancers,13 this
phenomenon appears to be vanishingly rare in PALB2-associated
breast cancers with mono-allelic PALB2 alterations.12 Further
analyses are warranted to define whether other mechanisms of
inactivation of the wild-type allele of PALB2 may play a role in
PALB2-associated breast cancers with mono-allelic PALB2 altera-
tions but with genomic features of HRD.
Our study has important limitations. First, as a result of the rarity

of PALB2-associated breast cancers, the small sample size may
have limited the detection of significant differences in the
exploratory analyses comparing PALB2-associated breast cancers
with non-BRCA1/2/PALB2-associated breast cancers from TCGA.
Importantly, however, these analyses revealed that PALB2-
associated breast cancers with bi-allelic inactivation differ from
non-BRCA1/2/PALB2-associated breast cancers but are similar to
BRCA1 and BRCA2 breast cancers with bi-allelic inactivation.
Second, genomic features of HRD were investigated here based
on WES; although our approach for the detection of genomic
features of HRD is more robust than that based on targeted
massively parallel sequencing,12 whole-genome sequencing
analysis still remains the optimal approach. Therefore, the
proportion of PALB2-associated breast cancers with HRD may be
even higher than that reported here and in previous analyses.12

Despite these limitations, our data demonstrate that PALB2-
associated breast cancers harbor complex and heterogeneous
genomes. Notably, PALB2 bi-allelic inactivation is present in a large
proportion of PALB2-associated breast cancers, and the mechan-
isms leading to this include both LOH of the wild-type allele or
pathogenic somatic mutations affecting PALB2. Importantly, the 12
PALB2-associated breast cancers with PALB2 bi-allelic inactivation
displayed genomic features consistent with HRD, and shared
similarities in terms of genetic instability and genomic features of
HRD with BRCA1-associated and BRCA2-associated breast cancers

with bi-allelic inactivation. Two of the 16 PALB2-associated breast
cancers subjected to WES, however, lacked both bi-allelic
inactivation of PALB2 and genomic features of HRD. Hence, we
posit that molecular assays to identify bi-allelic inactivation of
PALB2 and/or genomic features of HRD may aid in the selection of
patients likely to benefit from HRD-directed therapies, including
platinum-based chemotherapy and/or PARP inhibitors.

METHODS
Cases
We included 24 invasive breast cancers from women with pathogenic
PALB2 germline mutations. This study was approved by Memorial Sloan
Kettering Cancer Center’s institutional review board (IRB) and by the local
ethics committees/IRBs of the authors’ institutions. Written informed
consents were obtained as required by the protocols approved by the
IRBs/local ethics committees of the respective authors’ institutions. This
study is in compliance with the Declaration of Helsinki. For 22 breast
cancers, tissue samples were retrieved from the McGill University (Canada,
n= 6), Cancer Research Malaysia/University Malaya (Malaysia, n= 5), the
Kathleen Cuningham Foundation Consortium for research into Familial
Breast Cancer (kConFab, Australia, n= 5), Memorial Sloan Kettering Cancer
Center (MSKCC; New York, USA, n= 3), University of Eastern Finland
(Finland, n= 2) and Charles University (Czech Republic, n= 1). Hematox-
ylin and eosin-stained tissue sections of the 22 breast cancers were
reviewed by three pathologists (FCG, FP, and JSR-F). The genomics data of
IDC53 were in part previously reported in Foo et al.9 In addition, the WES-
derived mutational and clinico-pathologic data of two PALB2-associated
breast cancers (IDC60 and IDC61; Table 1) were retrieved from the
provisional TCGA breast cancer dataset at the Broad’s Institute firehose on
01/28/16.

Immunohistochemistry and fluorescence in situ hybridization
(FISH)
ER and HER2 status were assessed by immunohistochemistry following
American Society of Clinical Oncology (ASCO)/College of American
Pathologists (CAP) guidelines.30 In addition, HER2 amplification was
assessed in selected cases by fluorescence in situ hybridization (FISH)
using PathVysion (Abbott) and/or HER2 IQFISH pharmDx (Dako), following
the ASCO/CAP guidelines.31,32

DNA extraction
Eight-micrometer-thick sections from representative FFPE blocks were
microdissected with a sterile needle under a stereomicroscope (Olympus)
to ensure >80% of tumor cells. Genomic DNA was extracted from tumor
and matched normal blood or saliva samples using the DNeasy Blood and
Tissue Kit (Qiagen), and quantified using the Qubit Fluorometer (Life
Technologies).

Massively parallel sequencing and bioinformatics analysis
DNA of tumor and matched normal samples was subjected to WES (n= 14)
or MSK-IMPACT20 (n= 8), which targets all exons and selected introns of

Fig. 4 Comparison of PALB2-associated breast cancers and non-BRCA1/2/PALB2-associated breast cancers. a, b Heatmap depicting the most
recurrently mutated genes affecting 410 cancer genes identified in PALB2-associated breast cancers and non-BRCA1/2/PALB2-associated breast
cancers from TCGA.19 Cases are shown in columns, genes in rows. Multi-Fisher’s exact test comparisons of mutational frequencies of the
mutated genes were performed between a the 24 PALB2-associated breast cancers and the 683 ER+/HER2−, ER+/HER2+ and ER−/HER2−
non-BRCA1/2/PALB2-associated breast cancers from TCGA, and b the 18 ER+/HER2− PALB2-associated breast cancers and the 441 ER+/HER2−
non-BRCA1/2/PALB2-associated breast cancers from TCGA. P-value of each comparison is shown on the right side of the heatmap, with
statistically significant P-values in bold. Indel, small insertion/deletion; SNV, single nucleotide variant. c Box and whisker plots showing the
large-scale state transition (LST) scores of the PALB2-associated breast cancers with mono-allelic/bi-allelic PALB2 alterations, ER−/HER2− and
ER+ non-BRCA1/2/PALB2-associated breast cancers, and ER−/HER2− and ER+/HER2− non-BRCA1/2/PALB2-associated breast cancers where LST
scores could be inferred. The median value of LST scores, and the 75th and 25th percentiles are displayed at the top and bottom of the boxes,
respectively. Each dot represents the LST score and/or mutational signature of a given case. Mutational signatures are color-coded according
to the legend. *of the 601 ER−/HER2− and ER+ non-BRCA1/2/PALB2-associated breast cancers, the 34 cases lacking LST scores but displaying
mutational signatures are not shown, three of these cases display signature 3. **of the 491 ER+/HER2− non-BRCA1/2/PALB2-associated breast
cancers, the 29 cases lacking LST scores but displaying mutational signatures are not shown, three of these cases display signature 3. P-values
of the comparisons of LST scores are shown using Fisher’s exact tests. N/A signatures not assessable, LST large-scale state transition
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410 cancer genes. Sequencing data analysis was performed as described
previously.33,34 Read alignment and mutation calling was performed as
described in the Supplementary Methods.35 CNAs and regions of LOH were
defined using FACETS.36 In brief, homozygous deletions correspond to
regions with an absolute copy number of zero, hemizygous losses are
regions with absolute copy number lower than the average ploidy
rounded to the nearest integer value. Low copy number gains are regions
with absolute copy number greater than the average ploidy rounded to
the nearest integer value, and high-level copy number amplifications are
regions with absolute copy number in excess of four relative to the
average ploidy rounded to the nearest integer value. Regions of LOH and
homozygous deletions were manually reviewed using plots of Log2 ratios
and B allele frequencies. The cancer cell fraction (CCF) of each mutation
was inferred using ABSOLUTE (v1.0.6)37 and manually reviewed33,37,38

(Supplementary Methods).

Large-scale state transitions, indel length and mutational
signatures
The presence of LSTs, representative of genomic scars indicative of HRD,39

was assessed in breast cancers subjected to WES. A LST score cut-off of 15
was adopted to classify breast cancers as LST-high (≥15) or LST-low (<15),
as previously described.9,22,39 The length of indels was assessed in PALB2-
associated breast cancers analyzed by WES, given that deletion sizes of
≥5 bp have been associated with defective HR-based repair.25 Mutational
signatures40 were inferred from non-synonymous and silent somatic
exonic SNVs (i) using deconstructSigs41 based on the set of 30 mutational
signatures represented in COSMIC27 or (ii) on the 12 mutational signatures
known to occur in breast cancers27 and (iii) using a non-negative matrix
factorization algorithm (NMF)42 based on the 30 signatures from COSMIC,27

in samples with at least 30 somatic mutations, as previously described.15,22

The dominant mutational signature in each case was defined based on the
consensus of at least two of the three methods.

Sanger sequencing validation
Selected somatic mutations with MAFs > 10%, including mutations
affecting PIK3CA (n= 7), PALB2 (n= 4), TP53 (n= 4), and NOTCH3 (n= 2),
were validated by Sanger sequencing (primer sequences in Supplementary
Table 3). PCR amplification of genomic DNA and analyses were performed
in duplicate.

Comparisons with breast cancers from TCGA
The mutation burden, mutation frequencies, CNAs and genomic features
indicative of HRD of the PALB2-associated breast cancers were compared
to those of non-BRCA1/2/PALB2-associated breast cancers with matched ER
and HER2 status (n= 683), and to those of BRCA1 (n= 17) and BRCA2 (n=
16) breast cancers with bi-allelic inactivation from TCGA43 (Supplementary
Methods).

Statistical analysis
Comparisons of the number of somatic mutations and LST scores, gene-
level copy number states and mutational signatures between PALB2-
associated breast cancers and non-BRCA1/2/PALB2-associated, BRCA1-
associated and BRCA2-associated breast cancers were performed using
the Mann–Whitney U test and Fisher’s exact test, respectively. To account
for differences in sample sizes, a bootstrap resampling analysis was
performed (Supplementary Methods).
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Fig. 5 Comparison of PALB2-associated breast cancers and BRCA1 and BRCA2 breast cancers. a, b Heatmap depicting the most recurrently
mutated genes affecting 410 cancer genes identified in PALB2-associated breast cancers and BRCA1 and BRCA2 breast cancers from TCGA.19

Cases are shown in columns, and genes in rows. Multi-Fisher’s exact test comparisons of mutational frequencies of the recurrently mutated
genes were performed between a the 16 PALB2-associated breast cancers with bi-allelic PALB2 alterations and 17 BRCA1 breast cancers bi-
allelic BRCA1 alterations, and b the 16 PALB2-associated breast cancers with bi-allelic PALB2 alterations and 16 BRCA2 breast cancers with bi-
allelic BRCA2 alterations. P-value of each comparison is shown on the right side of the heatmap, with statistically significant P-values in bold.
Indel, small insertion/deletion; SNV, single nucleotide variant. c Boxplots showing the large-scale state transition (LST) scores of the 12 PALB2-
associated breast cancers with bi-allelic PALB2 alterations, 17 BRCA1 and 16 BRCA2 breast cancers with bi-allelic BRCA1 and BRCA2 alterations,
respectively. The median value of the LST scores, and the 75th and 25th percentiles are displayed at the top and bottom of the boxes,
respectively. Each dot corresponds to the LST score and/or mutational signature of one case. Mutational signatures are color-coded according
to the legend. P-values of the comparisons of LST scores are shown using Fisher’s exact tests. N/A signatures not assessable, LST large-scale
state transition
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Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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