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Thermally robust spin correlations between two
85Rb atoms in an optical microtrap
Pimonpan Sompet1,3, Stuart S. Szigeti1,2, Eyal Schwartz 1, Ashton S. Bradley1 & Mikkel F. Andersen1

The complex collisional properties of atoms fundamentally limit investigations into a range of

processes in many-atom ensembles. In contrast, the bottom-up assembly of few- and many-

body systems from individual atoms offers a controlled approach to isolating and studying

such collisional processes. Here, we use optical tweezers to individually assemble pairs of

trapped 85Rb atoms, and study the spin dynamics of the two-body system in a thermal state.

The spin-2 atoms show strong pair correlation between magnetic sublevels on timescales

exceeding one second, with measured relative number fluctuations 11.9 ± 0.3 dB below

quantum shot noise, limited only by detection efficiency. Spin populations display relaxation

dynamics consistent with simulations and theoretical predictions for 85Rb spin interactions,

and contrary to the coherent spin waves witnessed in finite-temperature many-body

experiments and zero-temperature two-body experiments. Our experimental approach offers

a versatile platform for studying two-body quantum dynamics and may provide a route to

thermally robust entanglement generation.
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When two atoms collide their interaction is complex,
leading to a wide range of possible outcomes. The
result of the collision strongly depends upon experi-

mental parameters such as the internal atomic states, the colli-
sional energy, and external electromagnetic fields1. Modern
atomic physics experiments exploit the richness of these atomic
interactions to engineer systems for a remarkable variety of
purposes, including quantum information processing2 and
quantum simulation3,4. A wealth of physical phenomena have
been simulated with cold atoms, such as black holes5 and
superconductivity6. Of particular importance to atomic simula-
tions of quantum magnetism is the local spin-changing interac-
tion between atoms in their groundstate manifold7,8.

In many-body experiments, spin-changing collisions lead to
coherent spin waves in both quantum-degenerate and thermal
atomic samples9–15. These spin waves manifest as time-
dependent populations of the atoms’ magnetic sublevels. Spin-
changing collisions have additionally been used to generate
quantum-entangled samples of ten thousand atoms16. Such
entanglement has enabled sub-shot-noise phase measurements
with matter-wave interferometers17,18 and has recently allowed
fundamental studies of Einstein-Podolsky-Rosen (EPR) steering
with atomic clouds19–21.

Unfortunately, detailed investigations of spin-changing colli-
sions in many-atom experiments is challenging, due to undesir-
able processes including three-body loss22,23. The superfluid to
Mott insulator transition provides one means of separating
atomic pairs for ‘clean’ studies of spin-changing collisions24,25.
However, this is limited to atomic species with collisional prop-
erties suitable for Bose condensing and subsequent manipulation.
Consequently, experimental tests of the predicted 85Rb spin-
dependent interaction strengths26 have remained elusive, and in
general atomic species with negative background scattering
lengths suffer unique experimental difficulties in the many-body
regime8.

A more versatile, bottom-up approach27,28 is to prepare and
manipulate individual atomic pairs via optical tweezers, enabling
studies of interactions between any combination of atoms that
can be laser-cooled. However, to date such studies have been
restricted to inelastic interactions that cause atom loss29–32 and
interactions where no overall population dynamics occur33.

Here, we study spin-changing collisions between individual
pairs of 85Rb atoms prepared in an optical tweezer, and observe
the collision-driven population dynamics of the magnetic sub-
states in the groundstate manifold. We observe record-high
suppression of relative number fluctuations and find that a bias
magnetic field strongly affects the dynamics. The observed
crossover from fast relaxation dynamics at low-bias field to slow,
field-independent relaxation dynamics at the higher fields is
captured by simulations based upon a simplified atom–atom
interaction. However, for high magnetic fields the very large
system of coupled modes involved at the experimental tempera-
ture prohibits quantitative first-principles modelling of the
observed slow relaxation of spin-state populations. Nonetheless,
in this regime the experimental data is well-fitted using inco-
herent rate equations with a single-parameter fit, where the
relative coupling rates between different spin states are deduced
from the theoretically predicted 85Rb spin-dependent interaction
strengths26.

Results
Experimental sequence. Our experiments employ two 85Rb
atoms, initially loaded into two separated optical tweezers29,34,35,
and prepared in the f= 2, m= 0 groundstate (see Fig. 1a). The
two optical tweezers are then merged, leaving the pair in a single

tweezer. The magnetic bias field is set to the desired value and the
two atoms are held within the single tweezer for a specified
duration, which we hereafter refer to as the collision time. After a
given collision time, the atomic m-states (denoted |m〉) are
measured by ejecting atoms in a particular |m〉 and measuring the
remaining atom number (see Methods for details and experi-
mental parameters).

Model. Once in the same optical tweezer, the two atoms interact
via interaction Hamiltonian Ĥs, which depends on the pair’s
relative position and spin state. Approximating the optical
tweezer as an m-independent harmonic potential separates the
centre-of-mass and relative motions of the two atoms, decoupling
the internal spin and centre-of-mass dynamics, and permitting a
simplified description via Hamiltonian24,25,36,37

Ĥ ¼ bp2
2μ

þ
X
j¼x;y;z

1
2
μω2

j r̂
2
j þ

X
i¼1;2

ĤZ;i þ Ĥs; ð1Þ

where br ¼ ðr̂x; r̂y; r̂zÞ and bp are relative position and momentum
operators, respectively, μ the reduced mass, ωj the atomic oscil-
lation frequency in the jth dimension, and ĤZ;i the Zeeman shift
for the ith atom. Our experiments use thermal atoms with kBT
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Fig. 1 Experimental schematics. a (Left) Two optical tweezers are formed
using the high-numerical-aperture lens. By reducing the separation
between the tweezers and then turning one of the tweezers off, both atoms
are transferred into the same optical tweezer, allowing atomic collisions to
occur. (Right) Superimposed fluorescent images of the same two atoms
showing their relative positions for different experimental stages. After
combining the two traps, the individual atomic positions can no longer be
resolved. b Spin-changing collisions: Two atoms initially in |0, 0〉 can only
couple to Ŝ 1;�1j i (dark arrows) and then to Ŝ 2;�2j i (light arrows), where
the symmetrization operator Ŝ is defined in the main text
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much larger than ℏωj, Zeeman energies, and atomic interaction
energies.

Under suitable approximations, Ĥs conserves total magnetiza-
tion24,25,38 and two atoms initially prepared in m1 = m2 = 0 are
restricted to bosonic symmetrized states with m1 = −m2: |0, 0〉 =
|0〉1 � |0〉2, Ŝ 1;�1j i ¼ 1ffiffi

2
p 1j i1� �1j i2þ �1j i1� 1j i2

� �
, and

Ŝ 2;�2j i ¼ 1ffiffi
2

p 2j i1� �2j i2þ �2j i1� 2j i2
� �

(see Fig. 1b). Here Ŝ

denotes the symmetrization operator, |m1, m2〉 the unsymmetrized
two-particle spin states, and subscripts 1 and 2 denote the two
atoms.

Spin correlations. By measuring magnetic sublevels of the
atomic pair for different collision times, we confirm that the
spin dynamics is governed by the simple model of spin-
changing collisions depicted in Fig. 1b, which yields strong
correlations between the m-states in a given pair. This requires
the three measurement series summarized in Fig. 2. A particular
|m〉 is detected by ejecting atoms in this state. In Fig. 2a we
expel atoms in |0〉 after a given collision time. The probability
that both atoms are in |0〉 (i.e., no remaining atoms) decays
with increasing collision time, while the probability that both
atoms remain grows correspondingly. The probability of
observing one remaining atom is always negligible, implying
that collisions cause both atoms to leave |0〉 simultaneously. In
Fig. 2b we start with both atoms in |0〉 but eject atoms in |−1〉.
The probability that one atom is in |−1〉 grows with collision
time, but both are never |−1〉, since the probability that both
atoms are ejected is effectively zero. In Fig. 2c we eject atoms in
both |−1〉 and |1〉. This ejects both atoms, or none. Combining
this with Fig. 2b, we conclude that when one atom is in |−1〉,
the other is in |1〉. The populations of |−1〉 and |1〉 are therefore
almost perfectly correlated. Similar data for |±2〉 shows these
populations are also correlated (see Supplementary Note 1).
The lasting pair correlation on timescales exceeding one second
is facilitated by having individual atomic pairs. In contrast, in
many-body experiments with spin-2 atoms, subsequent spin-
changing collisions would likely deteriorate such strong pair
correlations.

We quantify the pair correlation with the relative number
squeezing, ζ 2 (see Methods). Without correcting for finite
detection efficiency, it is 11.9 ± 0.3 dB below quantum shot
noise (QSN) for the |±1〉 populations. Since our atomic-pair
ensemble is thermal, this large pair correlation is thermally
robust. ζ2 is limited solely by our detection efficiency (see
Methods); improved detection efficiency could reduce ζ2 by a
further order of magnitude. For many-body systems, the highest
reported relative number squeezing via spin-changing collisions
is 11.4 dB below QSN (12.4 dB after correcting for detection
inefficiency)39.

Magnetic field dependence. The bias magnetic field affects the
spin dynamics through

P
i ĤZ;i. Since our model conserves total

magnetization, the first-order Zeeman contributions cancel for
the accessible two-body states, so

P
i ĤZ;i only contributes via

second-order terms. We investigate how
P

i ĤZ;i affects the spin
dynamics by measuring the |0, 0〉 population after a 40 ms col-
lision time for different bias fields (Fig. 3). At low biases, the
dynamics are highly magnetic-field dependent, whereas for higher
biases the dynamics are effectively magnetic-field independent.
Here typical thermal energies are much larger than second-order
Zeeman energies for all biases investigated. The atom pairs,
therefore, have sufficient thermal energy to overcome the Zeeman
shift when undergoing spin-changing collisions, so, in contrast to

ultracold samples, the dynamics should not necessarily quench at
high biases.

To understand the spin evolution, we simulated the dynamics
governed by Eq. (1) with a simplified interaction
Ĥs ¼ V r̂ð Þ ´ P

m1;m2;m1′;m2′ g
m1′;m2′
m1;m2

m1′;m2′j ihm1;m2j, where gm1′;m2′
m1;m2

are determined from predicted spin-dependent s-wave scattering
lengths26 and V r̂ð Þ is a Gaussian with width chosen to reproduce
the total free-space s-wave collision cross section (see Methods).
A Gaussian pseudopotential moderates problems that afflict zero-
length interaction potentials in tight traps36,37, while still avoiding
the complexity of a more complete Ĥs.

The simulation was conducted by averaging over a thermal
ensemble of initial states evolved using Eq. (1). The initial states
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Fig. 2 m-state correlation results. Probability that zero, one, or two atoms
remain in the optical tweezer after a given collision time. a When atoms in
|0〉 are expelled (immediately after a given collision time), the probability
that both atoms were in |0〉 (and therefore ejected) decreases, while the
probability that both atoms remain correspondingly increases. b, Expelling
atoms solely from |−1〉 gives only single-atom loss events. c, Expelling
atoms from both |−1〉 and |1〉 gives only pair loss, in strong contrast to the
result in b. In all cases and throughout the collision time, the bias magnetic
field was 8.5 Gauss. Error bars in all panels denote the standard error of the
mean. The solid curves are fits to the data included to guide the eye. Similar
data that demonstrates correlations between |−2〉 and |+2〉 is shown in
Supplementary Fig. 1. Source data are provided as a Source Data file
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were relative-motion eigenstates of p̂2=ð2μÞ þP
j
1
2μω

2
j r̂

2
j with

two-particle spin state |0, 0〉. Due to the prohibitively large
Hilbert space required at the experimental temperature, simula-
tions were restricted to a lower temperature of 8.8 μK. All
simulations at this temperature were performed on a finite basis
of 16,996 relative-motional modes.

The simulation qualitatively captures the spin dynamics
(Fig. 3). We observe a crossover from fast dynamics at low
magnetic-field strengths to slow dynamics at high fields. Ĥ
couples the three allowed spin modes, |0, 0〉, Ŝ 1;�1j i, and
Ŝ 2;�2j i (inset, Fig. 3). When the pair is in a particular spin mode,
it behaves as an effective single particle within a harmonic trap
with the interaction potential placed at the trap centre. At low
magnetic fields,

P
i ĤZ;i is negligible, so any relative-motion

eigenstate with a particular spin mode (e.g., |0, 0〉) is
approximately degenerate to relative-motion eigenstates in other
spin modes (e.g., Ŝ 1;�1j i, and/or Ŝ 2;�2j i); the degeneracy is
only lifted by the atom-atom interaction’s spin-state dependence.
The resulting resonant coupling efficiently transfers the popula-
tion between spin modes at low magnetic fields. In contrast, at
high fields this degeneracy is lifted, the majority of initially occu-
pied states have no near-resonant coupling to other spin modes,
leaving only off-resonant coupling, and the dynamics largely
cease.

The high magnetic field regime. Figure 3 shows a quantitative
difference between simulation and experiment. In the high bias,
magnetic-field-independent regime, the simulation gives |0, 0〉
population at t = 40ms close to the t= 0 population, while in the
experiment it is lower. Figure 4 demonstrates the cause of this
difference. The experiment shows slow relaxation to equal
populations of the three spin modes, while the simulation
dynamics are quenched (no spin-changing collisions). Here the
equal population is not complete thermalization within states that

conserve total magnetization; since atoms with different internal
states can be considered distinguishable, the thermalized popu-
lations with m= ±1 and m= ±2 would be twice that of |0, 0〉.

Generally, a priori calculations of thermal decoherence in
colliding atomic ensembles pose a challenge for theory, often
necessitating phenomenological rate-equation approaches to
account for dissipation40–43. In our system, several effects that
are not included in the simulations might explain the dynamics in
Fig. 4. Magnetic field noise might affect the dynamics or slight
polarization pollution of the optical tweezer light could give a
slightly m-dependent trap, the latter invalidating our separation
of the pair’s centre-of-mass and relative coordinates. The non-
paraxial nature of the optical tweezers inevitably introduces a
spatially varying polarization that can be described as a fictitious
magnetic field gradient44. We suppress the effect of this by having
the bias magnetic field perpendicular to the fictitious field. A
more realistic atom-atom interaction Ĥs may also introduce new
collisional timescales not captured by our simulations’ simplified
interaction. Finally, the five-fold temperature difference between
our simulations’ practical limit and the experimental temperature
could play a role. However, this appears an unlikely explanation,
as the simulation does not reveal long-time dynamics for any of
the temperatures we investigated. Note that refs. 24,25 also
included fitted relaxation rates with timescales similar to what
we observe in Fig. 4, and this was needed in order to match their
experimental observations to theoretical predictions.

Figure 4’s data is well-modelled using rate equations (see
Methods). Incoherent transition rates likely depend on the cross
section for the process, which is proportional to the squared
magnitude of the coupling matrix elements. These are determined
from theoretically predicted 85Rb spin-dependent interaction
strengths26. Based on this, the ratio of the rates between
0; 0j i" Ŝ 1;�1j i and Ŝ 1;�1j i" Ŝ 2;�2j i is 2.34, while the rate
between 0; 0j i" Ŝ 2;�2j i is negligible. Fitting using a single
overall rate as the fitting parameter matches the data very well
(Fig. 4), indicating that the ratios between the rates is determined
by the ratios between the collisional cross sections. Figure 3
therefore displays a crossover from a resonant coupling regime at
low magnetic fields to a regime at high fields where the collision
dynamics do not depend upon the energy difference between
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′
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Fig. 4 Spin population dynamics at high bias field. The populations of the
two-atom states are plotted as a function of collision time with error bars
denoting the standard error of the mean. The solid curves are a fit of the
measured data with spin-changing rate equations, while the ratio of the
rates between 0;0j i" Ŝ 1;�1j i and Ŝ 1;�1j i" Ŝ 2;�2j i is determined
from the theoretically predicted spin-dependent interaction strengths. The
bias field was 8.5 Gauss for all collision times. The inset illustrates that the
simplified theoretical model used for our simulations fails to capture the
long-time relaxation dynamics in the high magnetic field regime. Source
data are provided as a Source Data file
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different spin states. Although an incoherent rate equation model
gives a good fit to the collisional dynamics in the high
magnetic field regime, it is incapable of providing an explanation
of the magnetic-field dependence of the relaxation timescale in
the low bias regime. The coupling matrix elements are
independent of bias magnetic fields in the range we consider,
and models that ignore quantization of the motional states do not
capture the change in resonance condition that changing the bias
field gives rise to.

The low magnetic field regime. Figure 5a shows the measured
and simulated |0, 0〉 populations as a function of collision time in
the low bias-field regime. Both experimental data and simulation
display spin relaxation dynamics. This is contrary to finite-
temperature many-body experiments11,14 which exhibit high-
contrast coherent oscillations between spin modes. The observed
relaxation dynamics of the two-atom system can be understood
from the form of the coupling matrix elements (that include the
elements of T, see Methods) that couple the different spin and
relative motional states. Coupling between any two rela-
tive motional eigenstates is strongly dependent upon the relative
motional energies of these two states. They have a tendency to
decrease as the relative motional energy increases, reflecting that
the overall interaction decreases with increasing energy. Conse-
quently, the timescale of the dynamics depends upon the initial
relative motional state. Although each initial atom-pair state
displays coherent oscillations, averaging over a thermal dis-
tribution of these initial states, therefore, washes out the oscilla-
tions, resulting in relaxation dynamics. This is illustrated in
Fig. 5b, which shows a simulation of the |0, 0〉 population for two
different temperatures. At zero temperature, where only the

relative motional groundstate is initially populated, we observe
coherent oscillations similar to those in ref. 24, while at 8.8 μK
we see relaxation. Finally, since the coupling matrix elements
decrease with increasing motional energy we also expect the lower
temperature simulation to display faster dynamics than the
experiment, consistent with Fig. 5a.

Discussion
Correlations alone is not evidence of entanglement. Nonetheless,
from a theoretical perspective there should be entanglement in the
spin sector despite the fact that we observe relaxation dynamics
between the different spin states involved. Since g1;�1

0;0 ¼ g�1;1
0;0 , Ĥs

only couples a pair initially in |0, 0〉 to the symmetrized states
Ŝ 1;�1j i and Ŝ 2;�2j i, which are both entangled two-atom spin
states. The interaction does not provide coupling to antisymmetrized
spin states, for example Â 1;�1j i � 1ffiffi

2
p 1j i1� �1j i2� �1j i1� 1j i2

� �
,

since h1;�1jÂyĤsj0; 0i ¼ 0. Consequently, the collisional interac-
tion alone does not provide a route for relaxation into unentangled
two-atom spin states such as |−1〉1 ⊗ |1〉2 or |1〉1 ⊗ |−1〉2, since
these are superpositions of Ŝ 1;�1j i and Â 1;�1j i. The relaxation
dynamics that we observe in the theoretical calculations, consistent
with the experiment at low magnetic bias fields, is therefore a
relaxation into a mixture of |0, 0〉, Ŝ 1;�1j i, and Ŝ 2;�2j i. Post-
selecting on any of the latter two entangled states therefore allows the
preparation of a pure entangled state (see Supplementary Note 2).

Since |−1〉1 ⊗ |1〉2 is degenerate with |1〉1 ⊗ |−1〉2, unwanted
effects such as magnetic field noise do not dephase Ŝ 1;�1j i into a
mixture of unentangled states. Other effects such as spin-orbit
coupling and polarization gradients from the non-paraxial nature of
the optical tweezer, which are not presently included in our mod-
elling, might also affect the quality of the entangled state. However,
the strong correlation we observe between m-state populations
justifies our neglect of spin-orbit coupling, and our choice of large
trap detuning and alignment of the bias magnetic field perpendi-
cular to the fictitious magnetic field mitigate the effects of polar-
ization variations. We therefore expect that it should be possible to
observe long-lived entanglement generated by the collisional inter-
action. Since states of the form 1ffiffi

2
p 1;�1j i þ �1; 1j ið Þ have appli-

cations to metrology and quantum information processing45,46, it is
a future goal of ours to experimentally confirm the generation of the
entangled state directly. For instance, exposing 1ffiffi

2
p ðj1;�1i þ j �

1; 1iÞ to a π
2-pulse (effected by driving stimulated Raman transitions

between the m= ±1 states) converts it to � iffiffi
2

p ðj1; 1i þ j � 1;�1iÞ,
which is identified by observing both atoms in the same m-state. If
the entanglement was lost, we would observe both atoms in dif-
ferent m-states after the π

2-pulse with 50% probability.
In the context of observing entanglement in our atom-pair

system, we make two remarks on the experimental data from the
high bias magnetic field regime where the relaxation mechanism is
not yet captured by our simulations. First, we observe strong
correlations between the two atoms’ m-states in this regime, which
is a requirement for entanglement. Secondly, Fig. 4 does not show
relaxation to equal populations of all five spin states that conserve
total magnetization (|0, 0〉, |−1〉1 ⊗ |1〉2, |1〉1 ⊗ |−1〉2, |−2〉1 ⊗
|2〉2, and |2〉1 ⊗ |−2〉2). Specifically, a χ-squared test reveals
that the observed relative populations at the final time point in
Fig. 4 significantly differ from Nm¼ 0 ¼ 1

5 and Nm¼ ± 1 ¼
Nm¼ ± 2 ¼ 2

5 (χ
2 (df= 3) = 71.1, p < 0.001). In contrast, there is no

statistically significant difference between these data and
Nm¼ 0 ¼ Nm¼± 1 ¼ Nm¼ ± 2 ¼ 1

3 ðχ2 df ¼ 3ð Þ ¼ 1:9; p ¼ 0:590Þ.
This could indicate that the antisymmetrized spin states remain
unpopulated and entanglement is present in this regime. Although
promising, these observations alone do not provide unequivocal
evidence for entanglement in the spin sector.
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Fig. 5 Spin population dynamics at low bias field. a Comparison between
simulated and measured relative populations of |0, 0〉 at low magnetic bias
fields. Error bars in the experimental data denote the standard error of the
mean. b Simulation of the |0, 0〉 population as a function of collision time at
two different temperatures and zero magnetic bias field. The initial relative
motional state for the zero temperature simulation was the interacting
groundstate of the relative motional Hamiltonian h0;0jĤj0;0i. The zero
temperature simulation was performed on a truncated basis of 316
relative motional modes. Source data are provided as a Source Data file
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To summarize, the bottom-up assembling of pairs from
individual atoms allows us to study the collisional properties of
85Rb, whose effective attractive interactions are unfavourable
for ultracold-ensemble collision experiments. A single pair of
85Rb atoms in an optical tweezer displays spin dynamics that
yield strong correlation between magnetic substates of the two
atoms. Unlike both finite-temperature many-body experiments
and zero-temperature two-body experiments, our finite-
temperature two-body experiments show relaxation dynamics
rather than coherent spin waves. The record-high pair corre-
lation measured is only limited by detection inefficiency;
improving upon this technical limitation might allow studies of
unexplored effects, such as violations of total magnetization
conservation due to spin-orbit coupling, or studies of quantum
relaxation processes and quantum thermodynamics. Our
experiments indicate that spin-changing collisions may offer a
useful finite-temperature entanglement resource that is robust
to thermal noise.

Methods
Experimental procedure. We initially cool and trap a cloud of 85Rb atoms using
magneto-optical trapping. We then load a small number of atoms from the cloud
into two optical tweezers separated by ~4 μm, each with a trap width of ~1.05 μm
and depth of h × 58MHz. The two optical tweezers are formed by focusing two
steerable linearly polarized laser beams (λ= 1064 nm) with a high-numerical-
aperture lens (NA= 0.55). We use blue-detuned light-assisted collisions to reduce
the occupancy of each trap to a single atom and confirm the presence of the two
isolated atoms via fluorescence imaging29,34,35. The probability that there are two
atoms, one in each tweezer, after the loading procedure is ~0.64, and we disregard
the unsuccessful attempts.

After the loading process, the atoms are prepared in the desired f= 2, m= 0
groundstate in two steps. First, we optically pump atoms to the f= 3, m= 0 state
by applying linearly polarized optical pumping light with two frequencies
corresponding to the 85Rb D1 f= 2 to f ′= 3 and the f= 3 to f ′= 3 transitions.
During this, the bias magnetic field of 8.5 Gauss defines the quantization axis for
the atoms in the groundstate. This gives an atomic population of 0.99 occupying
the f= 3, m= 0 state. Last, we apply a π-pulse (1.57 μs) of co-propagating Raman
beams (~36 GHz red detuned from the D2 line) to coherently transfer the atoms
from the f= 3, m= 0 state to the f= 2, m= 0 state.

Using a 20 ms frequency sweep of an acousto-optical modulator, we
adiabatically bring the two tweezers closer until they are merged (the distance
between the centres of the two laser beams is ~900 nm). We then adiabatically
ramp off one of the tweezers in ~17 ms while the other is simultaneously ramped to
the desired trap depth and the bias magnetic field is set to the chosen value. The
procedure leaves the atoms in the same optical tweezer where the collisional
interactions generate the |m〉 population dynamics.

To observe the results shown in Figs. 2 and 4, we use the following experimental
parameters: a trap depth of h × 58MHz, oscillation frequencies 2π × 136 kHz and
2π × 22 kHz for the radial and axial dimensions, respectively, an atomic
temperature of 107 μK, and a bias magnetic field of 8.5 Gauss. For Fig. 3, we use a
trap depth of h × 10MHz, oscillation frequencies 2π × 56 kHz and 2π × 9 kHz for
the radial and axial dimensions, respectively, and an atomic temperature of 44 μK.

The detection of atoms in a particular |m〉 of the f= 2 manifold is done by
ejecting the atoms out of the trap. In the presence of the magnetic field, we use a
Raman process to transfer only the population in the specific |m〉 to the f= 3
manifold. We then deplete the f= 3 population using the push out technique47 and
then measure the number of remaining atoms in the trap using fluorescence
detection48. This procedure yields that the lost atoms were in the detected |m〉
while the remaining atoms were in the other states. In our push out technique, the
detection efficiencies are 0.944 ± 0.004 and 0.997 ± 0.003 for the f = 2 and f=
3 states, respectively. In Fig. 4 the probability for |0, 0〉 Ŝ 1;�1j i� �

Ŝ 2;�2j i� �
is

determined by measuring the probability that zero atoms remain after atoms in the
|0〉 (|1〉 and |−1〉) [|2〉 and |−2〉] are expelled.

Relative number squeezing. The correlations between the |±1〉 of the two atoms
(shown in Fig. 2) can be quantified by computing the population imbalance Jz =

(N+1 − N−1)/2, and the relative number squeezing16 ζ2 ¼ ΔJzð Þ2
N=4 . ΔJz is the standard

deviation of Jz, N±1 is number of atoms in |±1〉, and N is the total number of atoms.
We deduce the number squeezing from the data in Fig. 2c at the collision times of
150, 250, 350, and 500 ms (see Supplementary Note 3 for values of ζ 2 at these
individual collision times). If we postselect on at least one atom being detected in
|1〉 or |−1〉, the result of ejecting atoms from both |−1〉 and |1〉 have only two
possible outcomes: (1) zero atoms remain in the tweezer, which indicates that one
atom was in |−1〉 and another was in |1〉, and therefore Jz (n = 0) = 0; or (2) one
atom remains after ejection, which indicates that one atom was in |±1〉 and the

other was in |0〉, |−2〉 or |2〉, so consequently Jz(n= 1)= ±0.5. Here, we assume
that the probability of having both atoms in |1〉 or |−1〉 is zero.

Still restricting to the subspace where at least one atom is in |1〉 or |−1〉 and
taking Pn to be the probability of n atoms remaining in the optical tweezer after
ejection, we can determine that the mean population imbalance is zero:

Jzh i ¼ 1
P0 þ P1ð Þ

X
n¼0;1

Jz nð ÞPn ¼ 0 ´ P0 þ 0:5 P1
2 � 0:5 P1

2

� �
P0 þ P1ð Þ ¼ 0: ð2Þ

The variance of the population imbalance, ðΔJzÞ2 ¼ J2z
� �� Jzh i2, is given by:

ðΔJzÞ2 ¼ J2z
� � ¼ 1

P0 þ P1ð Þ
X
n¼0;1

Jz nð Þð Þ2Pn ¼ 02P0 þ 0:52P1
P0 þ P1ð Þ : ð3Þ

This allows us to quantify the degree of correlations between |1〉 and |−1〉 via
the number squeezing parameter. From above, the number squeezing is given by

ζ2 ¼ ΔJzð Þ2
N=4

¼ P1
N P0 þ P1ð Þ : ð4Þ

Our measurement of the correlation can be influenced by the detection
efficiency since the detection error in both f= 2 and f= 3 states will contribute to
the measured value of P1. The directly measured variance (ΔJz)2 is 0.032 ± 0.002,
while the detection error gives a variance of 0.034 ± 0.002 under the assumption
that the actual (ΔJz)2= 0. This shows the measured degree of relative number
squeezing can be entirely attributed to the detection efficiency.

Coupling strengths and rate equations. We deduce the transition rates from the
spin-dependent interaction strengths. We assume that the transition rates between
Ŝjm;�mi and Ŝjm′;�m′i are incoherent and have strengths proportional to
jhm′;�m′jŜĤsŜjm;�mij2. For low collisional energy, the interaction Hamiltonian
of two atoms is approximated by24

Ĥs ¼ V r̂ð Þ
X

m1 ;m2 ;m1′;m2′
gm1′;m2′
m1 ;m2

m1′;m2′j ihm1;m2j; ð5Þ

where r̂ is the relative position. The coupling coefficient between the initial
|m1, m2〉 and final m1′;m2′j i of the atom pair is

gm1′;m2′
m1 ;m2

¼
X2f
F¼0

XF
M¼�F

gF m1′;m2′jF;Mh i F;Mjm1;m2h i; ð6Þ

where gF = 4πℏ2aF/m with aF the s-wave scattering length for two atoms colliding
in a channel with total spin F. As shown in Supplementary Note 4, provided both
spin-2 atoms are initially prepared in the m= 0 Zeeman state, there are only six
unique coupling coefficients in the above sum:

g0;00;0 ¼ 1
35 7g0 þ 10g2 þ 18g4ð Þ;

g1;�1
0;0 ¼ 1

35 �7g0 � 5g2 þ 12g4ð Þ;
g2;�2
0;0 ¼ 1

35 7g0 � 10g2 þ 3g4ð Þ;
g1;�1
1;�1 ¼ 1

70 14g0 þ 5g2 þ 16g4ð Þ;
g2;�2
1;�1 ¼ 1

35 �7g0 þ 5g2 þ 2g4ð Þ;
g2;�2
2;�2 ¼ 1

70 14g0 þ 20g2 þ g4ð Þ:

ð7Þ

For 85Rb, the theoretically predicted s-wave scattering lengths are a0=−740 ± 60 a.
u., a2=−570 ± 50 a.u., and a4=−390 ± 20 a.u.26. By assuming the transition rate
γmm′ between Ŝ m;�mj i and Ŝ m′;�m′j i is proportional to jhm′;�m′jŜĤs Ŝjm;�mij2

we get γ01=γ12 ¼
ffiffiffi
2

p
g1;�1
0;0

	 
2
= 2g2;�2

1;�1

	 
2
¼ 2:34 ± 1:66. Similarly, γ02/γ01 and γ02/γ12

equal 0:04þ0:08
�0:04 and 0:09

þ0:19
�0:09, respectively. We therefore set γ02 to zero in the following

rate equations.
Ignoring γ02, we use the following rate equation to model the experimental

results in Fig. 4:

dP 0;0j i
dt ¼ �γ01P 0;0j i þ γ01PŜ 1;�1j i

dPŜ 1;�1j i
dt ¼ γ01P 0;0j i � γ01 þ γ12

� �
PŜ 1;�1j i þ γ12PŜ 2;�2j i

dPŜ 2;�2j i
dt ¼ γ12PŜ 1;�1j i � γ12PŜ 2;�2j i

ð8Þ

where PŜ m;�mj i is the Ŝ m;�mj i population. Using the above ratio of rates, we set
γ01= 2.34 × γ12 and fit the entire experimental dataset in Fig. 4 using the single
fitting parameter γ12.

Theoretical model of collisional spin dynamics. We describe the collisional
dynamics of two bosonic atoms in a three-dimensional anisotropic harmonic
potential with Hamiltonian Eq. (1) and spin-changing interaction given by Eq. (5).
As discussed above, since both F= 2 atoms are initially prepared in the m= 0
Zeeman state, binary collisions preserve the spin projection along the quantization
axis. Consequently, only three two-particle spin states are accessible: |0, 0〉,
Ŝ 1;�1j i, and Ŝ 2;�2j i. Writing the quantum state
jψðtÞi ¼ P

m¼0;1;2

R
drψmðr; tÞjri � Ŝjm;�mi, where r̂jri ¼ rjri, allows us to express
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the evolution under Hamiltonian (1) as

i�h _ψ0ðrÞ ¼ HrelðrÞψ0ðrÞ þ VðrÞ g0;00;0ψ0ðrÞ þ
ffiffiffi
2

p
g1;�1
0;0 ψ1ðrÞ þ

ffiffiffi
2

p
g2;�2
0;0 ψ2ðrÞ

h i
;

i�h _ψ1ðrÞ ¼ HrelðrÞ þ �hq1B
2ð Þψ1ðrÞ þ VðrÞ ffiffiffi

2
p

g1;�1
0;0 ψ0ðrÞ þ 2g1;�1

1;�1ψ1ðrÞ þ 2g2;�2
1;�1ψ2ðrÞ

h i
;

i�h _ψ2ðrÞ ¼ HrelðrÞ þ �hq2B
2ð Þψ2ðrÞ þ VðrÞ ffiffiffi

2
p

g2;�2
0;0 ψ0ðrÞ þ 2g2;�2

1;�1ψ1ðrÞ þ 2g2;�2
2;�2ψ2ðrÞ

h i
;

ð9Þ

where HrelðrÞ ¼ � �h2

2μ∇
2rþ 1

2

P
i¼x;y;z μω

2
i r

2
i , the coupling constants are given by

Eq. (7), and the quadratic Zeeman shifts are q1 = 143.776 Hz/G2 and q2 = 575.104
Hz/G249.

We take our initial condition as ψ1(r, 0)= ψ2(r, 0)= 0 and ψ0(r, 0) as a thermal
distribution of even eigenstates of Hrel(r). Specifically, in any given experiment
ψ0ðr; 0Þ ¼ φnx

ðxÞφny
ðyÞφnz

ðzÞ, where φni
ðxiÞ are eigenstates of the 1D harmonic

oscillator with mass μ and frequency ωi and ð�1Þnxþnyþnz ¼ 1 (since ψ0(r) must be
symmetric under particle exchange). The Boltzmann probability that ψ0(r, 0) will
be prepared in the eigenstate with quantum numbers (nx, ny, nz) is
Pðnx ; ny ; nzÞ ¼ expð�βεnx ;ny ;nz Þ=Z, where εnx ;ny ;nz ¼ �hωxðnx þ 1

2Þ þ �hωyðny þ 1
2Þ þ

�hωzðnz þ 1
2Þ are the eigenstate energies, β = 1/kBT, and the partition function Z has

an analytic expression (see Supplementary Note 5).
In the low-energy regime where s-wave collisions dominate, it is customary to

take V(r) = δ(r)24. However, in this case spin-changing dynamics only occur for
eigenstates where nx, ny, nz are all even (see Supplementary Note 6). In contrast,
states where (say) nx is even and ny and nz are odd never evolve. These latter kinds
of states represent roughly 70% of the ensemble at 44 μK, implying that this model
predicts that the population of |0, 0〉 never drops below 0.7, at odds with what we
experimentally observe.

We wish to use a simplified atom-atom interaction model that allows for
numerical calculations involving a high number of modes, while at the same
time avoids the problem with the delta-function interaction model50. In
particular, there is some evidence that the zero-range δ-function pseudopotential
fails to replicate the scattering properties of the underlying physical potential in
trapped systems when the magnitude of the s-wave scattering length is on the
order or greater than the harmonic oscillator lengthscale36,37. Furthermore,
there is a greater discrepancy for negative scattering lengths. In our experiment
a0/d=−0.44, a2/d = −0.34, and a4/d = −0.23, where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=ðm�ωÞp
and

�ω ¼ ðωxωyωzÞ1=3. We use a Gaussian pseudopotential V(r) = exp[−r2/(2w2)]/

(2πw2)3/2 with w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða40 þ a42 þ a44Þ=ða20 þ a22 þ a24Þ

p
� 650 a.u., since (1) it is

finite range and couples all even-parity eigenstates, (2) it gives the same total
scattering cross section as the δ-function pseudopotential (see Supplementary
Note 7), (3) it smoothly recovers the (regularized) δ-function in the w → 0 limit,
and (4) the form of the spin-changing coupling matrix is sufficiently simple that a
numeric calculation is tractable.

We numerically solve for the spin-changing dynamics by expanding ψi(r) on a
finite basis of even-parity eigenstates of HrelðrÞ : ψiðr; tÞ ¼

P
εnx ;ny ;nz�Ecut

cinx ;ny ;nz ðtÞφnx
ðxÞφny

ðyÞφnz
ðzÞ ; where the sum is over all eigenstates with

energy εnx ;ny ;nz less than some energy cutoff Ecut. It is necessary to choose Ecut
sufficiently large that

P
εnx ;ny ;nz�Ecut

Pðnx ; ny ; nzÞ � 1 and coupling to the highest-

energy, sparsely occupied modes is negligible. For the computational resources at
our disposal, these conditions limit our calculations to temperatures no greater
than 8.8 μK—roughly one fifth the temperature of the experiment.

In this basis the state is represented by c= [c0, c1, c2]Τ, where ci is the vector of
coefficients cinx ;ny ;nz for modes satisfying εnx ;ny ;nz � Ecut. Equations (9) imply

i�h_cðtÞ ¼ HcðtÞ with

H ¼
ϵþ g0;00;0T

ffiffiffi
2

p
g1;�1
0;0 T

ffiffiffi
2

p
g2;�2
0;0 Tffiffiffi

2
p

g2;�2
0;0 T ðϵþ �hq1B

2IÞ þ 2g1;�1
1;�1T 2g2;�2

1;�1Tffiffiffi
2

p
g2;�2
0;0 T 2g2;�2

1;1 T ðϵþ �hq1B
2IÞ þ 2g2;�2

2;�2T

0
BB@

1
CCA: ð10Þ

Here ε is a diagonal matrix with energies εnx ;ny ;nz along the diagonal and the

coupling matrix T is defined via T
mx ;my ;mz
nx ;ny ;nz ¼ Inx ;mx

Iny ;my
Inz ;mz

=ð2πw2Þ3=2; where
the integrals Ini ;mi

¼ R
dxiφni

ðxiÞ exp½�x2i =ð2w2Þ�φi
mi
ðxiÞ have an analytic solution

in terms of Gauss hypergeometric functions (see Supplementary Note 8).
Diagonalizing H ¼ UDUy gives the solution cðtÞ ¼ U exp½� i

�hDt�Uycð0Þ. Thus, for
a given initial condition ψ0ðr; 0Þ ¼ φmx

ðxÞφmy
ðyÞφmz

ðzÞ we can compute the

population of the jth two-boson spin state Nj
mx ;my ;mz

ðtÞ ¼ P
εnx ;ny ;nz�Ecut

jcjnx ;ny ;nz ðtÞj2.

The total population of the jth two-boson spin state assuming a thermal initial state
is given by an incoherent sum over Nj

mx ;my ;mz
ðtÞ weighted by the Boltzmann

probability Pðmx ;my ;mzÞ:
Pjj;�jiðtÞ ¼

X
εmx ;my ;mz

�Ecut

Pðmx ;my ;mzÞNj
mx ;my ;mz

ðtÞ: ð11Þ
This procedure was used to generate the simulation data plotted in Figs. 3–5.

Data availability
The source data underlying Figs. 2–5 and Supplementary Fig. 1 are provided as a Source
Data file.

Code availability
Simulation codes are available from Stuart S. Szigeti on reasonable request.

Received: 3 July 2018 Accepted: 11 March 2019

References
1. Horvath, M., Thomas, R., Tiesinga, E., Deb, A. & Kjaergaard, N. Above-

threshold scattering about a Feshbach resonance for ultracold atoms in an
optical collider. Nat. Comm. 8, 452 (2017).

2. Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT
quantum gate. Phys. Rev. Lett. 104, 010503 (2010).

3. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold
quantum gases. Nat. Phys. 8, 267–276 (2012).

4. Kaufman, A. M. et al. Quantum thermalization through entanglement in an
isolated many-body system. Science 353, 794–800 (2016).

5. Lahav, O. et al. Realization of a Sonic Black Hole Analog in a Bose-Einstein
condensate. Phys. Rev. Lett. 105, 240401 (2010).

6. Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose-Einstein
condensate from a Fermi gas. Nature 426, 537–540 (2003).

7. Williamson, L. A. & Blakie, P. B. Coarsening dynamics of an isotropic
ferromagnetic superfluid. Phys. Rev. Lett. 119, 255301 (2017).

8. Fang, F., Olf, R., Wu, S., Kadau, H. & Stamper-Kurn, D. M. Condensing
magnons in a degenerate ferromagnetic spinor Bose gas. Phys. Rev. Lett. 116,
095301 (2016).

9. Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose-Einstein condensates.
Phys. Rev. Lett. 92, 040402 (2004).

10. Chang, M. S., Qin, Q., Zhang, W., You, L. & Chapman, M. S. Coherent spinor
dynamics in a spin-1 Bose condensate. Nature 1, 111–116 (2005).

11. Pechkis, H. K. et al. Spinor dynamics in an antiferromagnetic spin-1 thermal
Bose gas. Phys. Rev. Lett. 111, 025301 (2013).

12. Ebling, U. et al. Relaxation dynamics of an Isolated large-spin fermi gas far
from equilibrium. Phys. Rev. X 4, 021011 (2014).

13. Krauser, J. S. et al. Giant spin oscillations in an ultracold Fermi sea. Science
343, 157–160 (2014).

14. He, X. et al. Coherent spin-mixing dynamics in thermal 87Rb spin-1 and spin-
2 gases. Phys. Rev. A. 91, 033635 (2015).

15. Hoang, T. M. et al. Parametric excitation and squeezing in a many-body
spinor condensate. Nat. Commun. 7, 11233 (2016).

16. Luo, X. Y. et al. Deterministic entanglement generation from driving through
quantum phase transitions. Science 355, 620–623 (2017).

17. Lücke, B. et al. Twin matter waves for interferometry beyond the classical
limit. Science 334, 773–776 (2011).

18. Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of
nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

19. Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement
patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.
Science 360, 409–413 (2018).

20. Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR
steering of atomic clouds. Science 360, 413–416 (2018).

21. Lange, K. et al. Entanglement between two spatially separated atomic modes.
Science 360, 416–418 (2018).

22. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of
caesium atoms. Nature 440, 315–318 (2006).

23. Laurent, S. et al. Connecting few-body inelastic decay to quantum correlations
in a many-body system: A weakly coupled impurity in a resonant fermi gas.
Phys. Rev. Lett. 118, 103403 (2017).

24. Widera, A. et al. Coherent collisional spin dynamics in optical lattices. Phys.
Rev. Lett. 95, 190405 (2005).

25. Widera, A. et al. Precision measurement of spin-dependent interaction
strengths for spin-1 and spin-2 87Rb atoms. New J. Phys. 8, 152 (2006).

26. Klausen, N. N., Bohn, J. L. & Greene, C. H. Nature of spinor Bose-Einstein
condensates in rubidium. Phys. Rev. A. 64, 053602 (2001).

27. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold
atom arrays. Science 354, 1024–1027 (2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09420-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1889 | https://doi.org/10.1038/s41467-019-09420-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


28. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-
by-atom assembler of defect-free arbitrary 2D atomic arrays. Science 354,
1021–1023 (2016).

29. Grünzweig, T., Hilliard, A., McGovern, M. & Andersen, M. F. Near-
deterministic preparation of a single atom in an optical microtrap. Nat. Phys.
6, 951–954 (2010).

30. Sompet, P., Carpentier, A. V., Fung, Y. H., McGovern, M. & Andersen, M. F.
Dynamics of two atoms undergoing light-assisted collisions in an optical
microtrap. Phys. Rev. A. 88, 051401 (2013).

31. Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science
360, 900–903 (2018).

32. Xu, P. et al. Interaction-induced decay of a heteronuclear two-atom system.
Nat. Commun. 6, 780 (2015).

33. Kaufman, A. M. et al. Entangling two transportable neutral atoms via local
spin exchange. Nature 527, 208–211 (2015).

34. Carpentier, A. V. et al. Preparation of a single atom in an optical microtrap.
Laser Phys. Lett. 10, 12 (2013).

35. Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid
production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett. 115,
073003 (2015).

36. Tiesinga, E., Williams, C. J., Mies, F. H. & Julienne, P. S. Interacting atoms
under strong quantum confinement. Phys. Rev. A. 61, 063416 (2000).

37. Blume, D. & Greene, C. H. Fermi pseudopotential approximation: Two
particles under external confinement. Phys. Rev. A. 65, 043613 (2002).

38. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: Symmetries, magnetism,
and quantum dynamics. Rev. Mod. Phys. 85, 1191 (2013).

39. Lücke, B. et al. Detecting multiparticle entanglement of Dicke states. Phys. Rev.
Lett. 112, 155304 (2014).

40. Oktel, M. Ö. & Levitov, L. S. Internal waves and synchronized precession in a
cold vapor. Phys. Rev. Lett. 88, 230403 (2002).

41. Willams, J. E., Nikuni, T. & Clark, C. W. Longitudinal spin waves in a dilute
bose gas. Phys. Rev. Lett. 88, 230405 (2002).

42. Fuchs, J. N., Gangardt, D. M. & Laloë, F. Internal state conversion in ultracold
gases. Phys. Rev. Lett. 88, 230404 (2002).

43. Bradley, A. S. & Gardiner, C. W. Theory of Ramsey spectroscopy and
anomalous segregation in ultracold rubidium. J. Phys. B 20, 4299–4323 (2002).

44. Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletic, V. & Lukin, M. D.
Coherence and Raman sideband cooling of a single atom in an optical tweezer.
Phys. Rev. Lett. 110, 133001 (2013).

45. Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg
limit. Phys. Rev. Lett. 102, 100401 (2009).

46. Nielsen, M. & Chuang, I. L. Quantum Computation and Quantum
Information: 10th Anniversaty Edition. (Cambridge University Press,
Cambridge UK, 2010).

47. Kuhr, S. et al. Analysis of dephasing mechanisms in a standing-wave dipole
trap. Phys. Rev. A. 72, 023406 (2005).

48. Hilliard, A. J., Fung, Y. H., Sompet, P., Carpentier, A. V. & Andersen, M. F. In-
trap fluorescence detection of atoms in a microscopic dipole trap. Phys. Rev. A.
91, 053414 (2015).

49. Li, R.-B., Zhou, L., Wang, J. & Zhan, M.-S. Measurement of the quadratic
Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions.
Opt. Commun. 7, 1340–1344 (2009).

50. Blume, D. Few-body physics with ultracold atomic and molecular systems in
traps. Rep. Progress. Phys. 75, 046401 (2012).

Acknowledgements
We acknowledge assistance with data acqusition by Tarentaise L. McLeod and fruitful
discussions with Crispin W. Gardiner, Ryan Thomas, and the members of Blair Blakie’s
research group. This work was supported by the Marsden Fund Council from Govern-
ment funding, administered by the Royal Society of New Zealand (Contract No.
UOO1320) and the Dodd-Walls Centre for Photonic and Quantum Technologies. S.S.S
received funding from an Australia Awards-Endeavour Research Fellowship and the
Australian Research Council (Projects No. DP160104965 and No. DP150100356).

Author contributions
The experiments were carried out by P.S. and E.S. The data analysis was performed by
P.S. Theoretical and numerical analysis was performed by S.S.S. and supervised by A.S.B.
All work was supervised by M.F.A. All authors discussed the results and contributed to
the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09420-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communication thanks the anonymous
reviewers for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09420-6

8 NATURE COMMUNICATIONS |         (2019) 10:1889 | https://doi.org/10.1038/s41467-019-09420-6 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-09420-6
https://doi.org/10.1038/s41467-019-09420-6
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Thermally robust spin correlations between two 85Rb atoms in an optical microtrap
	Results
	Experimental sequence
	Model
	Spin correlations
	Magnetic field dependence
	The high magnetic field regime
	The low magnetic field regime

	Discussion
	Methods
	Experimental procedure
	Relative number squeezing
	Coupling strengths and rate equations
	Theoretical model of collisional spin dynamics

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




