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Abstract— When a group of agents such as unmanned aerial
vehicles are operating in 3-dimensional space, their coordinated
action in pursuit of some group objective generally requires all
agents to share a common coordinate frame or orientations of
the coordinate axes of agents up to an unknown coordinate
rotation common to all agents, which are simply referred to as
having common coordinate axis orientations. Given coordinate
axes that are initially unaligned, this paper considers the process
of using direction measurements between agent pairs (obtained
in their own coordinate frames) to achieve orientation localiza-
tion, i.e. determination of common coordinate axis orientations,
the calculations all being distributed. The process builds on the
initial determination of relative orientations of agent pairs in
a common coordinate basis. Distributed differential equations
then allow determination of a common set of coordinate axis
orientations, uniquely up to a common rotation transformation,
which can itself be determined if and only if one or more agents
have access to global coordinates.

I. INTRODUCTION

Many formation control problems involving e.g. un-
manned aerial vehicles require substantial coordination be-
tween the vehicles that is only possible when the agents
have a common understanding of certain physical quanti-
ties [1]–[4]. For example, a very common requirement is
for all agents to have the same view as to the directions
of north/south, east/west, and up/down, i.e. the coordinate
frames in which each agent views the world are required to
be aligned, (or equivalently, the orientation of the agent’s
coordinate frame with respect to global coordinates needs to
be determined). However, unless agents are equipped with
e.g. a compass sensor, this may not be possible. Indeed,
while most agents are likely to have sensors to allow inertial
navigation, even if the frames are aligned at t = 0, the
inevitable drift means that after some finite period, alignment
of frames cannot be assumed.

Without the common orientation information, either global
orientation estimation [2] or coordinate frame alignment [3],
[4] is required to achieve the target formation. The former
method provides a global convergence with more commu-
nications. There has been considerable past work dealing
with this problem; such orientation estimation schemes have
attracted interest recently, see e.g. [2], [5], [6]. The algo-
rithms are attractive when they exhibit global convergence,
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as is typical, or is at least almost always the case. In [2],
the authors propose an orientation estimator by defining a
vector auxiliary variable for each agent. They further extend
the orientation estimation method for arbitrary dimensional
spaces, which still guarantees almost global convergence, by
using relative orientation information [5]. When the relative
orientation measurements are affected by noise, an efficient
maximum likelihood estimator, which is locally optimal, is
proposed in [6]. In such orientation estimation schemes,
the orientations of the coordinate axes of all agents are
estimated up to an unknown coordinate rotation common to
all agents. The orientations of the coordinate axes of agents
up to an unknown coordinate rotation common to all agents
are simply called common coordinate axis orientations, and
the process of determining the common coordinate axis
orientations is referred to as orientation localization.

The unknown coordinate rotation just mentioned can be
determined if there exists at least one agent that knows
the true orientation of its coordinate axes. This allows
the orientations of the coordinate axes of other agents to
be precisely computed by utilizing kinematic relationships
between the agents, a process which may be called absolute
orientation localization.

For a two-dimensional (2-D) ambient space, orientation
localization laws using angles of arrival between triplets of
nodes are proposed in [8] and an orientation localization
method utilizing orientation knowledge of a few nodes is
presented in [7]. The authors in [9] further proposed a
least-squared optimization problem to achieve orientation
localization by exploiting kinematic relationships among
the orientations of nodes. In 3-dimensional space (3-D),
some necessary and sufficient conditions are provided for
orientation localizability of triangular sensing networks in
[9], without providing a distributed orientation localization
law. Orientation localization schemes using relative orienta-
tions, which are measured by a vision-based technique, are
investigated in [10], [11].

In 2-D, it is straightforward to see how two neighboring
agents observing each other might determine a common view
of their relative orientation, within an unknown constant
rotation common to both, see e.g. [2], [3]. Each agent main-
tains a (possibly body-fixed) coordinate frame and measures
the orientation of its neighbour agent (assuming direction
sensing technology). In any common frame, the measured
angles must differ by precisely π radians. Hence a rotation
of the coordinate axes of one agent can be made to ensure
that after rotation, the difference is overcome. For an n agent
network, one has to put together in a distributed fashion a



collection of such calculations.
How to do something like this in a 3-dimensional ambient

space is less clear, and the presentation of an algorithm is
one of the contributions of this paper. The key is to use
not a single pair of inter-agent direction measurements, but
rather direction measurements between three agents forming
a triangle (a ‘triangular sensing network’). The proposed
method can then be extended to the n agent case for many
graphs by using an analog of Henneberg extensions [13].
The computations involving a triangular sensing network are
closely related to the work of [12], but in distinction from
that work, we calculate the relative orientation by defining
some basic rotations which align two associated coordinate
frames, before extending the process to n agent systems in
a manner allowing determination of consistent orientations
for all agents simultaneously.

There are in fact three basic steps in our procedure;
(a) For a given pair of agents i and j observing the direc-

tion of each other, we compute two rotations whose
composition aligns the x-axes of the two coordinate
frames.

(b) Using direction measurements to and from a third
agent k, a third rotation is determined which achieves
the desired alignment of the other two coordinate axes
and provides the rotation matrix or relative orientation
matrix, call it Rij , which transforms the directions
of the original coordinate axes of one agent into the
directions of the original coordinate axes of the other.

(c) The set of such relative orientation matrices is then
used in a differential equation to determine a consistent
set of orientations defined by rotation matrices Ri, the
orientations being relative to some presumed global
coordinate basis; the orientations are only known up
to a common constant rotation, which will be deter-
minable if at least any one agent has access to global
coordinates.

Unsurprisingly, in order for the above steps to proceed sat-
isfactorily, certain graphical conditions need to be satisfied.
Figure 1 depicts, necessarily with oversimplification, much
of the above procedure. The relative orientation computation
referred to in the caption can only be determined when a third
agent is involved (see Fig 2a). The third step is analogous to a
method proposed in our previous work [5], which is extended
here to a matrix form with matrix auxiliary variables.

This paper is organized as follows. Section II contains
preliminaries and problem formulation. The procedure for
calculating relative orientation using direction-only infor-
mation in 3-D is presented in Section III. In Section IV,
we propose two orientation localization schemes by using
relative orientation information. Finally, concluding remarks
are given in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper we use the following notations. Given two
vectors x,y ∈ Rd, their dot product is denoted by x · y and
(x,y) denotes the plane defined by x and y. The symbol
Σ represents a global coordinate frame and the symbol kΣ

Fig. 1: The agents i and j respectively measure the directions
bi
ij and bj

ji in local coordinate frames. Using these measure-
ments, they would like to decide the relative orientation Rij .
Then, with the calculated Rij , they would like to decide the
orientations Ri and Rj .

with the superscript index k denotes the k-th local coordinate
frame. Let 1n = [1, . . . , 1]T ∈ Rn be the vector of all
ones, and Id denotes the d × d identity matrix. Let ⊗ be
the Kronecker product. The set of rotation matrices in Rd is
denoted by SO(d) = {Q ∈ Rd×d | QQT = Id, det(Q) = 1}.

A. Directional vector and orientation of agent

Consider n single-integrator modeled agents in d-
dimensional space

ṗi
i = ui

i, i = 1, . . . , n, (1)

where pi
i ∈ Rd and ui

i ∈ Rd denote the position and
control input of agent i, respectively, expressed in its body-
fixed coordinate frame iΣ. We define the unit directional
vector pointing from agent i toward its neighbor j along the
direction of pij (pij = pj − pi) as

bij ,
pj−pi

‖pj−pi‖ =
pij

‖pij‖ .

The directional vector with the reverse direction is bji =
−bij which points from agent j toward i. The direction from
agent i to j expressed in iΣ is denoted as bi

ij .
Orientation or attitude of agent i in Rd can be charac-

terized by a square, orthogonal matrix Ri ∈ SO(d) whose
column vectors represent the coordinates of the orthogonal
bases of the i-th local coordinate frame expressed in the
global coordinate frame. Thus, Ri can be understood as the
rotation matrix which rotates the global coordinate system,
i.e., Σ, to the local coordinate frame iΣ.

B. Graph theory

An interaction graph characterizing an interaction topol-
ogy of a multi-agent network is denoted by G = (V, E),
where, V = {1, . . . , n} denotes the vertex set and E ⊆ V×V
denotes the set of edges of G. An edge is defined by the
ordered pair ek = (i, j), k = 1, . . . ,m,m = |E|. The graph
G is said to be undirected if (i, j) ∈ E implies (j, i) ∈ E , i.e.
if j is a neighbor of i, then i is also a neighbor of j. If the
graph G is directed, (i, j) ∈ E does not necessarily imply
(j, i) ∈ E . The set of neighboring agents of i is denoted by
Ni = {j ∈ V : (i, j) ∈ E}. The Laplacian matrix L = [lij ]
associated with G is defined as lij = −1 for (i, j) ∈ E , i 6= j,
lii = −

∑
j∈Ni

lij , ∀i = 1, . . . , n, and lij = 0 otherwise.
The graph G contains a rooted-in spanning tree if there exists
at least one node reachable by at least one directed path from
every other nodes.



C. Gram-Schmidt orthonormalization procedure (GSOP)
For a set of d independent vectors Z = {z1, . . . , zd}in Rd,

the Gram-Schmidt orthonormal process (GSOP), which con-
structs d orthonormal column vectors of Q = [q1, . . . ,qd] ∈
Rd×d from Z , is defined as follows

v1 := z1, q1 := v1/‖v1‖,
v2 := z2 − 〈z2,q1〉q1, q2 := v2/‖v2‖,

. . . . . .

vd := zd −
∑d−1

k=1〈zd,qk〉qk, qd := αvd/‖vd‖,

where 〈·, ·〉 denotes the inner product, and the coeffi-
cient α is chosen such that det(Q) = +1 as α :=
sign (det([q1, . . . ,qd−1,vd/‖vd‖])) .

Remark 1: The orthonormality of column vectors of Q
and det(Q) = +1 imply that Q ∈ SO(d). In R3, Q contains
coordinates of bases of a right-handed Cartesian coordinate
frame.

D. Problem formulation

Let Rk ∈ SO(3) be the orientation of agent k, for all
k = 1, . . . , n. Let Rij be the relative orientation of j-th local
coordinate frame jΣ with respect to the i-th local coordinate
frame iΣ which is calculated by

Rij = R−1i Rj = RT
i Rj . (2)

For any nonzero vector x ∈ R3 we have the following
relationship

xk = RT
k x, ∀k = 1, . . . , n. (3)

We first address the problem of calculating the relative
orientation Rij based on direction information.

Problem 1: For two neighboring agents i and j in R3 pos-
sessing common neighbors, compute the relative orientation,
i.e., Rij , based on direction information bi

ij and bj
ji, and

for some k ∈ Ni ∩Nj , the directions bi
ik and bj

jk.
It is noteworthy that in Problem 1 the two agents i and

j and a common neighboring agent, k, form a triangular
sensing network (see Fig. 2a). In the following section, we
will show that the relative orientation Rij can be calculated
from direction-only information of the triangular sensing
network by deriving some basic rotations which align two
associated coordinate frames.

For a general n-agent system, suppose that the interaction
topology is given by a connected undirected graph G =
(V, E). Specifically, if (i, j) ∈ E , agent i computes the
relative orientation Rij by using bi

ij ,b
j
ji,b

i
ik, and bj

jk of
a triangular sensing network, which includes i, j, and the
third agent k (see Fig. 2a). Note that agent j needs to send
the information bj

ji and bj
jk to agent i. For each agent

i ∈ V = {1, . . . , n}, the second task formalized below in
Problem 2 is to determine its coordinate frame orientation,
which is denoted as R̂i ∈ SO(3), by using the relative
orientations Rij , j ∈ Ni, and auxiliary matrices, which
will be defined in the following section, communicated from
neighbor agents j of agent i. Note that since the graph G is
connected and undirected, it contains at least one rooted-in
spanning tree.

The second problem investigated in this work is now
formally stated.

Problem 2: Consider a system of n agents whose inter-
action graph is undirected and connected. Using the relative
orientation information (2), design an orientation localization
law to compute quantities R̂i → (Q∞)TRi where Q∞ ∈
SO(3) is an unknown rotation matrix common to all agents.

Remark 2: It is evident that the objective of the orientation
localization law in the Problem 2 is to estimate Ri, up to
a common coordinate rotation (Q∞)T , ∀i = 1, . . . , n, an
objective called relative orientation localization in this paper.

Finally, we study an absolute orientation localization prob-
lem based on relative orientation information and global
orientation knowledge of one or more anchor nodes.

Problem 3: For a system of n agents whose interaction
graph G is undirected and connected, design an absolute ori-
entation localization law such that R̂i → Ri (i = 1, . . . , n),
asymptotically, by using relative orientations (2) and global
orientation knowledge of one or more anchor nodes.

III. RELATIVE ORIENTATION CALCULATION USING
DIRECTION-ONLY MEASUREMENTS

In this section, we obtain inter-neighbor relative orien-
tation from some kinematic and geometrical relationships,
by which two neighboring agents’ coordinate systems can
be aligned. Consider a directional vector connecting two
neighboring agents. Let Qbij

∈ SO(3) be a rotation about
the directional vector bij which preserves coordinates of the
directional vector. Then, we have

Qbij
bij = bij ,

from which it is evident that bij is an eigenvector of Qbij

corresponding to the eigenvalue λ = 1. Consequently, the
coordinate frame iΣ is determined up to the coordinate
rotation Qbij

with regard to the given direction bij . Figure
2b graphically illustrates the ambiguity when aligning two
inter-neighbor coordinate systems by using only a pair of
directional vectors, bij and bji. That is, even if the x-axes
of the two neighboring coordinate systems are transformed
to be aligned with bij and −bji, respectively, the other
axes are not (at least normally) aligned with each other. So,
when the x-axes are aligned, the relative orientation of the
resulted coordinate systems is determined by a rotation about
the directional vector (see Fig. 2b). Consequently, to secure
an alignment between two coordinate systems, we need to
have one more rotation. The following subsections provide
a procedure to align two coordinate systems by consecutive
basic rotations.

A. Alignment between x-axis and directional vector
To compute the two successive basic rotations [18] which

align the x-axis of the coordinate frame iΣ with the direction
bij , we first decompose bij into bij = bij|| + bij⊥ such
that bij|| lies in (xi, yi) plane and bij⊥ is perpendicular to
the plane (xi, yi) (see Fig. 3a). Let

{
eixi

, eiyi
, eizi

}
be the

standard basis of iΣ; then bi
ij|| and bi

ij⊥ can be defined as

bi
ij⊥ = [(bi

ij)
Teizi ]e

i
zi , and bi

ij|| = bi
ij − bi

ij⊥.



(a) Direction-based sensing and
communication

(b) Orientation alignment based
on directional vectors

Fig. 2: Direction-based relative orientation measurement in
3-D.

The signed angle θi between the exi
and bij|| is obtained

as
θi = atan2

(
(eixi
× bi

ij||) · e
i
zi , e

i
xi
· bi

ij||
)
. (4)

If iΣ1 is obtained from iΣ by the rotation Qz(θi) with the
rotation matrix Qz(θi) that is determined as in Fig. 3b, then
the signed angle ψi between two vectors bij|| and bij is
given as

ψi = atan2
(
(ei1xi1

× bi1
ij ) · ei1yi1

, ei1xi1
· bi1

ij

)
, (5)

where bi1
ij = Qz(θi)

Tbi
ij . Note that Fig. 3 describes the

two-steps procedure. First, rotate iΣ about zi by the angle
θi, followed by the rotation of ψi about the new y-axis. Con-
sequently, the x-axis of the transformed coordinate system
iΣ2 becomes aligned with bij and the combined rotation
transformation is obtained as Qz(θi)Qy(ψi).

B. Full coordinate frame alignment using triangular sensing

Note that to align two coordinate frames in 3-D, generi-
cally three successive basic rotations are required [18]. Via
the approach of the previous subsection, two consecutive
basic rotations1 are derived to make the x-axes of two
coordinate frames become aligned with the direction con-
necting two neighboring agents. Thus, we need to have one
more rotation. To add one more rotation, we will introduce
a supplementary directional information from a triangular
sensing graph.

Suppose that the two neighboring agents, i and j, sense di-
rections to the third agent, k (see Fig. 2a). To define the third
rotation that can be combined with the two aforementioned
rotations, we first decompose bi2

ik, which is determined by

bi2
ik = [Qz(θi)Qy(ψi)]

T
bi
ik (6)

into bi2
ik⊥ = [(bi2

ik)Tei2xi2
]ei2xi2

and bi2
ik|| = bi2

ik − bi2
ik⊥, such

that bik⊥ ⊥ (yi2, zi2) and bik|| ∈ (yi2, zi2) (see Fig. 4). Note
that bik|| is the projection of bik onto the plane perpendicular
to the directional vector bij , which is aligned with the x-
axis in iΣ2. The signed angle ϕi between ezi2 and bik|| is
computed similarly to (4) as

ϕi = atan2
(
(ei2zi2 × bi2

ik||) · e
i2
xi2
, ei2zi2 · b

i2
ik||
)
, (7)

which is also the angle between ezi2 and the plane (bik,bij).
Hence, the rotation about xi2 by the angle ϕi transforms iΣ2

1The basic rotation is a rotation about one of the coordinate axes.

into iΣ3 such that zi3 ≡ bik||. Finally, the rotation which
transforms iΣ into iΣ3 is the successive multiplication of
Qz(θi), Qy(ψi) and Qx(ϕi), i.e.,

Qi = Qz(θi)Qy(ψi)Qx(ϕi), (8)

which has the same form as a ZYX-Euler angle transforma-
tion [18].

Lemma 1: Consider the triangular sensing topology in
Fig. 2a. The coordinate system iΣ3 obtained by transforming
iΣ by a rotation of Qi defined in (8) is uniquely determined
by bij and bik.

Proof: The transformed coordinate frame iΣ3 ensures
xi3 points along the direction of bij , and zi2 points along
bik|| which is also uniquely determined. The yi2 axis is
obtained from the right-hand rule for coordinate systems;
thus, it is also determined uniquely.

By repeating the alignment procedure for the neighboring
agent of i, i.e., agent j, using two directional vectors −bj

ji

and bj
jk, a rotation matrix is obtained similarly to (8) as

Qj = Qz(θj)Qy(ψj)Qx(ϕj). (9)

Since three agents define a plane in 3-D, the projections of
bik and bjk onto any planes perpendicular to bij (or bji)
are parallel, i.e., bik||||bjk||. We now are ready to state the
main result of this section.

Theorem 1: Consider the triangular sensing topology in
Fig. 2a, and the alignment transformations (8) and (9). Then,
the relative orientation between two agents i and j is obtained
as

RT
i Rj = QiQ

T
j (10)

Proof: Under the rotation (9), the coordinate frame jΣ
is transformed into jΣ3, which has xj3 and yj3 aligned with
−bji = bij and bjk||, respectively. Moreover, since bik||
and bjk|| are parallel and their directions are the same, two
coordinate frames iΣ3 and jΣ3 are identical. For a nonzero
vector x ∈ R3, we have the following relationships

xi = Qix
i3, xj = Qjx

j3.

Since xi3 = xj3, we obtain QT
i x

i = QT
j x

j . Using the
relationships in (3) we have

xi = RT
i x, xj = RT

j x.

Thus QT
i R

T
i = QT

j R
T
j ⇐⇒ RT

i Rj = QiQ
T
j , which

completes the proof.
Remark 3: The proposed method of calculating relative

orientation of two neighboring agents which have a common
neighboring agent, uses only local direction information.
Thus, it is fully distributed. For the general case with n
agents, the method can be extended by way of similar ap-
proaches as Henneberg extensions given suitable restrictions
on the graph. In particular, consider a graph grown from
an initial triangle with relative orientations obtainable as
described above, in the following manner, which is akin to
a sequence of Henneberg vertex estensions of a particular
type. We can add a pair of two neighboring agents that have
a common neighbor agent in the initial triangle (see Fig.



(a) Directional vector in 3-D (b) Rotation of Qzi(θi) (c) Rotation of Qyi1(ψi)

Fig. 3: Alignment of x-axis and directional vector by two consecutive basic rotations.

Fig. 4: The third rotation Qxi2(ϕi)
that transforms iΣ2 into iΣ3 such that zi3 ∈ (g,bij) and

xi3 ≡ bij .

(a) Vertex extension. (b) Edge extension.
(c) Random vertex ad-
dition.

Fig. 5: Extension procedure of the relative orientation mea-
surement graph.

5a). Then, the newly added pair of agents and the agent
in the initial triangle can define another triangular graph.
This extension can be called a triangular vertex extension.
On the other hand, we can add one single agent that has
two edge connections to two neighboring agents (see Fig.
5b). Then, the newly added agent and two neigboring agents
define another triangle. So, we can find relative orientations
between agents in the new triangle. This extension can be
called a triangular edge extension.

Remark 4: If the orientations of all nodes in the graph G
are localized with regard to a common reference coordinate
frame, i.e., cΣ, (which is studied in treating Problem 2),
we can add a new agent (let say v) to G as follows.
Connect v to an arbitrary pair of nodes i and j as illustrated
in Fig. 5c. Now, suppose i and j respectively send the
direction information bc

iv = R̂ib
i
iv and bc

jv = R̂jb
j
jv to

v. Then, v can compute its orientation, R̂v , with regard
to cΣ by applying a similar method to that of the above
alignment process by using {bc

iv,b
c
jv,b

v
vi,b

v
vj}. The inter-

agent relative orientation follows directly by applying (2). An
application of this vertex addition process in network orien-
tation localization and formation control will be presented in
our future work.

C. Coordinate frame alignment using a common direction
information instead of triangular sensing

If two neighboring agents share a common sense of
a direction, then the third rotation can be derived using
this common vector. For example, if the agents know the
direction information of the earth’s magnetic field, which
is measured in each agent’s local coordinate frame, it can
be utilized for determining the third rotation. The idea of
using the earth’s magnetic field direction is motivated by
the empirical observation that birds are able to sense the
magnetic field to navigate in a homing direction [14], [15].
Additionally, the earth’s magnetic field direction information
can be measured by using low-cost magnetometers. By using
the supplementary direction information, the complexity of
relative sensing can be reduced significantly, compared with
the triangulation sensing (sub)networks. However, the earth’s
magnetic field is a global information and it is vulnerable to
magnetic interferences in real applications.

IV. ORIENTATION LOCALIZATION BASED ON RELATIVE
ORIENTATION INFORMATION

This section presents a relative orientation localization
scheme and an absolute orientation localization law using
relative orientation and additional information in the second
case. As part of the scheme, we will define a nonsingular
matrix auxiliary variable for each agent and its localized
orientation will be derived from the auxiliary variable by the
Gram-Schmidt orthonormalization procedure (GSOP). We
establish an almost globally exponentially convergence of
the localized orientations to the real orientations up to a
common orientation. Under the absolute orientation local-
ization law, the computed orientations of all agents globally
exponentially converge to the true orientations.

A. Relative Orientation Localization

For each agent i, we introduce a nonsingular matrix
auxiliary variable Pi ∈ R3×3. Given Pi, let the orientation
of agent i be computed as R̂T

i via the Gram-Schmidt
orthonormalization procedure (GSOP), which is denoted as
R̂T

i = GSOP(Pi). Then a distributed orientation estimator
for each agent is proposed as

Ṗi(t) =
∑

j∈Ni
(RijPj(t)−Pi(t)), (11)

where Rij = RT
i Rj is obtained by (10) and the initial

value Pi(0) is assigned to be nonsingular; but can otherwise



be assigned randomly. Using the stacked matrix of matrix
auxiliary variables P = [PT

1 , . . . ,P
T
n ]T ∈ R3n×3, (11) can

be further written as

Ṗ(t) = −MP(t), (12)

where M = D(L ⊗ I3)DT , L is Laplacian matrix of G,
and D = diag(RT

1 , . . . ,R
T
n ). To study the convergence of

P, it is useful to introduce a coordinate transformation and
new variables Si related to Pi. In fact, we set Pi = RT

i Si

and define a stacked matrix of transformed variable S =
[ST

1 , . . . ,S
T
n ]T ∈ R3n×3. Then (12) can be written as

Ṡ(t) = −(L⊗ I3)S(t). (13)

Let [S]k ∈ R3n be the kth column vector of S, for k ∈
{1, 2, 3}. Since the graph G is connected, it can be shown
that S(t) converges to the equilibrium set ES = {S =
[ST

1 , . . . ,S
T
n ]T ∈ R3n×3 : S1 = S2 . . . = Sn}. Furthermore,

it is noticed that Pi and Si are related by a coordinate
rotation, for the determination of orientation, we have to
avoid the convergence of each column vector of Si to the
zero vector and the linear dependence of the steady-state
column vectors of Si. The convergence property of (13) is
provided in the following theorem.

Theorem 2: Suppose that the graph G is connected. Then,
S(t) in the dynamics (13) globally exponentially converges
to (1n ⊗ I3)S∞ ∈ ES, where S∞ , Ave(Si(0)) ∈ R3×3.

Proof: The proof is straightforward from the facts that
rank(L⊗ I3) = 3n− 3, null(L⊗ I3) = Range(1n⊗ I3), and
(1n ⊗ I3)TS(t) is invariant under (13).

The Theorem 2 implies that lim
t→∞

Si(t) = lim
t→∞

RiPi(t) =

S∞, or lim
t→∞

Pi(t) = RT
i S
∞, ∀i ∈ {1, . . . , n}. Since R̂T

i is
derived from Pi by the GSOP, we can make the following
lemma.

Lemma 2: Consider the rotation transformation Pi =
RT

i Si. If R̂T
i and Qi are derived from Pi and Si by the

GSOP, respectively, then there holds

R̂T
i = RT

i Qi. (14)
Proof: Let pk, sk, r̂k, and qk ∈ R3 be the kth

column vector of Pi, Si, R̂T
i and Qi, respectively. In order

to prove the equality (14) it is sufficient to show that r̂k =
RT

i qk, ∀k = 1, 2, 3. We show this by following the GSOP
as follows:

r̂1 = p1/‖p1‖ = RT
i s1/‖RT

i s1‖ = RT
i s1/‖s1‖ = RT

i q1

r̂2 = normalize{p2 −
〈
p2,R

T
i q1

〉
RT

i q1}
= normalize{RT

i s2 −
〈
RT

i s2,R
T
i q1

〉
RT

i q1}
= RT

i normalize{s2 −
〈
s2,q1

〉
q1} = RT

i q2

r̂3 = normalize
{
p3 −

∑2

k=1

〈
p3,R

T
i qk

〉
RT

i qk

}
= normalize

{
RT

i s3 −
∑2

k=1

〈
RT

i s3,R
T
i qk

〉
RT

i qk

}
= RT

i normalize
{
s3 −

∑2
k=1

〈
s3,qk

〉
qk

}
= RT

i q
′
3.

r̂3 = sign
{
(det

(
[RT

i q1,R
T
i q2,R

T
i q
′
3]
)}

RT
i q
′
3

= RT
i sign

{
det(RT

i )det
(
[q1,q2,q

′
3]
) }

q′3 = RT
i q3,

Algorithm 1: Orientation localization algorithm
Input: {Rij}j∈Ni

, {Pj(t)}j∈Ni

Output: R̂i

1 Initialize t = 0, Pi(0) ∈ R3×3

2 Compute Pi(t) by integrating (11)
3 t = t+ ∆t
4 Repeat Steps 2 to 3, until ||Pi(t)−Pi(t−∆t)|| < ε
5 Compute P∞i from Pi by applying the GSOP
6 R̂i = (P∞i )

T
= (Q∞)TRi

The above lemma means that the GSOP is invariant un-
der rotation.i.e., R̂T

i = GSOP(Pi) = GSOP(RT
i Si) =

RT
i GSOP(Si) = RT

i Qi.
Theorem 3: Consider the computed orientation matrix

R̂T
i ∈ SO(3) derived from Pi by the GSOP. Then there

exists a certain rotation matrix Q∞ ∈ SO(3) such that R̂i

exponentially converges to (Q∞)TRi, ∀i = 1, . . . , n, for
almost all initial values P(0).

Proof: Let Q∞ be derived from S∞ = Ave(Si(0)) by
the GSOP. Then, it follows from Theorem 2 and Lemma 2
that R̂i exponentially converges to (Q∞)TRi, ∀i =
1, . . . , n. The set of column vectors of initial matrix aux-
iliary variables leading to non-existence of solution, i.e.,
det(S∞) = 0, is a set of Lesbegue measure zero in R3n

[5]. This completes the proof.
Remark 5: From Theorem 3, the localization law (11)

almost globally asymptotically solves the Problem 2.
The orientation localization procedure for each agent is

given in Algorithm 1.
Remark 6: The orientation localization scheme outlined in

the Algorithm 1 is conducted to compute the orientation of
agents simultaneously up to an unknown common rotation.
For any graph constructed by the triangular vertex extension
or triangular edge extension, or combination of these ex-
tensions, the orientation can be determined simultaneously.
Thus, it is important to note that the extensions defined in the
Remark 3 characterize a class of graphs that can be solved
for the orientation localization. For such graphs, orientations
of the coordinate frames of agents (apart from a common
unknown additional transformation) can be simultaneously
determined by (11).

B. Orientation localization with one or more anchor nodes

We assume that at least one of the root nodes (say agent
1) knows its orientation R1. Consider the augmented graph
Ḡ = (V, Ē) obtained from G by removing all the out-going
edges from node 1.

Lemma 3: The augmented graph Ḡ obtained from G by
removing all the out-going edges from node 1 contains a
rooted-in spanning tree.

Proof: The result is straightforward since G is con-
nected and the removing of the out-going edges of node 1
preserves all in-coming paths from the other nodes to node
1. Thus, there exists a directed path from any other node to
node 1, that is, Ḡ has a rooted-in spanning tree.



The orientation localization scheme (11) now becomes

˙̂
RT

i (t) =
∑

j∈Ni
(RijR̂

T
j (t)− R̂T

i (t)), (15)

where Ni is defined in Ḡ.
Theorem 4: If the graph G is connected, with one root

node knowing its orientation, the localized orientations
R̂T

i (t) globally asymptotically converge to the true orien-
tations RT

i , as t → ∞, under the update law (15), for all
i = 1, . . . , n.

Proof: By using the rotation transformation R̂T
i =

RT
i Si we rewrite (15) in the same form of (13) as

Ṡ(t) = −(L̄⊗ I3)S(t), (16)

where L̄ is the Laplacian of Ḡ. From the Theorem 1 in
[16] and Lemma 3, the dynamics (16) are globally expo-
nentially stable. From the Lemma 1 in [17], we have the
steady-state solution lim

t→∞
Si(t) =

∑n
k=1 ῡkI3Sk(0), where

Ῡl = [ῡ1, . . . , ῡn] ∈ R1×n,
∑n

k=1 ῡk = 1, ῡk ≥ 0,∀k =
1, . . . , n, is the left eigenvector of L̄ associated with the zero
eigenvalue, for all i = 1, . . . , n. Since the node 1 has no
neighbors, it does not update its orientation, i.e., Ṡ1 = 0.
Thus, lim

t→∞
S1(t) = S1(0) = R1R̂

T
1 = I3. It follows that Si

converges to I3; that is, R̂i globally asymptotically converges
to Ri, ∀i ∈ {2, . . . , n}.

Remark 7: The underlying graph topologies in the relative
orientation calculation of Section III and in the orientation
localization of Section IV are simply assumed undirected,
but only connected. Actually, we can separate the graph
topologies for the relative orientation calculation and for
the orientation localization. In the process of computing
the relative orientation calculation RT

i Rj , the neighboring
agents i and j need to compute Qi and Qj respectively.
In this process, they need to sense each other and need to
sense the third common node k. Thus, in terms of sensing,
they need to measure relative states a little closely. But,
after computing Qi and Qj , the graph topology becomes
simpler. In fact, in the computation of Pi in (11), since we
can achieve a consensus in (11) based on properties of a
directed graph topology (i.e., strongly connected, or directed
rooted tree), agent i may not need to send its information Pi

to the incoming neighboring agents, although it needs to send
Pi to outgoing neighboring agents. Thus, the topology for
computing RT

i Rj and the topology for updating (11) could
be different. We will address this issue in a more systematic
way in our future work.

V. CONCLUSION

In this paper, we have presented a simple procedure for
determining the relative orientation between the coordinate
frames of two neighboring agents in 3-D by using direction-
only information of a triangulation sensing network which
includes a common neighboring agent that can be observed
by the two agents. A triangular extension procedure was then
described for relative orientation computation of some more
general multi-agent networks. In addition, we proposed two
distributed orientation localization laws by defining a matrix

auxiliary variable for each agent. The orientations of the
coordinate frames of the agents are derived from the auxiliary
variables by applying the Gram-Schmidt orthonormalization
procedure. Under the proposed orientation localization laws,
orientations are almost globally asymptotically determined
up to a common unknown coordinate rotation. If an agent
knows the global orientation of its coordinate frame, this
common matrix can be determined.
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