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Abstract The autocorrelation of the seismic transmission response of a layered medium
(autocorrelogram), in the presence of a free surface, corresponds to the reflection response. Despite many
studies on the imaging of local structures through retrieval and forward modeling of stacked
autocorrelograms, there is limited work on the inversion of these data. In this study, we demonstrate that
the probabilistic inversion of autocorrelograms is efficient and can be used as an alternative imaging tool
when other approaches are not applicable. Here, we calculate autocorrelograms of teleseismic P wave coda
recorded on more than 1,200 permanent and temporary seismic stations across Australia and utilize a
Bayesian framework to invert these data for crustal imaging. The results show patterns of structures
consistent with those seen in previous crustal models constructed from receiver function, seismic
reflection, and refraction methods. The new approach can therefore image large-scale crustal structures
comparable to those from other seismological methods.

1. Introduction
In recent years, the autocorrelation of both the diffusive wavefield (e.g., ambient noise energy) and teleseis-
mic coda waves has become a popular approach for extracting local structure beneath individual seismic
stations, including the depth to the crust-mantle interface (Moho) and the lithosphere-asthenosphere
boundary. The idea of seismic wave autocorrelation was developed by Kunetz and d'Erceville (1962) and
Claerbout (1968) for plane waves at normal incidence to a horizontally stratified acoustic medium with a
free surface, where one side of autocorrelation of the seismic transmission response (generated by a deep
source) corresponds to the reflection response beneath the station as if there was a virtual source at the loca-
tion of the receiver (zero-offset reflection). Subsequently, Frasier (1970) extended this theorem for the case
of non-normal incidence propagation of elastic waves and Wapenaar (2004) extended this to 2-D and 3-D
acoustic and elastic media.

Despite the success of many studies on the processing and/or forward modeling of autocorrelograms (e.g.,
Becker & Knapmeyer-Endrun, 2018; Clayton, 2018; Daneshvar et al., 1995; Gorbatov et al., 2013; Heath
et al., 2018; Ito & Shiomi, 2012; Kennett et al., 2015; Kennett & Sippl, 2018; Nishitsuji et al., 2016; Oren
& Nowack, 2017; Pham & Tkalčić, 2017, 2018; Pham et al., 2018; Romero & Schimmel, 2018; Ruigrok &
Wapenaar, 2012; Saygin et al., 2017; Sun & Kennett, 2016, 2017; Sun et al., 2018; Taylor et al., 2016; Tibuleac
& von Seggern, 2012), to our best knowledge, there are no published studies on the inversion of autocorrel-
ograms for mapping major discontinuities in the crust and upper mantle. Here, we investigate the inversion
of autocorrelograms for crustal imaging.

As a test bed for the inversion of autocorrelograms, we use a Bayesian framework to invert autocorrelograms
for imaging the crustal-scale Vp and Moho structures across Australia. For this purpose, we retrieve stacked
autocorrelograms from teleseismic waveforms containing P wave coda, recorded on the vertical components
of the permanent and temporary seismic stations across Australia (Figure 1). By checking the consistency of
crustal structures (Vp and Moho depth estimates) obtained from the inversion with those from the Australian
Seismological Reference Model (AuSREM; Salmon et al., 2013), here we mainly focus on the validation of
the results to show the potential of this approach for crustal imaging, rather than seek to obtain new crustal
models for Australia. Our results reveal crustal features that are linked well to those seen in the AusREM.
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Figure 1. (a) Map of Australia with temporary (blue triangles) and permanent (red triangles) seismic stations used in
this study. Locations of stations for which 1-D examples are given in section 7.1 (circles) and in the supporting
information (hexagons) are also shown. (b) A simplified version of the main tectonic features of Australia (Raymond
et al., 2018). Boundaries of the major cratons are marked by blue dotted lines. Key to the marked features:
Am−Amadeus basin; Ca−Canning basin; CP−Capricorn orogen; Cb−Carnarvon basin; Er−Eromanga basin; Eu−Eucla
basin; Ga−Gawler craton; Ha−Hamersley basin; Ki−Kimberley block; La−Lachlan orogen; Mi−Mt Isa block;
Of−Officer basin; Pi−Pilbara craton; Pin−Pinjarra orogen; NE−New England orogen; Yi−Yilgarn craton;
Mu−Musgrave block; Ar−Arunta block; Ft−Fitzroy trough; Mc−McArthur basin; MD−Murray-Darling basin;
Su−Surat basin; Ge−Georgetown inlier; Cu−Curnamona craton; Car−Carpentaria basin; Tc−Tennant creek;
NV−Newer Volcanic province.
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The AuSREM model is built by integrating results of multiple seismic methods. In the following paragraphs,
we briefly describe the strengths and limitations of some of the methods that were used in constructing
the crustal component of AusREM such as seismic reflection, refraction, and receiver function techniques.
Then, we present a short summary of the advantages of using the inversion of teleseismic P wave coda
autocorrelogram. The limitations of our approach will be discussed later in section 7.3.

Seismic reflection and refraction profiling can be expensive to acquire, but they provide high resolution
images of the Earth in 2-D and 3-D. In the deep seismic reflection profiling, the accuracy of the velocity anal-
ysis depends on the curvature of the travel time curves associated with reflections. This curvature decreases
with depth, degrading the sensitivity of the velocity analysis at deeper parts of the Earth. Therefore, seismic
velocities are poorly defined in the middle and lower crust, whereas seismic velocities in the upper crust are
well constrained. In contrast, the deep refraction profiling needs much larger offsets than the conventional
reflection method but can give better estimates of seismic velocities from the deeper parts of the Earth's
crust. Hence, seismic reflection and refraction data sets complement each other and joint analyses or inter-
pretation of them (as it is the case in the AuSREM work) can produce a robust estimation of the crustal-scale
velocity structure.

Single-station receiver function imaging techniques (e.g., Ammon et al., 1990; Dueker & Sheehan, 1998;
Kind et al., 2012; Langston, 1979; Phinney, 1964; Rychert & Harmon, 2016; Yuan & Kind, 2016; Wittlinger
et al., 2004; Zhu & Kanamori, 2000) rely on mode conversions of body waves (S-to-P and P-to-S). They uti-
lize teleseismic waveforms recorded on the vertical and horizontal components of a seismometer and are
powerful tools in estimating the crustal and upper mantle structure beneath seismic stations. The P receiver
functions (P-to-S converted phases) are sensitive to shear wave velocity (Vs), while the S receiver functions
are mostly sensitive to Vp, and both are very sensitive to the seismic velocity discontinuities. S-to-P converted
phases associated with the upper mantle discontinuities are not masked by crustal multiples/reverberations,
which is not generally the case with P-to-S converted phases. Therefore, they are more useful for estimat-
ing the depth of major discontinuities in the upper mantle such as midlithospheric discontinuity and the
lithosphere-asthenosphere boundary (Kind et al., 2012; Rychert & Harmon, 2016). However, they can also
be used for crustal imaging beneath ice sheets, as conversions from crustal discontinuities beneath ice are
not affected by ice multiples (Hansen et al., 2009) in S receiver functions. P receiver functions, on the other
hand, are mostly used to image the Moho and crustal properties (e.g., Vp∕Vs; e.g., Agostinetti & Malinverno,
2010; Langston, 1979; Phinney, 1964; Zhu & Kanamori, 2000).

In a similar way to the S receiver function, the teleseismic P wave coda autocorrelation is mostly sensitive to
Vp changes at depths. However, the inversion of teleseismic P wave coda autocorrelation has some advan-
tages over the inversion of S receiver functions for recovering the crustal Vp structure. S-to-P converted
phases are much noisier than P-to-S converted phases since they arrive later in the teleseismic waveforms
with other scattered arrivals. As these signals are lower frequency due to attenuation compared to P-to-S
phases, they carry information with lower resolution from the major discontinuities (Hansen & Schmandt,
2017; Rychert & Harmon, 2016). In general, teleseismic P wave coda autocorrelograms are less noisy than
S receiver functions and can be used over a wide range of frequencies. In fact, the inversion of autocorrelo-
grams can potentially be used to explore shallow crustal substructures (sedimentary layer, cover thickness,
and ice properties) by using a higher-frequency band of teleseismic waveforms (Daneshvar et al., 1995;
Pham & Tkalčić, 2017, 2018; Romero & Schimmel, 2018; Saygin et al., 2017). In theory, the autocorrelation
of seismic transmission response generated by a deep source (teleseismic earthquake) is an approximation
to a zero-offset seismic reflection signal in the active source seismic reflection method (Claerbout, 1968;
Kennett, 2015; Ruigrok & Wapenaar, 2012; Saygin et al., 2017) and its acquisition and processing are more
cost effective, thereby it can be useful for seismic imaging of the subsurface particularly for imaging the
middle and lower crustal layers where the seismic reflection imaging method has problems (Clayton, 2018).

As the standard autocorrelation technique only needs one component of the seismogram (e.g., the vertical
component), it has a further advantage over the receiver function methods in areas where only the verti-
cal component of seismograms are available, for example, earlier deployments of short-period stations in
Australia. Furthermore, it has been shown by Sun et al. (2018) that P wave reflectivity traces obtained from
global events with epicentral distances between 30◦ and 90◦ (slowness range of 0.04–0.08 s/km) are scarcely
affected by conversions and multiples, which is not the case for receiver function methods.
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Figure 2. Representation of the transmission zone from level zJ to the
surface (see section 2 and equation (2)). The lower boundary is taken below
the base of the crust at m. The action of the transmission and reflection
matrices is represented schematically.

The inversion of teleseismic P wave coda autocorrelograms has therefore
a considerable potential for imaging subsurface structure across a broad
range of scales. In this study, we limit ourselves to using the teleseismic
P wave coda for imaging deep crustal structures, but diffusive seismic
wavefields (ambient noise) and/or other components (horizontal com-
ponents) can also be used in the inversion framework. In the following
sections, we first provide an overview of the theory behind the nature
of autocorrelograms obtained from teleseismic arrivals. Then, following
a brief description of the data selection and processing steps in section
3, we summarize the inversion approach and model parameterization in
sections 4 and 5. The resolving power of the approach is examined by
applying the inversion to synthetic data, and these results are shown in
section 6. In section 7, we discuss and validate results by using a compar-
ison of our crustal Vp and Moho models with the corresponding models
from AuSREM.

2. Nature of Autocorrelograms for Teleseismic Arrivals
For the onset of the wavetrain from a teleseism we can represent the response at a station in terms of incident
plane waves with a single slowness component p. The frequency domain response is then (see, e.g., Kennett,
Kennett, 2001, Chapter 16, and Kennett, 2002, Chapter 28)

w0(p, 𝜔) = SI(p, 𝜔)ZT(p, 𝜔)CT
R(p, 𝜔)Φ(p, 𝜔), (1)

where Φ(p, 𝜔) represents the phase propagation effects from the source, Z(p, 𝜔) includes amplitude effects
prior to arrival at the zone below the station, and SI(p, 𝜔) the combined effects of excitation and the instru-
mental response. CR(p, 𝜔) describes the effect of structure local to the station. The superscript T denotes the
transpose of the various matrices.

We take a transmission zone from a level z = zJ below the base of the crust to the surface at z = 0, as sketched
in Figure 2. The local structural term CR(p, 𝜔) can then be written as

CR(p, 𝜔) = WF(p)TFJ
U (p, 𝜔) = WF(p)[I − R0J

D (p, 𝜔)RF(p)]−1T0J
U (p, 𝜔), (2)

in terms of the transmission matrix through the zone 0J∶ T0J
U , the reflection matrix at the free surface RF ,

reflection back from 0J∶ R0J
D , and the amplification of ground motion at the free surface represented by WF .

I is the identity matrix. We introduce also the modified reflection matrix

RFJ
D (p, 𝜔) = [I − R0J

D (p, 𝜔)RF(p)]−1R0J
D (p, 𝜔). (3)

In terms of propagating waves normalized to unit energy transport in the vertical direction, there are general
symmetry properties for reflection and transmission (Kennett et al., 1978)

R0J
D (p) = [R0J

D (p)]T , T0J
U (p) = [T0J

D (p)]T , RFJ
D (p) = [R0J

D (p)]T , TFJ
U (p) = [T0J

D (p)]T (4)

For an isotropic medium, the reflection matrix R0J
D is block diagonal with a 2 × 2 matrix for P-SV waves and

a single element for SH waves. The symmetry property (4) corresponds to symmetry in conversion P-SV and
SV -P. In the case of anisotropy the matrix is full, but the symmetry properties (4) still hold for the various
components.

For a perfectly elastic medium we have a further property for propagating waves:

[R0J
D (p)]T∗R0J

D (p) + [T0J
D (p)]T∗T0J

D (p) = I, (5)

where the star denotes a complex conjugate. The spectral relation (5) corresponds to a direct link between
the autocorrelograms of reflection and transmission processes.

For a perfectly elastic medium, the modified reflection and transmission matrices have the relation

I + RF(p)[RFJ
D (p, 𝜔)]∗ + [RFJ

D (p, 𝜔)]T[RF(p)]T = [TFJ
U (p, 𝜔)]∗[TFJ

U (p, 𝜔)]T , (6)
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where transmission symmetry has been employed to represent the right-hand side in terms of upward
transmission. Frasier (1970) was the first to obtain a relation equivalent to equation (6) for the P-SV sys-
tem, and a convenient derivation is provided by Ursin (1983). Recognizing that the Fourier transform of a
spectrum is the corresponding autocorrelogram, we see that equation (6) implies that the autocorrelation
of the transmission response yields the combination of forward and reversed time reflection response. This
relation, in the time domain, was recognized for purely vertically traveling waves by Kunetz and d'Erceville
(1962) and Claerbout (1968), but we see that it has a much broader validity for purely propagating waves in
transmission. For a weakly attenuative medium we can envisage that equation (6) will remain a reasonable
approximation, but cannot be exact. Equation (6) leads directly to a relation for CR(p,w):

[CR(p, 𝜔)]T∗CR(p, 𝜔) = [WF(p)]∗[WF(p)]T

+ [WF(p)]∗
(
RF(p)[RFJ

D (p, 𝜔)]∗ + [RFJ
D (p, 𝜔)]T[RF(p)]T) [WF(p)]T .

(7)

Let us now consider the autocorrelation of a single slowness component of the surface response by working
in the frequency domain:

[w̄0(p, 𝜔)]T∗w̄0(p, 𝜔) =
S∗

I (p, 𝜔)[Z(p, 𝜔)]
∗[CR(p, 𝜔)]∗[Φ(p, 𝜔)]T∗Φ(p, 𝜔)CT

R(p, 𝜔)Z
T(p, 𝜔)SI(p, 𝜔).

(8)

In equation (8) we can recognize the spectrum of the combined excitation and instrument response
S∗

I (𝜔)SI(𝜔). The propagation phase term [Φ(p, 𝜔)]T*Φ(p, 𝜔)will reduce to the identity in the far field from any
source, since the components are orthogonal and the phase cancels out between the two complex conjugate
terms. We are then left with the far-field contribution:

[w0(p, 𝜔)]T∗w0(p, 𝜔) = [Z(p, 𝜔)]∗[CR(p, 𝜔)]∗CT
R(p, 𝜔)Z

T(p, 𝜔)[S∗
I (p, 𝜔)SI(p, 𝜔)]. (9)

We now can recognize the spectrum of the transmission term [CR(p, 𝜔)]∗CT
R(p, 𝜔) modulated by external

amplitude effects. Recognizing that the Fourier transform of a product produces a convolution in the time
domain, we obtain

[w0(p, t)] = [SI(p, t)] ∗ [CT
R(p, t)] ∗ Ẑ(p, t) (10)

where we have written [ ] for the autocorrelogram. The last term Ẑ(p, t) in equation (10) summarizes the
amplitude effects on the wavefield before it arrives at the base of the local structure. Whatever the nature
of the propagation before energy arrives at the level zJ on its way to the surface, the first two terms on the
right-hand side of equation (10) will be present, whereas Ẑ(p, t) will be variable. We see that the autocor-
relation of the surface displacement at a particular station contains scaled information on the reflection
response of the structure beneath the station including free surface reverberations, but this is convolved
with the combined effects of excitation by distant sources and the instrumental response.

When we concentrate attention on just the vertical component of ground motion, the dominant terms in
[CR(p, t)] will arise from P waves with some conversions for arrivals further away from the vertical.

When we construct the response at an individual station, we combine the estimates of [w0] from many
teleseismic events, with compensation for differential moveout between the different slowness arrivals. The
stacking will emphasize the coherent contribution from [SI] ∗ [CT

R]. Thus, we get a modulated version
of the reflection response beneath the station, including the effects of the free surface.

The process of autocorrelation emphasizes the arrivals that have a systematic pattern of delays. In the case
of upward transmission through the crust, waves reflected back from the free surface such as Ppmp will have
the equivalent delay pattern to a simple reflection from the crust-mantle interface pmp (Figure 3). We can
then think of the stacking process as enhancing such internal crustal reflections which are common to a
wide class of incident waves.

3. Data Selection and Processing
We construct stacked autocorrelograms for over 1,200 permanent and temporary seismic stations across
Australia (Figure 1). For permanent stations, operated by Geoscience Australia, we use all seismic data
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Figure 3. Equivalence of (a) transmission and (b) reflection results in the
presence of a free surface (F) and reflector (m), the dashed path indicates
further surface reflections.

recorded from the starting date of their operations until 31 March 2018.
Temporary stations typically have an operation period of a few months up
to two years. For these stations, we use all of the seismic waveforms
recorded during their operation period. We choose teleseismic events
with Mw ≥ 5.5 and epicentral distances between 30◦ and 90◦ (slow-
ness range of 0.04–0.08 s/km). At these epicentral distances, incoming P
waves are steeply incident and mostly dominate the vertical component.
The P wave coda is extracted from a time window of 10 to 40 s after the
theoretical P arrivals predicted by the ak135 model.

In the next stage, the seismic records with quality issues (e.g., dead traces,
and gaps) are automatically rejected, the mean of each seismogram is first
removed and the resulting waveform is downsampled to 10 Hz. To obtain

the zero-offset reflection response (autocorrelogram) beneath each station, a fourth-order Butterworth
band-pass filter with corner frequencies of 0.5 and 1.5 Hz is applied before and after the autocorrelation.
Traces are then normalized to unit amplitude. The signal-to-noise ratio and the response of the receiver
structure are enhanced through summation (stacking) of the autocorrelation waveforms. The effects of
different source time functions are also suppressed by the band-pass filtering and stacking processes. Of par-
ticular concern is contamination of the selected time window with the secondary deterministic phases such
as reflections from the core-mantle boundary (PcP). By using the AK135 velocity model (Kennett et al., 1995),
we calculate the theoretical arrival times for the direct P waves and PcP reflections. Our calculations show
that PcP reflections associated with events having epicentral distances between 63◦ and 77◦ (ray parameters
of 0.059–0.05 s/km) arrive in our selected time window (Figure S1 in the supporting information). How-
ever, this is not a major concern in this study as the majority of the events for all the seismic stations have
average ray parameters greater than 0.06 s/km (epicentral distances ≤62◦ and ≥30◦). Thus, the determinis-
tic component of the PcP phases are attenuated by the stacking process. Finally, one standard deviation (1𝜎)
bounds for stacked autocorrelograms are also obtained from the variance of the stacks and used as uncer-
tainty measures for data during the inversion. An example of selected events and resulting autocorrelograms
for station AQ3E7 is given in Figure 4.

Further, it is worthwhile analyzing other time windows of the teleseismic P wave coda for retrieving
the stacked autocorrelograms. To do this, we repeat the above processing steps for other time windows
(see supporting information Figure S2). Interestingly, we find that the stacked autocorrelograms resulting
from different segments of P wave coda autocorrelograms are consistent with each other and there are no
significant variations among them.

It is also of particular interest to work out a minimum number of events that are needed for robust estima-
tion of the crustal structure below seismic stations. We investigate this for three seismic stations AQ3E0,
FORT, S3C0 (see Figure 1), and the results are given in the supporting information (Figures S3–S5). We con-
clude that depending on the complexity of the structure below the receiver, one may need at least 30 events
(for a simple structure) to 150 events (for a complex structure) to obtain a comparable velocity structure to
that estimated from an inversion whose input (stacked autocorrelogram) is calculated from the full suite of
available events.

4. Bayesian Inversion of Autocorrelograms
We employ a Bayesian inference approach to solve the nonlinear inverse problem d = g(m), where d is
the data vector containing observations (here the autocorrelation of teleseismic P wave coda) and g(m) is
synthetic data computed using model m. In this framework, the general solution to the inverse problem is
represented by a posterior probability density function (Tarantola, 2005):

𝜎(m) ∝ 𝜌(m)L(m), (11)

where 𝜌(m) is the prior probability distribution over m describing information about model parameters
obtained independently of data d; L(m) is the likelihood function, which is a measure of misfit between
data (d) and predictions (g(m)). The posterior distribution is often high dimensional and does not possess
a simple form in most applications of interest. In such circumstances, Markov chain Monte Carlo sampling
approaches are used to solve the inverse problem.
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Figure 4. The top panel shows an example of earthquake distribution, and the middle panel indicates the stack of all
autocorrelograms, shown in the bottom panel, for station AQ3E7. The bottom panel illustrates that the arrivals
associated with the Moho are aligned and visible between 10 and 15 s.
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In the typical case of independent and identically (normally) distributed observations, we can adopt the
following form for the likelihood function (e.g., Tarantola, 2005):

L(m) ∝ exp
(
−1

2
Φ(m)

)
, (12)

where

Φ(m) =
N∑

i=1

[
dobs

i − gi(m)
𝜎i

]2

(13)

is the misfit function, i refers to data points, N is the total number of data points, and 𝜎i is 1𝜎 uncertainty
associated with data at point i.

We use the Delayed Rejection Adaptive Metropolis (DRAM) algorithm (Haario et al., 2006) to sample the
posterior distribution (equation (11)). DRAM is a combination of Adaptive Metropolis (AM; Haario et al.,
2001) and Delayed Rejection (DR; Mira, 2001) algorithms and has been widely used in many geophysical
applications (Afonso et al., 2016; Ball et al., 2014; Tork Qashqai et al., 2016, 2018). The DRAM algorithm
benefits from the advantages of both DR and AM sampling methods. The traditional Metropolis-Hastings
(MH) sampling algorithm (Metropolis et al., 1953) considers only one proposed distribution at each simula-
tion for the model and tries to accept or reject a sample drawn from the proposal. When the variance of the
proposed distribution is chosen to be too high, most of the models may be rejected. This may be addressed
by employing the DR algorithm that seeks to rectify problems associated with inappropriate proposals for
the model by allowing for a second (or more) modified proposal(s) before rejecting a sample (e.g., search-
ing a region in the parameter space closer to the current position). Thus, DRAM improves the efficiency of
sampling by reducing the number of rejected models.

A proper choice of proposal distribution for the MH algorithm has been identified as a critical factor for
the convergence of the algorithm. In the case where the variance of the proposal distribution is chosen
extremely small in the MH algorithm, the algorithm proposes small jumps, and therefore, it takes a long
time to converge. A possible solution to this can be provided by the AM algorithm that uses the history of
the chain (accepted models so far) in order to update the proposal distribution after some non-adaptation
time. The adaptation process can be iterated at regular intervals.

The number of adaptation, the optimum number of samples needed for adaptation (non-adaptation time),
and the number of samples between adaptations (intervals) depend on the problem. In this study, the total
number of simulations per station is 200,000. Adaptation starts after 100,000 simulations (non-adaptation
time), and the proposal distribution of the model is updated 40 times (every 2,500 iterations). Therefore, the
inversion benefits from the DR algorithm during the entire run time of the inversion with the additional
benefit from the AM algorithm after the non-adaptation period. The inversion approach is computation-
ally efficient. For the current parameter settings and dimensionality of our problem (4 crustal layers; 15
parameters), the total run time of the parallelized inversion including twelve 1-D inversions, each of which
has 200,000 simulations, is 323 s on a Linux machine with 12 processors (one processor for each inver-
sion). However, the run time increases as the dimensionality and the complexity of the target and prior
distributions grow.

5. Model Parameterization, Priors, and Forward Problem
The Earth beneath each seismic station is parameterized with four horizontal and isotropic crustal layers
over an upper mantle layer (half-space). Each crustal layer is described by three main parameters: density
(𝜌), thickness variation (Δh), and Vp∕Vs. Density and Vp∕Vs parameters in the upper mantle, as well as the
slowness are also treated as unknown and directly derived from the inversion. In the inversion, the thickness
of the crust is obtained by randomly perturbing a four-layer version of the CRUST 1.0 thickness model (Laske
et al., 2013). We show in section 6 that the final crustal thickness model estimated from the inversion does
not depend on this initial crustal thickness model.

The prior probability distributions of all model parameters are uniform, and their minimum and maximum
bounds are given in Table 1. The assigned prior ranges for parameters are broad enough to consider all plau-
sible models. During the inversion, when 𝜌 is sampled from its prior distribution by the DRAM algorithm,
we use the empirical relationship proposed by Brocher (2005) to relate it to Vp. Vs is then calculated for
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Table 1
The List of All Unknown Parameters and Priors

Main parameters Minimum Maximum
Density (first layer-kg/m3) 2,400 2,850
Density (second layer-kg/m3) 2,400 2,850
Density (third layer-kg/m3) 2,700 3,000
Density (fourth layer-kg/m3) 2,700 3,000
Vp∕Vs (in all crustal layers) 1.65 1.9

Δh (first layer-km) −3.5 3.5
Δh (second layer-km) −8.0 8.0
Δh (third layer-km) −8.0 8.0
Δh (fourth layer-km) −8.0 8.0
Density (in the upper mantle-kg/m3) 3,200 3,500
Slowness (s/km) 0.04 0.08

each layer from the computed Vp and the unknown Vp∕Vs parameter (drawn from its prior distribution by
the DRAM algorithm; Vs =

Vp

Vp∕Vs
).

Sampled parameters are used in a modified version of the reflectivity code of Randall (1989; respknt) to gen-
erate synthetic seismograms. This algorithm is based on the reflectivity matrix approach of Kennett (1983)
for a cylindrically symmetric medium. The synthetic vertical seismograms at the free surface are then auto-
correlated to estimate the reflection response (autocorrelogram) of the 1-D Earth beneath each station. In
order to have the same frequency content as the observed data for synthetic data, predictions are band-pass
filtered before and after autocorrelation using the same band-pass filter as for data. We do not assume any
discontinuity in the upper mantle.

6. Synthetic Recovery Tests
Four sets of synthetic data associated with four 1-D Earth models are inverted to demonstrate the robust-
ness of the technique in recovering crustal reflections and their properties (Figure 5). The synthetic data
sets are constructed by solving the forward problem for four different known Earth models. Vertical compo-
nents of all synthetic seismograms are computed using a modified version of the respknt program (Randall,
1989) using a slowness of 0.06 s/km. The same processing workflow as applied to real data is used here to
extract synthetic P wave reflectivity traces (autocorrelograms). Low-frequency random Gaussian noise with
a standard deviation of 0.015 is added to each of the synthetic data sets (see Figure S7 in the supporting
information).

Model 1 (Figure 5a) consists of a four-layer crustal model with a relatively thick (5 km) sedimentary layer on
the top. Model 2 (Figure 5b) has the same velocity structure as model 1 but with different layer thicknesses.
Model 3 (Figure 5c) and model 4 (Figure 5d) are rather different to the previous two models. Model 3 is a
three-layer Earth model with a shallower Moho depth. We create this 1-D model to see if the true number
of layers with other crustal properties can be identified by the inversion using a four-layer crust parame-
terization. In model 4, we include a low-velocity upper crustal layer to illustrate the power of the inversion
in recovering negative velocity anomalies. As in real data, crustal thicknesses are perturbed around a refer-
ence crustal thickness model. Here, we use the same prior bounds as used for the real data (Table 1). Crustal
thicknesses for each of the synthetic 1-D models are randomly perturbed around wrong crustal thickness
models (see Tables S1–S4), which are far from the true models.

Probability density plots for the posterior distributions of Vp and crustal discontinuities are drawn from the
best 2,000 accepted models, as well as fits to observed data clearly show that the Bayesian inversion reliably
recovers the “true” crustal models in the presence of noise in the autocorrelogram. Given the sensitivity of
autocorrelograms to the discontinuities, and the wide ranges used for priors, the posterior distribution for
some depths and Vp are not fully resolved in models 1 and 2. However, as expected, the mean solution (blue)
is a smooth version of the true model and the data fit is excellent. In model 3, despite using a four-layer
parameterization in the inversion, the true model (three-layered Earth) is well recovered by the posterior
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Figure 5. Synthetic tests for four different 1-D synthetic earth models (a–d) to show the resolving power of the technique in recovering crustal reflections and
their properties. In (a)–(d), the left panels are the posterior distribution of the Vp structure from the best 2,000 accepted models. The right panels display the fit
to stacked autocorrelograms contaminated by random Gaussian noise. Gray colors are the best 2,000 predictions. Dashed lines are 1𝜎 observational uncertainty
level obtained during the stacking of the observed autocorrelograms. In (a)–(d), the cyan color is the synthetic data (right) or the synthetic structure (left) and
the blue color indicates the mean solution.

ensemble of models. In general, our tests show that a parameterization with a sedimentary layer over three
crystalline layers can better fit data at some locations compared to a three-layered crust parameterization. In
model 4, where the velocity jump across the crust-mantle boundary is less than the other models, the true
structure is fully resolved and is within the high probability regions of the posterior distribution. Slowness
values for all models are also fully recovered, and their associated posterior distributions are shown in Figure
S8 (supporting information). Synthetic tests, especially for the model 1 and model 3, suggest that if the
velocity jump across crustal discontinuities is smaller than 1𝜎 posterior uncertainties, and/or the inversion
is overparameterized (e.g., by one layer), we might obtain a smooth version of the true subsurface structure.
The recovery of the synthetic Vs structures for the models 1 to 4 is also given in the supporting information
(Figure S9).

6.1. The Exponential Weighting Function
A challenge that emerged during the inversion of real data was the effect of side lobes of the zero-lag autocor-
relation peak on the inversion results. This effect becomes more pronounced for shallow reflections, where
it can lead to a poor fit to the crustal reflections at some stations. To solve this problem, the autocorrela-
tion of the teleseismic P wave coda is multiplied by an exponential weighting function to dampen the high
amplitudes of the autocorrelogram's side lobes (e.g., ∼ 0–2.0 s):

g(t) = a × tb × exp( t
c
), (14)

where t is the two-way travel time (0–30 s), b, c, and a are empirical constants determined by trial and error
to suppress the amplitudes of the autocorrelograms around the side lobes. After a number of tests, b and c
are fixed (b = 1.3 and c = 1,000), while different a values are examined for decreasing the amplitudes of the
autocorrelation's side lobes.
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Figure 6. This figure illustrates that each of the subjective weighting values
(a coefficients in the exponential weighting function introduced in section
6.1) can change the amplitudes of a synthetic autocorrelogram significantly
if they are individually applied on the entire autocorrelation window. The
autocorrelogram is modeled using the synthetic model 1 given in Figure 5.
The amplitudes of the autocorrelogram after applying the exponential
function with different weighting values are compared with the amplitude
of the unmodified autocorrelogram (blue autocorrelogram) and the
autocorrelogram obtained from applying equation (14) with the chosen
weighting values a1 to a9 (cyan autocorrelogram) and time windows. The
result for applying the exponential weighting function with the three time
windows (black autocorrelogram) instead of nine time windows (see
section 6.1) is also given for comparison purposes.

In Figure 6, we show the results of applying the exponential weighting
function, equation (14), on a synthetic autocorrelation using different
a values. The synthetic autocorrelogram (thick blue autocorrelogram in
Figure 6) is modeled using the synthetic velocity model 1 (see section 6).
As can be seen from the figure, relatively high a values (a = 0.5, a = 0.25,
a = 0.14, a = 0.1) can be chosen to dampen the amplitudes of the side
lobes. However, they also modify the rest of the autocorrelogram signifi-
cantly including the Moho reflection (around 13.5 s). On the other hand,
if very small a values are chosen, the amplitudes of the later arrivals
(10–30 s) are left relatively unchanged, whereas the amplitudes of the first
10 s of the trace are notably decreased. To overcome this problem, the
entire autocorrelogram is divided into nine small time windows and dif-
ferent time windows are multiplied by the equation (14) with different
a values to only change the amplitudes of autocorrelation at first 2–3 s
and leave the rest of trace relatively unchanged. Values of b and c are
kept fixed for all windows and set to 1.3 and 1000, respectively. Values
of a1 to a9 and the nine time windows are determined as follows: a1=0.5
(0≤ t ≤ 1.5 s), a2 = 0.25 (1.6≤ t ≤ 3.4 s), a3 = 0.14 (3.5≤ t ≤ 5.0 s), a4 = 0.1
(5.1 ≤ t ≤ 6.3 s), a5 = 0.075 (6.4 ≤ t ≤ 8.2 s), a6 = 0.056 (8.3 ≤ t ≤ 9.7 s),
a7 = 0.0435 (9.8 ≤ t ≤ 12.3 s), a8 = 0.035 (12.4 ≤ t ≤ 16.4 s), a9 = 0.02
(16.5 s ≤ t).

When working with real data, the amplitude pattern may not be as the
same as that for the synthetic autocorrelograms. Therefore, the a, b, and
c values are carefully selected to preserve the amplitude of later arrivals
(t > 3.5 s) as far as possible. In Figure 6, we show that applying an expo-
nential weighting function with three time windows and a coefficients
(black autocorrelogram) including a1 = 0.25 (0 ≤ t ≤ 5 s), a2 = 0.14
(5.1 ≤ t ≤ 10 s), and a3 = 0.0435 (10.1 ≤ t s) cannot preserve the ampli-
tudes of the original autocorrelogram at t≥5 s as far as the chosen one
with nine time windows.

This weighting process improved data fit and led to obtaining a more reliable structure at locations where
the inversion failed to fit data properly (especially Moho reflections). Examples of such improvements for
some stations, where their locations indicated by magenta hexagons in Figure 1, are given in the supporting
information. By using synthetic and real data, we show in the supporting information (Figures S10–S15) that
applying the weighting function does not significantly change the results for the deep crust (e.g., Moho) but
slightly increases the Vp uncertainty (broadening the posterior distribution of Vp) at shallow depths. In the
supporting information (Figure S16), we also show the map of minimum misfit obtained from 1-D inversions
without applying the weighting function (see sections 7.1 and 7.2 for more details about the interpolation
scheme). A comparison between this map and Figure 8 (see next section) implies that applying equation (14)
improved the data fitting.

7. Results and Discussion
7.1. 1-D Examples and Misfit
In this section, we focus on 1-D examples of Vp structures obtained from the inversion of real data and
the misfit between the data and predictions. The posterior distribution of Vp structure and also predicted
autocorrelograms obtained from the best 2,000 accepted models for eight seismic stations (black circles in
Figure 1) are plotted in Figure 7 as examples. The misfit between observed and predicted autocorrelograms
is satisfactory at most of the stations. However, the number of events was ≤10 for a few stations, which pro-
duced unrealistic observational uncertainties during the stacking. Therefore, the inversion was unsuccessful
to give a satisfactory level of a misfit at these locations (the inversion accepted only a few models). These sta-
tions are indicated by red circles in Figure 8, which shows the 2-D map of misfit between the observed and
predicted data (divided by the total number of data points). This map is obtained through an interpolation of
the minimum misfit values (e.g., the misfit value associated with the model that best describes data) of 1-D
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Figure 7. 1-D examples showing fits to the stacked autocorrelograms (right panels in a–h) and the probability density plots of the recovered Vp structure (left
panels in a–h) for eight seismic stations shown by circles in Figure 1. In showing the Vp structures, the blue colors are the mean solutions while in the figures
representing fits to data red and blue colors are data and the mean of the best 2,000 predictions (gray colors), respectively. Dashed lines are 1𝜎 observational
uncertainty level obtained during the stacking of the observed autocorrelograms. The exponential weighting function (equation (14)) has been applied to all
autocorrelograms during the inversion.
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Figure 8. The 2-D map of minimum misfit between the observed and
predicted data (unitless). The map obtained via the interpolation of the
minimum misfit values (obtained via equation (11)) associated with 1-D
inversions. These values are divided by the total number of data points (301
in the present work) before the interpolation. For some stations, the
number of events was ≤10, which led to obtaining unrealistic observational
uncertainties during the stacking. Therefore, the inversion was unsuccessful
to fit data appropriately (e.g., low acceptance ratio). The misfit values
associated with these stations are not used in producing the misfit map.

inversions. The misfit values associated with stations given in Figure 8
are excluded from the interpolation calculation.

Figures 7 and 8 demonstrate that the fit to data at most of the locations is
generally good (misfit ≤0.1) and thus results from the inversion are reli-
able and can be considered as the first-order estimate of the deep crustal
properties. We assume a 1-D Earth model with four uniform isotropic
crustal layers, each of which is characterized by uniform physical prop-
erties. Additionally, we assume no discontinuities in the upper mantle.
Therefore, it is obvious that at locations where the nature of the struc-
ture beneath the station violates our assumptions, the teleseismic P wave
coda becomes far more complex and the misfit values are expected to
be relatively high. In such cases, the 1-D structures and the inferred 3-D
structure (see next section) around those particular locations have higher
uncertainties.

7.2. Moho Structure
Results from the 1-D inversions at the full suite of stations are com-
bined through interpolation (stations given in Figure 8 are excluded) to
image Moho and pseudo 3-D Vp structures (and their related uncertain-
ties) across the continent (section 7.3). The interpolation technique from
the Generic Mapping Tools package (Smith & Wessel, 1990; Wessel et al.,
2013) is used to construct a grid with 0.5◦ × 0.5◦ resolution for crustal
structure across the Australian continent. The mean values of the poste-
rior distributions of crustal parameters, for example, Moho and Vp, are
used as input for interpolation calculations.

The Moho structure and its 1𝜎 uncertainty, derived from its posterior dis-
tribution, are shown in Figures 9a and 9b, respectively. In the supporting

information (Figure S17), we also provide posterior distributions (as histograms) of the depth to Moho for
stations whose 1-D Vp structures are shown in Figure 7. The 1𝜎 uncertainties are ≤10% of the maximum
Moho depth (≤6.0 km). Since the autocorrelograms are more sensitive to velocity/density discontinuities
(similar to receiver functions), one of the possible reasons for the high uncertainties (e.g., 5 km) is the lack of
strong impedance contrast at the crust-mantle boundary at some locations, especially in east and southeast
of Australia (Kennett et al., 2011, 2015). The wide prior ranges used for crustal thickness variations (Table 1)
could also contribute to the higher uncertainties. In Figure 9c we show the Moho map obtained by Salmon
et al. (2013; the AuSREM Moho model), which has been derived using multiple seismic methods, such as
deep seismic reflection profiles, receiver functions studies, and seismic refraction experiments.

In Figure 9d, we display the difference between our Moho depth model and the AuSREM Moho model,
where the negative values denote deeper Moho depths obtained in this study. In many parts of the continent,
the velocity contrast across the crust-mantle boundary is gradational, and its thickness varies between 2
and 8 km (Salmon et al., 2013). Part of the reason for shallower Moho found in the present study at some
locations is that our parameterization cannot capture this transition. Thus, we believe that shallower Moho
depths obtained here are likely the top of this transition zone (e.g., east of Australia). Another reason for
differences between our Moho map and the AuSREM Moho map is that the AuSREM model employed
multiple data sources, which provide a different pattern of coverage. For example, while we have a limited
number of stations in central Australia, the AuSREM Moho values in this area were estimated from several
seismic refraction and reflection surveys. Therefore, we have limited resolution after the interpolation in
central Australia, leading to large differences with the AuSREM Moho values in this region.

Nevertheless, the overall pattern of our Moho depth model is highly comparable to that obtained by Salmon
et al. 2013; Figure 9c). The majority of the difference between our model and the AuSREM Moho model is
mostly negligible (±2 km) and is between 2 and 6 km at some localities across the continent (e.g., central
Australia). These differences lie within the 1𝜎 uncertainty of the posterior distribution of the Moho depth.
The consistency of our results with the AuSREM Moho model is suggesting that the Bayesian inversion of
autocorrelograms can produce comparable results to those from receiver function and seismic reflection
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Figure 9. (a) The Moho structure map estimated from the inversion of autocorrelograms. Seismic stations used in this
study are superimposed (gray circles). (b) The 1𝜎 uncertainty map constructed from the posterior distribution of the
Moho depth across the continent. (c) Map of the Australian Seismological Reference Model (AuSREM) Moho model
estimated by (Salmon et al., 2013). (d) The map of difference between (a) and (c). Negative values indicate deeper
Moho found in this study.

methods. It is noteworthy that we find deeper Moho in the southeast of the Eromanga Basin and under-
neath the Murray Basin and also in an area with a relatively thick crust near 33◦S and 140◦N, as seen in deep
reflection profiling (Kennett, 2015) and receiver functions (Fontaine et al., 2013) images. These results are
also consistent with those obtained by Kennett et al. (2015) using spatial stacking of high-frequency autocor-
relograms. Shallower Moho depths imaged here around 37◦S and 148◦N also matches the results of Kennett
et al. (2015). In summary, the dissimilarity between our Moho model and the AuSREM Moho model may be
generally due to different approaches and/or data sets with disparate sensitivities and coverage being used.

7.3. Vp Structure
As the tectonic interpretation of the Vp structure is beyond of the scope of this paper, in this section we only
summarize the general pattern of our Vp model and compare it with the AuSREM model (Salmon et al.,
2013). For this purpose, depth slices at depths of 5, 10, 20, 30, 40, and 50 km are given in Figure 10. The
same depth slices are also depicted for Vs in the supporting information (Figure S18). Some selected vertical
slices from the inverted 3-D Vp structure along profiles AA′ ′ , BB′ ′ , CC′ ′ , and DD′ ′ (shown by dashed lines in
Figure 10) are plotted in Figure 11.

The primary control on the AusREM crustal P wave velocity model comes from the seismic refraction pro-
files, which are sparse and do not provide full coverage of the majority of Australia. Additional information
has been estimated from receiver function studies and ambient noise tomography (Saygin & Kennett, 2012)
via conversion of Vs to Vp. The latter provides a good continent-wide coverage down to 25 km depth. Below
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Figure 10. Depth slices of Vp structure at 5, 10, 20, 30, 40, and 50 km. Profiles AA′ ′ to DD′ ′ are also shown by dashed
lines in the 5 km depth slice. Abbreviations: Carnarvon basin (Cb), Amadeus basin (Am), Canning basin (Ca),
Cooper-Eromanga basin (C-E), Officer basin (Of), Murray-Darling basin (MD), Surat basin (Su), Kimberley Block (Ki),
Drummond basin (Db), Fitzroy trough (Ft), and Bowen basin (Bb).
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Figure 11. 2-D cross sections of Vp along profiles AA′ ′ to DD′ ′ . Moho along each profile is shown by a black dashed
line. The abbreviations are as given in Figure 10.

this depth, results of Vp from ambient noise tomography are not reliable as discussed in Salmon et al. (2013).
Therefore, for depths ≥25 km, Salmon et al. (2013) used only the estimate of the Vp obtained from refraction
studies with lower-weighted extra information from receiver function studies. Even though the AuSREM
Moho model, obtained from seismic reflection and receiver function studies, has moderate coverage across
the continent, the AuSREM Vp velocity model is less constrained by the limited coverage of seismic refrac-
tion experiments. However, we have better coverage across the entire continent by exploiting teleseismic
P wave coda recorded on the permanent and portable seismic stations for constraining the Vp structure.
An important point about the AuSREM model is that it will evolve over time when new data and methods
become available. As an example, Kennett et al. (2015) updated the Moho depth of southeast Australia by
spatially stacking of the crustal P wave reflectivity estimated from autocorrelograms. Recently, the Moho
structure of Australia has been updated by Kennett et al. (2018) using the full range of available informa-
tion by the end of 2016, including those extracted from many data points (seismic stations) that were not
available for the model produced by Salmon et al. (2013).

Despite differences between our absolute Vp values and those from AuSREM, the general pattern of our Vp
structure is consistent with the AuSREM crustal model (Figure 10). Although we have limited resolution at
shallow depths, the signature of thick sediments is evident by low Vp at 5 km depth in the Canning, Officer,
Amadeus, Cooper-Eromanga, and Drummond basins, as well as the Murray-Darling, Surat, and the Bowen
basins. Arroucau et al. (2010) also found a low shear wave velocity anomaly near west of Murray-Darling
basin at middle-upper crustal depths and related this anomaly to part of the infrabasin that is thicker and
broader than previously imaged. The location of low Vp in the 5 km depth slice in the Canning basin also
matches with the location of low Vs obtained from the ambient noise tomography of Saygin and Kennett
(2012) at the same depth.
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At 10 and 20 km depths Vp structure indicates high wave speeds in the Western Australia and a few localities
across the continent. Interestingly, the influence of thick sediments is still visible at the Officer, Surat, and
Canning basins. In general, the Vp values at depth slices of 10, 20, 30, and 40 km show high velocities in the
range of 6.0–7.15 km/s. For the deep crust (e.g., 30 to 50 km depth), there is a good correlation between the
pattern of Vp and Moho depth (Figure 9a) structures, indicating that areas with deeper Moho are character-
ized by lower seismic velocities and vice versa. A distinct feature of our Vp model and AuSREM crustal Vp
structures is the narrow northwest/southeast trending zone of lower velocity (relative to its surroundings)
on the southern borders of Kimberly block seen in the depth slice at 30–40 km. This zone approximately
coincides with the location of the Fitzroy trough (Ft) that has a narrow zone of thick sediments (Figure 3 in
Salmon et al., 2013).

Our velocities are higher than AuSREM velocities, as we incorporated the higher powers of Vp when linking
density to Vp, which was not the case in Salmon et al. (2013). Also, we have not had to make any conver-
sions between Vs and Vp. Another caveat is that in the case of gradational transition from the crust to the
upper mantle, due to the employed parameterization, the inversion may slightly overestimate lower crustal
velocities to fit the observed data by sampling the higher velocities to reduce the velocity contrast across the
crust-mantle boundary. Therefore, the velocity distributions presented here likely indicate the upper bound
of the actual crustal velocity distribution. Such differences are not surprising given the fact that the two Vp
models have been estimated through (i) different data sets with different inherent sensitivities and (ii) dif-
ferent methods with dissimilar constraints or assumptions being used. Here we should emphasize that our
approach does not depend on conversions between wave types and allows access to a wide range of frequen-
cies. Also, except for very complex near-surface structures, the reflections extracted from autocorrelations
are less contaminated by the free surface multiples compared to the receiver functions (Kennett et al., 2015;
Kennett & Sippl, 2018; Sun & Kennett, 2016). Therefore, the inversion of these data can be more feasible than
the inversion of receiver functions. However, the limitations of the inversion approach arise from the use
of simplified model/parameterization as well as relatively high uncertainty due to single data set inversion,
which will be addressed in future work.

8. Conclusion
We have developed a new approach for crustal imaging by utilizing teleseismic P wave coda autocorrelo-
grams for a large number of permanent and temporary seismic stations. We have demonstrated that the
Bayesian inversion of teleseismic P wave coda autocorrelograms is a useful and efficient approach to map
deep crustal structure and can serve as a framework for future developments and improvements. Our syn-
thetic tests show that we are able to recover a first-order estimate of the true crustal structure using this
kind of data in the presence of seismic noise. We have applied the approach to all available permanent
and portable seismic stations (over 1,200) across Australia to image Moho depth and crustal structure. The
inversion results produce patterns of structures highly consistent with the previous crustal model obtained
from many other seismological sources and methods. Our results confirm the utility of this approach, which
removes the need for subjective picking of the Moho reflections in autocorrelation images. The framework
used here can be further developed to taking into account the gradational transition from the crust to the
mantle. The method is more cost effective than active seismic surveys/methods and can be used as an alter-
native tool for imaging shallow and deep crustal features when inversion of the receiver functions or deep
seismic reflection profiling is not applicable.
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