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Abstract. High-refractive index nanoparticles, including diamond nanoparticles, can exhibit 

strong optical resonances, whose spectral position depends on particle size and shape. In this 

work we demonstrate that these resonances can be used to control the emission of active 

defects within the particles. We present the theoretical concept of an active dielectric 

nanoantenna, and study the dependence of the radiation properties on the position of the defect 

within the particle, as well as on particle size. 

 

 

1.  Introduction 

Dielectric nanoparticles are actively studied within many research directions of nanophotonics since 

resonant behavior of small particles can substantially enhance light-mater interaction at the nanoscale. 

One of the potential applications areas of this enhancement is the emission control of single photon 

emitters through excitation of Mie resonances [1]. Efficient coupling of resonances of quantum 

sources with localized modes of high-index dielectric materials offers new opportunities for emission 

enhancement. In previous works, it was shown how to couple resonances of quantum emitters with 

resonances of dielectric and plasmonic nanoparticles [2,3], photonic crystals [4,5], and optical cavities 

[5,6]. By placing emitters inside the high-index dielectric nanoparticle we obtain the smallest possible 

structure with enhanced emission control, and we refer to it as an active nanoantenna [6,7].  

The simplest structure that can serve as an active nanoantenna is a diamond nanosphere with an 

embedded quantum emitter – nitrogen vacancy center (NV-center). Diamonds have excellent optical 

properties, including high refractive index (~2.4), low losses in visible and high stability. 

In this work we present the theoretical concept of active dielectric nanoantenna. We analyze the 

effect of high-order optical modes of relatively large diamond particles on the emission rate as 

compared to the small nanoparticles that do not support Mie resonances. 
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2.  Concept of active dielectric nanoantenna 

The optical properties of nanoantennas, and, as a result, the emission properties of the NV-Centres 

will depend on size, shape and material of nanoparticles. Larger refractive index leads to larger 

enhancement of the intensity of the optical field inside the particle. As the size of the particle 

increases, the number of supported resonances increases and high-order resonances appear. 

To analyze multiple resonances and to reveal the relation between sizes and emission rate 

enhancement, it is common to use the Purcell factor, and here we calculate it for diamond 

nanoparticles with embedded NV-centers. Utilizing the theory developed in Refs. [8,9], we study the 

Purcell Factor dependence on dipole position inside the sphere (see Fig. 1). Purcell factor is calculated 

as a ratio of emission rate of the dipole inside a diamond sphere (𝑛 = 2.4) to that without the sphere. 

Due to the fact that the positions of NV centers in realistic nanodiamonds are not known, we assume 

that they can be randomly located inside a diamond. Moreover, larger nanodiamonds will contain 

multiple defects, and the observed emission enhancement will be proportional to the average Purcell 

factor: 

𝐹̅𝑝 =
∫ ∭ 𝐹𝑝(𝑟,𝜈)𝑑𝑉𝑃0(𝜈)𝑑𝜈𝑉

𝜈𝑚𝑎𝑥
𝜈𝑚𝑖𝑛

𝑉 ∫ 𝑃0(𝜈)𝑑𝜈
𝜈𝑚𝑎𝑥
𝜈𝑚𝑖𝑛

,     (1) 

 

where 𝑉 – volume of the diamond particle, 𝜈 is frequency, and 𝑃0(𝜈) – typical luminescence intensity 

spectrum of the NV-center. 

 

 
 

Figure 1. Purcell factor dependence on the normalized radial position of the particle within a 

spherical nanodiamond for threeThe diamond particle sizes and dipole radial coordinate dependence 

on Purcell factor particle sizes. 

 

From the results presented in Fig. 1 it is clear that in the small nanoparticles (less than 100 nm), the 

emission rate is suppressed due to low local density of optical states [10]. Higher order resonances in 

large diamonds produce large Purcell factors that should lead to significant emission rate 

enhancement. We see that the Purcell factor in the diamonds of the diameter of 130 nm reaches the 

values of 1, while for the sphere of 640 nm it is 4.5. Importantly, as Fig. 1 shows, the values of Purcell 

factor change dramatically as the position of the defect varies along the radius. There is also an 

optimal position for the NV-center inside the nanodiamond that will produce the strongest emission 

enhancement. This position depends on the size of the nanodiamond, and in case of a spherical particle 

of the radius of 640 nm, the normalized optimal position is 0.66, while for the 130 nm sphere it is 0.6. 

In real experiments, however, various effects including roughness, irregular shape, and a large number 

of emitters of different orientations in different locations will reduce the observable emission rate. By 

further calculating the effects of randomness of the emitter orientation and location, and comparing the 

results to the deeply subwavelength nanodiamonds, we reveal that the Purcell factor for large resonant 

nanodiamonds is 4.5 times larger than in subwavelength nanoparticles. 
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While such technology is not available at the moment, we envisage that in future, by correctly 

choosing the size and shape of dielectric nanodiamonds and controllably placing the NV-center at a 

desired depth, we will be able to efficiently overlap the optical Mie-type resonances of particles with 

the photoluminescence spectrum and achieve manifold emission rate enhancement. 

3.  Conclusion 

We have studied the Purcell effect in spherical nanodiamonds with multiple embedded NV-centers 

and found that it is possible to obtain the emission rate increase of 4.5. We predict that by controlled 

positioning of the NV-centers inside the nanoparticle one can achieve much larger values of the 

Purcell factor. 
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