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Abstract

Full-duplex (FD) communication at millimeter-wave (mmWave) frequencies suffers from a strong self-interference (SI)
signal, which can only be partially canceled using conventional RF cancelation techniques. This is because current
digital SI cancellation techniques, designed for microwave frequencies, ignore the rapid phase noise (PN) variation at
mmWave frequencies, which can lead to large estimation errors. In this work, we consider a multiple-input
multiple-output mmWave FD communication system. We propose an extended Kalman filter-based estimation
algorithm to track the rapid variation of PN at mmWave frequencies. We derive a lower bound for the estimation error
of PN at mmWave and numerically show that the mean square error performance of the proposed estimator
approaches the lower bound. We also simulate the bit error rate performance of the proposed system and show the
effectiveness of a digital canceler, which uses the proposed estimator to estimate the SI channel. The results show
that for a 2 × 2 FD system with 64−QAMmodulation and PN variance of 10−4, the residual SI power can be reduced
to − 25 dB and − 40 dB, respectively, for signal-to-interference ratio of 0 and 15 dB.

Keywords: Full-duplex, Millimeter-wave, Joint channel and PN estimation, Residual self-interference power,
Synchronization

1 Introduction
The next generation of wireless communication technolo-
gies, known as 5G, are expected to offer multi-gigabit
data rates to mobile users [1, 2]. This has prompted
wireless service providers to seek higher bandwidth at
less crowded millimeter-wave (mmWave) frequencies.
The short wave lengths of mmWave frequencies also
allow for practical implementations of base stations with
large number of antennas known as massive multiple-
input multiple-output (MIMO) system, which is another
promising technology for 5G networks [3]. Given these
capabilities offered by mmWave communication, these
systems have become increasingly popular in academia
and industry. While MIMO systems can fully benefit from
the capabilities offered by communication at mmWave
frequencies [3], due to large peak-to-average power ratio,
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orthogonal frequency division modulation (OFDM) is not
popular for mmWave communication [4]. Since there
is still an open debate about the modulation type at
mmWave frequencies [5], we do not consider OFDM in
this work.
Full-duplex (FD) communication has also emerged

recently as a promising wireless technology, which allows
for efficient use of bandwidth by enabling in-band trans-
mission and reception [6–9]. The major obstacle in
exploiting the full potential of FD communication is the
self-interference (SI) signal, which is significantly stronger
than the desired communication signal [10, 11]. The
power of the SI signal can be reduced via two differ-
ent suppression techniques: (i) passive suppression, where
transmit and receive antennas are physically isolated to
reduce the leakage of the transmit signal into the RF
front end of the receiver chain, and (ii) active suppres-
sion, where the SI signal is suppressed via subtracting
the analog replica of SI signal from the received signal
[6]. The experimental results at microwave frequencies
show that the successive combination of passive and active
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suppression can reduce the SI signal power to the receiver
noise floor [12]. For this reason, in the majority of the
radio architectures proposed for FD communication at
microwave frequencies, the residual SI signal at baseband
is treated as noise [6, 13–15]. The cancelation techniques
that treat the SI signal as noise suffer from two fundamen-
tal problems: (i) they assume Gaussian distribution of the
SI signal. However, as explained in [16, 17], the SI signal
has a strong line of sight (LoS) component, and hence, it
is not Gaussian, and (ii) treating SI as noise requires sta-
tistical knowledge of the SI channel, which might not be
available.
Recently, SI channel measurements have been car-

ried out for FD communication at mmWave frequencies
[17, 18]. The measurements indicate that, as opposed to
themicrowave frequency band, the SI channel atmmWave
has a non-line-of-sight (NLoS) component, which cannot
be canceled using passive and active suppression tech-
niques. This partial suppression of the SI signal results in
a large residual SI signal at baseband, which is still signif-
icantly higher than the receiver noise floor [17]. Another
challenge for mmWave FD communication systems is that
the oscillator phase noise (PN) is large and rapidly chang-
ing [19]. Thus, the majority of the existing techniques for
residual SI signal cancelation at baseband, which assume
a very steady oscillator PN [20–23] cannot be used for
FD mmWave communication. We note that the impor-
tant aspect of mmWave communication considered in this
paper is theestimationof fast varying PN. This fast variation
of PN is in the order of symbol time at mmWave [24].
In this work, we consider the problem of joint channel

and PN estimation for a mmWave FDMIMO system com-
munication system. The main contributions of this work
are as follows:

1. We construct a state vector for the joint estimation
of the channel and PN and propose an algorithm
based on extended Kalman filtering technique to
track the fast PN variation at mmWave band.

2. We derive the lower bound on the estimation error
of the proposed estimator and numerically show that
the proposed estimator reaches the performance of
the lower bound. We also show the effectiveness of a
digital SI cancelation, which uses the proposed
estimation technique to estimate the SI channel.

3. We present simulation results to show the mean
square error (MSE) and bit error rate (BER)
performance of a mmWave FD MIMO system with
different PN variances and signal-to-interference
ratios (SIR). The results show that for a 2 × 2 FD
system with 64−QAMmodulation and PN variance
of 10−4, the residual SI power can be reduced to − 25
dB and − 40 dB, respectively, for
signal-to-interference ratio of 0 and 15 dB.

Notation: The following notation is used in this paper.
Superscripts (·)† and (·)T are the conjugate and the trans-
pose operators, respectively. Bold face small letters, e.g.,
x are used for vectors, bold face capital letters, e.g., X are
used for matrices. ejθ is the multivariate complex expo-
nential function. | · | is the absolute value operator, and∠x
is the phase of the complex variable x. � is the Hadamard
(element-wise) product. diag(x) creates a matrix with ele-
ments of vector x on the main diagonal. trace(·) is the
trace of a matrix, which sums up all the diagonal elements
of a given matrix. x ∈ A, means x is an element of set A.
0N is N by 1 vector of all zeros, and IN is N by N iden-
tity matrix. 1N×N is N × N matrix of all 1. E[ ·] is the
expectation operator. �{·} returns the real part of a com-
plex quantity. Finally, in Table 1, we present the important

Table 1 Important symbols used in this paper

Symbol Description

y(n) The (Nr × 1) vector of received symbols.

x(n) The (Nt × 1) vector of transmitted symbols.

xSI(n) The (Nt × 1) vector of self-interfering (SI)
symbols.

w(n) The (Nr × 1) Gaussian noise vector.

θ
[m]
i (n) The time-varying phase noise of ith oscillator

andm ∈ {t = transmit, r = receive, SI}.

H(n) The (Nr × Nt) communication channel.

HSI(n) The (Nr × Nt) self-interference (SI) channel.

H̄(n) The (Nr × 2Nt) state transition matrix for
joint PN and channel estimation.

β(n) The (2Nt × 1) state vector for joint channel
and PN estimation.
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symbols used in the mathematical representation of the
system model. In general, if x is used in the mathematical
representation of the system model, then x̄ is used for the
mathematical representation of the system model needed
for joint channel and PN estimation, and x̂ is an estimate
of x.

2 Systemmodel
We consider the MIMO communication system between
two mmWave FD nodes a and b, each with Nt trans-
mit and Nr receive antennas as illustrated in Fig. 1. The
considered communication system can be a model for
backhaul communication for cellular systems [24]. In this
work, we make the following assumptions:

1. The same number of transmit and receive antennas
for both nodes: We assume both nodes in the
considered FD communication system have the same
number of transmit and receive antennas.

2. Modeling of RF impairments: RF impairments due to
imperfect transmitter and receiver chain electronics
have been shown to significantly degrade the
performance of the analog cancelation techniques
[25, 26]. Since the focus of this work is residual SI
cancelation, we only include PN in our model and
assume that the other hardware impairments are
dealt by a RF canceler. Such an assumption is also
made in [20, 21, 27, 28].

3. Assumptions on oscillators: We make two
assumptions about the oscillators. First, we assume
that free-running oscillators are used. The
assumption of using free-running oscillators for
mmWave communications has also been made in

[24, 29]. Second, we assume each transmit and receive
antenna is equipped with an independent oscillator.

4. Quasi-static flat-fading channel assumption: The SI
measurement results of [17] show that even with
omnidirectional dipole antennas, the delay spread of
the channel does not exceed 800 ns. This delay is
significantly smaller than the proposed symbol
durations for 5G communication [30, 31], which are
in order of μs. Hence, not only can the channel be
assumed flat but it can also be assumed to remain
constant over transmission of one block of data
(quasi-static). Similarly, measurement results of the
desired communication channel show that the
channel delays are relatively small compared to the
symbol durations [32].

5. Synchronized transmission and reception: Although
synchronizing transmission and reception of analog
desired communication signal with the reception of
analog SI signal is an important practical problem
and requires its own detailed investigation, the
synchronized FD communication assumption is
widely used in the literature of channel and PN
estimation for digital SI cancelation (DC) [20, 21, 33].

2.1 Mathematical representation of received vector
In this subsection, we present a mathematical model for
the received vector of a FD MIMO communication sys-
tem at mmWave frequencies. The received vector at node
a and at time instant n is y(n) and is given by

y(n) = H(n)x(n) + HSI(n)xSI(n) + w(n), (1)

where y(n) �[ y1(n), · · · , yNr (n)]T , and yi(n) is the
received symbol at the ith antenna. For i ∈ {1, · · · ,Nr}

Fig. 1 System model block diagram of FD communication, where AC stands for analog SI cancelation, DC stands for digital SI cancelations, ejθ
[r/rb/t/SI]
l

represents the PN at the lth antenna
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and k ∈ {1, · · · ,Nt}, the element in the ith row and
kth column of Nr × Nt channel matrix H(n) is given by

hi,ke
j
(
θ
[r]
i (n)+θ

[t]
k (n)

)
, where hi,k is the communication chan-

nel between the kth transmit antenna of node b to the
ith receive antenna of node a, for m ∈ {r, t, SI}, θ

[m]
j (n)

is the oscillator PN at the jth antenna and m determines
the type of antenna such that m = r indicates a receive
antenna, m = t means a transmit antenna, and m = SI
indicates an interfering antenna. Furthermore, PN varia-
tion of a free-running oscillator follows a Wiener process
[34], i.e.,

θ
[m]
j (n) = θ

[m]
j (n − 1) + δ(n), (2)

where δ(n) is Gaussian noise with mean 0 and variance
σ 2
[m], i.e., δ(n) ∼ N

(
0, σ 2

[m]

)
.

Similarly, the element in the ith row and kth col-
umn of Nr × Nt SI channel matrix HSI(n) is given by

hSIi,ke
j
(
θ
[r]
i (n)+θ

[SI]
k (n)

)
, where hSIi,k is the interference chan-

nel between the kth transmit antenna and the ith receive
antenna of node a.
In addition, the kth elements of Nt × 1 vectors x(n)

and xSI(n) are given by xk(n) and xSIk (n), respectively,
which are the transmitted symbols from the kth transmit
antenna of nodes b and a, respectively.
Finally, w(n) �[w1(n), · · · ,wNr (n)]T , where wi(n) is the

complex Gaussian noise, i.e., wi(n) ∼ CN (0, σ 2).

2.2 Mathematical representation for joint channel and
PN estimation

For received vector y(n) and noise vector w(n) in (1),
a useful mathematical model for joint channel and PN
estimation is of the form ([35], Ch. 13, pp.450, Eq. 13.66)

y(n) = H̄(n)f (β(n)) + w(n), (3)

where H̄(n) is the state transition model matrix, f is a
nonlinear function, and β(n) is the state vector to be
estimated.
A fundamental step in the problem of joint channel

and PN estimation is the construction of the state vec-
tor and the state transition matrix based on the system
model given by (1). The state vector and the state transi-
tion matrix for the joint PN and channel estimation in the
presence of SI signal are given by (4) and (5), respectively.

– The state vector:

β(n) �[ β̄1(n), · · · , β̄Nr (n)]T (4)

– The state transition matrix:

H̄(n) �

⎡
⎢⎣
h̄1 0 0

0
. . . 0

0 0 h̄Nr

⎤
⎥⎦ (5)

where

β̄ i(n) �[ β̄i,1, · · · , β̄i,2Nt ] , (6a)

β̄i,k̄(n) �
{

θ
[r]
i (n) + θ

[t]
k (n), k̄ is odd;

θ
[r]
i (n) + θ

[SI]
k (n), k̄ is even

, (6b)

h̄i �[ h̄i,1, · · · , h̄i,2Nt ]�[ x̄1(n), · · · , x̄2Nt(n)] , (6c)

h̄i,k̄ �
{
hi,k , k̄ is odd;
hSIi,k , k̄ is even

, (6d)

x̄k̄(n) �
{
xk(n), k̄ is odd;
xSIk (n), k̄ is even , (6e)

k̄ = {1, · · · , 2Nt} (6f)

k =
{
k̄, k̄ < Nt ;
k̄ − Nt , k̄ > Nt

. (6g)

The principle idea behind the design of the state vec-
tor β(n) and the state transition matrix H̄(n) as given
by (4) and (5), respectively, is the fact that the PN noise
is the only random variable that varies from one symbol
to another and needs to be tracked. On the other hand,
because of the quasi-static nature of the communication
and SI channels, they remain constant over transmission
of a single data packet. Therefore, these channels need
to be estimated only once at the beginning of data trans-
mission. This initial channel estimation for the constant
channels can be done using pilot transmission.
Furthermore, we note that at each receive antenna, there

are 2Nt parameters that need to be estimated, Nt param-
eters for the communication channel, and Nt parameters
for the SI channel. This explains the existence of index
k̄ ∈ {1, · · · , 2Nt}.
Finally, with the state vector β(n) and the state transi-

tion matrix H̄(n) given by (4) and (5), the discrete-time
received vector at time instant n and at the baseband of
node a is given by

y(n) = H̄(n)ejβ(n) + w(n). (7)

3 Joint channel and PN estimation
In this section, we use the state vector (4) and the state
transition matrix (5) and present a joint channel and PN
estimator based on the concept of extended Kalman fil-
tering (EKF) [35]. The observation vector of EKF is given
by y(n) in (7), which is a nonlinear function of the states
β(n). The EKF state equation is given by

β(n) = β(n − 1) + u(n), (8)

where u(n) is Gaussian with mean zero and covariance
Q � E[β(n)βT (n)], i.e., u(n) ∼ N (02NrNt ,Q). The
2NtNr × 2NtNr covariance matrixQ is given by
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Q � E

[
β(n)βT (n)

]
=

⎡
⎢⎣

R1,1 · · · R̄1,Nr
...

...
...

RNr ,1 · · · R̄Nr ,Nr

⎤
⎥⎦ , (9)

where, for m, n ∈ {1, · · · ,Nr}, Rm,n is 2NtNt matrix given
by (10), where σ 2

r , σ 2
t , and σ 2

SI are PN variances due to
receive, transmit, and SI antennas, respectively.

Rm,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
r 12Nt×2Nt + diag

⎛
⎜⎝σ 2

t , · · · , σ 2
t︸ ︷︷ ︸

2Nt

⎞
⎟⎠ , m = n and is odd

σ 2
r 12Nt×2Nt + diag

⎛
⎜⎝σ 2

SI, · · · , σ 2
SI︸ ︷︷ ︸

2Nt

⎞
⎟⎠ , m = n and is even

diag

⎛
⎜⎝σ 2

t , · · · , σ 2
t︸ ︷︷ ︸

2Nt

⎞
⎟⎠ , m �= n and is odd

diag

⎛
⎜⎝σ 2

SI, · · · , σ 2
SI︸ ︷︷ ︸

2Nt

⎞
⎟⎠ , m �= n and is even

(10)

The EKF state update equations are given by [35]

β̂(n|n) = β̂(n|n − 1)

+ �
{
K(n)

(
y(n) − H̄(n)ejβ̂(n|n−1)

)}
, (11)

β̂(n|n − 1) = β̂(n − 1|n − 1), (12)
K(n) = M(n|n−1)D†(n)

×
(
σ 2INr + D(n)M(n|n − 1)D†(n)

)−1
,
(13)

M(n|n − 1) = M(n − 1|n − 1) + Q, (14)
M(n|n) = � {(

INr − K(n)D(n)
)
M(n|n − 1)

}
, (15)

where, for k ∈ {1, · · · ,Nt},

D(n) = ∂H̄(n)ejβ(n)

∂βT (n)
=

⎛
⎜⎝

z1 0T2Nt 0T2Nt
0T2Nt

. . .
...

0T2Nt 0T2Nt zNr

⎞
⎟⎠ , (16)

zi =
{
hi,kxk(n)ejβ̂i,k(n|n−1) k is even
hSIi,kx

SI
k (n)ejβ̂i,k(n|n−1) k is odd

, (17)

and β̂i,k(n|n − 1) is the 2(i − 1)Nt + k element of vector
β̂(n|n − 1).

Remark 1 Wenote that the state vector, as given by (8), is
a real vector. This is because the state vector only contains
the phases, which are real numbers. The complex channel
coefficients are estimated using this estimated real vector
and using the complex exponential function as given by (7).
Since the states are all real, when updating the mean of the
states in EKF, we can safely discard the imaginary part of
the updated mean as in (11).

3.1 Symbol detection
The EKF Eq. (17) shows that zi requires the knowledge of
the constant channels hi,k , hSIi,k and the transmitted sym-
bols. Note that xSIk , the SI symbol is perfectly known at the
receiver.
The knowledge of the constant channels can be

obtained using pilot-based estimation during the initial
half-duplex (HD) phase of the communication. In addi-
tion, the transmitted symbols at time n are detected using
the initial channel estimates and the estimates of the state
vector β at time n−1. This is because at time n of the EKF
algorithm, β(n − 1) has been successfully estimated. This
procedure is shown in Fig. 2.

Fig. 2 Time diagram of modified EKF
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3.2 Lower bound of estimation error
In this section, we derive a lower bound on the estimation
error of the estimator proposed in the previous subsec-
tion. We first note that the mean square error (MSE) for
estimating the state vector β(n) is given by

MSE = trace
(
E

[(
β(n) − β̂(n)

) (
βn − β̂n

)T])

(18)

With the above definition of the MSE vector, we present
the following proposition.

proposition 1 MSE of the EKF is lower bounded by
trace (Q), i.e.,

MSE ≥ trace (Q) , (19)

where Q is the state covariance matrix given by (9).

Proof See Appendix 5.

Remark 2 We note that (19) shows that the lower bound
on the estimation error increases as the sum of diagonal
elements of the covariance matrix of the states increases.
Furthermore, (9) indicates that the diagonal elements of
the state covariance matrix are the function of PN vari-
ance. Consequently, increasing the PN variance will result
in worse estimation error. Since the residual SI cancelation
is performed using the estimated SI channel, increasing
the PN variance will result in worse SI cancelation perfor-
mance. It is also worth to note that [34] shows that the PN
variance is a monotonic increasing of function of carrier
frequency. This means that the estimation error increases
with increasing the carrier frequency and vice versa.

3.3 Complexity analysis of EKF
For the complexity analysis of the proposed joint chan-
nel and PN estimation technique, we take the approach
used by [36, 37] and count the number of multiplications
and additions used in each step of EKF algorithm. Table 2
shows the complexity of each step of EKF algorithm using
O−notation. The corresponding complexity calculations
for this table can be found in Appendix 5.

Table 2 Complexity of each step of EKF algorithm

Equation no. Complexity

(11) O(NtNr)

(13) O
(
N2
t N

3
r

)

(14) O
(
N2
t N

2
r

)

(15) O
(
N3
t N

3
r

)

Remark 3 According to Table (2), the EKF has a poly-
nomial complexity as a function of number of transmit Nt
and receive Nr antennas. We can justify the increased com-
plexity as follows. In [20], the authors propose an algorithm
for channel estimation with linear complexity. However,
the algorithm in [20] assumes a constant PN for a block of
data. This could be an acceptable scenario in microwave
communication but does not suit mmWave communica-
tion. Hence, the increased complexity of the proposed algo-
rithm is justified because of fast variation of PN, i.e., PN
variation over symbol time.

4 Simulation results
In this section, we present simulation results for MIMO
FD systems at 60 GHz frequency, which corresponds to
mmWave frequency band [3]. For each simulation run, we
assume a communication packet is 40 symbol long, i.e.,
N = 40. This communication packet is transmitted after
the training packet, which is 2Nt symbols long, and is used
for estimating the constant channels for EKF initialization
as described in Section 3.1.We then use 10,000 simulation
runs to obtain the desired simulation results.
Moreover, we use the assumptions presented in

Section 2 to generate the random noise and PN. As sum-
marized in [38], there are many mmWave channel models
available for mmWave systems. In this work, similar to
a large number of existing works in [24, 29, 39–41], we
adopt a general Rician model. Note that the proposed
estimator is independent of the adopted model. A per-
formance comparison of the different mmWave channel
models is outside the scope of this work.
We generate the random SI and communication channel

(HSI/COM) using Rician distribution as follows:

HSI/COM =
√

K
K + 1

HLoS +
√

1
K + 1

HNLoS, (20)

where K is the Rician distribution K-factor; HLoS is the
LoS component of the channel, and is generated assum-
ing uniform distribution for angle of arrival, using the
approach presented in [24]; HNLoS is the NLoS compo-
nent of the channel; and for both SI and communication
channel is generated assuming Rayleigh fading. Further-
more, for both the SI and communication channel, we set
the K-factor to 2 dB.
We note that the SI and communication channels

have different power intensities, i.e., E

[
HSIH†

SI

]
�=

E

[
HCOMH†

COM

]
. Assuming that the LoS power of the

residual SI (SI signal after the passive and analog cancela-
tion) is the same as the LoS power of the communication
signal, the signal to interference ratio (SIR) is given by:

SIR = σ 2
COM
σ 2
SI

, (21)
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where σ 2
COM and σ 2

SI are the variances of NLoS compo-
nents of the communication and SI channels, respectively.
In addition, SNR is defined as

SNR � E[Es]
σ 2 , (22)

where Es is the symbol energy, E[Es]= 1, and σ 2 is the
noise variance.
Finally, we use the MSE for the state vector at time N =

40. This MSE is given by rewriting (18) in terms of the
Euclidean norm of a vector, i.e., || · ||2,

E

[∣∣∣
∣∣∣β(N) − β̂(N)

∣∣∣
∣∣∣
2

]
. (23)

In what follows, we first present the MSE results for
different FD MIMO communication systems. We then
investigate the residual SI power after digital cancelation
and the bit error rate (BER) performance of these systems
with the proposed PN estimation technique.

4.1 MSE performance
In this section, we investigate theMSE performance of the
proposed PN estimation technique for a 2 × 2 FD MIMO
system and assume that SIR = 0 dB, i.e., the SI signal is as
strong as the desired communication signal.
Figure 3 shows the MSE performance of the pro-

posed system against the derived theoretical bound in
Section 3.2 for different quadrature amplitude modula-
tions (QAM) and different PN variances. Firstly, as dis-
cussed in Remark 2, with increasing PN variance, the
estimation performance degrades. Secondly, it can be
observed from this figure that lower order modulations

have better performance compared to the higher order
modulations. This is because as shown in Section 3.1, the
EKF algorithms require to detect the transmitted symbols.
Hence, the MSE of EKF is affected by the detection error.
Finally, Fig. 3 shows that at high SNRs, the MSE perfor-
mance of the proposed estimator approaches the lower
bound.
In Fig. 3, we also plot the MSE result of the state-of-

the-art pilot-based phase noise estimator in [20, 23] for
microwave frequency. As expected, this estimator does
not perform well compared to our proposed estimator.
This is because it assumes that the PN variations are small,
which is not applicable for the case for mmWave fre-
quency. Note that we only show the MSE result of the
estimator in [20, 23] for 64−QAM modulation since the
MSE performance is invariant with respect to themodula-
tion order (the estimator uses pilots and does not require
detection).

4.2 Comparison with unscented Kalman filter
We compare the performance of the proposed EKF esti-
mator with unscented Kalman filter (UKF). UKF pro-
vides an alternative for linearizing the observations.
The detailed implementation of the UKF is provided in
Appendix 5. Figure 4 shows the performance of the EKF
and UKF estimators for 8−QAMmodulation, SIR= 0 dB,
and different PN variances. We can see that the MSE per-
formance of the proposed EKF estimator is better than the
UKF estimator. This is because (i) UKF estimator works
with the sigma point approximation of the mean of the
state process, while EKF tracks the PN based on the true

Fig. 3MSE performance for PN variances σ 2
r = σ 2

t = σ 2
SI = 10−4, 10−5 and different QAMmodulations for a 2 × 2 FD MIMO system with SIR= 0 dB
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Fig. 4MSE performance of the UKF and proposed EKF for PN variances σ 2
r = σ 2

t = σ 2
SI = 10−4, 10−5 and 8–QAMmodulation for a 2 × 2 FD MIMO

system with SIR= 0 dB

mean of the linear state vector; (ii) while the MSE per-
formances of both EKF and UKF are degraded because of
the detection error, this error affects UKF algorithmmore
than EKF. This is because the sigma points calculation
are affected more by the error due to the symbol detec-
tion (Section 3.1); and (iii) UKF is inherently more suitable
for the systems which experience high nonlinearities, i.e.,
both the state and process models are nonlinear and noise
is nonlinear too. In our case, only the process model in (7)
is nonlinear.

4.3 Residual SI power
In this section, we numerically investigate the remaining
SI power after digital cancelation for a 2 × 2 MIMO FD
systemwith 64−QAMmodulation, assuming the PN vari-
ance for all the oscillators is 10−4. This residual power is
given by

PSI =
∣∣∣
∣∣∣
(
HSI(n) − H̄SI(n)

)
xSI(n)

∣∣∣
∣∣∣
2
, (24)

where ||·||2 is the Euclidean norm of a vector, and H̄SI(n) is
an estimate of the SI channel using the proposed EKF esti-
mator. Figure 5 shows the residual SI power for different
SIR values, where a SIR value of 0 dB indicates that passive
and analog cancelation stages have managed to reduce the
SI power to the same level as the desired signal power.
The numerical result of Fig. 5 shows that the perfor-

mance of digital canceler depends on the residual SI power
after passive and analog cancelation stages. As the residual
SI power after passive and analog cancelation decreases,

so does the residual SI power after the digital cancela-
tion. The results show that the residual SI power can
be reduced to − 25 and − 40 dB for SIR of 0 and 15
dB, respectively. This is important as it shows the effec-
tiveness of digital SI cancelation after passive and analog
cancelation.

4.4 BER performance
Finally, in this section, we present the BER results of a
2 × 2 FD MIMO system with different QAM modula-
tions, assuming that PN variance for all oscillators is 10−4.
Figure 6 shows the BER performance of the system for dif-
ferent values of SIR. The results are consistent with the
results of the residual SI power in Fig. 5, i.e., the higher
the SIR, the better the BER results. Furthermore, 8−QAM
system performs better than the 64−QAM system, which
is consistent with the results of Fig. 6.

5 Conclusion
In this paper, we considered a MIMO FD system for
mmWave communication and proposed a joint channel
and PN estimation algorithm1. We also derived a lower
bound on the estimation error and numerically showed
that the MSE of the proposed estimator approaches the
error bound. Furthermore, we investigated the residual SI
power after the digital cancelation and showed that the
digital canceler, which uses the estimated SI channel can
reduce the SI power to− 25 to− 40 dB. These results indi-
cate the effectiveness of digital cancelation after passive
and analog cancelation stages.
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Fig. 5 The residual SI power PSI after digital cancelation

Endnote
1 Indeed, the main focus of this work is to correctly

estimate the channel and PN for effective SI cancela-
tion. In case of inter-node interference [45], the proposed
estimator would need to be modified. However, in the
special case, if the inter-node interference can be treated
as Gaussian, then the system model given by (1) can

capture the effect of the inter-node interference by includ-
ing an additional Gaussian noise term due to inter-node
interference.

A lower bound of the estimation error
In this section, we derive the lower bound of the
estimation error. We start the proof by expanding

Fig. 6 BER performance of the proposed system for a 2 × 2 MIMO FD system with different QAMmodulations
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E

[(
β(n) − β̂(n)

) (
β(n) − β̂(n)

)T]
.

E

[(
β(n) − β̂(n)

) (
β(n) − β̂(n)

)T]
= E

[
β(n)βT (n)

]

+ E

[
β̂(n)β̂

T
(n)

]
− E

[
β(n)β̂

T
(n)

]
− E

[
β̂(n)βT (n)

]

(25)

Next, we show that the last two terms of (25) are zero.
We do this by showing only E

[
β(n)β̂

T
(n)

]
= 0 as a sim-

ilar approach can be used to show that E
[
β̂(n)βT (n)

]
=

0.
We first note that β(n) given by (8) is a Gaussian autore-

gressive model (AR) with mean zero, i.e., E [β(n)] = 0.
Hence,

E

[
β(n)β̂

T
(n)

]
=

∫ ∫
β(n)β̂(n) p(β(n), y(n)) dβ(n) dy(n)

=
∫

β̂(n)

∫
β(n) p(β(n)) dβ(n) p(y(n)|β(n)) dy(n)

=
∫

β̂(n)E [β(n)] p(y(n)|β(n)) dy(n) = 0.

(26)

Consequently, we can rewrite (25) as follows:

E

[(
β(n) − β̂(n)

) (
β(n) − β̂(n)

)T]

= E

[
β(n)βT (n)

]
+ E

[
β̂(n)β̂

T
(n)

] (27)

It is easy to show that E
[
β̂(n)β̂

T
(n)

]
is a positive semi-

definite matrix and hence

E

[(
β(n) − β̂(n)

) (
β(n) − β̂(n)

)T]
≥ E

[
β(n)βT (n)

]

(28)

Furthermore, the properties of trace allows us to write

trace
(
E

[(
β(n)−β̂(n)

) (
β(n)−β̂(n)

)T])
≥ trace

(
E

[
β(n)βT (n)

])

(29)

Finally, using (29) and the definitions of Q and MSE in (9)
and (18), we can establish the proof of the proposition.

B Complexity analysis of EKF
In this section, we provide the complexity analysis of the
EKF algorithm by counting the number of multiplica-
tions and additions. However, before we proceed, it can
easily be shown that every entry of product of a K × L

matrix by a L × M matrix requires L multiplications and
L−1 additions, and hence, the wholematrix requiresKML
multiplications and KM(L − 1) additions, where KM is
the size of the resulting matrix. Furthermore, it is known
that matrix inversion has the same complexity in terms of
additions and multiplication as the matrix multiplication,
up to a multiplicative constant γ [42]. We can now pro-
ceed with calculating the complexity of EKF algorithm in
(30) to (32).

β̂(n|n) = β̂(n|n − 1) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K(n)

⎛
⎜⎝y(n) − H̄(n)ejβ̂(n|n−1)

︸ ︷︷ ︸
Nr (2NtNr )+Nr (2NtNr−1)

⎞
⎟⎠

︸ ︷︷ ︸
Nr+Nr (2NtNr )+Nr (2NtNr−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
2NtN2

r +2NtNr (Nr−1)+Nr+Nr (2NtNr )+Nr (2NtNr−1)︸ ︷︷ ︸
2NtNr+2NtN2

r +2NtNr(Nr − 1)+Nr+Nr(2NtNr)+Nr(2NtNr − 1)

,

(30)

K(n) = M(n|n − 1)D†(n)
(
σ 2INr + D(n)M(n|n − 1)D†(n)

)−1

︸ ︷︷ ︸
4N2

t N3
r + 2NtN2

r (2NtNr − 1) + 2NtN3
r + 2NtN2

r (Nr − 1)
+ γN3

r + γN2
r (Nr − 1) + N2

r + 2NtN2
r + Nr(2NtNr − 1)

+ 4N2
t N

3
r + 2NtN2

r (2NtNr − 1)

,

M(n|n − 1) = M(n − 1|n − 1) + Q︸ ︷︷ ︸
4N2

t N2
r

, (31)

M(n|n) = �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(n|n − 1)

⎛
⎜⎝I2NtNr − K(n)D(n)︸ ︷︷ ︸

2NtN3
r +2NtN2

r (Nr−1)

⎞
⎟⎠

︸ ︷︷ ︸
4N2

t N2
r +2NtN3

r +2NtN2
r (Nr−1)︸ ︷︷ ︸

8N3
t N3

r +4N2
t N2

r (2NtNr−1)+2NtN3
r +2NtN2

r (Nr−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(32)

C Unscented Kalman filter (UKF)
Unscented Kalman filter (UKF) provides an alternative to
EKF for nonlinear state vector estimation. In UKF instead
of linearizing the observation vector, the probability dis-
tributions of states and observations are approximated
using sigma points [43]. UKF can solve a very general class
of problems, where both state process and observations
are nonlinear. However, the joint channel and PN estima-
tion problem, as given by the observation vector (7) and
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the state vector (8), has a linear state process and addi-
tive noise. This allows for the use of non-augmented state
vectors for UKF [44]. For the state vector β(n) in (8), the
sigma points B(i, n) are given by

B(0, n|n − 1) = B(0, n − 1), (33a)

B(i, n|n − 1) = B(i, n − 1) +
(√{(L + λ)Q}

)
i
,

i = 1, · · · , L, (33b)

B(i, n|n − 1) = B(i, n − 1) −
(√{(L + λ)Q}

)
i
,

i = L + 1, · · · , 2L (33c)

where,
√{·} is the matrix square root, (·)i is the ith col-

umn of the matrix, L = 4NtNr , λ = α2L − L, where
α = 10−3 [43] , and Q is the state covariance matrix
given by (9). Subsequently, the mean of the sigma points,
which is used as an approximate to the true mean of the
probability distribution of states, is given by

β̄(n) =
2l∑
i=0

Wm
i B(i, n|n − 1), (34)

where,

Wm
0 = λ

L + λ
(35)

Wm
i = 1

2(L + λ)
, i = 1, · · · , 2L. (36)

Similarly, the covariance of the state vector based on the
sigma points approximation is given by

P̄n =
2L∑
i=0

Wm
i

[
B(i, n|n − 1) − β̄(n)

]

[
B(i, n|n − 1) − β̄(n)

]∗ (37)

Moreover, the sigma points for the observations, and the
corresponding approximate mean of probability distribu-
tion of observations are given by

Y(n|n − 1) = H̄(n)ejB(i,n|n−1), (38a)

ȳ(n) =
2l∑
i=0

Wc
i Y(n|n − 1), (38b)

where Wc
0 = Wm

0 + (1 − α2 + β), β = 2, and Wc
i =

Wm
i for i = 1, · · · , 2L. Once the state and the process

models are approximated by the sigma points using (33a)–
(33c), and (38a), respectively, the updated mean β̂(n) and
variance P̂n can be calculated as follows:

β̂(n) = β̄(n) + K (y(n) − ȳ(n)) , (39)

P̂n = P̄n − KPy,yKT , (40)

Algorithm 1 UKF for joint channel and PN estimation
1: Initialize:

β̂(0) = 02NtNr×1
P0 = Q

2: for n = 0 to N do
3: Calculate sigma points using (33a) to (33c).
4: Calculate mean of state β̄(n) using (34).
5: Calculate the covariance matrix of the state vector

using (37).
6: Calculate the sigma points for observations

using (38a).
7: Calculate the mean of observation using (38b).
8: Update the mean β̂(n) using (39).
9: Update the variance P̂n using (40).

where

K = Px,yP−1
y,y , (41)

Px,y=
2L∑
i=0

Wc
i
[
B(i, n|n − 1) − β̄(n)

] [
Y(n|n−1) − ȳ(n)

]∗ ,

(42)

Py,y =
2L∑
i=0

Wc
i
[
Y(n|n − 1) − ȳ(n)

] [
Y(n|n − 1) − ȳ(n)

]∗ .

(43)

Algorithm 1 summarizes the UKF joint channel and PN
estimation algorithm.
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